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Summary

Despite the recent development of vaccines and monoclonal antibodies preventing

SARS-CoV-2 infection, treating critically ill COVID-19 patients still remains a top

goal. In principle, drug repurposing – the use of an already existing drug for a new

indication – could provide a shortcut to a treatment. However, drug repurposing is

often very speculative due to lack of clinical evidence. We report here on a

methodology to find and test drug target candidates for drug repurposing. Using UK

Biobank data, we screened for significant differences in 33 blood cell types, 30 blood

biochemistries, and body mass index between an infectious disease phenotype and

healthy controls. We then matched critically ill COVID-19 cases with controls that

exhibited mild or no symptoms after SARS-CoV-2 infection. Using data from the UK

Biobank, we describe a workflow to find evidence for high neutrophil cell count and

high concentrations of blood triglycerides as predictors of the immune overreaction in

critical illness due to COVID-19. Based on these findings, we identified the enzyme

CDK6 as a potential drug target to prevent in high risk individuals with high

neutrophil cell count the immune overreaction in critical illness due to COVID-19.

Three existing CDK4/6 inhibitors -- abemaciclib, ribociclib, and palbociclib -- have

been approved for the treatment of breast cancer. Clinical evidence for CDK4/6

inhibitors in treating critically ill COVID-19 patients has been reported. Further clinical

investigations are ongoing.
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Introduction

The phenotype of critically ill coronavirus disease 2019 (COVID-19) status

substantially differs from mild or moderate disease, even among hospitalized cases,

by an uncontrolled overreaction of the host’s immune system[1–3] – a so-called

virus-induced immunopathology[4] – resulting in acute respiratory distress syndrome

(ARDS). The molecular mechanism leading to critical illness due to COVID-19 is still

unclear. Identifying causal risk factors is central for prevention and treatment.

Nonetheless, there is evidence that susceptibility and overreaction of the immune

system to respiratory infections are both strongly heritable.[5,6] A series of

genome-wide association (GWA) studies have been conducted to investigate

disease pathogenesis in order to find mechanistic targets for therapeutic

development or drug repurposing.[7–10] Treating the disease remains a top priority

despite the recent development of vaccines preventing severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection due to the threat of new

vaccine-resistant variants.

The results of 46 GWA studies comprising 46,562 COVID-19 patients from 19

countries have been combined in three meta-analyses by the COVID-19 Host

Genetics Initiative.[10] Overall, 15 independent genome-wide significant loci

associations were reported for COVID-19 infection in general, of which six were

found to be associated with critical illness due to COVID-19: 3p21.31 close to

CXCR6, which plays a role in chemokine signaling, and LZTFL1, which has been

implicated in lung cancer; 12q24.13 in a gene cluster that encodes antiviral

restriction enzyme activators; 17q21.31, containing the KANSL1 gene, which has

been previously reported for reduced lung function; 19p13.3 within the gene that
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encodes dipeptidyl peptidase 9 (DPP9); 19p13.2 encoding tyrosine kinase 2 (TYK2);

and 21q22.11 encoding the interferon receptor gene IFNAR2. The functions of the

genes associated with these six loci are either related to host antiviral defense

mechanisms or are mediators of inflammatory organ damage. These results are a

very good starting point for a better understanding of host genetics in viral infections.

Unfortunately, none of these genes encodes for an established drug target.

Consequently, these studies provide no starting point for drug repurposing.

We present here an approach for drug repurposing based not on disease genetics

but on the genetics of disease-causing traits. Using UK Biobank data[11], critically ill

COVID-19 cases are matched with mild COVID-19 cases as controls. Traits that

significantly differ in cases and controls are further investigated for their relationship

to critical illness in COVID-19 (Fig. 1). The genetics of these traits may be further

investigated to identify and test established target genes for drug repurposing.

