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Abstract  
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that is complex in its onset, 

pattern of spread, and disease progression. The heterogeneity of ALS makes it extremely 

challenging to determine if a disease modifying therapy is effectively slowing progression. 

While accurately modeling ALS progression is critical to developing therapeutics, current 

computational methods fail to capture the complexity of disease progression. We aimed to 

robustly characterize disease progression patterns in ALS. 

 

We obtained data from four clinical cohorts that cover more than 3,500 patients and include both 

observational and clinical trial studies. To determine whether there were common patterns of 

disease progression, we developed an approach based on a Mixture of Gaussian Processes 

(MoGP) to model longitudinal clinical data. Our approach automatically identifies clusters of 

patients who show similar disease progression patterns, modeling their average trajectory and the 

spread of the distribution in each cluster. Importantly, the method does not require any prior 

knowledge of the expected number of clusters. 

 

The MoGP approach revealed that ALS progression, as measured using the ALS functional 

rating scale (ALSFRS-R) or forced vital capacity, is often non-linear with periods of stable 

disease preceded or followed by rapid decline. Patterns of progression in ALSFRS-R were robust 

to sparse data. When at least one year of longitudinal data were available, MoGP predictions 

were significantly more accurate than linear models, which are commonly used in clinical trials. 

Progression patterns were consistent across different cohorts despite differences in the frequency 

of data collection and the lengths of follow-up periods. We further showed that clusters 

identified from one large, publicly available study population could be used to stratify unseen 
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participants in other studies. We also showed that these progression trajectories correspond with 

survival outcomes.  

 

This work highlights the importance of modeling nonlinear disease progression for developing 

more advanced clinical trial endpoint analysis models. In ALS, sporadic, rapid decline 

(“functional cliffs”) and sigmoidal patterns in disease progression in untreated patients may 

obscure detection of therapeutic efficacy if linear models are used. We provide a pre-trained 

computational model of observed clinical patterns that can be used by others to analyze new 

ALS patient cohorts. We expect that the MoGP approach can also be applied to additional ALS 

outcome measures and to other progressive diseases. Our results provide a critical advance in 

characterizing the complex disease progression patterns of ALS.  
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Introduction 
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with a complex 

pathophysiology resulting in heterogeneous symptoms and progression.1,2 The median length of 

survival from symptom onset is approximately three years; however, some patients survive 

decades with the disease.3 The heterogeneity of ALS progression makes it extremely challenging 

to determine if a disease modifying therapy is effectively slowing progression.4,5  

 

Despite widespread use of longitudinal functional clinical metrics to determine ALS progression, 

they are imperfect measures. Patients often are evaluated at different stages of their disease.6 

While patients with ALS invariably decline over time, some of the metrics can increase for short 

durations or reach plateaus.7 Additionally, the metrics of clinical disease progression are based 

on subjective assessments of functional ability, such as the ability climb stairs “normally” or 

“slowly”, which introduces a potential source of error.8 The interconnectedness of function and 

variability in the measurement of these clinical metrics present challenges in modeling ALS 

progression.  

 

Accurately modeling progression of ALS is critical to developing therapeutics. Traditional 

modeling approaches have dealt with the complexities in ALS clinical scores by first assuming 

that ALS outcome measures, particularly the Revised ALS Functional Rating Scale (ALSFRS-

R), progress in a linear fashion.9–11 Many ALS clinical trials use changes in the linear slope of 

ALSFRS-R over time or a change in ALSFRS-R from baseline as primary endpoints.12–14 

Relatively small improvements in the linear rate of decline of the ALSFRS-R are assumed to 

correspond with clinically meaningful efficacy. For example, edaravone was approved based on 

a 2.5 ALSFRS-R point difference in decline between the treatment and control arms over 6 

months14, and the estimated effect from the ALS Sodium Phenylbutyrate–Taurursodiol clinical 

trial was a change in slope of 0.42 points per month.12 Large global crowdsourcing analyses 

designed to produce better models for clinical trials have also assumed a linear decline in 

ALSFRS-R.15,16  

 

Despite the widespread use of linear models in predicting patient progression, there is evidence 

that ALS progression can be nonlinear and can differ across disease severity.17–19 Nonlinear 
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parametric models that assume a particular shape of the trajectory in advance have been used to 

capture these complexities. However, by requiring a particular parametric form, these models are 

restricted to identifying pre-specified trajectory shapes17,18,20–22 or pre-specified subgroups19,23, 

which may not represent the actual heterogeneity in disease progression patterns.  

