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Abstract

In clinical applications, neural networks must focus on
and highlight the most important parts of an input im-
age. Soft-Attention mechanism enables a neural network to
achieve this goal. This paper investigates the effectiveness
of Soft-Attention in deep neural architectures. The central
aim of Soft-Attention is to boost the value of important fea-
tures and suppress the noise-inducing features. We com-
pare the performance of VGG, ResNet, Inception ResNet
v2 and DenseNet architectures with and without the Soft-
Attention mechanism, while classifying skin lesions. The
original network when coupled with Soft-Attention outper-
forms the baseline[15] by 4.7% while achieving a preci-
sion of 93.7% on HAM10000 dataset. Additionally, Soft-
Attention coupling improves the sensitivity score by 3.8%
compared to baseline[29] and achieves 91.6% on ISIC-
2017 dataset. The code is publicly available at github1.

1. Introduction

Skin cancer is the most common cancer and one of the
leading causes of death worldwide. Every day, more than
9500 people2 in the United States are diagnosed with skin
cancer, with 3.6 million people3 diagnosed with basal cell
skin cancer each year. Early diagnosis of the illness has a
significant effect on the patients’ survival rates. As a result,
detecting and classifying skin cancer is important.

It is difficult to distinguish between malignant and be-
nign skin diseases because they look so similar. Although
a dermatologist’s visual examination is the first step in de-
tecting and diagnosing a suspicious skin lesion, it is usu-
ally followed by dermoscopy imaging for further analysis
[30]. Dermoscopy images provide a high-resolution magni-

1https : / / github . com / skrantidatta / Attention -
based-Skin-Cancer-Classification

2https : / / www . skincancer . org / skin - cancer -
information/skin-cancer-facts/

3https : / / www . skincancer . org / skin - cancer -
information/basal-cell-carcinoma/
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Figure 1. Soft Attention unit

fied image of the infected skin region, but they are not with-
out their drawbacks. Due to the image size being large, it
becomes difficult for the feature extractors to extract out the
relevant features for classification. Various methods such as
Segmentation and detection, Transfer learning, General Ad-
versarial networks, etc. have been used to detect and clas-
sify skin cancer. Despite significant progress, skin cancer
classification is still a difficult task. This is due to the lack of
annotated data and low inter-class variation. Furthermore,
the task is complicated by contrast variations, color, shape,
and size of the skin lesion, as well as the presence of various
artifacts such as hair and veins. Inspired by the work done
in [17], this paper studies the effect of soft attention mech-
anism in deep neural networks. Deep learning architectures
identify the image class by learning the salient features and
nonlinear interactions. The soft-attention mechanism im-
proves performance by focusing primarily on relevant areas
of the input. Moreover, the soft-attention mechanism makes
the image classification process transparent to medical per-
sonnel, as it maps the parts of the input that the network
uses to classify the image, thereby, increasing trust in the
classification model.

2. Related Work
Following Krichevsky[11], large-scale image classifica-

tion tasks using deep convolutional neural networks have
become common. As reported in the paper[2], the task
of skin cancer classification using images has improved
rapidly since the implementation of Deep Neural Networks.
To make progress, we suggest that soft attention be used to
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identify fine-grained variability in the visual features of skin
lesions.

Existing art in the field of skin cancer classification used
streamlined pipelines based upon current Computer Vision.
[3]. Masood et al. in their paper.[12] proposed a general
framework from the viewpoint of computer vision, where
the methods such as calibration, preprocessing, segmenta-
tion, balancing of classes and cross validation are used for
automated melanoma screening. In 2018, Valle et al.[24]
investigated ten different methodologies to evaluate deep
learning models for skin lesion classification. Data aug-
mentation, model architecture, image resolution, input nor-
malization, train dataset, use of segmentation, test data aug-
mentation, additional use of support vector machines, and
use of transfer learning are among the ten methodologies
they evaluated. They stated that data augmentation had the
greatest impact on model efficiency. The same observation
is confirmed by Perez’s 2018 paper ”Data Augmentation for
Skin Lesion Analysis”[14].

