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Abstract 

Bloodstream infections (BSI) are a main cause of infectious disease morbidity and mortality world-

wide. Early prediction of patients at high risk of poor outcomes of BSI is important for earlier decision 

making and effective patient stratification. We developed electronic medical record-based machine 

learning models that predict patient outcomes of BSI. The area under the receiver-operating character-

istics curve was 0.82 for a full featured inclusive model, and 0.81 for a compact model using only 25 

features. Our models were trained, using electronic medical records that include demographics, blood 

tests, and the medical and diagnosis history of 7,889 hospitalized patients diagnosed with BSI. Among 

the implications of this work is implementation of the models as a basis for selective rapid microbio-

logical identification, toward earlier administration of appropriate antibiotic therapy. Additionally, our 

models may help reduce the development of BSI and its associated adverse health outcomes and com-

plications. 
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1 Introduction 

 

Bloodstream infections (BSI) can lead to prolonged hospital stays, and life-threatening and aggressive 

complications, in addition to high costs to health care systems [1–4]. Increasing rates of antimicrobial-

resistant pathogens, particularly gram-negative bacteria, limit treatment options; this often prompts 

empirical use of broad-range antibiotics [5]. Therefore, timely and critical assessment of available mi-

crobiology results are necessary to ensure that individuals with BSI receive prompt, effective, and 

targeted treatment, for optimal clinical outcomes [5]. However, the current standard-of-care, which 

mostly depends on blood culture-based diagnosis, is often extremely slow [6].  

 

Sepsis is a life-threatening medical condition, defined as the body’s systemic immunological response 

to an infectious process, which may cause end-stage organ dysfunction and eventually death [7]. Sev-

eral studies have utilized electronic medical records (EMRs) to construct prediction models for mor-

tality from sepsis [8, 9] and sepsis onset [12–15]. From a clinical perspective, these types of early 

warning systems may be useful in detecting patients at risk of BSI, and typically provide information 

at a certain point in time (for example, preoperatively [16]) or in a certain time-window before deteri-

oration (see review in [17]). Identifying a patient at risk can trigger early goal-directed therapy regard-

ing confirmation of infection, administration of antimicrobial therapy, and transition to the intensive 

care unit (ICU).  

 

In contrast to studies that aimed to detect patients at risk of BSI, the current study focused on patients 

with confirmed infections. Based on EMRs of patients hospitalized with positive blood cultures, we 

constructed machine learning models that predict poor outcomes of hospitalized patients with BSI (Fig. 

1; see Methods). Our prediction occurs at a certain point of time: just after the identification of bacterial 
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morphology on direct gram stain from a positive blood culture, yet well before performing specific 

pathogen identification. At this point of time, early goal-directed clinical practice can be diverted to 

patients at risk for poor clinical outcomes. In addition, the prediction can facilitate deciding at the 

microbiology lab, between using the traditional lengthy pathogen identification routine or rapid micro-

biological identification techniques [18]. A forewarning system could direct the required resources to 

the patients with BSI in the greatest need. 

 

2 Results 

The inclusive model 

The characteristics of the population used for the training and testing of the inclusive model are de-

scribed in Table 1 (see Methods). From 7,889 adults with a BSI, 2,590 (32.8%) positive composite 

outcomes were recorded. The contribution of each feature of the inclusive model to predict the com-

posite outcome was measured by SHaply Additive exPlanations (SHAP) scores, for each patient (Fig. 

2). The predictive contribution of missingness (gray points) was also assessed. Accordingly, a missing 

value of a feature (e.g., albumin) serves as a signal regarding the patient’s risk. SHAP values of three 

selected variables – age, monocyte %, albumin – are presented in Fig. 2b-d. The top 20 features ranked 

by the SHAP scores were also calculated (see Supplementary Fig. 1). The calibrated model was tested 

on a subset of the future test set, which comprised only patients in the ICU (the results are presented 

in Supplementary Fig. 2).  

 

Performance of the inclusive prediction model on the test set showed area under the receiver-operating 

characteristics curve (auROC) of 0.82 (95% confidence intervals (CI): 0.80–0.845), which indicates 

good discrimination; and an area under the precision-recall curve (auPRC) of 0.65 (95% CI: 0.61–
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0.70) (Fig. 3). The calibration plot, which runs very close to the diagonal, shows excellent calibration 

(Fig. 3c).  