 

To model the full complexity of ALS progression, we turned to computational methods that are 

more flexible than traditional parametric methods. We propose a framework for aggregating 

patient trajectories into trajectory clusters by determining the overall shape of the trajectories in 

each cluster using Gaussian processes24,25, and determining the number of clusters using a 

Dirichlet process mixture model.26,27 Gaussian process models make minimal assumptions of 

expected trajectory shapes, while flexibly allowing for the incorporation of prior clinical 

knowledge. For example, since patients with ALS are expected to decline over time, we 

incorporate monotonic biases into our model, which encourage declining trajectories to be 

identified but also allow for the detection of patterns that do not fit prior expectations. Dirichlet 

process mixture models do not require the specification of the number of clusters in advance and 

instead learn the number of clusters from the data. Our approach accounts for noise in clinical 

metrics, both providing an estimate of predicted cluster membership for each patient and also 

providing an estimate of error around each cluster. 

 

We show that this method can improve characterization of ALS progression patterns, and 

identify clusters of participants with similar trajectories from longitudinal clinical scores. We 

show that nonlinear progression patterns are robust to sparse data, consistent across study 

populations, and correspond with survival outcomes. While we focus on clinical ALS outcome 

measures, this framework can be applied to any longitudinal measure used in ALS or in other 

diseases. Our results provide critical advances in modeling ALS progression patterns. 

 

Methods 
Study Populations 
Data on longitudinal ALSFRS-R scores was obtained from four study populations (Table 1). 

Two observational studies were used: Answer ALS (AALS)28, and the Emory ALS Clinic 
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database (EMORY)3, and two overlapping clinical trial datasets: The Pooled Resource Open-

Access ALS Clinical Trials (PRO-ACT)29 and the Clinical Trial of Ceftriaxone in ALS 

(CEFT).13 The heterogeneity of the clinical cohorts enabled us to measure the robustness of our 

model between the study populations.     

 

Modeling Approach  
We developed a Mixture of Gaussian Processes model with strong inductive bias towards 

monotonic decline (MoGP) to characterize patterns in disease progression. The model leverages 

two Bayesian nonparametric methods: Gaussian process regression24,25 and Dirichlet process 

clustering.26,27 Gaussian process regression does not require the specification of a particular 

functional form, but instead learns trajectories from data, enabling the model to capture a wide 

variety of, possibly nonlinear, progression patterns. Dirichlet process clustering does not require 

the specification of a number of clusters a priori, but instead proposes a number of clusters that is 

consistent with the number of trajectory trends observed in the data. The number of patients in 

each cluster is also learned from the model, and clusters can differ in size from each other. This 

is well motivated by uncertainty in the existence and number of ALS progression subtypes and 

avoids restrictive modeling assumptions. In contrast to prior work on MoGP models,25,30,31 

significant modifications to the method have been made to ensure that clinical knowledge 

relevant to ALS progression is incorporated. This includes the implementation of a monotonic 

inductive bias,  as well as clinically-informed parameter priors for Gaussian process regression 

and Dirichlet process clustering components. Each component of the model is discussed in more 

detail below. 

 

Gaussian Process Regression 
Gaussian process regression allows the identification of nonlinear trajectory patterns while 

making minimal assumptions about the shape of the trajectory functions.24,25 A Gaussian process 

is specified by a mean function and a covariance kernel. Because we expect ALS trajectories to 

be smooth functions with no discontinuities, our MoGP model uses a squared exponential (SE) 

kernel. The SE kernel has two parameters: the signal variance, which determines the average 

distance of the function from the mean and the length-scale, which specifies the smoothness of 
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the function. Each of these parameters is determined during the learning phase using the training 

data.  