Nonetheless, the problems of low inter-class variance
and class imbalance in skin lesion image datasets re-
main, seriously limiting the capabilities of deep learning
models[28]. To fix the lack of annotated data, Zunair et
al.[30] proposed the use of adversarial training and Bissoto
et al.[1] proposed the use of Generative Adversarial Net-
works to produce realistic synthetic skin lesion photos.

3. Experiment Settings And Method
In this paper, five deep neural networks which

are ResNet34, ResNet50 [5], Inception ResNet v2[21],
DenseNet201[7] and VGG16 [19], are implemented with
soft attention mechanism, to classify skin cancer im-
ages. ResNet34, ResNet50[5], Inception ResNet v2,
DenseNet201[7] and VGG16[19] are all state of the art fea-
ture extractors which are trained on ImageNet dataset. The
main components and architecture of the proposed approach
is described below:

3.1. Dataset

The experiment is performed on two datasets separately.
The two datasets are as follows: HAM10000 dataset and
ISIC 2017 dataset.

The HAM10000 dataset consists of 10015 dermato-
scopic images of a size of 450 × 600. It consists
of 7 diagnostic categories as follows: Melanoma(MEL),
Melanocytic Nevi(NV), Basal Cell Carcinoma(BCC), Ac-
tinic Keratosis, and Intra-Epithelial Carcinoma(AKIEC),
Benign Keratosis(BKL), Dermatofibroma(DF), Vascular le-
sions(VASC). All the images are resized to 299 x 299 for
Inception ResNet v2[21] architecture and 224 x 224 for the
other architectures.

The ISIC 2017 dataset consists 2600 images of size 767
x 1022. In the training dataset there are 2000 images of

BKLAKIEC BCC VASCMELDF NV

Figure 2. Example of Skin lesions in HAM10000 dataset

3 catagories as follows: benign nevi, seborrheic keratosis,
and melanoma. The test dataset consist of 600 images. In
this experiment we are training our model to classify only
benign nevi and seborrheic keratosis. All the images resized
to 224 x 224.

The data in both datasets is then cleaned to remove class
imbalances. This is done by the process of over-sampling
and under-sampling of data so that there are equal number
of images per class. The images are then normalized by
dividing each pixel with 255 to keep the pixel values in the
range 0 to 1.

3.2. Soft Attention

When it comes to skin lesion images, only a small per-
centage of pixels are relevant as the rest of the image is filled
with various irrelevant artifacts such as veins and hair. So,
to focus more on these relevant features of the image, soft
attention is implemented. Inspired by the work proposed by
Xu et al [26], for image caption generation and the work
done by Shaikh et al [17], where they used attention mech-
anism on images for handwriting verification, in this paper,
soft attention is used to classify skin cancer.

Figure 3. Images with Soft Attention

In Figure [3], we can see that areas with higher attention
are red in color . This is because soft attention discredits
irrelevant areas of the image by multiplying the correspond-
ing feature maps with low weights. Thus the low attention
areas have weights closer to 0. With more focused informa-
tion, the model performs better.

In the soft attention module as discussed in paper [17]
and [22], the feature tensor (t) which flows down the deep
neural network is used as input.

fsa = γt((
K∑

k=1

softmax(Wk ∗ t))) (1)
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This feature tensor t ∈ Rh×w×d is input to a 3D convo-
lution layer[23] with weights Wk ∈ Rh×w×d×K , where K
is the number of 3D weights. The output of this convolution
is normalized using softmax function to generate K = 16
attention maps. As shown in Figure 1, these attention maps
are aggregated to produce a unified attention map that acts
as a weighting function α. This α is then multiplied with t
to attentively scale the salient feature values, which is fur-
ther scaled by γ a learnable scalar. Finally, the attentively
scaled features (fsa) are concatenated with the original fea-
ture t in form of a residual branch. During training we ini-
tialize γ from 0.01 so that the network can slowly learn to
regulate the amount of attention required by the network.

3.3. Model Setup

In this section, the detailed architecture of all the mod-
els is discussed. For all experiments, to train the networks,
Adam optimizer[10] of 0.01 learning rate and 0.1 epsilon
is used. A batch normalization[9] layer is added after each
layer in all the networks to introduce some regularization.
For the HAM10000 dataset, since there are 7 classes of skin
cancer, an output layer with 7 hidden units is implemented,
followed by a softmax activation unit. All the experiments
were executed on the Keras framework.