Results

Screening for traits associated with infectious disease

Using UK Biobank data[11], we identified 42,065 individuals with respiratory

infections, acute respiratory distress syndrome (ARDS), influenza and pneumonia,

which serve as our infectious disease cohort. In order to explore how the infectious

disease cohort differs from healthy controls, we screened 64 candidate predictive

traits (33 blood cell types, 30 blood biochemistries, and body mass index) that had

been measured years before the individuals were affected. We observed

Bonferroni-corrected statistically significant differences (p < = 0.05/64)[12] in 53α/𝑛 
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traits confirmed by independent two-sample t-test and Mann-Whitney U-test[13] (Fig.

1 and SI Fig. 1).

Regression modeling

Furthermore, we identified 1,505 patients who were hospitalized due to SARS-CoV-2

infection and who required respiratory support and/or died due to infection.[14]

These patients were defined as cases and matched to controls that were infected

with SARS-CoV-2, but showed no and only mild symptoms. Carrying over the 53

traits identified in the previous step, we used regression modeling to investigate the

effect of these traits on critically ill COVID-19 status. Out of the 53 traits, 21 traits

were significant predictors of critical illness due to COVID-19 with a

Bonferroni-corrected significance threshold of p < = 0.05/53 (Fig. 1 and SI Tab.α/𝑛 

1).

Propensity score analysis

Propensity score analysis is a technique for estimating the effect of a treatment on

an outcome independent of any observed factors that covary with that treatment. We

employed propensity score stratification using the propensity function of Imai and

van Dyk[15] in order to estimate the effect of the treatment on critical illness in

COVID-19 independent of the covariates. We iteratively defined each of the 21

predictive traits as treatment and then determined the effect of that treatment when

setting one of the remaining traits as covariate, totalling 420 analyses (see

Supplementary Information). We built models with pairs of traits rather than moving

straight to an all-predictor model, because of the close relationship between some
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predictor pairs (such as leukocyte and neutrophil count, as neutrophils are

leukocytes). The results revealed eleven independent traits that showed a significant

effect on severe COVID-19 independently of any other trait (Fig. 2): Body mass

index (BMI), neutrophil cell count, cystatin C, glucose, glycated haemoglobin,

triglycerides, and five traits related to reticulocytes.

Drop1 analysis

The drop1 analysis compares all possible models that can be constructed by

dropping a single model term and evaluating its impact on the regression model. As

shown in Fig. 2 we here investigated the remaining independent traits obtained by

the propensity score analysis. As the five measures of reticulocytes are highly

interdependent, immature reticulocyte fraction can be used as a proxy. This leads to

seven traits in our drop1 analysis: BMI, neutrophil cell count, immature reticulocyte

fraction, Cystatin C, glucose, glycated hemoglobin and triglycerides. The drop1

analysis revealed that only neutrophil count and triglycerides explain unique variance

in critically ill COVID-19 status to a Bonferroni-corrected significance threshold of p <

= 0.05/7 (Fig. 1 and Tab. 1).α/𝑛 

Trait genetics analysis

We next focused on the genetics of neutrophil cell count and triglycerides. We ran

GWA analyses for these traits and compared our results with previously reported

statistics available from the NHGRI-EBI GWAS Catalog[16] (SI Fig. 2). The identified

genes were further investigated for already approved drug molecules. We did not

find a gene reported for triglycerides measurement and an approved drug molecule.
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More importantly, elevated triglyceride levels have been previously described to

increase neutrophil cell count[17] giving evidence that triglycerides regulate

neutrophils. Therefore, we focused on the genetics of neutrophil cell count. We found

CDK6, encoding for cyclin-dependent kinase 6 (CDK6), reported for neutrophil cell

count[18]. Therefore, we envision CDK6 as a potential drug target to decrease

neutrophil cell count and, from there, to prevent in high risk individuals with high

neutrophil cell count the immune overreaction in critical illness due to COVID-19.

Three existing CDK6 inhibitors - abemaciclib, ribociclib, and palbociclib - have been

approved for the treatment of breast cancer.

