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ABSTRACT - Estimating the COVID-19 infection fatality rate (IFR) has proven to
be particularly challenging –and rather controversial– due to the fact that both the
data on deaths and the data on the number of individuals infected are subject to
many different biases. We consider a Bayesian evidence synthesis approach which,
while simple enough for researchers to understand and use, accounts for many
important sources of uncertainty inherent in both the seroprevalence and mortality
data. We estimate the COVID-19 IFR to be 0.38% (95% prediction interval of (0.03%,
1.19%)) for a typical population where the proportion of those aged over 65 years
old is 9% (the approximate worldwide value). Our results suggest that, despite
immense efforts made to better understand the COVID-19 IFR, there remains a large
amount of uncertainty and unexplained heterogeneity surrounding this important
statistic.
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Above all, what’s needed is humility in the face of an intricately evolving body of evidence.
The pandemic could well drift or shift into something that defies our best efforts to model
and characterize it.

Siddhartha Mukherjee, The New Yorker

February 22, 2021

1 Introduction

The infection fatality ratio (IFR), defined as the proportion of individuals infected
who will go on to die as a result of their infection, is a crucial statistic for understand-
ing SARS-CoV-2 and the ongoing COVID-19 pandemic. Estimating the COVID-19
IFR has proven to be particularly challenging –and rather controversial– due to the
fact that both the data on deaths and the data on the number of individuals infected
are subject to many different biases.
SARS-CoV-2 seroprevalence studies can help provide a better understanding of

the true number of infections in a given population and for this reason several re-
searchers have sought to leverage seroprevalence study data to infer the COVID-19
IFR (Clapham et al., 2020). In particular, Ioannidis (2021a), Levin et al. (2020),
Brazeau et al. (2020), and O’Driscoll et al. (2020) have all undertaken analyses, of
varying degrees of complexity, in which they combine data from multiple seropreva-
lence studies with available mortality statistics to derive IFR estimates.
The analyses of both Brazeau et al. (2020) and O’Driscoll et al. (2020) are done

using rather complex Bayesianmodelswhich rely on numerous detailed assumptions.
For instance, Brazeau et al. (2020) use a Bayesian “statistical age-based model that
incorporates delays from onset of infection to seroconversion and onset of infection
to death, differences in IFR and infection rates by age, and the uncertainty in the
serosample collection time and the sensitivity and specificity of serological tests.”
O’Driscoll et al. (2020) employ a Bayesian “ensemble model” which assumes “a
gamma-distributed delay between onset [of infection] and death” and assumes
different risks of infection for “individuals aged 65 years and older, relative to those
under 65” since “older individuals have fewer social contacts and are more likely
to be isolated through shielding programmes.” While these analyses go to great
lengths to account for the various sources of uncertainty in the data, the complexity
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of the models will no doubt make it challenging for other researchers to fit these
models to different data in a constantly evolving pandemic.

In contrast, the analyses of Ioannidis (2021a) and Levin et al. (2020) are decidedly
more simple. For each seroprevalence study under consideration, Ioannidis (2021a)
counts the number of deaths until 7 days after the study mid-point (or until the
date the study authors suggest), and divides this number of deaths by the estimated
number of infections to obtain a study-specific IFR estimate. A “location specific”
IFR estimate is then obtained by taking a weighted (by the study’s sample size)
average of the study-specific IFR estimates for a given location (i.e., for a given
country or state). Ioannidis (2021a) then calculates the median of all the location
specific IFR estimates. No uncertainty interval for this estimate is provided. As such,
it is impossible to determine what level of confidence one should place in Ioannidis
(2021a)’s estimates.

The analysis of Levin et al. (2020) is based on a standard frequentist random-
effects meta-analysis model. For each age-group and seroprevalence study under
consideration, Levin et al. (2020) calculate a 95% confidence interval (CI) for a
study-specific IFR by counting the number of deaths up until 4 weeks after the
study mid-point and dividing this number of deaths by the estimated upper and
lower bounds of the number of infected individuals. The meta-analysis model then
combines each of these study-specific IFRs. While this analysis provides standard
confidence intervals and is relatively straightforward, it fails to take into account
certain important sources of uncertainty (to be discussed in Section 2).
The analysis method we propose seeks to be simple enough for researchers to

easily understand and use, while at the same time properly account for important
sources of uncertainty inherent in both the seroprevalence data and the mortality
data. Simple Bayesian models have been used previously for evidence synthesis of
seroprevalence data for other infectious diseases (e.g., Brody-Moore (2019)).
A major part in any evidence synthesis is determining which studies to consider

within the analysis. Determining appropriate inclusion and exclusion criteria for
seroprevalence studies is a rather complicated and delicate issue when it comes
to estimating the COVID-19 IFR (Ioannidis, 2021b). Reviewing and evaluating the
merits of the hundreds of available seroprevalence studies also involves a tremendous
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amount of review work and time. Fortunately, Chen et al. (2021) have done a
thorough review and assessment of potential studies to ascertain study quality (i.e.,
risk of bias) and eligibility for meta-analysis. We will work from the list of “grade
A” and “grade B” studies compiled by Chen et al. (2021), but emphasize that our
method could be very easily applied to a different set of seroprevalence studies
should that be preferable. We will review the data and how it was obtained in
Section 3, following a review of the methods in Section 2. In Section 4, we summarize
the results of our analysis and conclude in Section 5 with some final thoughts.

2 The Bayesian model for evidence synthesis

Suppose we have data from K seroprevalence studies. Then, for k = 1, . . . , K, let:

• Tk be the total number of individuals tested in the k-th study;

• CCk be the total number of confirmed cases (of past or current infection) result-
ing from those tested in the k-th study;

• Pk be the number of individuals at risk of infection in the population of interest
for the k-th study; and

• Dk be the total number of observed deaths (cumulative since pandemic onset)
in the population of interest that are attributed to infection.