Relu

Maxpool 2x2

Concatenated

Maxpool 2x2

Soft Attention

Dropout(0.5)

Relu

Figure 4. The schema for Soft Attention Block

3.3.1 Inception ResNet v2

In Inception ResNet v2[21], the soft attention layer is added
to the Inception Resnet C block of the model where the fea-
ture size of the image is 8 x 8 as shown in Figure [5a]. In
this case, the soft attention layer is followed by a maxpool
layer with a pool size of 2x2, which is then concatenated
with the filter concatenate layer of the inception block. The
concatenate layer is then followed by a relu activation unit.
To regularize the output of the attention layer, the activation

unit is followed by a 0.5 dropout layer[20] as in Figure [4].
The network is trained for 150 epochs with early stopping
patience of 30. The overall network is shown in Figure [5a].

Stem

Inception Resnet A x 10

Inception Resnet C x 8

Reduction B

Soft Attention Block

Reduction A

Inception Resnet B x 20

Softmax

Output

299 x 299

Conv_1

Conv_2

Conv_3

Conv_4

Conv_5

Soft Attention Block

Global Average
Pooling

Softmax

224 x 224

5a 5b

Input Input

Output

Figure 5. 5a. End to end architecture Of Inception ResNet v2[21]
with Soft Attention Block. 5b. End to end architecture Of
ResNet34[5] with Soft Attention Block . conv x indicates con-
volution blocks, where x is the block number.

3.3.2 DenseNet201

In DenseNet201[7], the soft attention layer is added to the
4th dense block where the size of feature map of the image
is 7 x 7 as shown in Figure[6]. Like in the previous model,
the soft attention layer is integrated with the same proce-
dure as it was integrated with the Inception ResNet V2[21]
architecture.[4]. The network is trained for 150 epochs with
early stopping patience of 35.
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Figure 6. End to end schema of DenseNet201[7] with Soft Atten-
tion Block.
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BKLAKIEC BCC VASCMELDF NV

Figure 7. Soft Attention maps of Skin lesion in Inception ResNet V2 on HAM10000 dataset

3.3.3 ResNet34 and ResNet50

In ResNet34[5], a soft attention layer is added after the 3rd
convolution block where the size of feature map is 28 x 28
as shown in [5b] whereas, in the ResNet50[5], the soft at-
tention layer is added after the 5th convolution block where
the size of feature map is 7 x 7. In both cases, the soft atten-
tion layer is followed by a maxpool layer with a pool size
of 2x2, which is then concatenated with the standard max-
pool layer of the architecture, as shown in Figure [4]. The
concatenate layer is then followed by a relu activation unit.
To regularize the output of the attention layer, the activation
unit is followed by a 0.5 dropout[20] layer. This is the same
approach as to how the soft attention module was integrated
with the Inception ResNet V2[21] architecture. The overall
architecture for ResNet 34 model is shown in Figure [5b].

3.3.4 VGG16

In VGG16[19], the soft attention layer is added after the
conv layer 4 of the VGG16 architecture where the size of
feature map is 28 x 28. Like in the previous model, the
soft attention layer is integrated with the same procedure as
it was integrated with the ResNet[5] and Inception ResNet
V2[21] architecture.[4]. The network is trained for 300
epochs with early stopping patience of 65. The overall ar-
chitecture for the model is shown in Figure [8].

In Figure [8], a Conv layer block consists of two to
three convolution layers with filters of sizes ranging from
64 to 512, followed by a maxpool layer. Conv layer 1,
and Conv layer 2 consists of two convolution layers each
with 64, and 128 filters respectively, and Conv layer 3,
Conv layer 4 and Conv layer 5 consists of three convolu-
tion layers each with 256, 512 and 512 filters respectively.
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Figure 8. End to end schema of VGG16[19] with Soft Attention
Block. conv x indicates convolution layer with x filters.

3.4. Loss Function

In this experiment, there are seven different classes of
skin cancer. Hence , categorical cross entropy loss (LCCE)
is used to optimize the neural network.

