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Abstract: 37 
 38 
Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many 39 
genomic loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping 40 
prevents determining if the same allele is responsible, indicating a shared underlying mechanism. 41 
Using a collection of 129,058 cases and controls across six diseases, we show that ~40% of 42 
overlapping associations are due to the same allele. We improve fine-mapping resolution for 43 
shared alleles two-fold by combining cases and controls across diseases, allowing us to identify 44 
more eQTLs driven by the shared alleles. The patterns of sharing indicate widespread shared 45 
mechanisms, but not a single global autoimmune mechanism. Our approach can be applied to 46 
any set of traits, and is particularly valuable as sample collections become depleted.  47 
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Main Text: 48 
 49 
Autoimmune and inflammatory diseases are a heterogeneous group of disorders, where 50 
activation of both the adaptive and innate immune system coupled with loss of self-tolerance 51 
leads to target tissue destruction (1). These diseases are heritable, and genome-wide association 52 
studies (GWAS) have identified hundreds of susceptibility loci, confirming their polygenic nature 53 
(2, 3). Like other complex disease risk traits, heritability is strongly enriched in gene regulatory 54 
regions active in specific cell populations (4–6), suggesting risk is mediated to a large extent by 55 
altering gene expression in specific cell types under specific conditions. These diseases are also 56 
comorbid (7, 8), with dual diagnoses being more frequent in individuals than expected by chance, 57 
and multiple diseases aggregating in families (9). We and others have shown that many genetic 58 
loci harbor risk variants for multiple autoimmune diseases (10–12), suggesting that comorbidity 59 
may be due to shared genetic liability and, hence, shared mechanisms of disease. 60 
 61 
Instances of pleiotropy, where the same variant influences risk to more than one disease, would 62 
by definition point to a shared molecular effect, and thus a shared mechanism. The limited 63 
resolution of genetic mapping has made it difficult to distinguish such cases from situations 64 
where distinct genetic variants in the same locus mediate risk to different diseases. This limited 65 
resolution restricts our ability to uncover shared pathogenic mechanisms, understand why some 66 
modulating immune functions can increase risk to one disease whilst decreasing risk to others, 67 
or make inferences about the origins of these diseases and their different prevalence rates 68 
around the world. 69 
 70 
An important driver of the limited resolution of genetic mapping is disease cohort sample size 71 
(13). Currently available disease cohorts, most of which have been extensively studied already, 72 
are the result of decades-long international recruitment efforts. Meaningful increases in sample 73 
size are thus difficult to envision in the immediate future. An alternative way to increase sample 74 
size, and thus genetic mapping resolution, would be to jointly analyze cohorts across diseases. 75 
This would also reveal shared pathogenic mechanisms. In conventional meta-analyses of 76 
cohorts with the same disease, we assume that any associations are shared across strata; we 77 
cannot make this assumption across diseases. It is thus crucial to ensure that the same allele 78 
drives risk to two or more diseases, rather than separate alleles in the same genomic locus. 79 
 80 
Here, we first show substantial genome-wide shared heritability between autoimmune and 81 
inflammatory diseases (Fig. S1). We then look at 224 instances where genetic associations to 82 
multiple diseases occur in the same genomic region, and show that 41.5% of these observed 83 
associations are due to pleiotropic variants, with the remainder being due to different alleles in 84 
the region. When we combine cases and controls across diseases to map each shared 85 
association, we increase fine-mapping resolution two-fold on average. Further, this increase in 86 
resolution reveals new disease risk variants that alter gene expression in immune cell subtypes. 87 
Comorbidity is widespread between diseases of all organ systems, and sample sizes are limited, 88 
so this strategy is widely applicable beyond the immune-mediated diseases. Thus, this approach 89 
to careful dissection of shared effects can reveal mechanisms that are common across diseases 90 
and pinpoint key genes driving shared biology. 91 
 92 
We first assessed the evidence for genome-wide shared heritability between 19 autoimmune 93 
and inflammatory diseases from GWAS summary data. After quality control, we used LD score 94 
regression (14) to estimate heritability (hg

2) for each trait (Fig. S2A). We found that 13/19 diseases 95 