The compact model 

The numerous EMR features, more than 600, incorporated in the inclusive model render its external 

validation and the reproducibility of results very difficult. This limits its applicability to other hospitals. 

Hence, we established a simpler and more compact prediction model that incorporates the features 

with the greatest impact on outcome, and that are most commonly listed in EMR datasets from other 

hospitals. To this end, we trained and evaluated the performance of a compact model with only 25 

features, including simple demographic information, a single blood test, and a brief medical history 

(Fig. 4.d). We used the same cohort of patients of the training and test sets from the previous analysis 

(see the inclusive model). The compact model achieves an auROC of 0.81 and auPRC of 0.63 (Fig. 4.a 

and Fig. 4.b), which is only slightly lower than the values of the inclusive model, with good calibration 

(Fig. 4.c). SHAP scores are shown in Figure 5.  

 

The code to test this model is available in our GitHub repository.  

3 Discussion 

 

In this study, we examined the ability to utilize EMRs to predict a composite poor outcome of patients 

with BSI, which may promote both rapid interventions and patient stratification. Several scoring sys-

tems have been developed in recent years for stratifying the risk of patients with sepsis [8, 12–15, 17], 

but not for outcomes of patients with BSI. In addition, none are commonly used in routine practice nor 

recommended according to current guidelines. 
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Our results show that EMRs can be used to produce accurate predictions of BSI outcomes. Our retro-

spective analysis demonstrates the feasibility of accurate prediction of BSI outcomes using data avail-

able in EMRs. In the inclusive model, the prediction was after a gram-stain, and yielded an auROC of 

0.82, and an auPRC of 0.65. In the compact model, the prediction was based on only 25 features avail-

able at the time of culture, not including gram-stain results; and yielded an auROC of 0.81, and an 

auPRC of 0.63. In addition to the well-established risk factors for complications from BSI, such as age 

and previous infections, our analysis revealed less-known factors as highly predictive of a poor out-

come from BSIs. The main factors that were identified as increasing risk included: red cell distribution 

width, albumin, and creatinine. Red cell distribution width and albumin have been associated with 

mortality, and have been used as prognostic markers in a number of studies [19–26]. The Charlson 

Comorbidity Index has also been found to predict mortality in various medical situations [27, 28]. 

However, other factors revealed as central by our analysis, such as serum creatinine values and mono-

cyte counts, are less well recognized and used as predictors of a poor outcome in patients with BSI. 

 

Although maximal model explainability requires using the patient’s entire EMR, we demonstrated that 

a subset of features, available from only simple demographic information and a single blood test, ena-

bles accurate prediction with only a slight decrease in auROC, from 0.82 in the inclusive model to 0.81 

in the compact model. This may enable accurate BSI outcome estimation by embedded systems in 

emergency departments of hospitals. 

 

Our work has several clinical applications. For instance, it can help select individuals at high-risk for 

BSI, for whom hospitalization in the ICU, treatment with broad-spectrum antibiotics, or effective early-

stage rapid microbiological identification should be considered.  
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The benefit of early microbiological identification for patient outcomes has been well described in the 

medical literature [5, 29] and the time-to-administration of appropriate antibiotics to treat BSI is an 

important predictor of outcomes [30]. The current study therefore paves the route for future random-

ized control trials to further study the effectiveness of implementing a model for early prediction of 

BSI outcomes, possible preventive interventions, and more efficient selection of patients for advanced 

microbiological diagnostic testing, thus reducing the time-to-administration of appropriate antibiotics. 

 

Our study has several limitations. First, our prediction model is based on retrospective EMR data, 

which have inherent biases and are influenced by the interaction of the patient with the health system 

[31]. However, these biases are partially mitigated in this study, since the data contain information 

originating from a public hospital serving a very large population, and since the outcome of the model 

is based on information that is accurately and comprehensively documented in the EMRs. Another 

limitation of the study is that we assessed BSI outcomes only in patients who were already diagnosed 

with BSI (having a positive blood culture). This makes it more difficult to generalize to the entire 

emergency room population. Finally, the predictor was trained and validated on EMRs from Tel Aviv 

Sourasky Medical Center (TASMC), composed of patients from and around Tel Aviv, Israel. None-

theless, TASMC is a public hospital, and the medical system in Israel is accessible to the entire popu-

lation.  