LCCE = −
C∑
i=1

tilog(f(s)i) (2)

where

f(s)i =
esi∑C
j=1 e

sj
(3)

Here, as there are seven classes, C ∈ [0..6], where ti is
the ground truth and si is the CNN score for each class i
in C. f(s)i is the softmax activation function applied to the
scores.

3.5. Evaluation Metrics

In this paper, the model is evaluated using Precision =
TP

TP+FP , Accuracy = TP+TN
T , Sensitivity = TP

TP+FN ,
Specificity = TN

TN+FP and AUC scores[8]. Here TN, TP,
FP, FN, T mean, True Negatives, True Positives, False Pos-
itives, False Negatives, Total Number respectively.
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Dis. Precision AUC #

[21] [21] +
SA [7] [7] +

SA [19] [19] +
SA [5]50 [5]50 +

SA [5]34 [5]34 +
SA [21] [21] +

SA [7] [7] +
SA [19] [19] +

SA [5]50 [5]50 +
SA [5]34 [5]34 +

SA

AKIEC 0.830 1.000 1.000 0.920 0.620 0.700 0.740 0.670 0.670 0.500 0.993 0.981 0.975 0.967 0.949 0.964 0.980 0.981 0.969 0.970 23
BCC 0.850 0.880 0.830 0.800 0.540 0.620 0.910 0.880 0.660 0.880 0.997 0.998 0.993 0.994 0.977 0.984 0.997 0.996 0.991 0.993 26
BKL 0.850 0.720 0.690 0.730 0.570 0.630 0.670 0.670 0.510 0.520 0.970 0.982 0.960 0.964 0.930 0.900 0.948 0.964 0.904 0.916 66
DF 0.670 1.000 0.500 1.000 0.250 0.500 0.800 1.000 0.400 0.330 0.973 0.982 0.851 0.921 0.847 0.809 0.973 0.971 0.925 0.949 6
MEL 0.700 0.670 0.540 0.530 0.500 0.430 0.520 0.730 0.420 0.540 0.965 0.974 0.963 0.976 0.925 0.956 0.961 0.973 0.910 0.953 34
NV 0.930 0.970 0.950 0.950 0.930 0.950 0.950 0.950 0.930 0.930 0.984 0.984 0.975 0.976 0.954 0.951 0.974 0.979 0.944 0.958 663
VASC 1.000 1.000 0.900 0.830 1.000 1.000 0.900 1.000 0.910 0.820 1.000 1.000 0.993 0.999 0.972 0.999 0.995 0.999 0.999 0.996 10

Avg 0.832 0.892 0.771 0.824 0.631 0.690 0.783 0.841 0.642 0.646 0.983 0.984 0.959 0.971 0.936 0.937 0.975 0.980 0.949 0.962 828

W. Avg 0.905 0.937 0.904 0.909 0.862 0.882 0.898 0.910 0.857 0.865 0.982 0.984 0.974 0.975 0.951 0.948 0.972 0.978 0.942 0.957 828

Table 1. Ablation results for choosing the best model on HAM10000 dataset. [21] refers to IRv2 architecture, [7] refers to DenseNet 201
architecture, [19] refers to VGG 16 architecture, and [5] refers to ResNet architecture.

4. Discussion

4.1. Ablation Analysis

Table 1 lists, the performance of all the models in terms
of precision, and AUC score on HAM10000 dataset. In
this table (+SA) stands for models with soft attention.
IRv2 stands for Inception ResNet v2[21], [5]34 stands for
ResNet34[5] and [5]50 stands for ResNet50[5]. From the
table, it can be observed that IRv2 when coupled with SA
(IRv2+SA) shows significant improvements in results, with
a precision and AUC score of 93.7% and 98.4% respec-
tively, which are also the highest scores amongst all models.
Furthermore, we can see that Soft Attention (SA) boosts
the performance of IRv2 by 3.2% in terms of precision as
compared to the original IRv2 model. This phenomenon
is true for VGG16, ResNet34, ResNet50 and DenseNet201
as well. For instance, Soft Attention (SA) boosts the pre-
cision of DenseNet201[7], ResNet34[5], ResNet50[5], and
VGG16[19] by 0.5%, 0.8%, 1.2% and 2% respectively. We
see a similar behaviour for the AUC scores when SA block
is integrated in to the networks, such as, the performance
of ResNet50[5], and ResNet34[5] has grown by 0.6% and
1.5% respectively and the performance of DenseNet201[7],
and VGG16[19] is on par with the original models.