 

Monotonic Inductive Bias 
Because ALS trajectories are expected to decline over time, we use a negative linear function in 

the Gaussian process models of MoGP, as well as a threshold function with our clustering to 

encourage declining trajectories. We also impute an onset-anchor value, a maximum score of a 

clinical metric assigned to the date corresponding to symptom onset, which has been previously 

shown to improve prediction in ALS trajectories.32 

 

Dirichlet Process Clustering 
Dirichlet process mixtures26,27 can be used to identify clusters in data in cases in which it would 

be difficult to specify an expected number of clusters a priori, as in ALS subtyping. This 

unsupervised learning model begins by assuming that an infinite number of clusters can exist, 

and then narrows its prediction to a limited number of components best supported by the 

observed data. In our case, each mixture component is a function drawn from a Gaussian 

process. The resulting Dirichlet process mixture of Gaussian processes clusters patient 

trajectories by probabilistically assigning them to those components that best explain them. The 

number of patients in each cluster is also learned from the model, and clusters can differ in size 

from each other. Through this data-driven approach, the algorithm can learn clusters of ALS 

patients that share disease progression patterns. The method can also predict the cluster 

membership and the disease progression pattern of a participant not included in the model, and 

provide an estimate of the confidence of that prediction. For further details, please see the 

methods section of the supplement.  

 

Model Evaluation 
Evaluating trajectory nonlinearity  
We compared the performance of MoGP against a calculated slope of each individual 

participant’s ALSFRS-R score (Slope Model: SM). The SM represents a common standard 

model in the field used to represent ALS disease progression, in which linear slopes are fit to 
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patient data with an onset-anchor.32 The slope model is fit to each patient and does not identify 

clusters. We also benchmarked our model against a Mixture of Gaussian Processes model with a 

linear kernel (Linear Kernel Model: LKM). This baseline retains the ability to cluster trajectories 

using a Dirichlet process but does not allow for nonlinear functions, allowing us to separate the 

contribution of clustering and the assumption of linearity in our models.  

 

For this analysis, participants were excluded from the model if fewer than three complete 

ALSFSR-R visits were recorded, the first visit was more than seven years from symptom onset, 

or an increase of greater than six points in ALSFRS-R between subsequent visits was recorded 

(Table 1). 

 

For each model, the root mean squared error (RMSE) between a participant’s measured scores 

and their predicted cluster model mean function were calculated. The RMSE was compared 

between the models; a lower RMSE indicates reduced error in that model and better model 

performance.  

 

Robustness to Sparse Data 
To evaluate the robustness of the MoGP cluster assignments, we simulated sparsity by 

withholding data and assessed the model’s ability to perform two tasks: 1) interpolation of 

ALSFRS-R scores (“Interpolation”) for a patient with randomly withheld data points, and 2) 

forecasting future ALSFRS-R disease progression (“Prediction”) for patients with right-censored 

data.  

 

We tested this using the largest dataset with sufficient longitudinal measurements: PRO-ACT. 

We also evaluated the model’s performance on CEFT, which is a clinical trial that is a subset of 

the PRO-ACT study population. Including CEFT allows us to  characterize the contribution that 

data collection heterogeneity and length of follow-up have on the results. In order to have 

sufficient longitudinal measurements, for Interpolation experiments, we only included 

participants with 10 or more longitudinal ALSFRS-R visits, and for Prediction experiments, we 

only included participants with 4 or more visits (Supplementary Table 1).  
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The reconstruction error for each participant was calculated using the RMSE between the 

original, withheld data points and predicted values from the mean function for the participant’s 

trajectory cluster. This was done across all interpolated tests, in which 25%, 50%, and 75% of 

clinic visits per patient were provided as training data, with selections randomly interspersed 

across visits. We then evaluated the ability of MoGP to predict future progression, by using 

right-censored data with varying amounts of training data (including visits within 0.25, 0.5, 1.0, 

1.5, and 2.0 years since baseline visit).  