Mendelian randomization

Mendelian randomization (MR) is a robust and accessible tool to examine the causal

relationship between an exposure variable and an outcome from GWAS summary

statistics.[19] We employed two-sample summary data Mendelian randomization to

further validate causal effects of neutrophil cell count genes on the outcome of

critical illness due to COVID-19. We used independent GWAS summary data for

neutrophil cell count (exposure) published by Vuckovic et al.[20] and summary data

for critical illness in COVID-19 (outcome) published by the COVID-19 Host Genetics

Initiative[10]. As shown in the Supplementary Information Tab. 2, instrumental

variable weight (IVW) was significant with a p value of 0.01199 when we used a

lenient clumping parameter of r = 0.2 and 1,581 SNPs whereas we observed no

significant IVW when we used strict clumping parameters of r = 0.01 and 567 SNPs.
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Discussion

Using data from the UK Biobank, we describe a workflow to find hints for a causal

relationship between high neutrophil cell count and high concentrations of blood

triglycerides as a predisposition of the immune overreaction in critical illness due to

COVID-19. Based on these findings, we identified the enzyme CDK6 as a potential

drug target to prevent in high risk individuals with high neutrophil cell count and

triglycerides the immune overreaction in critical illness due to COVID-19. Three

existing CDK4/6 inhibitors - abemaciclib, ribociclib, and palbociclib - have been

approved for the treatment of breast cancer.

Our procedure worked as follows. First, we identified significant differences in 64

candidate predictive traits between an infectious disease cohort and healthy controls.

We used regression models to investigate the effect of these traits on critically ill

COVID-19 cases compared to asymptomatic controls. Because highly dependent

traits (such as leukocyte and neutrophil count, as neutrophils are leukocytes) would

not be significant in drop1 analysis, we first used propensity-score-based

multi-model analysis to filter for independently predictive traits. The obtained seven

traits then underwent a drop1 analysis. We here identified neutrophil cell count and

triglycerides as traits that have a unique effect on critical illness in COVID-19

independent of other traits. These traits are connected as it has been shown that

triglycerides activate neutrophils.[17] It is important to note that our Mendelian

randomization (MR) results do not confirm a causal role of neutrophil count genes

similar to previous reports.[10] However, MR is typically used where there is a direct

relationship between gene and outcome.[21] In our case, we are looking for a trait to

predict disease progression, and it is irrelevant whether the trait is triggered
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genetically or by other factors such as prior disease. Type 2 diabetes, cardiovascular

disease, and obesity have previously been described as risk factors for the severe

course of COVID-19.[22] We could show here that these diseases are confounders

of high triglycerides and neutrophil cell count. Especially a high neutrophil cell count

already before infection seems to be the reason for critical illness in COVID-19 and

should therefore be in the focus of possible preventive therapies.

The role of neutrophil cell count in COVID-19 can be explained by the previously

reported disease mechanism.[23] Neutrophils are white blood cells and an important

component of our host defense against invading pathogens. Critical illness in

COVID-19 is characterized by infiltration of the lungs with macrophages and

neutrophils that cause diffuse lung alveolar damage, the histological equivalent to

ARDS (Fig. 3).[24–26] Neutrophils develop so-called neutrophil extracellular traps

(NETs), web-like structures of nucleic acids wrapped with histones that detain viral

particles, through NETosis, a regulated form of neutrophil cell death.[27] However,

ineffective clearance and regulation of NETs result in pathological effects such as

thromboinflammation.[28]

Cyclin-dependent kinases (CDK) 4 and 6 have been previously described as

regulators of NETosis. CDK4/6 inhibitors block NETs formation in a dose-responsive

manner but does not impair oxidative burst, phagocytosis, or degranulation.[29] This

indicates that CDK4/6 inhibition specifically affects NET production rather than

universally modulating inflammatory pathways (in contrast to immunosuppressants

such as dexamethasone or interleukin-6 inhibitors). This is supported by Grinshpun

et al.’s report that COVID-19 progression was halted for a breast cancer patient on

CDK4/6 inhibitor therapy. Once the drug was withdrawn, the full classic spectrum of
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illness appeared, including oxygen desaturation necessitating a prolonged hospital

stay for close monitoring of the need for invasive ventilations.[30] Selective inhibition

of NETosis is a particularly attractive treatment because CDK4/6 inhibitors can

prevent the cytokine storm and, thus, later intensive care.

