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Abstract
Building realistically complex models of infectious disease transmission that are relevant for informing
public health is conceptually challenging and requires knowledge of coding architecture that can implement
key modeling conventions. For example, many of the models built to understand COVID-19 dynamics
have included stochasticity, transmission dynamics that change throughout the epidemic due to changes in
host behavior or public health interventions, and spatial structures that account for important spatio-temporal
heterogeneities. Here we introduce an R package, SPARSEMODr, that allows users to simulate disease models
that are stochastic and spatially explicit, including a model for COVID-19 that was useful in the early phases
of the epidemic. SPARSEMOD stands for SPAtial Resolution-SEnsitive Models of Outbreak Dynamics,
and our goal is to demonstrate particular conventions for rapidly simulating the dynamics of more complex,
spatial models of infectious disease. In this report, we outline the features and workflows of our software
package that allow for user-customized simulations. We believe the example models provided in our package
will be useful in educational settings, as the coding conventions are adaptable, and will help new modelers
to better understand important assumptions that were built into sophisticated COVID-19 models.
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1 Introduction
The emergence of the SARS-CoV-2 pandemic has reinforced the strong role that mathematical models of
disease spread play in understanding pathogen transmission and in designing effective public health in-
terventions (Metcalf et al., 2015; Ferguson et al., 2020; Tian et al., 2020; Saad-Roy et al., 2020; Shea
et al., 2020). Models of infectious disease transmission vary widely in their structural form and complex-5

ity (Keeling & Rohani, 2008; Adiga et al., 2020). Classical models take the form of ordinary differential
equations describing “compartments” of the host and/or pathogen population (e.g., susceptible versus in-
fectious hosts) (Anderson & May, 1979), but even these models can become quite complex, containing
numerous equations that might, for instance, account for heterogeneities in the host population or for the
progression of pathogen-induced disease through various host classes (e.g., hospitalized individuals). Early10

in the COVID-19 pandemic, many compartment-style models were developed to address hypotheses of how
rapidly SARS-CoV-2 was spreading and what impacts non-pharmaceutical interventions might have (Pan
et al., 2020; Anderson et al., 2020), if and when the virus might become endemic (Lavine et al., 2021), and
even whether regional climate patterns were likely to influence transmission patterns (Baker et al., 2020).
Agent-based models, which track the (probabilistic) fate of individuals, were also developed to make short-15

term forecasts and long-term projections of COVID-19 for public health preparedness (Ferguson et al.,
2020; Hinch et al., 2021; Kerr et al., 2021; Cramer et al., 2022). Many models nested compartment-style or
agent-based models within a spatial framework to incorporate the impacts of spatial contagion and human
mobility on COVID-19 dynamics (Yamana et al., 2020; Pei et al., 2020; Arino, 2022; Zhang et al., 2022;
Wardle et al., 2022). These examples highlight the types of dynamics and assumptions modelers might20

include when constructing mathematical and computational models of infectious disease transmission, and
these choices have important implications for the resulting dynamics.

During the COVID-19 pandemic, some key dynamics have been built into many models that influence
the insights that emerge from modeling studies, including short-term forecasts of disease or longer-term
projections of system behavior. Arguably some of the most important of these model dynamics and assump-25

tions have been: stochastic transmission processes, such as super-spreading events or probabilistic system
behavior; time-varying transmission dynamics due to public health interventions and changes to human be-
havior (e.g., stay-at-home orders or mask-wearing); and, spatial heterogeneity in transmission, driven in
part by human mobility. We will briefly highlight examples of how these dynamics have been important for
modeling the spread of SARS-CoV-2, especially in the early phases of the pandemic.30

Adding stochastic dynamics to models, such as demographic stochasticity and environmental stochas-
ticity, allows us to capture key processes that are especially impactful early in epidemic behavior and in
small populations (Lambert et al., 2018). Demographic stochasticity refers to the probabilistic events that
befall host individuals, whereas environmental stochasticity refers to random changes to the values of model
parameters (e.g., transmission rate) that are due to sources not explicitly included in the model (i.e., envi-35

ronmental sources). Environmental stochasticity is sometimes used to account for heterogeneity in trans-
mission rate among host individuals, such as the impact of super-spreaders (Lloyd-Smith et al., 2005),
whereas demographic stochasticity accounts for dynamics such as the probabilistic burn-out of a pathogen.
For COVID-19, models that included demographic stochasticity where particularly important for explain-
ing disease patterns in regions with small populations (Engbert et al., 2021). Moreover, models that in-40

