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ABSTRACT14

The emergence of the novel coronavirus pneumonia (Covid-19) pandemic at the end of 2019 led to chaos
worldwide. The world breathed a sigh of relief when some countries announced that they had obtained the
appropriate vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of
this disease has returned us to the starting point. At present, early detection of infected cases has been
the paramount concern of both specialists and health researchers. This paper aims to detect infected
patients through chest x-ray images. The large dataset available online for Covid-19 (COVIDx) was used
in this research. The dataset consists of 2,128 x-ray images of Covid-19 cases, 8,066 normal cases, and
5,575 cases of pneumonia. A hybrid algorithm was applied to improve image quality before conducting
the neural network training process. This algorithm consisted of combining two different noise reduction
filters in the images, followed by a contrast enhancement algorithm. In this paper, for Covid-19 detection,
a novel convolution neural network (CNN) architecture, KL-MOB (Covid-19 detection network based on
MobileNet structure), was proposed. KL-MOB performance was boosted by adding the Kullback–Leibler
(KL) divergence loss function at the end when trained from scratch. The Kullback–Leibler (KL) divergence
loss function was adopted as content-based image retrieval and fine-grained classification to improve
the quality of image representation. This paper yielded impressive results, overall benchmark accuracy,
sensitivity, specificity, and precision of 98.7%, 98.32%, 98.82%, and 98.37%, respectively. The promising
results in this research may enable other researchers to develop modern and innovative methods to aid
specialists. The tremendous potential of the method proposed in this research can also be utilized to
detect Covid-19 quickly and safely in patients throughout the world.
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INTRODUCTION34

The novel coronavirus 2019 (Covid-19) is a recently recognized disease caused by severe acute respiratory35

syndrome coronavirus 2 (SARS-CoV-2). Being highly transmissible and life-threatening, it has rapidly36

turned into a global pandemic, affecting worldwide health and well-being. Tragically, no effective37

treatment has yet been approved for patients with Covid-19. But the patient can have a good chance of38

survival if they are diagnosed early enough.39

As a widely available, time- and cost-effective diagnosing tool, Chest X-ray (CXR) can potentially40

be used for the early recognition of Covid-19. Nevertheless, Covid-19 can share similar radiographic41

features with other types of pneumonia, making it difficult for radiologists to distinguish manually. With42

such a difficulty, manual detection of Covid-19 becomes time-consuming and mistake-prone as it is left to43

the intuitive judgment of the radiologist. As such, it is highly recommended to adopt automated detection44
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techniques.45

With the rapid spread of Covid-19 globally, researchers have begun using state-of-the-art DL tech-46

niques for the automated recognition of Covid-19. The initial lack of Covid-19 data compelled earlier47

research to use pre-trained networks to build their own models (Narin et al., 2020; Ozturk et al., 2020;48

Apostolopoulos and Mpesiana, 2020; Civit-Masot et al., 2020; Albahli, 2020; Sethy and Behera, 2020;49

Apostolopoulos et al., 2020; Chowdhury et al., 2020; Punn and Agarwal, 2020; Farooq and Hafeez, 2020;50

Maghdid et al., 2020; Hemdan et al., 2020). Just a few months after being discovered, Covid-19 had51

infected millions of peoples worldwide. Consequently, a mid-range dataset of positive cases has been52

made available for public use, which was uploaded from https://github.com/lindawangg/53

COVID-Net/blob/master/docs/COVIDx.md by (Wang et al., 2020). This, in turn, has enabled54

further progress in developing new, accurate, in-depth models for Covid-19 recognition (Ahmed et al.,55

2020; Afshar et al., 2020; Ucar and Korkmaz, 2020; Luz et al., 2020; Hirano et al., 2020; Rezaul Karim56

et al., 2020). However, some medical imaging issues usually pose difficulties in the recognition task,57

reducing the performance of these models. These issues include, but are not limited to, insufficiency58

of training data, inter-class ambiguity, intra-class variation, and visible noise. These problems indeed59

necessitate a significant enhancement of the discrimination capability of the associated model.60