 

Model Generalizability 
To evaluate whether clusters derived from one study population could be used to model external 

study populations, we trained a reference model and evaluated the transferability of this model to 

unseen ALS patient data. We predicted the cluster membership for each participant, and 

calculated the RMSE between the participant ALSFRS-R scores and the mean function of their 

predicted cluster.  

 

We split all of our study populations into test and training datasets (60% train, 40% test). For our 

reference MoGP model, we used the training data from PRO-ACT, which was chosen because it 

contained the largest number of samples and is publicly available. For AALS, EMORY, and 

CEFT, we used the training data from each study to train a separate model (“study-specific 

model”). For each study’s remaining test data, we predicted the trajectory function using the 

reference model and the study-specific model.  

 

Relationship to Alternate Outcome Measures 

We calculated the Kaplan-Meier survival probability curves for the largest MoGP clusters 

identified from PRO-ACT. If no death was recorded, the participant was marked as censored 

using the latest date of recorded ALSFRS-R score. We also trained MoGP models on forced vital 

capacity maximum percentages and ALSFRS-R subscores, and evaluated trajectory patterns. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.13.21254848doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21254848
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

Statistical Analysis 

For comparing the cumulative distribution function of the RMSE between a participant’s 

predicted cluster membership and cluster model mean, P-values calculated with Kolmogorov-

Smirnov two-sample tests.  For Interpolation and Prediction,  to compare if a model error had 

decreased between the LKM or SM to the MoGP, a Wilcoxon signed-rank one-sided test was 

used. For assessing trajectory consistency between reference models and study-specific models, 

a Wilcoxon signed-rank two-sided test was used. 

 

Data availability  
We provide the python code for the MoGP framework as well as the pre-trained reference model 

described here for researchers to use to generate predictions of cluster membership and trajectory 

function from input patient data. All code used for data processing, modeling, and figure 

generation can be found at: https://github.com/fraenkel-lab/mogp 

 

AALS is publicly available for download (data.answerals.org). PRO-ACT can be downloaded by 

request (https://nctu.partners.org/ProACT). CEFT can be downloaded from National Institute of 

Neurological Disorders and Stroke (NINDS) (https://www.ninds.nih.gov/Current-

Research/Research-Funded-NINDS/Clinical-Research/Archived-Clinical-Research-Datasets) by 

request. EMORY is restricted access at this time. 

 

Results 
Study populations 
The populations varied in size, with PRO-ACT, a publicly available ALS clinical trial database, 

having the largest total number of participants (2923 participants with at least 3 ALSFRS-R 

visits recorded). The populations differed significantly in the average number months followed 

(between 11 to 20 months), and the average frequency of clinical visits (between 5 to 10 visits). 

The slope between the populations also varied, with EMORY on average having the fastest 

progressing population (-1.21 ALSFRS-R points/month), and AALS having the slowest 

progressing population (-0.75 ALSFRS-R points/month). CEFT had an average of 19.09 months 

of follow-up, while PRO-ACT had an average of 11.86 months, indicating that CEFT 
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participants likely comprise some of the longest subject-records in PRO-ACT. The heterogeneity 

of the populations enabled us to measure the robustness of our model to data collection methods 

and the generalizability of ALS progression patterns between varying study populations.   

 

ALS disease progression trajectory patterns can be characterized 

with MoGP  
MoGP is a flexible modeling and clustering framework that can be applied to linear and non-

linear data. To characterize patterns in ALS progression, we first applied MoGP to PRO-ACT, 

which is the largest publicly available dataset of ALSFRS-R scores (Fig. 1). The analysis 

identified diverse clusters, including some clusters identifying slow progressing populations (Fig. 

1N mean ALSFRS-R slope = -0.13 points/month) and others capturing faster progressing groups 

(Fig. 1R, mean ALSFRS-R slope = -1.93 points/month).  