had sufficient heritability captured by common variants to make these comparisons meaningful 96 
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(Z-score > 4) (15), so we restricted our analysis to this subset. We then calculated the proportion 97 
of shared heritability between each pair of diseases, again using LD score regression, which is 98 
robust to sample overlaps between cohorts (15). We found a broad pattern of shared heritability 99 
(Fig. 1), with the strongest overlaps (0.63 ≤ rg ≤ 0.92) between IBD and its subtypes, Crohn 100 
disease and ulcerative colitis; these are known to share the majority, but not the entirety, of their 101 
genetic architecture (16). We also observed strong correlations between atopic dermatitis, 102 
asthma and allergic traits (0.51 ≤ rg ≤ 0.91), which may represent a shared basis for atopic 103 
inflammatory disease. We saw a strong correlation between systemic sclerosis and systemic 104 
lupus erythematosus, which were also correlated with primary biliary cirrhosis (0.42 ≤ rg ≤ 0.86). 105 
In line with our previous findings (10, 17), these results indicate that autoimmune and 106 
inflammatory diseases share a substantial portion of genetic risk factors, even when accounting 107 
for the major histocompatibility locus (MHC), where overlapping haplotypes confer risk to 108 
different autoimmune and inflammatory diseases (18). Overall, this suggests that some 109 
mechanisms are common between sets of diseases, but we find no evidence of universal sharing 110 
indicative of a large core autoimmune susceptibility component (10, 17).  111 
 112 

 113 
Fig. 1: Joint analysis of shared autoimmune disease risk alleles improves fine-mapping two-fold. (A) 114 
We find broad genome-wide correlation between association statistics for susceptibility to thirteen 115 
autoimmune and inflammatory diseases for which genome-wide association data were available (vitiligo, 116 
Vit; atopic dermatitis, AtD; allergy, All; asthma, Ast; ulcerative colitis, UC; inflammatory bowel disease, 117 
IBD; Crohn disease, CD; multiple sclerosis, MS; rheumatoid arthritis, RA; celiac disease, CeD; systemic 118 
lupus erythematosus, SLE; primary biliary cirrhosis, PBC; and systemic sclerosis, SSc). (B) This correlation 119 
is reflected in many loci harboring risk alleles to more than one of six diseases with available ImmunoChip 120 
data (lower triangle). Of these 236 pairs of associations, 99 are driven by the same underlying allele (upper 121 
triangle). (C) Risk alleles are mostly shared between two diseases (38 cases), with thirteen shared between 122 
three, and six between four diseases. (D) Twelve shared alleles have opposite effect directions, increasing 123 
risk of one disease and decreasing risk of another. This is most frequent between MS and IBD. (E) 124 
Combining cases and controls across diseases increases fine-mapping resolution for these shared 125 
associations. We assess resolution as the number of variants required to explain 95% of the posterior 126 
probability of association. This credible interval decreases by 58% when combining samples across 127 
diseases (red) compared to using only samples for one disease (orange). Associations that are not shared 128 
across diseases have similar credible interval distributions in individual diseases (blue).  129 
 130 
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While this shared heritability gives an overall impression of the relationship between diseases, it 131 
cannot identify specific genetic risk factors—and thus, genes and pathways—shared between 132 
diseases. To compare samples from different collections genotyped at different centers, it was 133 
important to minimize batch effects by ensuring all samples were profiled on the same platform. 134 
We therefore chose six autoimmune and inflammatory diseases with large numbers of samples 135 
genotyped on the ImmunoChip (19) (celiac disease, inflammatory bowel disease, multiple 136 
sclerosis, rheumatoid arthritis, systemic lupus erythematosus and type 1 diabetes; Fig. S1). This 137 
targeted array interrogates variants in 188 known risk loci to saturation, representing only 1.9% 138 
of the genome but capturing 38-86% of risk loci that have been identified in the six diseases 139 
(Fig. S3A). Using partitioned LD score regression, we confirmed that ImmunoChip regions 140 
account for 27.6% (MS) to 46.3% (CeD) of the estimated heritability for five of the six diseases 141 
for which GWAS data was available (Fig. S2B). After quality control, removal of population 142 
outliers, resolution of duplicate and related samples, and imputation to the 1,000 Genomes 143 
reference haplotypes, we analyzed a total of 104,302 SNPs in 188 non-MHC genomic regions 144 
for association with disease in 82,630 cases and 104,573 controls (Fig. S1; see Supplementary 145 
Text for additional details). 146 
 147 