One way around these issues is to utilize proper image-preprocessing techniques for noise elimination61

and contrast enhancement. A close look at the available images reveals the presence of various types62

of noise, such as impulsive, Poison, speckle, and Gaussian noise. See Figure 1 (the most common63

types of noise in X-ray images (Paul et al., 2018)). However, the most prevalent studies have been64

dedicated to only some of these types of noise, e.g., Gaussian and Poison. In particular, among many other65

techniques, histogram equalization (HE)) (Civit-Masot et al., 2020; Tartaglione et al., 2020), adaptive66

total variation method (Punn and Agarwal, 2020), Contrast Limited Adaptive Histogram Equalization67

(CLAHE) (El-bana et al., 2020; Saiz and Barandiaran, 2020; Maguolo and Nanni, 2020), white balance68

followed by (Siddhartha and Santra, 2020), intensity normalization followed by CLAHE (Horry et al.,69

2020; El Asnaoui and Chawki, 2020), histogram equalization (HE), Perona-Malik filter (PMF), unsharp70

masking (Rezaul Karim et al., 2020), and Gaussian filter (Jamil et al., 2020) are, as far as we are aware,71

the only adopted techniques in Covid-19 recognition to date. Moreover, the utilized filters can result in72

blurry (by Gaussian filter) or blocky (by PMF) features in the processed image. Accordingly, there is still73

room to incorporate more effective preprocessing techniques to further increase the system’s accuracy.

(a) (b)

Figure 1. Noisy images: a) image with impulsive noise and b) image with Gaussian noise.

74

Motivated by the outstanding results in the previously mentioned works as well as the need for75

close-to-perfect recognition models, this paper integrates novel image-preprocessing enhancement with76

deep learning to meet the challenges arising from data deficiency and complexity. Specifically, we77

combine adaptive median filter (AMF) and Non-Local Means filter (NLMF) to remove the noise from78

the images. Indeed, many works have analyzed the performance of these two filters in X-ray imagery79

denoising, e.g., (Kim et al., 2020; Raj and Venkateswarlu, 2012; Rabbouch et al., 2020; Sawant et al.,80

1999; Mirzabagheri, 2017), demonstrating their superiority to various filters including the ones in the cited81

works in terms of removing impulsive, Poison, and speckle noise while preserving the useful image details.82

We then utilize the CLAHE approach to enhance the contrast of the denoised images. The enhanced83

images are finally fed into a Mobile CNN for training and validation phases. The motivation behind84

choosing Mobile CNN is that it not only helps to reduce overfitting but also runs faster than regular CNN85

with many fewer parameters (Howard et al., 2017; Yu et al., 2020). Inspired by (Alfasly et al., 2019;86
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Alghaili et al., 2020) we adopt the KL divergence loss to measure how far we are from the optimal solution87

during the iterations. We evaluated the performance of the proposed framework on the COVIDx dataset88

in terms of a wide variety of metrics: accuracy, sensitivity, specificity, F1-score, area under the curve, and89

computational efficiency. Simulation results reveal that the proposed framework significantly outperforms90

state-of-the-art models from both quantitative and qualitative perspectives. The main contributions of this91

work can be summarized as follows:92

• We propose an automated end-to-end deep learning framework based on MobileNet CNN with KL93

divergence loss function for Covid-19 recognition.94

• We incorporate a novel preprocessing enhancement technique consisting of AMF, NLMF, and95

CLAHE to meet the challenges arising from data deficiency and complexity.96

• We analyze the performance of the utilized preprocessing enhancement scheme to demonstrate its97

role in enhancing the discrimination capability of the proposed model.98

The rest of this paper is organized as follows: Section (2) illustrates the phases of the proposed method.99

Section (3) highlights the experimental results. Section (4) discusses these results. The conclusion of this100

study is presented in the last section.101

PROPOSED METHOD102

In this section, we briefly describe the scenario of the methodology used to achieve the purpose of this103

study. The proposed method is depicted in Figure 2, which generally consists of two phases: (a) image104

pre-processing, to overcome the existing drawbacks mentioned in the previous section; (b) training and105

testing dedicated to image classification.

Figure 2. Study Framework.