cluded both demographic and environmental stochasticity helped to disentangle the effects of both sources
of stochasticity on observed COVID-19 case counts during different phases of the outbreak (Hwang et al.,
2022). Importantly, accounting for stochastic model behavior also facilitates a more rigorous quantification
of uncertainty in model forecasts (Cramer et al., 2022). There are many methods to implement stochastic
dynamics within models (Allen, 2017), for instance using Gillespie-style algorithms to iterate the differential45

equations that describe compartment models (Gillespie, 2001; Ganyani et al., 2021), or through agent-based
modeling, which inherently deals with probabilistic events that befall individual hosts.
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Almost all of the models of COVID-19 referenced thus far have needed to deal with the fact that
SARS-CoV-2 transmission dynamics and the dynamics of COVID-19 hospitalization changed dramatically
throughout the pandemic, due for instance to non-pharmaceutical public health interventions meant to slow50

transmission, or due to changes in hospital practice to treat and triage COVID-19 patients. Many COVID-
19 models estimated time-varying transmission rates from case counts or hospitalization data, or models
inferred changing transmission rates using estimates of the pathogen’s instantaneous reproductive number
(Cramer et al., 2022; Gostic et al., 2020; Pei et al., 2020). Therefore models need to be flexible enough
to allow the user to specify time-varying parameter values. For compartment-style differential equation55

models, allowing time-varying parameters computationally requires that the models are iterated forward,
re-defining parameter values at appropriate time-points.

Modeling spatially explicit disease dynamics is important for testing hypotheses about the roles of
human mobility on spatial contagion, the effectiveness of interventions that impact movement, and under-
standing the sources of transmission within and among regions. Spatial models also allow for more refined60

forecasts within specific locations. Indeed, spatial models are often necessary to explain large-scale pat-
terns of disease transmission that cannot be captured by simpler, non-spatial models (Eggo et al., 2021).
There are several approaches towards spatially explicit modeling (Riley, 2007), including agent-based net-
work models that situate individual hosts in specific spatial positions (Ferguson et al., 2020; Kerr et al.,
2021; Hinch et al., 2021), or partial differential equations that assume hosts can move continuously across65

spatial dimensions. One of the most popular approaches, however, is meta-population disease modeling.
In meta-population models of disease, distinct host populations are explicitly situated geographically such
that movement of host individuals between the populations affects local and regional transmission dynam-
ics (Rohani et al., 1999; Lachiany & Stone, 2012; Ferrari et al., 2010). Important basic theory of spatial
epidemiology has emerged from the analysis of meta-population models (Arino, 2009; Wang & Li, 2014),70

which has in turn popularized the use of these spatial models for understanding and forecasting real public
health threats (Kraemer et al., 2019). Many early analyses of COVID-19 used meta-population models to
account for spatial heterogeneities in transmission and disease outcomes (Pei et al., 2020; Yamana et al.,
2020; Gatto et al., 2020; Yang et al., 2021; Zebrowski et al., 2021; Arino, 2022). The most complex meta-
population models of COVID-19 parameterize human movement based on an emerging suite of mobility75

data, often derived from mobile devices (Hou et al., 2021; Wardle et al., 2022; Hu et al., 2021).
Here, we introduce an R package, SPARSEMODr, that includes two illustrative examples of spatially-

explicit and stochastic meta-population disease models, including one of COVID-19. Some agent-based
simulation models of COVID-19 have been introduced that develop software for users to experiment with the
models (Kerr et al., 2021; Hinch et al., 2021), and several published models provide openly available code80

for users to download (Cramer et al., 2022; Ferguson et al., 2020). Our package focuses on meta-population
models in which users can simulate spatial and temporal heterogeneities in transmission rates, effects of
host movement, and other user-defined dynamics that influence local and regional patterns of disease. The
COVID-19 model that we provide was used by our group and others (Gel et al., 2020) to characterize spa-
tial and temporal variation in transmission patterns and disease outcomes (e.g., hospitalizations and ICU85

admissions) in Arizona, USA. While the model is no longer complex enough to capture many of the cur-
rent critical aspects of COVID-19 transmission and disease (e.g., the model does not include age-structure,
vaccination, nor the circulation of multiple variants), the models in SPARSEMODr should nonetheless be use-
ful for educational purposes. Importantly, the package demonstrates some specific conventions of coding
stochastic meta-population models that could easily be carried over to different host-pathogen systems in90

teaching, research, or applied contexts.