Although IRv2+SA performs the best in terms of
weighted average(W.Avg), when we look at it’s class wise
performance, we can see that Soft Attention enhances the
efficiency of the original IRv2 while categorizing AKIEC,
BCC, DF and NV by 17%, 3%, 33% and 4% respectively
in terms of precision. Moreover, when comparing AUC
scores, the IRv2+SA performs better for BKL and MEL
by 1.2% and 0.9% respectively, while, for BCC, NV and
VASC, IRv2+SA performs as good as original model.

We thus select IRv2 coupled with SA (IRv2+SA) for our
experiments, also the SA block consistently boosts the per-
formance of it’s original counterpart, hence, we can justify
the integration of Soft Attention to the networks.

4.2. Quantitative Analysis

When we tested the model with different train-test splits
on the HAM10000 dataset, we discovered that the model
with 85 % training data outperforms the model with 80 %
and 70 % training data by 2.2 % and 2.6 % respectively, as
shown in Table 2. Hence we select 85/15% training/testing
split for performing our experiments.

split = 15 split = 20 split = 30

Disease Support Precision AUC Support Precision Auc Support Precision Auc

AKIEC 23 1.000 0.981 30 0.750 0.958 45 0.690 0.972
BCC 26 0.880 0.998 35 0.880 0.992 53 0.830 0.995
BKL 66 0.720 0.982 88 0.790 0.972 132 0.720 0.960
DF 6 1.000 0.973 8 1.000 0.998 12 0.710 0.989
MEL 34 0.670 0.974 46 0.490 0.953 69 0.600 0.946
NV 663 0.970 0.984 883 0.960 0.981 1325 0.960 0.978
VASC 10 1.000 1.000 13 0.920 0.999 19 0.860 0.983

Avg 828 0.892 0.984 1103 0.827 0.9793 1655 0.766 0.975

W. Avg 828 0.937 0.984 1103 0.915 0.9797 1655 0.911 0.976

Table 2. Comparison with Models with different train-test split on
HAM10000 dataset

Furthermore, the proposed approach is compared with
state-of-the-art models for skin cancer classification on the
HAM10000 dataset in Table 3. Our Soft Attention-based
approach outperforms the baseline[15] by 4.7% in terms of
precision. In terms of AUC scores, our Soft Attention-based
approach clearly outperforms them all by 0.5% to 4.3%.

Model Avg AUC Precision Accuracy

Loss balancing and ensemble[4] 0.941 - 0.926
Single Model Deep Learning[27] 0.974 - 0.864
Data classification augmentation[18] 0.975 - 0.853
Two path CNN model[13] - - 0.886
Various Deep CNN (Baseline) [15] 0.979 0.890 -

IRv2+SA(Proposed Approach) 0.984 0.937 0.934

Table 3. Comparison with state-of-the-art-Model in terms of Aver-
age AUC score on HAM10000 dataset

In Table 4, the performance of the proposed approach
Inception Resnet V2[21] (IRv25x5+SA and IRv212x12+SA)
with soft attention is measured on ISIC2017 dataset on basis
of AUC scores, Accuracy , Sensitivity and Specificity with
the state-of-the-art models.
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Figure 9. Comparison of GradCAM [16] heatmaps with our Soft Attention (SA) maps on HAM10000 dataset

Networks AUC Accuracy Sensitivity Specificity

ResNet50 [5] 0.948 0.842 0.867 0.837
RAN50 [25] 0.942 0.862 0.878 0.859
SEnet50 [6] 0.952 0.863 0.856 0.865
ARL-CNN50[29] 0.958 0.868 0.878 0.867
IRv212x12+SA 0.935 0.898 0.945 0.711

IRv25x5+SA 0.959 0.904 0.916 0.833

Table 4. Comparison with state-of-the-art-Model in terms of AUC,
Accuracy, sensitivity and specificity score on ISIC2017 dataset