 

Applicability of the model to other hospital populations needs to be shown. However, the large size of 

the data, and the comprehensive validation process and its result, namely, validation of the utility of 
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established risk factors for a poor BSI outcome, all support the model’s generalizability to other hos-

pitals. Given the additional complexities introduced by the machine learning algorithms, we sought to 

ensure that sufficient information would be provided to enable our model to undergo external valida-

tion [32, 33]. This drove us to develop the compact model, which is based on the features with the 

greatest influence on the overall prediction, and that are easily accessible in EMR datasets from other 

hospitals. This compact model achieved only a slightly reduced auROC of 0.81. We made the compact 

model available in our GitHub repository (see code availability) and we encourage researchers with 

similar data from other hospitals to test it.  

 

In conclusion, our work demonstrates that accurate and calibrated predictions of BSI outcomes early 

in a hospital admission can be achieved. Earlier and better characterization of patients with BSI could 

potentially reduce the development of BSI and its associated adverse health outcomes and complica-

tions. Our predictive model could become the basis of selective, rapid microbiological identification, 

and also contribute to various decisions such as ICU hospitalization and administration of broad-spec-

trum antibiotics. Future prospective studies, as well as those on populations from other hospitals, are 

needed to evaluate the clinical impact of the model. 

 

4 Methods 

 

Study design, population, and definition of outcome 

The study was designed as a retrospective cohort study for the development and validation of a clinical 

prediction model. The study was performed at the TASMC, a 1,500-bed public tertiary care center, 

and the only general hospital serving the population of Tel-Aviv, the most populous city in Israel, of 
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all socioeconomic backgrounds. Data processing, model training and analyses were performed at the 

TASMC Data Science Department and the Faculty of Medicine at Tel Aviv University. 

 

The study included EMRs of adults hospitalized with a positive blood culture (bacterial only) in the 

period between January 2014 and January 2020. The year 2014 was determined as the starting point 

since frequent changes in variable identifiers occurred in the preceding years. Patients’ EMRs included 

demographics, laboratory test results, previous diagnoses recorded at TASMC, recorded medical his-

tory, and initial gram-stain morphology of positive blood cultures that are reported by phone. 

 

The models were developed according to features extracted from various modalities available in EMRs 

of patients hospitalized with a positive blood culture at the TASMC, and predicted a composite poor 

outcome, defined as at least one of the following: 

• Short term in-hospital mortality within 10 days of a culture. 

• Mechanical ventilation in the 10 days after the culture.  

• Prolonged length of stay (>6 weeks).  

 

The study flow chart is presented in Fig. 1. Exclusion criteria were: the absence of laboratory data of 

medical history information, age younger than 18 years or older than 100 years, and patients’ explicit 

objection to the use of their medical data for research purposes. Before initiating any analysis, the study 

population was divided into a training set that included 6,434 admissions (from years 2014-2018) and 

a validation set that included 1,455 admissions during 2019 and the first month of 2020. The model 

was also validated on two subsets of the validation set, which comprised only patients from ICUs or 
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only patients from the emergency room. Both these subsets posed a high challenge to the model re-

garding its generalization. The prospective validation cross-sections were performed to emulate the 

model’s use in practice and in real world situations. 

Variable and feature selection 

To evaluate whether EMR-derived information might accurately predict outcomes of patients with 

BSI, we compiled a set of 606 features. All these features were available at the time a blood sample 

was sent for culture, except for the gram-stain information (used only in the inclusive model). With all 

these features, we trained a gradient-boosting model, the inclusive model, to predict the probability 

that each held-out sample (patients not included in the training set) would have a poor outcome. Dis-

tributions of the various modalities of the features used are depicted in Fig. 1b. In addition, we trained 

and tested a compact model, comprising 25 features, for application on EMRs from other hospitals.  

 

Each of the 606 features was assigned a category. For more comprehensive representation, some fea-

tures within a category were combined, such that all the features could be represented using 96 varia-

bles. These variables were used to create the pie chart in Fig 1.b. The following list describes the 

mechanism for generating the features, and for grouping them: 

(A) Demographics (238 features, 14 variables when grouped) 

• Contains features such as age, sex, and number of children. A total of 228 categorical 

features, which included birth country and nationality, were grouped to five variables.  