Several drug classes, each with different mechanisms of action, have been

postulated for the treatment of COVID-19.[31] However, clinically relevant effects

were only confirmed for two drug classes: Antivirals such as passive immunity

through monoclonal antibodies show an effect at the beginning of the infection,[32]

while immunosuppressants are only beneficial for the treatment of the later immune

overreaction.[33,34] Therefore, a therapeutic gap exists if the infection is not

detected early and a possible immune overreaction is to be prevented (Fig. 3). The

immune overreaction and, from there, intensive care must be circumvented in order

to avoid overwhelming the health care system and triggering lockdowns in the event

of further waves. This gap urgently needs to be closed in order to be prepared for

any future variants able to evade vaccine protection.

In particular, CDK4/6 inhibitors represent a swift solution to this problem, as they

have already been approved for the treatment of breast cancer (abemaciclib,

ribociclib, and palbociclib). In the case reported by Grinshpun et al.,[30] the CDK4/6

inhibitor was administered prior to infection, therefore it was not harmful in the early

course of the disease (like immunosuppressants[33]), but protected against

thromboinflammation and thus prevented the necessity of intensive care. Another

advantage rendering CDK6 an attractive drug target is that since it is a human

protein, mutations of the virus do not influence drug action - in stark contrast to

antivirals. Ultimately, CDK4/6 inhibitors might become so-called magic bullets, as
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they could be used against all virus-induced immune pathologies, and thus also

contain future pandemics of novel viruses. Further clinical investigation will reveal

whether high neutrophil counts are causative for critical illness in COVID-19, and

whether reducing neutrophil cell counts with CDK4/6 inhibitors is a therapeutic

option.

Methods

Recruitment of cases and controls

We downloaded the rich information made available by the UK Biobank project on

October 25, 2021. COVID-19 test results up until 18th October 2021 were collected,

and cases were defined as reported previously.[8]

The infectious disease phenotype was created based on UK Biobank data for

respiratory infections, acute respiratory distress syndrome (ARDS), influenza, and

pneumonia with hospitalization or death as a result. We aggregated hospital

in-patient and death register data for ICD codes corresponding to J00-J06 (“Acute

upper respiratory infections”), J09-J18 (“Influenza and pneumonia”), J20-J22 (“Other

acute lower respiratory infections”), and J80 (ARDS), yielding 42,065 cases. The

remaining individuals from the UK Biobank were defined as potential controls.

Briefly, 1,505 severe cases were defined as patients who died or were hospitalized

due to COVID-19 (cause of death or diagnosis containing ICD10 codes U07.1 or

U07.2) or were ventilated (operation codes E85.*) in 2020 or 2021 and tested

positive for SARS-CoV-2 infection. Individuals that were tested positive for

SARS-CoV-2, but did not die or were critical due to COVID-19 and were not

ventilated, were defined as potential controls.
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For both cohorts, cases and controls were filtered for European ancestry (“British”,

“Irish”, and “Any other white background”), and individuals with missing age and sex

information were discarded. Controls were the then randomly matched to the same

number of cases based on age and sex. Variants reported by Pairo-Castineira et

al.[8] and Ellinghaus et al.[7] as well as variants reported by the ClinVar database[35]

for the genes reported by the papers were included in the dataset.

Screening for significant traits

The UK Biobank contains data on biological samples taken years before potential

infection upon registration of individuals to the program, including blood cell counts

and blood biochemistry. In order to identify traits that are significantly different

between the infectious disease cohort and age- and sex-matched healthy controls,

we performed independent two-sample t-tests and Mann-Whitney U-test using the

function of the scipy package in Python 3. We applied a Bonferroni-corrected p-value

threshold of p < α/n = 0.05/64. In four instances, the p-values were too small to be

represented properly, and were instead set to 1.0E-297.

Regression modeling

Logistic regression models were fitted using the glm function in R

(www.R-project.org).