From Table 4, it can be observed that in IRv25x5+SA,
and in IRv212x12+SA, the attention layer was added when
the feature map size is 5x5 and 12x12 respectively. Out of
the two models with soft attention, the model IRv25x5+SA
outperforms IRv212x12+SA in terms of AUC scores, Ac-
curacy, and Specificity by a percentage of 2.4%, 0.6%,
and 12.2% respectively whereas IRv212x12+SA outperforms
IRv25x5+SA in terms of Sensitivity by 2.9%. In this case,
the attention layer was added when the feature size is 5x5.
When IRv25x5+SA is compared with the ARL-CNN50[29]
(baseline model), it performs on par with it in terms of AUC
score but our model outperforms it when it comes to accu-
racy and Sensitivity by 3.6% and 3.8% respectively. But
ARL-CNN50[29] takes the upper hand when it comes to
Specificity by 3.4%. Since sensitivity measures the propor-
tion of correctly identified positives and specificity mea-
sures the proportion of correctly identified negatives, we
are prioritizing Sensitivity because classifying a person with
cancer as not having cancer is riskier than vice versa.

4.3. Qualitative Analysis

Fig.7 displays the Soft Attention heat maps from the
IRv2+SA model. In the Fig.7, the images on the bottom
row are the input images of the seven skin cancer categories.
The images in the middle row show the Soft Attention maps
superimposed on input images to show where the model is
focusing and the images of the top row are attention maps
themselves.

In Fig.9, we show pairs of comparison between the Soft
Attention maps with Grad-CAM [16] heatmaps. In the first
pair, the SA map focuses on the main part of the lesion area
whereas the Grad-cam heatmap is slightly shifted towards
top left and is also spread out on the uninfected area of skin.
We have similar observations for the second and third pairs
as well. From this observation it is evident that the Soft
Attention maps are focused more on the relevant locations
of the image compared to Grad-CAM[16] heatmaps.

5. Conclusion

In this paper, we present the implementation and util-
ity of Soft Attention mechanism being applied while image
encoding to tackle the problem of high-resolution skin can-
cer image classification. The model outperformed the cur-
rent state-of-the-art approaches on the HAM10000 and the
ISIC2017 datasets. This demonstrates the Soft Attention
based deep learning architecture’s potential and effective-
ness in image analysis. The Soft Attention mechanism also
eliminates the need of using external mechanisms like Grad-
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CAM [16], and internally provides the location of where
the model focuses while categorizing a disease, while also
boosting the performance of the main network. Soft At-
tention has the added advantage of naturally dealing with
image noise internally. In the future, this model can be im-
plemented in dermoscopy systems to assist dermatologists.
This mechanism can be easily implemented to classify data
from other medical databases as well.
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Tavares, Flávia Vasques Bittencourt, Lin Tzy Li, and Sandra
Avila. Data, depth, and design: Learning reliable models for
skin lesion analysis. Neurocomputing, 383:303–313, 2020.
2

[25] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng
Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.
Residual attention network for image classification, 2017. 6

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.12.21257114doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.12.21257114
http://creativecommons.org/licenses/by/4.0/


[26] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International conference on
machine learning, pages 2048–2057, 2015. 2

[27] Peng Yao, Shuwei Shen, Mengjuan Xu, Peng Liu, Fan
Zhang, Jinyu Xing, Pengfei Shao, Benjamin Kaffenberger,
and Ronald X Xu. Single model deep learning on imbalanced
small datasets for skin lesion classification. arXiv preprint
arXiv:2102.01284, 2021. 5

[28] Lequan Yu, Hao Chen, Qi Dou, Jing Qin, and Pheng-Ann
Heng. Automated melanoma recognition in dermoscopy im-
ages via very deep residual networks. IEEE transactions on
medical imaging, 36(4):994–1004, 2016. 2

[29] Jianpeng Zhang, Yutong Xie, Yong Xia, and Chunhua Shen.
Attention residual learning for skin lesion classification.
IEEE transactions on medical imaging, 38(9):2092–2103,
2019. 1, 6

[30] Hasib Zunair and A Ben Hamza. Melanoma detection using
adversarial training and deep transfer learning. Physics in
Medicine & Biology, 2020. 1, 2

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.12.21257114doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.12.21257114
http://creativecommons.org/licenses/by/4.0/