We do not observe the following latent variables; for k = 1, . . . , K, let:

• Ck be the total number of infected people (cases) in the k-th population;

• IRk be the true infection rate (proportion of the k-th population which has been
infected), which is the expected value of Ck/Pk; and

• IFRk be the true underlying infection fatality rate, which is the expected value
of Dk/Ck (given Ck).

We will make a series of simple binomial assumptions such that, for k = 1, . . . , K:

CCk ∼ Binom(Tk, Ck/Pk), (1)

Ck ∼ Binom(Pk, IRk), and (2)

Dk|Ck ∼ Binom(Ck, IFRk). (3)
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Wewish to emphasize the importance of the third “D|C” binomial distribution above.
Failing to account for the conditional distribution of the deaths given the cases may
lead to inappropriately precise estimates of the IFR.
For example, Streeck et al. (2020) (in their original preprint (medRxiv, May 8,

2020)) calculate an uncertainty interval for the IFR by dividing the number of deaths
(D = 7) by the upper and lower bounds of the 95% CI for the number of infections
(95% CI for C = [1,551, 2,389]). Doing so, they obtain a relatively narrow 95% CI for
the IFR: [0.29%, 0.45%] (= [7/1,551, 7/2,389]). In the published version of their article
(Nature Communications, November 17, 2020), an alternative interval “accounting for
uncertainty in the number of recorded deaths” is provided. This alternative interval,
which essentially takes into account the D|C binomial distribution, is substantially
wider: [0.17%; 0.77%].

In a very similar way, Levin et al. (2020) also fail to take into account the D|C

binomial distribution when estimating study-specific IFRs. This leads Levin et al.
(2020) to obtain overly precise IFR estimates for their meta-analysis. The result of
this is a very large I2 of 97.0 which gives the false impression that the differences in
observed IFRs are almost entirely due to “unexplained variations across studies.”
Having established simple binomial distributions for the study-specific IRs and

IFRs, we define a simple random-effects model such that, for k = 1, . . . , K:

g(IFRk) ∼ N (θ + θ1Zk, τ2), and (4)

g(IRk) ∼ N (β, σ2), (5)

where θ is the parameter of primary interest, τ2 represents between group IFR
heterogeneity, β represents the mean g(infection rate), σ2 describes the variability in
infection rates across the K groups, Zk is a covariate of interest that may be related
to the IFR by means of the θ1 parameter, and g() is a given link function. In our
analysis, we define g() as the complimentary log-log link function (cloglog), though
there are other sensible choices including the logit and probit functions.

The model is considered within a Bayesian framework requiring the specification
of priors for the unknown parameters. Our strategy for priors is to assume weakly
informative priors. Beta, Normal, and half-Normal priors (following the recommen-
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dations of Gelman et al. (2006) and Kümmerer et al. (2020)) are set accordingly:
g−1(θ) ∼ Beta(0.3, 30); g−1(β) ∼ Beta(1, 30) ; θ1 ∼ N (0, 10) ; σ ∼ half-N (0, 10)

and τ ∼ half-N (0, 10). Note that the performance of any Bayesian estimator will
depend on the choice of priors and that this choice can substantially influence the
posterior when few data are available (Berger, 2013, Lambert et al., 2005). The priors
described here represent a scenario where there is little to no a priori knowledge about
the model parameters. Inference would no doubt be improved should appropriate
informative priors be specified. In Appendix 6.3, we show results from the model fit
with an alternative set of priors as a sensitivity analysis.

2.1 Uncertainty in infection rates

While some seroprevalence studies report the exact number of individuals tested
and the exact number of confirmed cases amongst those tested, to obtain estimates
for the infection rate, there are typically numerous adjustments made (e.g., adjusting
for imperfect diagnostic test accuracy, adjusting for clustering of individuals within
a household). For this reason, the sample size of a given study might not be a
reliable indicator of its precision and weighting a study’s contribution in an evidence
synthesis based solely on its sample size (as in e.g., Ioannidis (2021a)) may not be
appropriate.
Rather than work with the raw testing numbers published in the seroprevalence

studies, we calculate effective data values for Tk and CCk based on a binomial distri-
bution that corresponds to the reported 95% CI for the IR. By “inverting uncertainty
intervals” in this way, we are able to properly use the adjusted numbers provided.
(This is a similar approach to the strategy employed by Kümmerer et al. (2020) who
assume that the IR follows a beta distribution with parameters chosen to match the
95% CI published in Streeck et al. (2020).) Table 1 lists the 95% uncertainty intervals
obtained from each of the seroprevalence studies in our analysis and Table 2 lists the
corresponding values for Tk and CCk.
It must be noted that, as Ioannidis (2021a) cautions, it is possible that under

our “inverting uncertainty intervals” approach, poorly conducted seroprevalence
studieswhich fail tomake proper adjustments (and thereby have spuriously narrower
uncertainty intervals) receivemoreweight in our analysis, while high-quality studies,
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which make proper adjustments, are unfairly penalized. Ioannidis (2021a) notes that
the strategy of “weighting the study-specific infection fatality rates by the sample
size of each study” avoids giving more weight to studies “with seemingly narrower
confidence intervals because of poor or no adjustments, while still givingmoreweight
to larger studies.” Since we are restricting our analysis to only those supposedly
high quality studies (this according to Chen et al. (2021)), we hope to largely avoid
this issue. Weighting studies based on their true precision is obviously the goal in
any evidence synthesis, and we recognize that this is particularly difficult when so
many studies may misrepresent the precision of their estimates (Bobrovitz et al.,
2020, Brownstein and Chen, 2021).

2.2 Uncertainty in mortality

Matching prevalence estimates with a relevant number of fatalities is a difficult
task. Prevalence estimates obtained from a seroprevalence study do not typically
correspond to a specific date. Instead, these estimates will correspond to a window
of time during which testing occurred. This period may be only a few days for some
studies (e.g., 4 days for Petersen et al. (2020)), but can also be several weeks or
months for others (e.g., 135 days for Ward et al. (2020)). Table 1 lists the sampling
window start and end dates for each of the studies in our analysis.