 

Notably, in many cases, the patterns of decline were highly non-linear, with some following 

sigmoidal (Fig. 1D, K), convex (Fig. 1M, U, V), and concave (Fig. 1O, Q) curves. Linear 

patterns were also detected in some clusters (Fig. 1G, J, T). To estimate the extent of non-

linearity, we computed the slope in the first year since symptom onset (“Baseline slope”) for 

each cluster trajectory. While this baseline slope closely reflects actual trajectories for the linear 

clusters (Fig. 1G, J, T), for others, the baseline slope is either an overestimation (Fig. 1I, K, L, O, 

X), or underestimation (Fig. 1S, V), indicating nonlinearity in the trajectory pattern. These errors 

in baseline estimations can be large; for instance, the baseline slope in cluster K overestimates 

disease trajectory by 24.20 ALSFRS-R points and underestimates trajectory in cluster V by 9.48 

ALSFRS-R points when both are evaluated 3 years after symptom onset. This diversity 

highlights the complexity of progression trajectories in ALS. Analysis of other study populations 

(Supplementary Fig. 1) also revealed many clusters that were highly non-linear. 
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Nonlinear disease progression patterns are identified across 

heterogeneous study populations 
To rigorously compare linear and non-linear models, we compared our MoGP against two 

benchmark linear models, described in the methods section: a slope model (SM) and a Mixture 

of Gaussian process model with a linear kernel (LKM).  

 

For all study populations, the error in the MoGP model was lower than the LKM and SM (Fig. 

2A). Across the populations, using non-linear models results in a lowered error of one or more 

ALSFRS-R points as compared to the LKM for at least 27.16% of participants; at least 8.33% of 

patients have an improvement in accuracy of two or more ALSFRS-R points (Supplementary 

Table 2). Importantly, the error of the MoGP was lower even though the LKM used a larger 

number of clusters to model the data (Supplementary Table 4) . It is also notable that the MoGP, 

which identified clusters as large as 100 participants, was able to match or outperform the 

patient-specific SM (Fig. 2A, Supplementary Table 3), which would have been expected to 

drastically outperform MoGP if significant nonlinear structure did not exist in the data. The 

results are replicated across the four different datasets, suggesting that complex nonlinearity is a 

common feature of ALS progression, and is not a unique feature of a single dataset. 

 

The clusters with the most significant nonlinearity often followed sigmoidal trajectory patterns, 

with varying inflection points (Fig. 2B). In some of these clusters, patients had slow progression 

for a period of time, followed by a consistent sharp decline. This pattern of progression appears 

consistent with a sudden loss of ability to carry out functions that we refer to as a “functional 

cliff.” In other cases, the pattern is more consistent with a rapid period of decline followed by a 

slower phase. The MoGP model enables the ability to learn these complex disease progression 

trajectories. 

 

Disease progression trajectory clusters are robust to sparse data 
Clinical data for ALS patients can often be incomplete or sparse, and we sought to evaluate 

MoGP performance in these settings. We compared MoGP’s performance against the Linear 

Kernel Model (LKM) and the Slope Model (SM). Across all interpolated tests for PRO-ACT, we 
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found that the clusters identified by MoGP had lower reconstruction error than the LKM (Fig. 

3A, p-val  ≤ 1e-4), and a lower error than the SM when 50% and 75% of training data is included 

(Fig. 3A, p-val ≤ 1e-3). These trends persisted when compared to CEFT (Fig. 3C).  

 

One of the most common uses for trajectory modeling is to predict future ALSFRS-R scores, and 

in clinical trials, these predictions are often made with the Slope Model (SM), the patient-

specific linear model. For PRO-ACT, when only three or six months of data are provided, the 

SM and LMK are the most accurate (Fig. 3B). However, when one or more years of training data 

were provided, the MoGP model outperformed the LKM and SM (Fig. 3B, p-val <= 1e-2, except 

for 1.5 years where p-val =1.3e-1 for SM), and more accurately predicted future disease 

progression by more than 0.22, 0.41, and 1.28 ALSFRS-R points at 1, 1.5, and 2 year time points 

respectively. This trend was strengthened in CEFT, in which six months of training data was 

sufficient to see an improvement in progression forecasting (Figure 3D, p-val <=1e-1).  