12

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.05.18.21256584doi: medRxiv preprint 

https://paperpile.com/c/f9x9dt/CUj5h
https://paperpile.com/c/f9x9dt/1aszP
https://paperpile.com/c/f9x9dt/ycQaO
https://doi.org/10.1101/2021.05.18.21256584


Propensity score analysis

Using the method of Imai and Van Dyk[15], the individuals are split into deciles who

have a similar propensity for a treatment (one of 21 predictive traits) given the

covariates (another predictive trait, age, sex). We then estimated the effect of

treatment on severe COVID-19 within each of the groups. The effect across these

groups is examined and the average effect of treatment is calculated over the groups

to give an estimate of effect of treatment independent of the covariates.  The estimate

of effect of treatment independent of the covariates was defined as significant if p <

= 0.05/(20*21) = 1.1905E-4. There were only slight differences in the resultsα/𝑛 

using quintiles or deciles.

Drop1 analysis

A drop1 model comparison procedure was performed using the drop1() function in R

(www.R-project.org) in order to determine whether each of a set of traits accounts for

unique variance in critically ill COVID-19 disease status. The formula of BMI +

neutrophil cell count + immature reticulocyte fraction + cystatin C + glucose +

glycated haemoglobin + triglycerides was used to predict critical illness due to

COVID-19. Single terms were deleted and the F value is calculated to perform an

F-test to derive the Pr(>F) value, where low values indicate that a model that does

not include this term is significantly different from the full model.
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GWAS

The UK Biobank genotypes for the cases and controls were extracted to create a

dataset that was then submitted to a series of quality control steps with an aim to

remove biases in the downstream analysis as described in Marees et al.[36] First we

filtered SNPs and individuals based on their missingness in the dataset. This

excludes SNPs that have a high proportion of subjects where genotyping information

is unavailable or of poor quality. Similarly, individuals where a large proportion of

SNPs could not be measured were excluded. This was achieved in two steps, where

first a lenient threshold of 0.2 (i.e. > 20%) was applied to remove the clear outliers,

followed by a more stringent threshold of 0.02 (i.e. > 2%). SNP filtering was

performed before individual filtering. Next, all variants not on autosomal

chromosomes were removed. Next, variants that deviate from Hardy-Weinberg

equilibrium were removed in a two-step process whereby we first applied a lenient

threshold of 1e-6, followed by a more stringent threshold of 1e-10. This is a common

indicator of genotyping errors. Thereafter, individuals were filtered out based on their

heterozygosity rates which can indicate sample contamination. Individuals deviating

by more than 3 standard deviations from the mean of the rate from all samples were

filtered out. To assess the heterozygosity rate per sample, those variants that were in

linkage disequilibrium with each other were extracted by scanning the genome at a

window size of 50 variants, a step size of 5, and a pairwise correlation threshold of

0.2. Next, related individuals were removed. To achieve this, their identity by descent

coefficients (IBD) were calculated and only one individual per related cluster was

kept. Then, the small proportion of missing genotypes were imputed and additional

variants reported by Pairo-Castineira et al.[8] and Ellinghaus et al.[7] as well as
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variants reported by ClinVar database[35] were included in the dataset from the UK

Biobank imputed variants. This yielded a dataset with a total number of 335,332

quality controlled variants. Finally, the population structure of the samples was

analyzed in two stages to identify internal stratifications, which was used to filter out

any individuals not predicted close enough to a European reference cohort. A

genome-wide association analysis was performed with the R-package SAIGE[37].