106

Data Acquisition107

In this paper, we used the COVIDx dataset used in (Wang et al., 2020) to train and evaluate the pro-108

posed model. In brief, COVIDx dataset is an open-source dataset that can be downloaded from https:109

//github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md. The instruc-110

tions given by COVID-Net (Wang et al., 2020) were followed to set up the new dataset. Since the111

number of X-ray images available for positive Covid-19 cases is very small, more Covid-19 X-ray im-112

ages from https://github.com/ml-workgroup/covid-19-image-repository as well113

as https://github.com/armiro/COVID-CXNet/tree/master/chest_xray_images/114

covid19 were also downloaded to overcome this limitation. Duplicated images were omitted from the115

new dataset to ensure the proposed model in training is more accurate. So, the actual number of images in116

the Covid-19 class became 2128 instead of 1770 in COVIDX (updated on 28 January 2021). We used the117
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same test set that was used for evaluation in (Wang et al., 2020), making a slight change by increasing the118

number of Covid-19 images to 100 images instead of 92. Table 1 summarizes the number of images in119

each class and the total number of images used for training and testing.

Data Covid19 Normal Pneumonia Total
train 2028 7181 4981 14100
test 100 885 594 1579

Table 1. The number of images for each class.

120

Data Pre-processing Method121

In this study, we attempt to provide an algorithm that would increase the image quality by using a hybrid
technique consisting of noise reduction and contrast enhancement. Specifically, two efficient filters are
used for noise reduction while CLAHE is used for contrast enhancement. The first filter is the Adaptive
Median Filter (AMF) that removes impulse noise (Ning et al., 2009; Khare and Chugh, 2014). This
filter is followed by the Non-Local Means Filtering (NLMF) algorithm that calculates similarity based
on patches instead of pixels. Given a discrete noisy image u = u(i) for a pixel I, the estimated value of
NL[u](i) is measured as the weighted average of all the pixels, i.e.:

NL[u](i) = ∑
j∈i

w(i, j).u( j) (1)

where the weights family w(i, j) j depends on the similarity between the pixels i and j.122

The similarity between the two pixels i and j is defined by the similarity of the intensity of gray-level
vectors u(Ni) and u(N j), where Nl signifies a square neighborhood of fixed size and centered at a pixel L.
The similarity is measured as a function to minimize the weighted Euclidean distance, ‖u(Ni)−u(N j)‖2

(2,a)
where a > 0 is the Gaussian kernel standard deviation. The pixels with a similar gray-level neighborhood
to u(Ni) have larger weights in the average. These weights are defined as,

w(i, j) =
1

Z(i)
e−
‖u(Ni)−u(N j)‖2

(2,a)

h2 (2)

where Z(i) is the normalizing constant, and the settings h works as a filtering degree.123

Next, CLAHE is applied to the denoised images to achieve an acceptable visualization and to124

compensate for the effect of the filtration that may contribute some blurring to the images (Huang et al.,125

2016; Senthilkumar and Senthilmurugan, 2014).126

Classification Neural Network Model127

We used a deep neural network structure called a MobileNet neural network (Howard et al., 2017). Before
we pass the input to the neural network, we resized all images to 224 × 224 × 3. These were used as input
to the network. Figure 3 depicts the model diagram of the network. The first layer is a Depthwise Conv2D
layer of size 3 × 3 × 3 with stride 1, followed by a Conv2D layer with 64 kernels size of 1 × 1 × 3 and
stride 1. After that, there is another Depthwise Conv2D layer size of 3 × 3 × 64 with stride 2. Then comes
a convolutional layer with 128 kernels and the size of 1 × 1 × 64 with stride 1 followed by a Depthwise
separable convolution layer of size 3 × 3 × 128 with stride 1. Then there is another convolution layer with
128 kernels size of 1 × 1 × 128 with stride 1 followed by a Depthwise separable convolution layer of
size 3 × 3 × 128 with stride 2. After that, another convolutional layer with 256 kernels and the size of
1 × 1 × 128 with stride 1 is followed by a Depthwise Separable Convolution layer of size 3 × 3 × 256
with stride 2. Then another convolutional layer has 256 kernels with the size of 1 × 1 × 256 with stride 1,
followed by Depthwise Separable Convolution layers of sizes of 3 × 3 × 256 with stride 2. Then comes
a convolutional layer with 512 kernels with the size of 1 × 1 × 256 with stride 1 followed by another
Depthwise separable convolution layers of sizes of 3 × 3 × 512 with stride 1. This is followed by five
blocks of layers, each block consisting of convolutional layers with 512 kernels and the size of 1 × 1 ×
512 with stride 1 followed by Depthwise separable convolution layers of sizes of 3 × 3 × 512 with stride
1. After that comes another convolutional layer with 1024 kernels of size 1 × 1 × 512, then Depthwise
separable convolution layers of sizes of 3 × 3 × 1024 with stride 1. Then again, another convolutional
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layer with 1024 kernels with the size of 1 × 1 × 1024 with stride 1. Then a dropout layer with the rate of
0.001 is added. The dropout layer’s output goes to two fully connected layers that generate the output of
size 128. One fully connected layer is used to predict the mean µ , and the other is used to predict the
standard deviation σ of a Gaussian distribution. The mean µ and standard deviation σ of a Gaussian
distribution are used to calculate the KL loss function. The output of the fully connected layer used
to predict the mean µ goes to the last layer, a fully connected layer containing the SoftMax activation
function that can be used as a classifier, as defined in equation 3, where v indicates the output vector, o
indicates the Objective vector, and p j indicates the input to the neuron j.