(B) History (108 features, 14 when grouped) 

• Contains medical history that is not documented as diagnosis history. This includes unit 

information (ICU, emergency room, etc.), surgery information, and chest pain. A total 

of 97 categorical features were grouped to three variables.  
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(C) Medications (five features) 

• Contains binary information about five medications: general diabetes drugs, insulin, 

anti-coagulants, anti-aggregants, and coumadin on admission. 

(D) Laboratory (33 features, 30 when grouped) 

• Contains laboratory test results. Four categorical features, describing gram staining re-

sults, were combined into one variable. All other features in this category had continu-

ous numeric values.  

(E) Diagnoses (222 features, 33 when grouped) 

• Diagnoses history is recorded in TASMC as ICD-9 codes. The ICD-9 code hierarchy 

was used to group these features into 33 variables represented by ICD-9 codes of higher 

hierarchy.  

Analysis platform 

All computational analyses were performed on a secure compute cluster environment located at 

TASMC. Python 3, with numpy, pandas, and scikit-learn formed the backbone of the data-processing 

pipeline. 

Development of the models 

Predictions were generated using a gradient-boosting machine model built with decision-tree base-

learners [34]. Such models have demonstrated efficacy in prediction, using tabular data [35], and have 

been incorporated in several successful algorithms in the field of machine learning [36]. We imple-

mented the gradient-boosting predictor trained with the LightGBM [37] Python package. LightGBM 

has shown effectiveness on clinical and patient tabular data in particular, and was adopted by many 

recently published models [38–43]. Missing values were inherently handled by the LightGBM predic-

tor [37, 44, 45]. The validation set was used for early stopping [46], with auROC as the performance 
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measure. The hyperparameters used are available at our GitHub repository. Two LightGBM classifiers 

with differing complexity were developed: the inclusive and compact models. The compact model is 

available at our GitHub repository (see Code Availability). 

The mechanistic basis of the models  

To identify the principal features driving model prediction, SHAP values [47] were calculated. These 

values are suited for complex models such as artificial neural networks and gradient-boosting machines 

[48]. Originating in game theory, SHAP values partition the prediction result of every sample into the 

contribution of each constituent feature value. This is done by estimating differences between models 

with subsets of the feature space. By averaging across samples, SHAP values estimate the contribution 

of each feature to overall model predictions. A higher value indicates that a feature has a larger impact 

on the model, which indicates that the feature is more important.  

Calibration of the models 

We analyzed the calibration (observed risk versus raw prediction score) of our proposed inclusive and 

compact models. The raw prediction scores produced by the machine learning model (LightGBM) 

were calibrated and evaluated on the test-set. We used isotonic regression, which fits a rank-preserving 

transformation between the original scores and transformed scores; and minimizes the deviation be-

tween the target label and the prediction score. We used the scikit-learn library (version 0.20.0) for 

fitting the isotonic regression model. Ten prediction score bins were used, with regular spacing be-

tween the minimum/maximum prediction score produced by a model. We noticed that the raw scores 

were already well-calibrated. Curves for isotonic and sigmoid calibrations, as well as for the raw model 

are presented in Figure 6.  

Evaluation of the models 
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The models were scored on the test set using the auROC. In addition, plots of positive predictive value 

(PPV) against sensitivity (precision-recall curve) were drawn across different thresholds. For all the 

thresholds from all the ROC curves, metrics were calculated, including sensitivity, specificity, PPV, 

negative predictive value, false positive rate, false negative rate, false discovery rate, and overall ac-

curacy (Supplementary Dataset 1). Confidence intervals for the various performance measures were 

derived through resampling, using the bootstrap percentile method [49] with 1,000 repetitions. 
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Figures and Legends 

 

 