Evidently, a longer sampling window will lead to greater uncertainty when it
comes to establishing the relevant number of deaths. It can be difficult to account for
this uncertainty and analyses will often simply select a specific date at which to count
deaths based on some simple rule of thumb. For example, Ioannidis (2021a) consid-
ers the number of deaths at 7 days after the mid-point of the sampling window (or as
the relevant number of deaths discussed by the seroprevalence study’s authors). As
another example, Meyerowitz-Katz and Merone (2020) take the number of deaths as
recorded at 10 days after the end of the sampling window. While these two particular
analytical choices are not all that different, each may lead to a substantially different
number of deaths for a given study if the study was conducted during a period of
time in which the number of deaths was rapidly accelerating. Levin et al. (2020),
who consider the number of deaths up until 4 weeks after the sampling window
mid-point, acknowledge this limitation noting that: “matching prevalence estimates
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with subsequent fatalities is not feasible if a seroprevalence study was conducted in
the midst of an accelerating outbreak.”

In order to account for the uncertainty in selecting the relevant number of deaths
for a given seroprevalence study, we propose considering the number of deaths
as interval censored data. Table 2 lists numbers for an interval corresponding to
the number of deaths recorded 14 days after the start of the sampling window and
14 days after the end of sampling window for each seroprevalence study. While
we might not know exactly what number of deaths is most appropriate, we can be
fairly confident that the appropriate number lies somewhere within this interval.
The 14 day offset allows for the known delay between the onset of infection and
death, taking into consideration the delay between the onset of infection and the
development of detectable antibodies; see Wu et al. (2020) and Linton et al. (2020).

3 The Data

3.1 Seroprevalence data

As the COVID-19 pandemic has progressed, a rapidly increasing number of sero-
prevalence surveys for antibodies to SARS-CoV-2 have been conducted worldwide
(Arora et al., 2021). However, many of these studies have produced biased estimates
or are otherwise unreliable due to a variety of different issues with study design,
and/or with data collection, and/or with inappropriate statistical analysis. Bobrovitz
et al. (2020) conclude that a majority of COVID-19 seroprevalence studies are “at
high risk of bias [...], often for not statistically correcting for demographics or for
test sensitivity and specificity, using non-probability sampling methods, and using
non-representative sample frames.” We seek to restrict our analysis to high quality
studies, those which are less likely to suffer from substantial biases.
Chen et al. (2021) reviewed the literature for articles published between Dec 1,

2019, and Dec 22, 2020 and identified more than 400 unique seroprevalence studies.
For each of these, Chen et al. (2021) determined study quality using a scoring system
developed on the basis of a seroepidemiological protocol from the Consortium for
the Standardization of Influenza Seroepidemiology (Horby et al., 2017). In total,
Chen et al. (2021) identified 38 articles which considered a sample based on a general
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Authors Location Sampling IR interval
(mm/dd) (%)

Appa et al. Bolinas, CA, USA 04/20 - 04/24 [0.02, 0.46]
Barchuk et al. Saint Petersburg, Russia 05/27 - 06/26 [5.60, 12.90]
Bendavid et al. Santa Clara county, CA, USA 04/03 - 04/04 [0.66, 4.22]
Biggs et al. Two counties in GA, USA 04/28 - 05/03 [1.40, 4.50]
Bruckner et al. Orange county, CA, USA 07/10 - 08/16 [8.10, 15.50]
Carrat et al. Ile-de-France, France 05/04 - 06/14 [8.90, 11.30]
Government of Jersey Jersey, UK 04/29 - 05/05 [1.80, 4.40]
Hallal et al. Brazil (83 cities) 05/14 - 05/21 [1.50, 2.20]
McLaughlin et al. Blaine, ID, USA 05/04 - 05/19 [14.00, 26.00]
Murhekar et al. (1) India 05/11 - 06/04 [0.34, 1.13]
Office of National Stat England, UK (2) 04/26 - 09/08 [5.40, 7.10]
Petersen et al. Faroe Islands, Denmark 04/27 - 05/01 [0.10, 1.20]
Pollán et al. Spain 04/27 - 05/11 [3.30, 6.60]
Rosenberg et al. New York state, USA 04/19 - 04/28 [13.30, 14.70]
Samore et al. Four counties in UT, USA 05/04 - 06/30 [0.10, 1.60]
Santos-Hovener et al. Kupferzell, Germany 05/20 - 06/09 [10.40, 14.00]
Sharma et al. Delhi, India 08/01 - 08/07 [27.65, 29.14]
Snoeck et al. Luxembourg 04/15 - 05/05 [1.23, 2.77]
Sood et al. Los Angeles county, CA, USA 04/10 - 04/14 [2.52, 7.07]
Streeck et al. Gangelt, Germany 03/31 - 04/06 [12.31, 24.40]
Stringhini et al. Geneva, Switzerland 04/06 - 05/09 [8.15, 13.95]
Vos et al. Netherlands 03/31 - 05/11 [2.10, 3.70]
Ward et al. England, UK (1) 06/20 - 07/13 [5.78, 6.14]

Table 1: Seroprevalence studies selected for the analysis based on the list compiled by Chen et al. (2021) (listed in
alphabetical order of authors), with geographic location of sampling, sampling dates, and 95% uncertainty
interval for the infection rate (IR interval).

population and which obtained a study quality grade of A or B (see list of all 38
grade A or B general-population-based studies and citations in Chen et al. (2021),
Table S8). We consider these 38 articles as a starting point for our analysis.