We first identified associations across the 188 loci in each disease independently by assembling 148 
cases and controls into homogeneous population strata and meta-analyzing across these 149 
groups. As multiple independent associations at a locus have been described in all diseases, we 150 
used stepwise logistic regression followed by fixed-effects meta-analysis to allow for such 151 
effects. We found 197 independent associations in 123 different ImmunoChip loci at genome-152 
wide significance (P < 5 x 10-8), and 361 associations at 166 loci with suggestive association 153 
evidence (P < 10-5, Fig. S3B). Overall, we find some level of support for essentially all known 154 
genome-wide significant effects in the ImmunoChip regions.  155 
 156 
We found substantial evidence for multiple independent associations within loci, with 7% (RA) 157 
to 30% (IBD) of loci exhibiting more than one independent effect (Fig. S3C). This included three 158 
instances of associations that have not been reported before (Fig. S4). In celiac disease, we 159 
found suggestive unconditioned associations at two loci: a variant intronic to ANKS1A on 160 
chromosome 6 (rs12206298; P = 4.1 × 10-7), and a variant intronic to CTSH on chromosome 15 161 
(rs3784539; P = 1.3 × 10-5). After conditional association, both these associations passed the 162 
genome-wide significance threshold (P = 4.9 × 10-8 and 1.1 × 10-8 respectively). We found 163 
evidence of a second, independent effect in each locus (rs4713844, P = 9.9 × 10-8; and 164 
rs7181033, P = 8.7 × 10-5). Similarly, in IBD, we found that a suggestive association in the 165 
CLEC16A locus on chromosome 16 (rs7201325, P = 1.4 × 10-7) reached genome-wide 166 
significance after conditioning (P = 1.1 × 10-10), with evidence of a secondary, independent effect 167 
(rs55773334, P = 7.6 × 10-5). The presence of multiple masked independent effects highlights 168 
the need to look carefully at suggestive associations.  169 
 170 
Having ensured we were capturing most of the known associations in ImmunoChip loci for each 171 
of the six diseases, we looked for shared effects across diseases, i.e. whether the same variant 172 
mediates risk to more than one disease. We found 224 overlapping conditionally independent 173 
associations at 98 loci (a lead variant associated to one disease at P < 10-5, and a lead variant 174 
for another disease P < 10-4; both lead variants being in LD r2 > 0.5 with at least one common 175 
SNP). Using joint likelihood mapping (JLIM), we found evidence of a shared effect in 93/224 176 
(41.5%) such overlaps, involving a total of 56 conditionally independent shared effects spanning 177 
53 unique loci (Figure 1B). Of these, 40 effects were shared between two diseases, ten between 178 
three, and six between four diseases (Fig. 1C). Unlike previous reports, which could not 179 
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distinguish between shared and distinct associations with multiple diseases in a locus, these 180 
observations indicate that many mechanisms are shared between autoimmune and inflammatory 181 
diseases.    182 
 183 
We found three loci where multiple conditionally independent associations for one disease were 184 
shared. In the STAT4 locus, we found two independent effects each for RA and SLE were shared 185 
(Fig. S5A). In the CD28-CTLA4 locus, one T1D risk association near CD28 is shared with CeD, 186 
whereas another, an intronic variant in CTLA4 is shared with RA (Fig. S5B). In the TYK2 locus, 187 
one RA risk association is shared with SLE, IBD, and T1D; a second association, localizing to 188 
ICAM3, is shared with SLE alone (Fig. S5C). Cumulatively, these examples demonstrate that 189 
disease-associated alleles in the same locus can have different consequences, and that careful 190 
comparisons across diseases can distinguish each effect. 191 
 192 
We next assessed if joint analysis across diseases could improve fine-mapping resolution. For 193 
each of the 56 shared associations, we assembled conditionally independent association data 194 
across all disease cohorts sharing that association, and combined them with fixed-effects, 195 
inverse variance-weighted meta-analysis. In a subset of loci, we saw an unexpected decrease 196 
in significance and increase in heterogeneity in the meta-analysis; we found these to be shared 197 
associations with opposite effects, where an allele increases risk for one disease and decreases 198 
it for the other (Fig. S6-S15). In six of these ten cases, variants with opposing effects were shared 199 
between MS and IBD. After inverting the association statistics to account for these effects, our 200 
meta-analysis resulted in higher significance for 123/134 (91.8%) associations across all 53 loci 201 
harboring a shared effect, demonstrating the potential to bolster association findings with our 202 
approach. 203 
 204 
To establish if this increase in sample size provides a meaningful increase in fine-mapping 205 