Figure 1, Data and cohort characteristics. a, Cohort selection. Bloodstream infection was identified 

as a positive culture test. Next, patients with only contaminants were excluded (a list of bacteria clas-

sified as contaminants is available in the supplementary information). Subsequently, previous admis-

sions for each patient and patients with no lab tests information were excluded. Finally, the cohort was 

divided into training and validation sets (see Methods). b, Feature modality distribution. Pie charts are 

divided according to the sum of data points in each feature set. A substantial proportion of the data 

originates from laboratory test results during current or previous admissions. The Circos plot shows 

the correlation between continuous features from the entire cohort (test and training sets). Correlation 

strength is determined by Pearson correlation, thicker bands correspond to a stronger Pearson correla-

tion coefficient.  
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Figure 2: Feature analysis of the inclusive model a. A summary plot of the SHaply Additive exPla-

nations (SHAP) values for each feature. From top to bottom, the features are ordered by their overall 

influence on the final prediction (sum of SHAP values). In each feature (line), each point represents a 

specific case (individual), with colors ranging from red (high values of the predictor) to blue (low 

values of the predictor). Gray points signal missing values. A point’s location on the X-axis represents 

the SHAP value—the effect the variable had on the prediction in a given individual; points further 

right indicate greater risk, and points to the left indicate lesser risk. The vertical line in the middle 

represents no change in risk. b A plot of SHAP for different values of age (years). The light histogram 

along the X-axis shows the density of the data. c A plot of SHAP for different values of monocytes 

percentage (%) in the blood. The light histogram along the X-axis shows the density of the data. d A 

plot of SHAP for different values of albumin (g/L). The light histogram along the x-axis shows the 

density of the data. a-d are based on the future test set, n = 1,455 unique patients.  
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Figure 3: Performance of the inclusive model a. Receiver-operating characteristics (ROC) curves 

for predictions of the inclusive model on the prospective test set. The light band around the curve 

represents pointwise 95% confidence intervals derived by bootstrapping. b. A plot of the precision 

(positive predictive value, PPV) against the recall (sensitivity) of the predictor for different thresholds. 

The light band around the curve represents pointwise 95% confidence intervals derived by bootstrap-

ping. c. Calibration plot, plotting the observed outcome against the predicted probabilities. The diago-

nal gray line represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to 

represent the averages in ten discretized bins. The rug under the plot illustrates the distribution of 

predictions. 
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Figure 4: Performance of the compact model a. Receiver-operating characteristics (ROC) curves 

for predictions of the compact model on the prospective test set. The light band around the curve rep-

resents pointwise 95% confidence intervals derived by bootstrapping. b. A plot of the precision (posi-

tive predictive value, PPV) against the recall (sensitivity) of the predictor for different thresholds. The 

light band around the curve represents pointwise 95% confidence intervals derived by bootstrapping. 

c. Calibration plot, plotting the observed outcome against the predicted probabilities. The diagonal 

gray line represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to 

represent the averages in ten discretized bins. The rug under the plot illustrates the distribution of 

predictions. d. All 25 features used by the compact model. 
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Figure 5: A summary plot of the SHAP values for each feature of the compact model. From top to 

bottom, features are ordered by their overall influence on the final prediction (sum of SHAP values). 

In each feature (line), each point represents a specific case (individual), with colors ranging from red 

(high values of the predictor) to blue (low values of the predictor). Gray points signal missing values. 

A point’s location on the X-axis represents the SHAP value—the effect the variable had on the predic-

tion in a given individual. The points further to the right indicate that for the given individual, the 

covariate contributed to increasing the risk. Points to the left indicate that the covariate contributed to 

decreasing the risk. The vertical line in the middle represents no change in risk. Values for the feature 

‘Sex’ are 0 for female, and 1 for male. 
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Figure 6. Calibration plots of the observed outcome against the predicted probabilities. The diagonal 

gray line represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to 

represent the mean values in ten discretized bins. Blue, orange, and green lines correspond to the orig-

inal uncalibrated model, the model after sigmoid calibration, and after isotonic calibration, respec-

tively.  
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Tables 

 

Table 1 Population Characteristics. CCI = Charlson Comorbidity Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Training set Test set 

General 
N 6434 1455 

Age [median (±)] 74 (24) 73 (22) 

Females [%] 47.7 46.25 

CCI 
Mild [%] 20.66 20.03 

Moderate [%] 40.4 37.94 

Severe [%] 38.94 42.03 

Admission type 
Elective [%] 5.08 5.54 

Emergency [%] 91.17 90.36 

Urgent [%] 3.75 4.1 

Other 
Infectious background [%] 9.71 9.42 

Surgery during hospital stay [%] 14.45 13.33 

Clinical outcomes 
Short-term mortality [%] 23.17 18.49 

Long hospital stay [%] 12.17 9.07 

Mechanical ventilation [%] 1.23 0.97 

Composite score [%] 34.24 26.6 
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