2 Available models
Currently we offer two models in the SPARSEMODr package: one is a more classic Susceptible- Exposed-
Infectious- Removed (SEIR) model, and the other is an SEIR-style model that more specifically describes
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the transmission of SARS-CoV-2 and COVID-19 progression from exposure through hospitalization through95

mortality. Both models are compartmental disease models that are simulated within a meta-population
context, which we describe below. We supply detailed vignettes that describe different use-cases of the
SPARSEMODr package, which can be found on CRAN: https://cran.r-project.org/web/packages/
SPARSEMODr/index.html and the package GitHub repository.

The SEIR model is described by the following set of ordinary differential equations:100

dS
dt

= µN−βSI−µS−mS

dE
dt

= βSI− (δ +µ)E

dI
dt

= δE− (γ +µ)I−mI

dR
dt

= γI−µR

(1)

Figure 1: Simulation of the SPARSEMODr SEIR model. (a) Simulated host meta-population. (b) Imposing a sinusoidal
pattern of time-varying transmission rate, βt . (c) Pattern of number infectious over time from a single sub-population.
The lighter lines are individual realizations of the stochastic model. (d) Aggregating local patterns to regional scales
to explore differences in emergent patterns.

Here, the state variables represent the numbers of hosts in each class (e.g., S is the number of susceptible
hosts). Following some classic conventions, the model assumes that all host classes can reproduce at rate
µ , which is equal to the natural death rate. This has the effect of maintaining total host population size
static through time. Moreover, all offspring enter the susceptible class, such that N = S+E + I +R. The
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pathogen incubates within exposed individuals for an average latency time of 1/δ , and infectious individuals105

recover at rate γ . This model structure leads to exponentially distributed sojourn times. As we will describe
below, we assume that susceptible and infectious hosts can commute away from their focal population
at emigration rate, m, but hosts return after one day. This commuter-style movement allows susceptible
individuals to become exposed by infectious individuals in other populations and infectious individuals
to spread the pathogen to other populations. An example simulation of the model, in which we impose110

sinusoidal forcing of the transmission rate, is shown in Figure 1.
The COVID-19 model is described by the following equations (Fig. 2; see also Gel et al. (2020)):

dS
dt

=−βtλtS−mS

dE
dt

= βtλtS−δ1E

dIa

dt
= δ1ρ1E− γaIa−mIa

dIp

dt
= δ1 (1−ρ1)E−δ2Ip−mIp

dIs

dt
= δ2Ip−δ3Is−mIs

dIb

dt
= δ3 (1−ρ2−ρ3) Is− γbIb

dIh

dt
= δ3ρ2Is−δ4Ih

dIc1

dt
= δ3ρ3Is +δ4ρ4Ih−δ5Ic1

dIc2

dt
= δ5 (1−ρ5) Ic1− γcIc2

dD
dt

= δ5ρ5Ic1

dR
dt

= γaIa + γbIb + γcIc2 +δ4 (1−ρ4) Ih

(2)

Figure 2: COVID-19 model schematic. State variables and parameters are defined in Tables 1 and 2.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2022. ; https://doi.org/10.1101/2021.05.13.21256216doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21256216
http://creativecommons.org/licenses/by-nc-nd/4.0/


The term λt represents a component of the force of infection, given by:

λt =
ω1Ia + Ip + Is + Ib +ω2(Ih + Ic1 + Ic2)

N−D
. (3)

Definitions of state variables and model parameters are shown in Tables 1 and 2. Note that N represents115

the total number of hosts in the population. We assume that individuals in the S, Ia, Ip, and Is compartments
can move between populations at emigration rate, m. We focus on these host classes as they can influence
local and regional transmission dynamics, whereas, for example, commuter-style movement of exposed
individuals would have no effect.

In the package manual, we provide default parameter values, but all of the COVID-19 model param-120

eters can be user-specified. The package also conducts parameter validation steps via warnings and errors
to ensure specified parameters are within feasible limits. Figure 3 shows a simulated example using the
COVID-19 model.