 

For the majority of comparisons, the MoGP identified fewer number of clusters per mixture 

model than the SM or LKM, indicating that the lower reconstruction error was not due to 

overfitting of the cluster assignments (Supplementary Fig 2).  

 

Trajectories are transferrable across all study populations 
Because ALS is heterogeneous and characteristics of study populations can differ significantly, it 

is important that trajectory models capture signal that is consistent across populations. We 

evaluated the ability of MoGP, trained on a large database as a reference model, to predict 

patient trajectories from participants in other study populations with varying data collection 

frequencies and follow-up periods.  

 

We found that the reference model demonstrated strong performance on external datasets, 

indicating that the trajectory clusters are not overfitted to the reference model data (Fig. 4A). 

Importantly, we found that for all test datasets (AALS, CEFT, EMORY), the Reference Model 

outperformed the Study-specific models (Fig. 4B, p-val < 0.05). AALS had the lowest error 

when the Reference model was used (2.16 ALSFRS-R points), followed by CEFT (2.25), and 

EMORY (2.32) (Fig. 4B). These errors were similar to the Baseline Error (1.88 ALSFRS-R 
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points), which was the error when the Reference Model (trained on 60% of the participants in the 

PRO-ACT dataset) was tested on the remaining 40% participants. These errors were all much 

lower than that of the randomized PRO-ACT control, which had a mean error of 11.74 ALSFRS-

R points. If the reference model was overfit, we would expect that when exposed to different 

populations, the study-specific models would have a significantly lower error than the reference 

model. Given that CEFT is a subset of PRO-ACT, it is interesting that CEFT study-specific 

model has a higher error than its reference model counterpart; these results suggest that the larger 

size of the PRO-ACT dataset may allow it to capture trajectories more accurately. The reference 

model’s ability to outperform all of the study-specific models is strong evidence that the 

trajectory patterns identified by MoGP are transferrable across ALS study populations. 

 

Survival outcomes correspond with trajectory clusters 
We next aimed to evaluate if the MoGP-identified clusters, which were trained only on 

ALSFRS-R data, were able to reflect the duration of patient survival from symptom onset to 

death. The results of the Kaplan-Meier analysis are presented in Figure 5. Some clusters (Fig. 5 

C, E) reflected longer survival durations, with very few deaths recorded. Other clusters reflected 

shorter durations, corresponding to faster progression; cluster D has a median survival of 2.90 

years from symptom onset (Fig. 5 D). Overall, we found that the MoGP trajectory patterns 

corresponded closely with survival probabilities, indicating clinical relevance of the identified 

ALS progression clusters.  

 

Common patterns of decline are found in forced vital capacity and 

ALSFRS-R subscores 
In addition to ALSFRS-R scores, there are other important clinical metrics that can be used to 

monitor ALS disease progression. One is Forced Vital Capacity (FVC), which is a spirometer-

based measure of lung function and has been used as an indicator of survival and disease 

progression.33 Furthermore, while ALSFRS-R Total is commonly used as an aggregate measure, 

its component subscores measuring fine motor, gross motor, bulbar, and respiratory function can 

also be analyzed to identify subscore-specific patterns. When we applied MoGP to FVC and 

ALSFRS-R subscores from PRO-ACT, we saw that the nonlinearity persisted in these domains 
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as well. The nonlinear trajectories were particularly pronounced for FVC and bulbar function 

(Fig. 6). Overall, MoGP enables flexible trajectory identification from longitudinal metrics. 
 

Discussion 
We characterize disease progression in ALS using a framework for identifying trajectory patterns 

from longitudinal data. While previous work on disease progression modeling has focused on 

patient-specific prediction models16,34,35, a critical advance of this work is the characterization of 

distinct and large trajectory clusters. Furthermore, we provide a principled approach to 

characterizing the shapes of disease progression patterns in ALS, which leverages Bayesian 

nonparametric methods to minimize the number of assumptions that are required for regression 

models.  