Mendelian randomization

We used independent GWAS summary data for neutrophil cell count (exposure)

published by Vuckovic et al.[20] (GCST90002398 downloaded January 15th 2021)

and summary data for critically ill COVID-19 status (outcome) published by the

COVID-19 Host Genetics Initiative (https://www.covid19hg.org/results - COVID19hg

GWAS meta-analyses round 5 release date January 18th 2021). Two-sample MR

analyses were done as previously described.[10]
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Fig. 1. Workflow to identify traits leading to critical illness due to COVID-19. We

identified significant differences in 64 candidate predictive traits between an

infectious disease cohort and healthy controls. We used regression models to

investigate the effect of these traits on critically ill COVID-19 cases compared to

asymptomatic controls. Because highly dependent traits (such as leukocyte and

neutrophil count, as neutrophils are leukocytes) would not be significant in drop1

analysis, we first used propensity score analysis to filter for independently predictive

traits. The obtained seven traits underwent a drop1 analysis. We here identified

neutrophil cell count and triglycerides as traits that have a unique effect on critical

illness in COVID-19 independent of other traits.
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Figure 2

Fig. 2. Propensity score analysis to identify independent traits. Arrows indicate that

the covariate in the donor node (treatment) does not have a significant effect on the

outcome (severe COVID-19) independent of the covariate in the acceptor node (and

age and sex) as indicated by p-values above the threshold of 1.1905E-4. In total,

seven traits were identified as independent (in purple) and were further analyzed in

drop1 analysis. The five reticulocyte-related covariates cannot be accounted for by

any other covariate. Each of the three covariates immature reticulocyte fraction, high

light-scatter count/percentage can control for all five covariates though. It is

important to note that not all statistical relationships are depicted.
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Figure 3

Fig. 3. The life cycle of SARS-CoV-2 and the corresponding pathogenesis of

COVID-19 display two phases: a viral response and a host-response phase. In the

viral response phase, the virus enters the host cell and viral replication begins.

Approximately five days after infection and successful replication, initial mild and

moderate symptoms such as fever, cough, fatigue, anorexia, myalgia, and diarrhea

are observed in conjunction with a decrease in lymphocyte cell count (lymphopenia).

The following host-response phase determines the severity of the disease: in some

patients, uncontrolled overreaction of the immune system – so-called virus-induced

immunopathology – requires hospitalization and respiratory support due to acute

respiratory distress syndrome (ARDS). Thus, severe cases of COVID-19 originate

from an immune overreaction rather than from the viral infection itself. Currently,

there are seven drug mechanisms described: ① Passive immunity; ② Entry
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inhibitors; ③ Protease inhibitors; ④ Polymerase inhibitors; ⑤ JAK inhibitors; ⑥

NETosis inhibitors;⑦ Immunosuppressants.
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Table 1

Tab. 1. Pr(>F) values of seven traits determined in drop1 analysis. Significance

thresholds are indicated by asterisks, where two asterisks indicate p-values below

0.05/7.

Trait Pr(>F)

BMI 0.109666

Neutrophil cell count 0.000252 **

Immature reticulocyte fraction 0.028504

Cystatin C 0.054143

Glucose 0.630619

Glycated haemoglobin 0.013758

Triglycerides 0.000179 **
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Supplementary information

SI Figure 1

SI Fig. 1. Bonferroni-corrected statistically significant differences in 64 traits

identified using independent two-sample t-test and confirmed by Mann-Whitney

U-test. Red and green columns indicate traits that are significantly increased in

infectious disease cases or healthy controls, respectively. In these measures, taken

years prior to infection, cases showed significant differences in the characteristics in

various traits that have been later described as phenotypes associated with critical

illness due to COVID-19.
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SI Fig. 2. Manhattan plot of neutrophil cell count showing that we reproduce the

reported CDK6 signal (rs445) on chromosome 7.
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SI Table 1

SI Tab. 1. Critical illness in COVID-19 was regressed on the traits significantly

different between infectious disease cases and healthy controls. Traits age, alanine

aminotransferase, BMI, C-reactive protein, and neutrophil cell count. All traits other

than age were found to explain unique variance in disease status. This table reports

log likelihood ratios, standard errors and likelihood ratio tests from the drop one

procedure for each. Significance thresholds are indicated by asterisks, where three

asterisks indicate p-values below 0.001/53, two indicate p-values below 0.01/53, and

one asterisk indicates p-values below 0.05/53.