resolution, we used FINEMAP (20) to calculate posterior inclusion probabilities for SNPs at each 206 
of the 56 shared effects, both in individual diseases and in the cross-disease meta-analysis. We 207 
then calculated 95% credible sets for each disease, both before and after cross-disease meta-208 
analysis. We found a substantial decrease in the mean credible interval size, from 37.2 (s.d. 46.4) 209 
to 17.3 (s.d. 20.8), representing an improvement of 54% (Fig. 1E). We saw resolution 210 
improvement across the spectrum of initial association evidence, with the largest gains where 211 
an effect had relatively weak evidence of association in a disease: for associations below 212 
genome-wide significance in a single disease, our resolution increased from a mean of 51.8 213 
SNPs to 18.6 SNPs after cross-disease meta-analysis; for associations already above genome-214 
wide significance in a single disease, we saw improvement from a mean of 21.7 SNPs to 15.9 215 
SNPs. This is exemplified by a shared association in the C1orf106 locus on chromosome 1, 216 
where credible intervals of 28, 8, and 11 SNPs for CeD, IBD and MS respectively are reduced to 217 
eight variants in very tight linkage disequilibrium (minimum r2 = 0.976) on cross-disease meta-218 
analysis (Fig. 2). In this case, there are genome-wide significant associations in each disease 219 
independently, but increasing sample size from symmetric equivalent 19,026 (CeD), 53,312 (IBD), 220 
35,618 (MS) to a cross-disease meta-analysis 93,001 (symmetric equivalent) increases the 221 
resolution for both CeD and MS, identifying a core risk haplotype within C1orf106.   222 
 223 
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 224 
Fig. 2: A shared effect on chromosome 1 can be fine-mapped to eight variants across celiac disease, 225 
inflammatory bowel disease, and multiple sclerosis. (A) Overlapping associations in celiac disease, 226 
inflammatory bowel disease and multiple sclerosis on chromosome 1, with 95% credible intervals varying 227 
both in number of variants and physical span. (B) For each pair of diseases, the strength of association 228 
(vertical axis) for the first trait decays in a linear fashion as a function of r2 to the lead SNP in the second 229 
trait, consistent with a shared causal variant. (C) Meta-analyzing across the three diseases gives in a 230 
stronger association signal, which can be fine-mapped to a narrow interval within C1orf106. (D) We find 231 
strong pairwise evidence that the association is shared between all three diseases; JLIM is asymmetric, 232 
so we run comparisons in both directions. 233 
 234 
The ultimate promise of increasing fine-mapping resolution is to increase the interpretability of 235 
association signals. We and others have shown that disease risk associations are enriched in 236 
non-coding regions with gene regulatory potential (4, 5, 21, 22). We have used the JLIM 237 
approach to show that autoimmune disease associations are sometimes shared with expression 238 
quantitative trait locus (eQTL) signals, indicating the risk allele also influences gene expression. 239 
However, most associations are not shared with an eQTL, nor are they attributable to coding 240 
variants. To assess if this is due to limitations in fine-mapping resolution, we looked for shared 241 
associations between the 56 shared effects we discovered and cis-eQTLs for nearby genes in 242 
naïve T cells, monocytes and neutrophils in the BLUEPRINT dataset. We found 137 shared 243 
effects between each of 134 shared conditionally independent association signals in a single 244 
disease and eQTLs for nearby genes. We then looked for shared effects between the better-245 
powered cross-disease meta-analysis data in each of the 53 loci, and can attribute 21 new 246 
disease/eQTL effects to the underlying diseases (Fig. 3; Table S3). Most of the implicated eQTLs 247 
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are present in only one of the three cell types we interrogated, with T cells providing the largest 248 
number. We also exclude 11/137 disease/eQTL shared effects as no longer relevant because we 249 
do not find evidence of shared association between the cross-disease meta-analysis and eQTL 250 
data. Our gains primarily occur in cases where the cross-disease meta-analysis reduces the 251 
credible interval size (Fig. 3C), indicating that this gain of resolution drives these new 252 
observations.  253 
 254 
The direction of shared eQTL effects indicate whether we should expect increases or decreases 255 
in expression for those genes to increase disease risk. We reasoned that we might also see the 256 
same direction of effect between cases and controls, where the risk state is magnified. We 257 
therefore looked at single cell RNAseq data derived from T cells collected from a cohort of MS 258 