Among the 38 articles, four studies represented results from different phases of
the same study. For each of these we considered only the data from the earliest phase
of the study. Stringhini et al. (2020) and Richard et al. (2020) are two publications
that report the earlier and later phases, respectively, of the same study of Geneva,
Switzerland. We considered only data from the earlier phase as reported in Stringhini
et al. (2020). Murhekar et al. (2020a) andMurhekar et al. (2020b) are two publications
that report the earlier and later phases, respectively, of the same study in India. We
considered only data from the first phase as reported in Murhekar et al. (2020a).
Eight additional studies were not included due to unavailable mortality data for

the specific target populations (Alemu et al., 2020, Ling et al., 2020, Mahajan et
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Location Pk Dk Dk, Tk CCk 65yok
lower upper (%)

Bolinas, CA, USA 1620 0 0 1210 2 47
Saint Petersburg, Russia 5351935 2978 4776 233 21 18
Santa Clara county, CA, USA 1943411 86 90 236 5 13
Two counties in GA, USA 1806672 221 247 419 11 12
Orange county, CA, USA 3175692 556 979 285 33 15
Ile-de-France, France 12174880 6766 7425 2414 243 14
Jersey, UK 107800 27 28 648 19 17
Brazil (83 cities) 55444592 9659 13119 5633 103 9
Blaine, ID, USA 23089 5 5 168 33 20
India 1028610328 4172 44760 1632 11 6
England, UK (1) 56286961 27989 37139 3100 193 18
Faroe Islands, Denmark 52154 1 1 592 3 17
Spain 46459218 26834 26920 643 31 20
New York state, USA 19336776 19189 21845 9434 1320 16
Four counties in UT, USA 2200000 69 168 393 2 10
Kupferzell, Germany 6247 3 3 1263 153 16
Delhi, India 30290936 4188 26901 13966 3965 4
Luxembourg 603951 89 109 1214 23 14
Los Angeles county, CA, USA 10105518 943 1114 316 14 14
Gangelt, Germany 12597 8 8 153 27 18
Geneva, Switzerland 504128 221 280 442 48 16
Netherlands 17181252 2955 5849 1652 47 20
England, UK (2) 56286961 36041 36518 10635 634 18

Table 2: All of the data required for the Bayesian evidence synthesis model.

al., 2021b, Malani et al., 2021, Nisar et al., 2020, Poustchi et al., 2021, Shakiba et al.,
2020, Tess et al., 2020); and four additional studies were not included because the
articles failed to report 95% uncertainty intervals for the estimated infection rate in
the target population (Borges et al., 2020, Majiya et al., 2020, Naranbhai et al., 2020,
Wang et al., 2020). Finally, one study was not included due to missing dates for
the sampling window (Gudbjartsson et al., 2020). Table 3 in Appendix 6.1 lists the
excluded studies.

Our final set of seroprevalence studies consists of the K = 23 studies listed in Table
1. For each of these, we recorded the 95% uncertainty interval for the infection rate
as reported in the article. If an article reported on multiple phases of a study (e.g., a
longitudinal series of different surveys), or reported different results for different
areas instead of an overall estimate (e.g., a series of different estimates for different
regions), we selected only the first set of estimates. Furthermore, if a study reported
more than one 95% uncertainty interval (e.g., different intervals corresponding to
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different adjustments and assumptions), we selected the lowest value amongst the
different lower bounds and the highest value amongst the different upper bounds.
These numbers are recorded in Table 1 under IR interval. Based on these numbers,
we calculated effective data values for the number of tests (Tk) and the number of
confirmed cases (CCk) which are listed in Table 1 alongside population numbers
(Pk) and numbers corresponding to the proportion of the population over 65 years
old (65yok).

3.2 Mortality data

Mortality data was obtained from various sources (e.g., academic, government,
health authority); see details in Appendix 6.2. If a seroprevalence study referenced
a specific source for mortality data, we used the referenced source for our numbers
whenever possible. If no source was referenced or suggested, we considered publicly
available data sources.

For many populations, there are concerns that cause of death information may be
very inaccurate and lead to biased COVID-19 mortality statistics. To overcome this
issue, many suggest looking to “excess deaths” by comparing aggregate data for all-
cause deaths from the time during the pandemic to the years prior (Leon et al., 2020).
For populations with a large discrepancy between the number of deaths attributed
to COVID-19 and the number of excess deaths –as suggested by the undercount
ratio derived by Karlinsky and Kobak (2021)– we used excess deaths if these were
available.

India is the only country represented in our data that is not included in Karlinsky
and Kobak (2021)’s analysis and according to Mukherjee et al. (2021): “no rigorous
quantification of missing death numbers is currently available” for India. However,
there is evidence of potentially substantial under-reporting of COVID-19 deaths in
India; see Pulla (2020). The analysis of Banaji (2021) for the city of Mumbai, India
suggests an undercount ratio of about 1.6. (Banaji (2021): “Although Mumbai’s data
is far from complete, the city remains one of the few locations in India which has seen
several serosurveys, and where some limited all cause mortality data is available”).
Mukherjee et al. (2021) estimates the undercount ratio for each individual Indian
state and Union territory. Based on these estimates, we multiply the upper bounds
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for the number of deaths associated with the Mukherjee et al. (2021) (“India”) study
by a factor of 3.56; and for the Sharma et al. (2020) (“Delhi, India”) study by a factor
of 6.3 (see estimated underreporting factors in Figure S2 of Mukherjee et al. (2021)).
Note that we do not change the lower bounds of the interval for these two studies.
By considering the number of deaths in our analysis as interval censored data, we
can account for the substantial uncertainty in these numbers.
Of all the countries represented within our data that are included in Karlinsky

and Kobak (2021)’s analysis, only Russia is associated with a large discrepancy
between the official number of deaths attributed to COVID-19 and the number of
excess deaths (with an estimated undercount ratio of 6.7). As such, for the “Saint
Petersburg, Russia” study we use excess deaths as calculated by Kobak (2021).