Table 1: COVID-19 model state variables

State Variable Description Corresponding model input
S Number of susceptible individuals input S pops

E Number of exposed individuals input E pops

Ia Number of asymptomatic individuals input I asym pops

Ip Number of pre-symptomatic individuals input I presym pops

Is Number of mildly symptomatic individuals input I sym pops

Ib Number of mildly symptomatic individuals on bed rest at home input I home pops

Ih Number of hospitalized individuals input I hosp pops

Ic1 Number of individuals in the ICU input I icu1 pops

Ic2 Number of individuals in the recovery (step-down) ICU input I icu2 pops

D Number of deceased individuals input D pops

R Number of recovered individuals input R pops

Table 2: COVID-19 model parameter descriptions

Parameter Description Corresponding model input
βt Time-varying transmission rate beta

ω1 Proportion reduction in transmission for asymptomatic individuals frac beta asym

ω2 Proportion reduction in transmission for hospitalized individuals frac beta hosp

N Total number of individuals in population input N pops

δ1 Transition rate: exposed to pre-symptomatic delta

δ2 Transition rate: pre-symptomatic to symptomatic recov p

δ3 Transition rate: symptomatic to home or regular hospital bed or ICU recov s

δ4 Transition rate: regular hospital bed to home or ICU recov hosp

δ5 Transition rate: ICU to step-down ICU or decease recov icu1

γa Recovery rate: asymptomatic recov a

γb Recovery rate: home bed recov home

γc Recovery rate: step-down ICU recov icu2

ρ1 Fraction of exposed that transition to asymptomatic asym rate

ρ2 Fraction of symptomatic that transition to hospital bed hosp rate

ρ3 Fraction of symptomatic that transition directly to ICU bed sym to icu rate

ρ4 Fraction of hospitalized that transition to ICU icu rate

ρ5 Fraction of patients in ICU that die of disease death rate

m Emigration rate m

7
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Figure 3: Simulation of the SPARSEMODr COVID-19 model. (a) Simulated host meta-population. (b) Imposing
a pattern of time-varying transmission rate, βt . (c) Pattern of new hospitalizations over time from a single sub-
population. The lighter lines are individual realizations of the stochastic model, while the dark line is the median
trajectory of these realizations. (d) Aggregating local patterns to regional scales to explore differences in emergent
patterns. Light and dark lines as in panel (c).

3 Key features of SPARSEMODr disease models
We implement a common coding architecture for the two models provided in SPARSEMODr to highlight125

particular modeling conventions that are useful to consider in theoretical and applied modeling studies.
Here we describe these key features of the spatially-explicit and stochastic disease models. The models in
SPARSEMODr are coded in C++ and use the Rcpp package to conveniently wrap the functions into the R
computing environment (Eddelbuettel, 2013), integrating the speed of C++ and the user-friendliness of R.
The output of each model is a data frame that includes the value of each state variable and the number of new130

“events” (e.g., new exposures, new hospitalizations) per time step per population per stochastic realization
of the model.

3.1 Stochastic dynamics
Demographic stochasticity The models include demographic stochasticity, which implements the effects
of probabilistic events that befall individuals in a population and that can affect epidemic trajectories. We use135

an event-driven approach in which the differential equations are iterated forward in daily time steps using a
Gillespie-style algorithm known as the tau-leaping algorithm (Gillespie, 2001). The tau-leaping algorithm
is more flexible and more computationally efficient compared to several other simulation and numerical
integration techniques (Ganyani et al., 2021). And, because this form of demographic stochasticity requires
us to use integers for the host classes (i.e., numbers of hosts in each class), it allows users to track the number140
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of new events occurring per time step.

Stochastic transmission process We also implement daily stochastic variation in the transmission rate, a
form of environmental stochasticity. We assume that as the number of infectious individuals increases, the
variation in transmission rate decreases, emphasizing that stochasticity has larger effects in smaller popula-
tions (Keeling & Rohani, 2008). Our specific form of stochasticity implies that there is heterogeneity in the145

transmission rate among individuals in the host population, such that our methods can account for super-
spreader events, for instance, which have disproportionate effects early in the epidemic. The functional form
of stochasticity is:

βrealizedt =

∣∣∣∣βt ∗
(

1+
χ√
∑ I

)∣∣∣∣ . (4)

For every time step t we draw a random variate, χ , from a normal distribution with a mean of zero and
a standard deviation of σ , such that χ ∼ N(0,σ), and σ is a user-controlled model input, stoch sd. We150

calculate the total number of infectious individuals in the population, which we abbreviate ∑ I, because the
summation will depend on the model and which state variables represent infectious individuals (e.g., there
are several infectious states in the COVID-19 model). The vertical bars show that βrealizedt is the absolute
value of the right-hand expression.