patients and healthy controls (23). After quality control, we were able to detect twelve genes that 259 
were targets of eQTLs shared with MS risk signals in our analysis. We found a significant pattern 260 
of correlation (P = 0.018): when a disease risk allele increased expression of a target gene, we 261 
saw higher expression in cases than in controls, and when it decreased expression we saw lower 262 
levels in cases than in controls (Fig. 3D). This suggests that shared associations do in fact drive 263 
risk-altering changes to gene regulation alter disease risk, and our results are uncovering 264 
pathogenic mechanisms.  265 
 266 

 267 
Fig. 3: The increased resolution of fine-mapping shared associations across diseases allows 268 
identification of more disease-eQTL overlaps. (A) We looked for shared effects between disease 269 
associations and expression QTLs in loci harboring shared disease effects. When considering each 270 
disease separately, we find 139 significant disease—eQTL overlaps across monocytes, neutrophils and T 271 
cells from the BLUEPRINT consortium (left panel). When comparing eQTLs to cross-disease meta-272 
analyses, we find new overlaps (blue, middle panel) and no longer find evidence for some eQTLs (red, 273 
middle panel), for a grand total of 157 disease-eQTL overlaps (13% net discovery increase, right panel). 274 
(B) Some of the shared eQTL effects can be detected in multiple tissues, but most are restricted to a single 275 
cell type, indicating substantial effect specificity. (C) We find new eQTL shared effects in loci where the 276 
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cross-disease meta-analysis decreases the credible interval substantially, suggesting this resolution drives 277 
new discoveries. Disease associations where an eQTL is lost after meta-analysis also have smaller credible 278 
intervals, suggesting these may have been false positive findings due to lack of resolution in individual 279 
disease datasets. (D) The effects of risk-increasing shared alleles on gene expression is mirrored in 280 
expression differences between multiple sclerosis cases and controls. This suggests that risk states 281 
imparted due to small changes in gene expression persist during active disease, and provide validation 282 
that our eQTL discoveries are relevant to pathogenesis. 283 
 284 
The relative direction of the disease and eQTL associations can also suggest specific 285 
mechanistic hypotheses. This is exemplified by an association in the RGS1 locus, shared 286 
between celiac disease and MS (Fig. 4). The cross-disease meta-analysis reduces the credible 287 
interval to 10 variants overlapping the promoter region of RGS1, which encodes a regulator of 288 
G-protein mediated signaling active in immune cell populations. We find a shared association 289 
between disease risk and RGS1 expression in CD4 T cells, which is inverted so that lower 290 
expression correlates with higher disease risk. The lead credible interval variant overlaps a region 291 
of accessible chromatin within an active enhancer immediately upstream of the RGS1 promoter. 292 
Further, this variant is annotated as a binding site for ZNF263 in the JASPAR database, and 293 
position-weight matrix analysis suggests the minor allele abrogates this binding site (24). 294 
 295 

 296 
Fig. 4: Jointly analyzing an association shared between multiple sclerosis and celiac disease 297 
improves fine-mapping resolution and identifies a shared eQTL for RGS1. (A) Overlapping 298 
associations for the two diseases are due to a shared effect (JLIM P = 5 × 10-5 for CeD as primary trait; P 299 
< 5 × 10-5 for MS as primary trait). Meta-analyzing across the two diseases increases the overall 300 
significance and a narrower credible interval (credible interval variants for each panel are in dark grey; the 301 
physical span of the credible interval is shaded grey). The credible interval focuses on the intergenic region 302 
proximal to RGS1. (B) This shared association is also shared with an eQTL for RGS1 in naïve CD4 T cells 303 
(JLIM P = 0.015). (C) The lead disease-associated variant lies in a region of accessible chromatin in naïve 304 
CD4 T cells and total T cells. This is marked with H3K27ac in total T cells and with H3K4me1 in naïve CD4 305 
T cells, suggesting this is an active, primed enhancer element. (D) The RGS1 eQTL lead variant predicts 306 
the disease association P value, further indicating this is a shared effect. (E) Disease and eQTL association 307 
effects are negatively correlated, indicating that disease risk is associated with lower RGS1 expression. 308 
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(F) RGS1 is expressed at lower levels in T cells obtained from MS patients compared to healthy controls, 309 
confirming this risk effect direction. 310 
 311 
We have quantified the shared heritability between autoimmune and inflammatory diseases, and 312 