So f tMax(o,v) =−
v

∑
i=1

oi log(
epi

∑
v
j ep j ) (3)

The KL divergence between the µ , σ distribution and the prior are considered as a regularization which
helps to overcome the over-fitting problem defined in equation 4.

KL =−1
2

n

∑
i=1

(1+ log(σi)−µ
2
i −σi) (4)

where n is the output vector of the average pooling layer with the size of 1024, µ is the mean that has128

been predicted from one fully connected layer, and σ is the standard deviation of a Gaussian distribution129

predicted from one fully connected layer in the network.130

As soon as the data is pre-processed, the network is trained with a SoftMax classifier for 200 epochs131

using Adam optimizer (Kingma and Ba, 2014) on a GPU. The dataset used for training is divided: 70% as132

a training set and 30% as a validation set. The total number of parameters is 3,488,426, where the number133

of trainable parameters is 3,466,660, and the non-trainable parameters are 21,766.

Figure 3. The architecture of the proposed neural network.

134

Experiments135

All CXRs were resized to the same dimension of 224 × 224 in .jpg format. In the first phase, the AMF136

window size was taken to be 5 x 5 for effective filtering. The resultant image was subjected to the NLMF137

technique. The performance of NLMF depends on 7 x 7 of the search window, 5 x 5 of the similarity138

window, and the degree of filtering h = 1. Furthermore, we increased contrast using CLAHE with the bin139

of 256 and block-size of 128 in slope 3 to get the enhanced images. The proposed model (KL-MOB) was140

trained using the Python programming language. All experiments were conducted with a Tesla K80 GPU141

graphics card on Google Collaboratory with Windows 10 operating system. The original and enhanced142

images were used separately to train the KL-MOB, using Adam optimizer, with the initial learning rate143

set to 0.00001, on 200 epochs. We passed the images to KL-MOB as the input to predict the CXR image,144

whether Covid1-9, normal, or pneumonia. Because many functions are not built-in functions in deep145

learning libraries, such as the relu6 activation function with a max value of 6, we needed to build an146

interface for the evaluation process that contains all layers in the network as in a training network but147

which is not used for training. Rather, it is just used to pass on the input image to produce the output148

result.149

5/12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.13.21257164doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21257164


Performance Evaluation150

Pre-processing Performance Evaluation151

The performance of the proposed preprocessing technique was quantified by using various evaluation152

metrics such as Mean Average Error (MAE) and Peak Signal to Noise Ratio (PSNR). These metrics are153

desirable since they are fast to quantify.154

Definition: x(i, j) denotes the samples of the original image, y(i, j) denotes the samples of the output
image.M and N are the number of pixels in row and column directions, respectively. MAE is calculated
as in equation 5, where a large value means that the images are of poor quality.

MAE =|E(x)−E(y)| (5)

The limited value PSNR implies that the images are of low quality. PSNR is described in terms of Mean
Square Error MSE as follows:

PSNR = 10log10
MAX2

MSE
(6)

where MAX2 is the maximum possible pixel intensity value 255 when the pixel is represented by 8 bits.