3.2 Spatial, meta-population dynamics155

To iterate the SPARSEMODr models in a spatial context, we embed the equations into sub-populations that
make up a meta-population, in which migration connects sub-populations. Migration between populations
in the meta-population thus affects local and regional transmission dynamics. Susceptible individuals in a
focal population can become exposed to the pathogen by infectious “visitors” from other sub-populations or
by infectious visitors from outside of the meta-population (“immigrants”). Similarly, susceptible individuals160

can visit a different sub-population and become exposed by the resident infectious individuals. We model
movement using a commuter-style approach, in which hosts can move to an alternative sub-population
during a time step, but then they return to their home sub-population before the start of the next time step.
After we move individuals to new populations, transmission between susceptible residents and infectious
visitors is determined, and the visitors then leave the population. In other words, in a single day (i.e., time-165

step), transmission first occurs within a population and then additional transmission can occur after hosts
commute.

The user controls the per-capita emigration rate, m, of susceptible and infectious hosts. Our models
assume that the probability of moving to any specific population is dictated by a simple, distance-based
dispersal kernel:170

pi, j =
1

exp(di, j/φ)
. (5)

Here pi, j is the probability of moving from population j to population i, and di, j is the euclidean distance
between the two populations. Larger values of the φ parameter (controlled as user input dist phi) makes
it more likely for hosts to travel farther distances. To determine the population to which migrants will move
during any given time step, we draw from a multinomial probability distribution using the pi, j values.

The models also allow the effects of immigrants, who do not usually reside in the meta-population, to175

commute to the meta-population each day (e.g., out-of-state tourists). The user can define the model input
imm frac, which is the proportion of the focal population that may constitute visitors on any given day. For
example, if for a given focal population the population size is 1000 hosts, and imm frac= 0.05, an average
of 50 immigrants may arrive on a given day. The exact number of these immigrants arriving on a given day
is determined by drawing from a Poisson distribution. Then, the number of infectious visitors from this pool180

of immigrants is assumed to be proportional to the number of infectious residents in the focal population. In
other words, we assume that the pathogen is present in “non-resident” populations at similar prevalence as
the focal population.

9
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3.3 Time-varying parameters
The SPARSEMODr models allow users to specify certain time-varying parameters, which take on unique185

values per day. Both models allow the transmission rate, β(t), to vary over time, and we allow the user
to control how movement dynamics change over time with time-varying values of m, φ , and the fraction
of the population that constitutes outside immigrants, imm frac. In the COVID-19 model, we also allow
time-varying fraction hospitalized, ρ2, transition rate of hospitalized individuals, δ4, fraction advancing to
the ICU, ρ4, and fraction of ICU patients that die of disease, ρ5. We chose to allow these parameters190

to vary over time to emphasize that these rates, in reality, very likely changed throughout the COVID-19
pandemic, for instance, due to changes in hospital policies and improvements to patient care. The time-
varying parameters can be specified in one of two ways, which we demonstrate in the Work flow section
below.

3.4 Frequency- and density-dependent transmission195

In the SPARSEMODr models, the transmission process can be described as frequency-dependent, where con-
tact rates are invariable to population density, or density-dependent, where contact rates depend on popu-
lation density (Hopkins et al., 2020). For frequency-dependent transmission, we divide the user-specified
value of transmission rate by the total number of hosts within a given sub-population. For example, in the
SEIR model, we have the following expression describing mass-action transmission per sub-population, i:200

βi,t
Si,t
Ni

Ii,t , where βi,t is the user-specified transmission rate for sub-population i at time step t, and Ni is the
total host population size for sub-population i. Therefore, with frequency-dependent transmission, the effect
of a single infectious host on the risk of infection is modulated by the fraction of the host population that is
still susceptible, irrespective of the host population density (i.e., number of hosts per unit area) within that
sub-population.205

Alternatively, for density-dependent transmission, the user can specify a non-linear Monod equation
that describes the relationship between host population density and the transmission rate. The Monod equa-
tion is:

βDD,i,t = βi,t
Ni/Ai

K +Ni/Ai
, (6)