4 Results

The model as described in Section 2, was fit to data as described in Section 3. We
fit the model using JAGS (just another Gibbs sampler) (Kruschke, 2014), with 5
independent chains, each with 1,000,000 draws (10% burn-in, thinning of 100); see
Appendix 6.4 for details and code. Note that Zk was set equal to the centred and
scaled logarithm of 65yok, such that, for k = 1, . . . , K:

Zk =
log(65yok)− 2.864

0.467
. (6)

We report posterior median estimates and 95% highest probability density (HPD)
credible intervals (CrI). Figure 1 plots the point estimates and credible intervals
obtained for IFRk and IRk, for k in 1, . . . , K. The estimates for the study-specific IFR
range from 0.17% for the Delhi, India, study, to 1.15% for Spain. We note that the
estimate for the Bolinas, CA, USA study has a particularly wide 95% credible interval
of: 0.05% - 4.46%. This is due to the fact that in the Appa et al. (2020) study, almost
the entire population was tested (1,210 out of a population of 1,620), yet very few
individuals tested positive. For the other model parameters, we obtain:
θ̂ = −5.24, with 95% CrI of (-5.58, -4.93),
θ̂1 = 0.31, with 95% CrI of (-0.09, 0.73),
τ̂ = 0.64, with 95% CrI of (0.41, 0.94), and
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σ̂ = 1.34, with 95% CrI of (0.97, 1.86).

Our estimate of θ̂1 = 0.31 suggests that older populations are more likely to have
higher IFRs. However, we note that the wide credible interval for this parameter
overlaps zero. This is quite surprising, since age is known to be a very important risk
factor (Zimmermann and Curtis, 2021). There are several reasons why we might
have obtained this result. As with any observational data analysis, the estimate of θ1

may suffer from bias due to unobserved confounding. Also, statistical power may
have been compromised by insufficient heterogeneity in the age-structure across the
different populations in our analysis, as captured by the proportion aged over 65
metric.

We also obtain posterior point and interval estimates for the average IFR amongst
like-aged populations, by determining the posterior distribution of g−1(θ + θ1z∗),
for selected values of z∗. Thus we infer the typical IFR amongst populations (be they
included in our study or not) having a given proportion of the populace aged over
65. For each of these estimates, in order to better understand the heterogeneity at
play, we report corresponding 95% HPD prediction intervals.

The prediction interval provides the range of values within which we are likely to
find the true IFR for a population, when all we know of that population is its 65yo
value. Mathematically, the prediction interval describes the posterior distribution
of g−1(θ + θ1z∗ + τε), where the posterior distribution is augmented to include
ε ∼ N (0, 1), independently of the other parameters. For more on the relative
interpretations of credible prediction intervals, see Higgins et al. (2009), Riley et al.
(2011), and IntHout et al. (2016).

For 65yo = 9, the approximate worldwide value, we obtain an across-population
average IFR estimate of 0.38%, with a 95% HPD credible interval of (0.19%, 0.59%)
and a 95% HPD prediction interval of (0.03%, 1.19%). For 65yo = 16, the United
States value, we obtain an across-population average IFR estimate of 0.56%, with a
95% HPD credible interval of (0.37%, 0.74%) and a 95% HPD prediction interval
of (0.06%, 1.71%). For 65yo = 20, the European Union value, we obtain an across-
population average IFR estimate of 0.65%, with a 95% HPD credible interval of
(0.39%, 0.95%) and a 95% HPD prediction interval of (0.07%, 2.04%).
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Figure 1: Posterior median estimates for the IRk and IFRk variables (for k = 1, . . . , 23) with 95% HPD CIs. Studies
are listed from top to bottom according to increasing 65yo. Also plotted, under the labels “World Avg. (9%
over 65 yo)”, “USA Avg. (16% over 65 yo)”, “EU Avg. (20% over 65 yo)”, are the posterior median estimate
and 95% HPD prediction intervals for the IFR corresponding to values for the proportion of the population
aged 65 years and older of 9% (the worldwide value), 16% (the USA value), and 20% (the EU value).
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The robustness of our estimates was checked using a leave-one-out sensitivity
analysis (Iyengar and Greenhouse, 2009); see Table 4 in the Appendix. This sensi-
tivity analysis showed that our estimates may be somewhat sensitive to the study
of Sharma et al. (2020) and of Hallal et al. (2020). Elimination of each of the other
studies from the evidence synthesis did not have a substantial influence on our
results. We also repeated our analysis using a different set of priors to verify that
our results were not overly sensitive to our particular choice of priors. The results of
this alternative analysis are very similar to the results of our original analysis; see
Figure 2 in the Appendix.

Our estimates are somewhat similar to those obtained in other analyses. Brazeau
et al. (2020), using data from 10 representative seroprevalence studies (identified
after screening 175 studies), infer “the overall IFR in a typical low-income country,
with a population structure skewed towards younger individuals, to be 0.23% (0.14%-
0.42% 95% prediction interval range).” For a “typical high income country, with a
greater concentration of elderly individuals,” Brazeau et al. (2020) obtain an estimate
of 1.15% (95% prediction interval of 0.78%-1.79%). Ioannidis (2021a), using data
from seroprevalence studies with sample sizes greater than 500, obtains a “median
infection fatality rate across all 51 locations” of 0.27% and (and of 0.23% following an
ad-hoc correction to take into account “that only one or two types of antibodies” may
have been tested in some seroprevalence studies). Levin et al. (2020), who restricted
their analysis to populations in “advanced economies,” do not provide an overall
IFR, but instead (perhaps more appropriately) provide age-group specific estimates.
For the 45–54 year old age group, Levin et al. (2020) estimate the IFR to be 0.23%
(95% CI of 0.20%–0.26%), and for the 55–64 year old age group, 0.75% (95% CI of
0.66%–0.87%).
We can also compare our study-specific IFR estimates to those obtained from

other analyses. Marra and Quartin (2020), based on the data of Hallal et al. (2020),
estimate a country-wide average IFR for Brazil (for the period of time up until late
June, 2020) of 0.97% (95%CrI 0.82%–1.14%). This is similar to our estimate of 1.06%
(95%CrI 0.82%-1.34%). Perez-Saez et al. (2021), based on the data of Stringhini et al.
(2020), estimate the IFR for the canton of Geneva, Switzerland (for the period of
time up until early June, 2020) to be 0.64% (95%CrI 0.38%-0.98%). Our estimate is
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somewhat lower at 0.47% (95%CrI 0.33%- 0.63%).
Pastor-Barriuso et al. (2020), based on the data of Pollán et al. (2020), estimate an

IFR for Spain (for the period of time up until late June, 2020) of 0.83% (95% CI 0.78%-
0.89%) using deaths with confirmed COVID-19 and of 1.07% (95% CI 1.00%-1.15%)
using excess deaths. We obtain a similar estimate for Spain, albeit with a much wider
uncertainty interval: 1.15% (95% CI 0.84%-1.64%). Finally, Kümmerer et al. (2020),
based on the data of Streeck et al. (2020), estimate the IFR for Gangelt, Germany (for
the period up until early April, 2020) to be 0.37% (95% CrI 0.12%-0.67%). This is
slightly lower than our estimate of 0.42% (95% CrI 0.19%-0.74%).