Trait Estimate SE p-value

BMI 0.04719 0.00703 1.890E-11 ***

Reticulocyte count 7.60920 1.49690 3.710E-07 ***

Reticulocyte percentage 0.37950 0.07100 9.020E-08 ***

Mean reticulocyte volume 0.00414 0.00467 3.750E-01

Immature reticulocyte fraction 3.64820 0.61050 2.290E-09 ***

High light scatter reticulocyte count 22.60823 3.76537 1.920E-09 ***

High light scatter reticulocyte percentage 1.06815 0.17382 7.980E-10 ***

Erythrocyte count -0.01703 0.08626 8.430E-01

Erythrocyte distribution width 0.16615 0.03953 2.630E-05 **

Haemoblogin concentration -0.00891 0.02967 7.640E-01

Mean corpuscular volume -0.00217 0.00805 7.880E-01

Mean corpuscular haemoglobin concentration 0.02570 0.03528 4.660E-01

Haematocrit percentage -0.00465 0.01027 6.510E-01

Thrombocyte count 0.00168 0.00060 5.250E-03

Thrombocyte crit 1.72370 0.73100 1.840E-02

Mean thrombocyte volume -0.04106 0.03445 2.330E-01

Leukocyte count 0.14942 0.01993 6.500E-14 ***

Basophil count 2.35277 0.79549 3.100E-03

Basophil percentage 0.08412 0.06923 2.240E-01

Eosinophil count 0.23842 0.26624 3.710E-01

Eosinophil percentage -0.03716 0.02074 7.320E-02
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Neutrophil count 0.17078 0.02531 1.500E-11 ***

Neutrophil percentage 0.00943 0.00422 2.520E-02

Monocyte count 0.33506 0.15561 3.130E-02

Lymphocyte count 0.23706 0.05576 2.120E-05 **

Lymphocyte percentage -0.00802 0.00487 9.960E-02

Mean sphered cell volume 0.00048 0.00680 9.440E-01

Neutrophil count / Lymphocyte count 0.08736 0.02874 2.370E-03

Thrombocyte count / Lymphocyte count -0.00045 0.00059 4.450E-01

Alanine aminotransferase 0.00507 0.00247 4.040E-02

Albumin -0.00503 0.01399 7.190E-01

Alkaline phosphatase 0.00637 0.00144 9.620E-06 ***

Apolipoprotein A -0.53990 0.14550 2.070E-04 *

Apolipoprotein B 0.18340 0.15460 2.360E-01

Aspartate aminotransferase 0.00525 0.00352 1.356E-01

Total bilirubin -0.02864 0.00906 1.560E-03

C-reactive protein 0.03173 0.00831 1.350E-04 **

Creatinine -0.00022 0.00204 9.140E-01

Cystatin C 1.09560 0.19520 2.000E-08 ***

Gamma glutamyltransferase 0.00315 0.00080 8.300E-05 **

Glucose 0.13716 0.02671 2.810E-07 ***

Glycated haemoglobin (HbA1c) 0.03611 0.00502 6.380E-13 ***

HDL cholesterol -0.47520 0.10700 8.920E-06 ***

IGF-1 -0.01185 0.00650 6.820E-02

Oestradiol -0.00038 0.00041 3.580E-01

Phosphate 0.01507 0.23191 9.480E-01

Rheumatoid factor 0.00997 0.00376 8.030E-03

SHBG -0.00587 0.00162 2.840E-04 *

Testosterone 0.00502 0.00644 4.355E-01

Triglycerides 0.24894 0.03707 1.870E-11 ***

Urate 0.00142 0.00045 1.610E-03

Urea 0.04115 0.02234 6.550E-02

Vitamin D -0.00998 0.00177 1.790E-08 ***
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SI Table 2

SI Tab. 2. The two sample MR analyses here showed that for neutrophil cell count

as exposure and critically ill COVID-19 status as outcome no significant effect was

detected while using strict clumping parameters.

Clumping SNPs Beta SE IVW p-value Pleiotropy test

lenient (r = 0.2) 1,581 -0.11139 0.04433 0.01199* negative

strict (r = 0.01) 567 0.01135 0.06987 0.87095 negative
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