Here, βi,t is the transmission rate supplied by the user, but importantly this functionally becomes the max-
imum possible transmission rate for sub-population i at time step t. Thus, βDD,i,t is the density-dependent210

transmission rate for sub-population i at time step t. Ni/Ai is the density of the focal host population (i.e.,
number of hosts, Ni per unit area, Ai). To use this form of transmission, the area per population, Ai, must
therefore be specified by the user as input vector, census area. Finally, K is a constant that controls the
effect of density on the transmission rate. More specifically, K is the half-saturation constant at which point
βDD,i,t/βi,t = 0.5. In general, when K = 0, there is no effect of density on transmission rate, but larger215

values of K mean that low host densities more strongly reduce the transmission rate (i.e., transmission rate
more strongly depends on host population density). The value of K is user-controlled by model input,
dd trans monod k.

4 Work flow
4.1 Process overview220

SPARSEMODr runs spatial, stochastic models across a user-specified grid of populations. In Figures 1 and
3, we simulated populations that are scattered across a spatial lattice; one could imagine these are local
communities situated within counties, labelled as “Regions”. In these particular simulations, we imposed a
time-varying transmission rate, βt , but we assumed that each local population experiences the same pattern
of time-varying transmission. The models track the spread of the disease in each sub-population, such that225

we can computationally aggregate patterns from local populations to higher spatial scales (e.g., “Regions”)

10
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to look at emergent patterns. Below we describe the necessary setup and declarations to run these simulations
for the models in SPARSEMODr, focusing on the more complex COVID-19 model.

4.2 Declaring initial conditions and constant parameters
Users must specify the initial conditions of the state variables. To initiate the COVID-19 model, at least230

one of the following vectors must be supplied with a value greater than one for at least one sub-population:
input E pops, input I asym pops, input I presym pops, input I sym pops, input I home pops,
input I hosp pops, input I icu1 pops, or input I icu2 pops. If any initial values of state variables
are not supplied, they are assumed to be zero. Moreover, either a vector of input N pops or a vector of
input S pops must be supplied. As an example, we will specify:235

N_pops <- rep(5000, 10) # 10 populations, each with 5000 individuals.

E_pops <- c(0,1,0,3,2,0,14,3,0,0) # Number of initially exposed in each pop.

S_pops <- N_pops - E_pops # All others assumed Susceptible

The user must also declare some inputs that are shared between the SPARSEMODrmodels: input dist mat

is a matrix that specifies the distance between populations; input realz seeds is a vector of integer val-240

ues to seed the random realizations of the model; stoch sd is the standard deviation of the stochastic
transmission rate, σ , as described above; trans type specifies the type of transmission type (frequency-
or density-dependent); input census area is the spatial area of each population, but this is only required
when transmission is declared as density-dependent; dd trans monod k the parameter controlling den-
sity’s effect on transmission, again only required for density-dependent transmission; and input tw a time245

window object, which we will describe in the next section.
The next step is to populate the model-specific “control” object, which is a special R class defined in

our package. Each model has its own control class that includes the model-specific parameters and initial
conditions of the state variables.

As a simple example with the COVID-19 model, given the initial conditions above, here we will use250

default parameter values for all but two parameters:

my_covid19_control <- SPARSEMODr::covid19_control(

input_S_pops = S_pops, # susceptible population counts

input_E_pops = E_pops, # exposed population counts

asym_rate = 0.4, # fraction of exposed that become asymptomatic255

recov_icu1 = 0.125) # average ICU recovery rate, i.e., 8 days (1/8)

Also, because input N popswas not provided, the package internally assumes input N pops = input S pops

+ input E pops. covid19 control() returns a named list of vectors that must be supplied when running
the model.

4.3 Declaring time-varying parameters with the time-windows object260

A time windows object is required to specify the time-varying parameters (or whether these parameters are
assumed constant). There are two ways to specify time windows: (1) specifying values for each time step in
the simulation (i.e., “daily” method), or (2) the starting and ending dates of user-defined time windows. For
the “daily” method, the parameter vectors must be of size equal to the number of days in the simulation. For
the start date/end date method, values for each parameter are assigned at the beginning and end of the time265

window. Then, the back-end code calculates a linear interpolation to assign daily values of the parameter;
in other words, the parameter values change linearly from the starting value to the ending value over the
number of days within the time window.

In the following example, we specify the start and end dates of our time windows for time-varying
transmission rate, to match the pattern shown in Fig. 3(b). Note that we format dates using the lubridate270
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package (Grolemund & Wickham, 2011), although other methods are acceptable as long as they are objects
of class Date in R.