MSE =

√√√√ 1
MN

M−1

∑
i=1

N−1

∑
j=1

[x(i, j)− y(i, j)]2 (7)

Neural Network Performance Evaluation155

The test set described in the previous section was used to evaluate KL-MOB. The classification outcome
has four cases: True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). The
metrics used to measure the performance are Accuracy (ACC), Sensitivity (TPR), Specificity (SPC), and
Precision (PPV), defined as follows:

Accuracy (ACC) =
T P+T N

T P+FP+T N +FN
(8)

Sensitivity (T PR) =
T P

T P+FN
(9)

Speci f icity (SPC) =
T N

FP+T N
(10)

Precision (PPV ) =
T P

T P+FP
(11)

The graph plotted between True Positive Rate (TPR) and False Positive Rate (FPR) is the receiver
operating characteristic (ROC) curve. FPR is calculated as follows:

False Positive Rate (FPR) =
FP

FP+T N
(12)

RESULTS156

In the experiments, noise reduction and contrast enhancement performance were evaluated independently157

since they are two separate issues. The average value was computed for all images in each class. The158

evaluation results are shown in Tables 2, and 3 for noise reduction and image enhancement, respectively.159

Figure 4 shows noise reduction techniques that were applied to the original image and the hybrid method160

used in this work. Though the denoising filters could present smoothing and blurring to the resulting161

images, this can be enhanced by improving the images’ edges and by highlighting the high-frequency162

components to remove the residual noise. Figure 5 displays the original images and their enhanced163

versions164
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(a) (b) (c) (d)

Figure 4. The applied noise reduction techniques on the images: (a) original image, (b) image denoised
by AMF, (c) image denoised by NLMF, (d) image denoised by our method.

Method Covid19 Normal Pneumonia
PSNR MAE PSNR MAE PSNR MAE

AMF 21.91 14.46 21.19 17.88 20.43 19.47
NLMF 20.47 19.19 20.41 19.41 20.40 19.40

our method 22.04 14.38 21.21 17.59 20.45 19.32

Table 2. The average values of PSNR (dB) and MAE for the different noise reduction methods.

(a) (b) (c)

Figure 5. The enhanced image results: (a) original image, (b) image with CLAHE, (c) image enhanced
by our method.

Method Covid19 Normal Pneumonia
PSNR MAE PSNE MAE PSNR MAE

CLAHE 17.83 27.35 17.12 25.98 21.91 16.20
our method 19.14 23.13 17.28 25.45 22.11 16.01

Table 3. The average values of PSNR (dB) and MAE for the different contrast enhancement methods.

Enhanced image Original image
ACC% PPV% SPC% TPR% ACC% PPV% SPC% TPR%

Covid19 99.87 99.00 99.93 99.00 92.61 96.83 99.13 74.39
Normal 98.24 98.30 97.85 98.64 97.11 98.17 98.99 93.86
Pneumonia 97.99 97.81 98.68 97.31 91.00 81.30 86.74 98.26
Overall 98.70 98.37 98.82 98.32 93.57 92.10 94.95 88.84

Table 4. The evaluation metrics of KL-MOB on enhanced and original images.

In this experiment, the proposed KL-MOB model was trained on original and enhanced images to165

detect whether they were Covid-19, normal, or pneumonia cases. The evaluation process of the proposed166

KL-MOB performance was applied to each class of the dataset separately. The comparative performances167

of KL-MOB for the classification problem on original and enhanced images are shown in Table 4. It168

is noted that the proposed method has boosted the performance of KL-MOB in Covid-19 detection, as169

shown in the Figures 6, and 7.170
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(a) Covid19 (b) Normal (c) Pneumonia

Figure 6. ROC curve of different classes on original images.

(a) Covid19 (b) Normal (c) Pneumonia

Figure 7. ROC curve of different classes on enhanced images.

DISCUSSION171

In this work, a new approach based on blending noise-eliminate algorithms with contrast enhancement was172

presented. Adaptation of such an approach introduced a type of hybrid filtering and contrast enhancement173

for the data set of images used for Covid19 detection. Well-known measurable methods—Peak Signal to174

Noise Ratio (PSNR) and Mean Average Error (MAE)— were used as Image Quality Measurements (IQM)175

for assessing and comparing image quality. The results of Table 2 show that using an AMF followed176

by NLMF was entirely favorable for eliminating noises. Our hybrid algorithm was applied to the entire177

image instead of parts of the image while preserving important details. Figure 8 illustrates the difference178

between the original and enhanced CXRs by the method used in this work. Furthermore, we found that179

the damage of the lung in the enhanced image is more perspicuous than in the original image. In addition,180

CLAHE with a bin of 256 gave the best PSNR value, as shown in Table 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. The images in the first and third columns show three cases of original images; the images in
the second and fourth columns show three cases of enhanced images.