Figure 1 lists the 23 studies in order of their 65yo value. It is apparent that there are
substantial differences in IFR across different populations that cannot be explained
by age structure (as captured by the 65yo covariate) alone (we estimate τ̂ = 0.64,
with 95% CrI of (0.41, 0.94)). This is made abundantly clear by the very large width
of the 95% prediction intervals for the across-population average IFR estimates, and
more specifically by looking at the estimates for “Four counties in UT, USA” and
“Brazil (83 cities).” Despite having similar values of 65yo (10 vs. 9), we obtain very
different IFR estimates for these two populations (0.54% vs. 1.06%).

5 Conclusion

Estimation of the IFR can be incredibly challenging due to the fact that it is a ratio
of numbers where both the numerator and the denominator are subject to a wide
range of biases. Our proposed method seeks to address some of these biases in a
straightforward manner.
With regards to the numerator, we considered the number of deaths as interval

censored data so as to account for the uncertainty in selecting the most relevant
number of deaths. While we consider this an improvement over other methods that
use a single fixed number, we acknowledge that the specific choice of a 14 day offset
is somewhat arbitrary and that the data for deaths also suffer from other sources of
bias. We also wish to emphasize that lack of available mortality data (for the specific
geographic areas defined in the seroprevalence studies) was also the main reason
for excluding seroprevalence studies from our analysis (8 studies were excluded for
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this reason).
With regards to the denominator, we looked to data from “high-quality” sero-

prevalence studies in an effort to avoid biased estimates. However, these data are far
from perfect. Seroprevalence studies are severely limited by the representativeness
of the individuals they test. Certain groups of individuals are unlikely to be tested
in a seroprevalence study and these groups often have very high infection rates
(e.g., institutionalized populations, hospitalized populations, homeless people). On
the other hand, those individuals who have reason to believe they may have been
infected, may be more likely to volunteer to participate in a seroprevalence study
(Shook-Sa et al., 2020).1

The need to improve the quality and reporting of seroprevalence studies cannot
be overemphasized. A major limitation of evidence synthesis is often summarized
by the expression “garbage in, garbage out” (Eysenck, 1978), meaning that if one
includes biased studies in one’s analysis, the analysis results will themselves be
biased (Sharpe, 1997). We only included data from 23 out of potentially hundreds of
seroprevalence studies due primarily to the fact that so few studies were considered
reliable and at low risk of bias.
Excluding low-quality/biased studies from our analysis was necessary, at least

to a certain degree, in order to obtain valid estimates. However, as a consequence
of our strict exclusion criteria, much of the world’s population is severely under-
represented in our data. Indeed, while we include eight different seroprevalence
studies from the United States (4 alone from California), not a single study from
Africa or the Middle East was included. If the quality of studies were to be correlated
with unmeasured factors that impact the IFR, excluding studies based on their
perceived quality could lead to unmeasured confounding at a meta-analytic level
(Ioannidis and Lau, 1998). Novel methods which allow evidence syntheses to

1 Evidently, the potential for selection-bias increases with decreasing response rates. We note that, while
some of the seroprevalence studies included in our analysis had high response rates (e.g. Murhekar et al. (2020a) note
that: “The response rate in different strata ranged from 86.9 to 95.9 per cent.”), others had lower rates. For example,
Sood et al. (2020) obtained a response rate of 50.9% (of the 1,952 individuals invited to participate, 865 were tested).
While most of the studies acknowledge this limitation (e.g., Sood et al. (2020) write: “The estimated prevalence
may be biased due to nonresponse or that symptomatic persons may have been more likely to participate”), only
McLaughlin et al. (2020) attempt to make a statistical adjustment for this type of bias. McLaughlin et al. (2020)
asked participants: “Do you believe that you were infected with COVID19?” prior to testing and "applied the Bayes’
odds-likelihood ratio formula" to correct for the potential selection bias. Few additional details are provided and it
remains unclear if this adjustment sufficiently de-biased the data. While McLaughlin et al. (2020) invited all residents
aged 18 and older to participate (approx. 17,611 individuals), only 917 volunteers were tested (approx. 5.2%).
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appropriately incorporate biased data are urgently needed. Recently, Campbell
et al. (2020) proposed a partially identified model to combine seroprevalence study
data with data from official statistics that are known to be biased due to “preferential
testing.”