 

The improved performance of a MoGP model over the slope and linear kernel models indicates 

that linear models are insufficient to capture the heterogeneity in ALS disease progression. While 

some patients do indeed have linear trajectories, a significant portion of patients have non-linear 

trajectories. Furthermore, the MoGP model does not prevent the discovery of clusters with 

primarily linear trajectories. Previous work has suggested that “functional cliff” patterns seen 

here may be a result of inconsistencies in the ALSFRS-R or issues related to the ordinal scale 

used in ALSFRS-R as opposed to a linearly-weighted interval scale.36,37 However, the 

consistency of MoGP-identified patterns across different study populations and different metrics 

(ALSFRS-R and vital capacity scores) instead point to nonlinear changes in patient function that 

are not solely dependent on clinical metric. 

 

Our work also demonstrates how existing clinical databases in ALS can be leveraged to enable 

characterization of disease progression models in sparse datasets from different study 

populations. A MoGP model trained on the PRO-ACT database accurately predicted trajectories 

for clinical datasets from AALS, EMORY, and CEFT datasets. The transferability of MoGP-

identified clusters across datasets indicates that the trajectory cluster patterns are robust to batch 

effects due to clinician or site differences.  
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These findings have implications for clinical trials designs, many of which use ALSFRS-R and 

vital capacity metrics as primary or secondary endpoints. In many trajectory clusters, functional 

cliffs or sigmoidal patterns in disease progression may obscure detection of therapeutic efficacy 

if linear models are used. While short clinical trials may not benefit significantly from using 

complex nonlinear models, for clinical trials that are one year in duration, or those with open 

label extension, MoGP can provide more accurate trajectory models. For PRO-ACT, we saw a 

reduction of error of 1.19 ALSFRS-R points with two years of training data. In context, clinical 

trial efficacy of edaravone was FDA approved with a 2.5 point difference in decline over 6 

months14, and the efficacy of Sodium Phenylbutyrate–Taurursodiol was demonstrated by a 

difference in 0.42 points per months over six months, which approximates to a 2.52 point 

difference on the ALSFRS-R scale.12 

 

MoGP can also be used to inform clinical trial participant stratification5,38 in cases where there 

are reliable pre-trial clinical data. If those data are available, the method can be used to stratify 

patients even for short clinical trials. Used prospectively, we would expect this approach to 

improve clinical trial statistical power. 

 

Ultimately, by identifying clusters of patients that have similar disease progression trajectories, 

these models could be used to identify molecular correlates that may be associated with ALS 

progression subtypes. While this work focuses on ALSFRS-R and vital capacity, the field of 

ALS has identified a growing number of molecular biomarkers and clinical metrics in which 

progression is poorly understood.39,40 This paper points to the complexity of disease progression 

in ALS and the necessity of more accurately accounting for heterogeneous trajectory patterns in 

clinical trials models and research studies. 
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Figures and Tables 
 

Dataset Study Type 
Total No. 

Participants 
Included 

Number Visits 
Mean (SD) 

Months 
Followed 

Mean  (SD) 

ALSFRS-R 
Slope 

Mean (SD) 

PRO-ACT Clinical Trial 2923 10 (4) 11.86 (6.33) -1.09 (0.99) 

CEFT Clinical Trial 476 10 (5) 19.09 (10.58) -1.20 (0.79) 

AALS Observational 456 5 (2) 16.64 (8.78) -0.75 (0.65) 

EMORY Observational 399 6 (4) 19.47 (14.74) -1.21 (1.20) 

 
Table 1: Study Populations. Abbreviations: PRO-ACT = Pooled Resource Open-Access ALS 
Clinical Trials; AALS = Answer ALS; CEFT = Clinical Trial Ceftriaxone in Subjects With ALS; 
EMORY = Emory ALS Clinic 
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