181
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The results presented in Table 4 show that the proposed network performed well on the test set,182

which proves that the method used for image pre-processing boosted the performance of KL-MOB. The183

confusion matrix of our proposed network is depicted in Figure 9. It shows that all classes are identified184

with high true positives. It is to be noted that the Covid-19 cases are 99% correctly classified by the185

KL-MOB. There are 1% of Covid-19 cases misclassified as pneumonia (non-Covid-19), and 1.4% of186

the normal cases are misclassified as pneumonia. Only 0.2% of pneumonia (non-Covid-19) cases are187

wrongly classified as Covid-19. These results demonstrate that our proposed KL-MOB has good potential188

in detecting Covid-19; in particular, with limited Covid-19 cases, we show that there is no confusion189

between the normal and Covid-19 patient groups.190

Figure 9. Confusion matrix for KL-MOB on the COVIDx test dataset.

In our experiment range of 100 patient samples of Covid-19, only one was misclassified with a 99.0%191

PPV for Covid-19, which is an appropriate value compared with 98.9%, and 96.12% for (Wang et al.,192

2020; Rezaul Karim et al., 2020), respectively. In addition, the results obtained from KL-MOB have193

been compared with previous studies that used the same or similar datasets for evaluation, as outlined in194

Table 5. The other studies (Farooq and Hafeez, 2020; Afshar et al., 2020; Hirano et al., 2020; Ucar and195

Korkmaz, 2020), not included in Table 5 for performance comparisons, utilized smaller datasets. The196

results showed that KL-MOB is superior to (Wang et al., 2020; Ahmed et al., 2020) across all performance197

metrics of accuracy, sensitivity (TPR), specificity, and PPV for overall detection.198

Study Classifier ACC% SPC% TPR% PPV%
Wang et al. (2020) COVID-Net (large) 95.56 96.67 93.33 93.55

Ahmed et al. (2020) ReCoNet 97.48 97.39 97.53 96.27
Rezaul Karim et al. (2020) DeepCOVIDExplainer 98.11 98.19 95.06 96.84

proposed method KL-MOB 98.7 98.82 98.32 98.37

Table 5. Comparative performance of different models.

The promising deep learning models used for the detection of Covid from radiography images indicate199

that deep learning likely still has untapped potential and can possibly play a more significant role in200

fighting this pandemic. There is definitely still room for improvement, through other processes such as201

increasing the number of images, implementing another pre-processing technique i.e., data augmentation,202

utilizing different noise filters, and enhancement techniques.203

CONCLUSION204

In this work, we proposed a novel CNN-based MobileNet structure neural network for Covid19 detection205

using COVIDx, the most widely used public dataset of CXR images to date. As well, the evaluation206

results show that our approach outperforming a recent approach with accuracy, specificity, sensitivity,207

and precision of 98.7%, 98.82%, 98.32%, and 98.37%, respectively. The proposed method relied on208
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image manipulation by applying a hybrid technique to enhance the visibility of CXR images. This209

advanced pre-processing technique made the task of KL-MOB easier and better able to extract features, as210

it helped to recognize complex patterns from medical images at a level comparable to that of experienced211

radiologists. The KL loss function was used to boost the performance of KL-MOB which outperformed212

recent approaches as shown in the obtained results. Considering several essential factors such as Covid-19213

infection spreading patterns, image acquisition time, scanner availability, and costs, we hope our findings214

will be a useful contribution to the fight against Covid-19 and towards an increasing acceptance and215

adoption of AI-assisted applications in clinical practice. As future work, we will further enhance our216

method’s performance by including the lateral view of CXR images in our training data, as in some of the217

cases, frontal view of CXR images does not give a clear idea in diagnosing pneumonia cases. Further,218

since only a limited amount of CXR images for Covid-19 infection cases, the potential for issues to arise219

is out-of-distribution is possible, therefore, more unseen data from related distributions is needed for220

further evaluation. Finally, the enhancement of the images must be verified with a radiologist, which we221

have not yet been able to do due to the emerging conditions.222
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