demonstrated that we can leverage this to identify genetic variants that alter risk to multiple 313 
diseases. This significantly increases fine-mapping resolution, compared to the original genetic 314 
mapping studies: the number of effects where a single variant explains 95% of the posterior 315 
probability of association increases from 13 to 20 (a 54% increase); for 50% of the posterior 316 
probability, we see an increase from 35 to 54 (also 54%). Furthermore, we see an increase in the 317 
number of eQTLs, with evidence of sharing an effect with disease risk, from 139 to 154 (11%). 318 
Thus, in terms of identifying causal variants and functional interpretation, meta-analyzing across 319 
diseases meaningfully increases our ability to interpret genetic associations. This sets the stage 320 
for variant-to-function efforts to uncover key pathogenic mechanisms, as we provide high-value 321 
targets relevant to multiple diseases.  322 
 323 
This approach can be applied to any set of traits sharing associations; we therefore suggest this 324 
is a fruitful avenue to maximize the interpretability of existing genetic studies of human complex 325 
traits, especially as shared mechanisms are applicable to multiple conditions. It is particularly 326 
valuable as sample collections, particularly of diseases that are difficult to diagnose or not 327 
especially common in the population, become depleted. Disease cohorts are often genotyped 328 
on different platforms, and the majority of common variants imputed. This can introduce a 329 
substantial bias, if cohorts of samples with different diseases have differential genome coverage. 330 
We have avoided this in our study by using a common platform, at the expense of not covering 331 
the entire genome. These technical hurdles will diminish as genotyping platforms coalesce 332 
around a standard set of variants, and as the community shifts to whole-genome sequencing 333 
rather than genotyping. We note that biological interpretation of genetic associations, shared or 334 
otherwise, is dependent on access to molecular and cellular phenotype studies such as eQTLs, 335 
which require profiling a wide array of tissues or cell types under diverse stimuli in order to 336 
identify the consequences of disease-associated variants. The BLUEPRINT dataset, which we 337 
used here, covers three very different blood cell types, but dozens more exist, in which the 338 
variants we have identified could act. This context specificity may be one reason we cannot 339 
always assign a cognate eQTL to each well-resolved association (25). 340 
 341 
In terms of understanding the common mechanisms in autoimmunity, we and others have 342 
reported that many loci harbor associations to multiple autoimmune diseases. However, these 343 
approaches have relied on simple proximity of variants to infer that the underlying mechanisms 344 
must be shared. We have, for the first time, quantified the shared heritability between 345 
autoimmune and inflammatory diseases, and shown that a substantial proportion of shared loci 346 
harbor pleiotropic effects influencing risk to multiple diseases, which represent shared 347 
mechanisms. Many loci, however, harbor multiple independent effects, indicative of distinct 348 
mechanisms driving risk to different diseases; this is consistent either with the same underlying 349 
genes being influenced in different contexts to induce risk for different diseases, or with different 350 
genes which happen to be encoded near each other. Previous studies by us and others were 351 
not designed with this resolution, and could only identify loci harboring potentially different 352 
effects to multiple diseases.   353 
 354 
Our results reveal complex patterns of shared heritability between autoimmune diseases. In 355 
particular, we find many opposite effects shared between IBD and MS, where the same allele 356 
increases risk for one disease but decreases risk for the other. This is reminiscent of the 357 
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differential outcomes of anti-TNFα therapies, which are beneficial in IBD but exacerbate MS 358 
symptoms (26). Further, it suggests that some disease mechanisms may have an optimum state, 359 
and either hypermorphism or hypomorphism are deleterious. Overall, we see no evidence for a 360 
substantial component of risk shared across all six diseases, which would be indicative of a pan-361 
autoimmunity mechanism. Our benchmarking suggests this is not due to a lack of power to 362 
detect shared effects (27), and our results strongly support independent effects in most loci. As 363 
our results argue against a single, shared autoimmune mechanism, they also dispute a single 364 
evolutionary origin for autoimmune and inflammatory diseases, which would have resulted in a 365 
set of risk alleles driving broad autoimmunity.  366 
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