Reducing the uncertainty around the severity of COVID-19was of great importance
to policy makers and the public during the early stages of the pandemic (Faust, 2020,
Ioannidis, 2020, Lipsitch, 2020) and immense efforts have been made in the collection
and analysis of data. And yet, even after more than a year, there is still a large
amount of uncertainty and unexplained heterogeneity surrounding the COVID-19
IFR. While a certain amount of heterogeneity is to be expected (Higgins, 2008),
identifying factors associated with higher IFRs is the ultimate goal and investigating
potential variables that can account for the observed heterogeneity may lead to
important insights (Berlin, 1995, Ioannidis and Lau, 1998).
We prioritized simplicity in our modeling so as to promote transparency in our

findings, and to facilitate adaptations to similar, but not identical, data structures.
One model extension that could be pursued would involve age stratification of IFR.
Age-group specific mortality data is available for many geographic areas and such
data could inform an extended version of our model, thereby offering an alternative
to the approach described by Levin et al. (2020) for estimating age-group specific
IFRs.
Finally, we must emphasize that the IFR is a moving target. As the pandemic

changes, so to does the IFR. Our estimates are based on data from 2020, some of
which were obtained more than a year ago (see dates listed in Table 1). It is likely
that, with continual viral mutation of SARS-CoV-2 and advances in treatment, the
current IFR in many places is now markedly different than it was earlier, and our
estimates are therefore likely to be outdated (Pietzonka et al., 2021, Walensky et al.,
2021). In particular, at the present time, India is experiencing a rapid increase in
COVID-19 fatalities which suggests that the current IFR in India may be much higher
now than during earlier phases of the pandemic (Padma, 2021, Thiagarajan, 2021).
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6 Appendix

6.1 Excluded studies

Table 3 lists the studies identified by Chen et al. (2021) as grade A or B general-
population-based studies that we were unable to include in our analysis. Note that,
while we were unable to obtain the relevant number of deaths for Mahajan et al.
(2021b), (deaths for the non-congregate population in Connecticut), Mahajan et al.
(2021a) derive an estimate for the IFR of 0.95% (90% CI, 0.63%-1.90%).

Author Location Reason for exclusion
Richard et al. Geneva, Switzerland duplicate
Murhekar et al. (2) India duplicate
Mahajan et al. Connecticut, US death data not found
Malani et al. Mumbai, India death data not found
Ling et al. Wuhan, China death data not found
Tess et al. Six districts of São Paulo, Brazil death data not found
Poustchi et al. Iran (18 cities) death data not found
Nisar et al. Two neighborhoods of Karachi, Pakistan death data not found
Shakiba et al. Guilan Province, Iran death data not found
Alemu et al. Addis Ababa, Ethiopia death data not found
Majiya et al. Nigeria 95% interval not provided
Naranbhai et al. Chelsea, MA, US 95% interval not provided
Wang et al. Beijing, China 95% interval not provided
Borges et al. Sergipe (10 cities), Brazil 95% interval not provided
Gudbjartsson et al. Iceland sampling dates not specified

Table 3: List of excluded studies and reason for exclusion.

6.2 Details on mortality data

• For Appa et al. (2020), specific information on deaths for the small
town of Bolinas, CA, were difficult to obtain from publicly available
databases. Reports in the press suggest that there were zero deaths; see
for example: www.newyorker.com/news/california-chronicles/bolinas-

california-the-town-that-tested-itself-for-the-coronavirus.
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• For Barchuk et al. (2020), we used excess death numbers as reported by Kobak
(2021). Russian official statistics appear to underestimate the true number of
fatalities by a substantial factor (Karlinsky and Kobak, 2021).

• For Bendavid et al. (2020), we obtained number of cumulative deaths for Santa
Clara County from the SCC Dashboard (data.sccgov.org/) (as referenced by
Bendavid et al. (2020)) available at: www.sccgov.org/sites/covid19/Pages/
dashboard.aspx (accessed on April 28, 2021).

• For Biggs et al. (2020), the number of deaths for DeKalb, and Fulton counties
was obtained from the county-level COVID-19 dataset curated by the New York
Times available at: github.com/nytimes/covid-19-data (accessed on April
28, 2021).

• For Bruckner et al. (2021), we obtained number of cumulative deaths
for Orange County from Orange County Public Works (as referenced
by Bruckner et al. (2021)) at: data-ocpw.opendata.arcgis.com/datasets/

2ec9342ffc814cf58161b1cca57365fd_0 (accessed on April 28, 2021).

• For Carrat et al. (2020), we only consider Ile-de-France phase of the study
(see Supp. Table 1 for sampling dates). Data for the number of deaths
for Ile-de-France was obtained from the Corona Data Scraper website
(coronadatascraper.com/; accessed on April 28, 2021) that pulls COVID-19
data from verified sources on national and local levels.

• For Statistics Jersey (2020), data for the number of deaths was obtained
from the Government of Jersey website (https://www.gov.je/datasets/
listopendata?listname=COVID19DeathsClassification; accessed on April
28, 2021) summing both “probable COVID-19” deaths and “laboratory proven”
COVID-19 deaths.

• For the Hallal et al. (2020), we consider only results from the first phase (the
May 14 - May 21 survey), and we consider the subset of 83 municipalities
where it was possible to conduct 200 or more tests during both survey waves.
Data for the number of deaths was obtained from the public Painel Coron-
avírus dataset (available at https://github.com/mquartin/covid19-ifr-br;
accessed on April 28, 2021). The date of death in Painel Coronavírus dataset is

27

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.21256975doi: medRxiv preprint 

www.sccgov.org/sites/covid19/Pages/dashboard.aspx
www.sccgov.org/sites/covid19/Pages/dashboard.aspx
github.com/nytimes/covid-19-data
data-ocpw.opendata.arcgis.com/datasets/2ec9342ffc814cf58161b1cca57365fd_0
data-ocpw.opendata.arcgis.com/datasets/2ec9342ffc814cf58161b1cca57365fd_0
coronadatascraper.com/
https://www.gov.je/datasets/listopendata?listname=COVID19DeathsClassification
https://www.gov.je/datasets/listopendata?listname=COVID19DeathsClassification
https://github.com/mquartin/covid19-ifr-br
https://doi.org/10.1101/2021.05.12.21256975
http://creativecommons.org/licenses/by-nc/4.0/


not the actual time of death but rather the time of notification. For this reason
we considered the number of deaths for a given date as the number of deaths
recorded in the Painel Coronavírus dataset following the analysis of Marra and
Quartin (2020).

• For McLaughlin et al. (2020), we obtained the number of cumulative deaths
for Blaine County, ID, from the county-level COVID-19 dataset curated by the
New York Times available at: github.com/nytimes/covid-19-data (accessed
on April 28, 2021).