# Function to specify all of the required parameters in a single time-window

# In this example, only r0 is variable between the time periods

one.window <- function(275

start_dates, #start of time window (date class)

end_dates, #end of time window (date class)

beta, #value of time-varying beta

dist_phi=150, #controls shape of dispersal kernel

m=0.1, #per-capita movement rate, i.e., move every 10 days on avg.280

imm_frac=0){ #zero outside immigration

data.frame(beta, start_dates, end_dates, dist_phi, m, imm_frac)

}

library(lubridate) # for mdy()285

time.window.args <- rbind(# Specify the components of 5 time windows

one.window(mdy("1-1-20"), mdy("1-31-20"), beta=0.40),

one.window(mdy("2-1-20"), mdy("2-15-20"), beta=0.10),

one.window(mdy("2-16-20"), mdy("3-10-20"), beta=0.10),

one.window(mdy("3-11-20"), mdy("3-21-20"), beta=0.15),290

one.window(mdy("3-22-20"), mdy("5-1-20"), beta=0.15)

)

# Populate the required object of class time_windows

my_tw <- do.call(SPARSEMODr::time_windows, time.window.args)295

The package documentation and the vignettes give additional examples of how to flexibly structure these
time window objects. Notably, the vignettes demonstrate how to specify time-varying βt values for each
sub-population individually, to explore effects of spatially heterogeneous transmission rates within the meta-
population. In this latter case, users would specify a list of beta vectors.

4.4 Running stochastic realizations in parallel300

For efficiency and to reduce run time, we suggest simulating stochastic realizations of the SPARSEMODr

models in parallel. We have therefore created a function, model parallel(), that leverages the future

package (Bengtsson, 2020) and compiles the output of the individual model runs into a user-friendly data
frame. As an example:

# Specify the number of realizations to run:305

n_realz <- 75

# Specify unique seeds to run the realizations.

## Note, realizations with the same seeds will produce

## equivalent output310

my_realz_seeds <- 1:n_realz

# Run the model in parallel and store the output:

model_output <- SPARSEMODr::model_parallel(

input_dist_mat = dist_mat,315
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input_census_area = census_area,

input_tw = my_tw,

input_realz_seeds = my_realz_seeds,

control = my_covid19_control,

...universal_model_params...)320

Here “. . .universal model params . . .” represents the universal model parameters, such as trans type

or stoch sd, as described above. Note that dist mat is a pairwise distance matrix, and census area is
a vector of population areas (e.g., in km2). The package documentation and vignettes show examples of
creating these two inputs. Since model parallel() produces a data frame, the output can easily be subset
and summarized for plotting.325

5 Conclusion
The SPARSEMODr package illustrates coding paradigms to specify and simulate complex disease models
that are both stochastic and spatially explicit. In pedagogical contexts, SPARSEMODr models can be used to
demonstrate the effects of time-varying transmission rates (e.g., as affected by disease interventions), de-
mographic and environmental stochasticity, frequency- versus density-dependent transmission, and spatial330

heterogeneities. For instance, simulating the SPARSEMODr SEIR model can reinforce foundational theoret-
ical concepts in mathematical epidemiology, such as spreading waves of disease or spatial (a)synchrony of
epidemics. The SPARSEMODr COVID-19 model can be used to help students understand the key features
of models built early in the pandemic to address public health issues, for example, highlighting the effects
of public health interventions, spatiotemporal effects of altering human movement, or the changing land-335

scape of hospitalization dynamics before vaccines were available. Because we develop a standard coding
architecture for the two models in SPARSEMODr, we can envision multiple future package developments.
For instance, our team or outside contributors can add models that follow the same coding standards, such
as vector-borne disease models, or COVID-19 models that include additional layers of realism, such as
age-structure, vaccination, and the dynamics of co-circulating variants. For package contributors, a new340

model would have to follow the current conventions, which can be copied from our GitHub repository
(https://github.com/NAU-CCL/SPARSEMODr). Our team would approve all outside contributed model
structures by forking and merge requests. We also plan to modularize the SPARSEMODr coding conventions
using APIs so that they can be auto-populated for new models, reducing the need for copy-and-pasting code.
We hope that the community of disease modelers and educators will help us to refine the package and to345

make it more accessible to broader audiences.
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