• For Murhekar et al. (2020a), we obtained the number of cumulative deaths
for India, from the Our World in Data COVID-19 dataset available at:
ourworldindata.org/coronavirus/country/india (accessed on April 28,
2021). We multiplied the number recorded for 14 days after the end of the sam-
pling window of 12,573 by a factor of 3.56 (based on Mukherjee et al. (2021)’s
estimated underreporting factor for Delhi) in order to account for potential un-
derreporting. As such, our interval is relativelywide and reflects the uncertainty
in the true number of deaths: [4,172, 44,760].

• For Office of National Statistics (2020), we obtained the number of cumula-
tive deaths for England, from Wikipedia (en.wikipedia.org/wiki/COVID-
19_pandemic_in_England; accessed on April 28, 2021) which sources
data from the UK coronavirus dashboard (coronavirus.data.gov.
uk/). Seroprevalence numbers were obtained from Table 3a of
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/

healthandsocialcare/conditionsanddiseases/datasets/

coronaviruscovid19infectionsurveydata/2020/previous/v26/

covid19infectionsurveydatasets20201002.xlsx ; (accessed on April
28, 2021).

• For Petersen et al. (2020), information on deaths for the Faroe Islands was
obtained from corona.fo/hagtol, the government information website con-
cerning COVID19 in the Faroe Islands.

• For Pollán et al. (2020), data for the number of deaths was obtained from
Wikipedia (en.wikipedia.org/wiki/COVID-19_pandemic_in_Spain; accessed

28

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.21256975doi: medRxiv preprint 

github.com/nytimes/covid-19-data
ourworldindata.org/coronavirus/country/india
en.wikipedia.org/wiki/COVID-19_pandemic_in_England
en.wikipedia.org/wiki/COVID-19_pandemic_in_England
coronavirus.data.gov.uk/
coronavirus.data.gov.uk/
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata/2020/previous/v26/covid19infectionsurveydatasets20201002.xlsx
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata/2020/previous/v26/covid19infectionsurveydatasets20201002.xlsx
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata/2020/previous/v26/covid19infectionsurveydatasets20201002.xlsx
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata/2020/previous/v26/covid19infectionsurveydatasets20201002.xlsx
corona.fo/hagtol
en.wikipedia.org/wiki/COVID-19_pandemic_in_Spain
https://doi.org/10.1101/2021.05.12.21256975
http://creativecommons.org/licenses/by-nc/4.0/


on April 28, 2021) which sourced the information from the Centro Nacional
de Epidemiología (cnecovid.isciii.es/covid19/). Note that, the number
of deaths of for 2020-05-11 of 26,920 (14 days after the start of the sampling
window), is actually higher than the number of deaths for 2020-05-25 of 26,834
(14 days after the end of the sampling window). This may be due to a reporting
issuewhich is noted byWikipedia: “Figures for 2020-05-24 to 2020-06-17 include
corrections in the validation of past data from several autonomous communities
as a result of the transition to a new surveillance methodology implemented
from 2020-05-11.” We define the interval as ranging from the lowest value to
the highest value, [26,834, 26,920], as listed in Table 2.

• For Rosenberg et al. (2020), data for the number of deaths was obtained from
covidtracking.com/data/state/new-york; (accessed on April 28, 2021).

• For Samore et al. (2020), data for the number of deaths for the counties of Utah
county, Salt Lake county, Davis county, and Summit county, was obtained from
the county-level COVID-19 dataset curated by the New York Times available at:
github.com/nytimes/covid-19-data (accessed on April 28, 2021).

• For Santos-Hövener et al. (2020), data for the number of deaths for Kupferzell,
Germany was obtained directly from Santos-Hövener et al. (2020) which cites
the Robert Koch Institute. Despite efforts, no publicly available dataset was
found which could confirm these numbers specific these numbers.

• For Sharma et al. (2020), infection rate estimates are based on survey data from
round 1 of the study (August 1-7). Data for the number of deaths for Delhi
was obtained from Wikipedia (en.wikipedia.org/wiki/COVID-19_pandemic_
in_Delhi; accessed on April 28, 2021) which sourced the information from the
Delhi State Health Bulletin (https://delhifightscorona.in/). Wemultiplied
the number recorded for 14 days after the end of the sampling window of 4,270
by a factor of 6.3 (based on Mukherjee et al. (2021)’s estimated underreporting
factor) in order to account for potential underreporting. As such, our interval is
relatively wide and reflects the uncertainty in the true number of deaths: [4,188,
26,901].

• Snoeck et al. (2020) “recruited a representative sample of the Luxembourgish
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population” between April 16th and May 5th, and obtained a 95% CI of [1.23%,
2.77%]. Two different 95% CIs, obtained with and without adjustment for age,
gender and canton are provided in the paper: [1.23%; 2.67%] and [1.34%; 2.77%].
As such, we record [1.23%; 2.77%] for our IR interval. Data for the number of
deaths was obtained from the OurWorld in Data COVID-19 dataset available at:
ourworldindata.org/coronavirus/country/luxembourg (accessed on April
28, 2021).

• For Sood et al. (2020), data for the number of deaths for Los An-
geles county, CA was obtained from the government of LA county
COVID-19 dashboard (dashboard.publichealth.lacounty.gov/covid19_
surveillance_dashboard/; accessed on April 28, 2021). Sood et al. (2020)
notes that “Residents of Los Angeles County, California, within a 15-mile (24
km) radius of the testing site were eligible for participation.”

• For Streeck et al. (2020), data for the number of deaths for Gangelt, Kreis Heins-
berg, Germany, were obtained directly from Streeck et al. (2020). Despite efforts,
no publicly available dataset was foundwhich could confirm these numbers spe-
cific these numbers; however the Gangelt municipal bulletin appears to confirm
these numbers (see www.gangelt.de/news/226-erster-corona-fall-in-nrw;
accessed on April 28, 2021).

• For Stringhini et al. (2020), mortality data for the canton of Geneva were
obtained from an excel file made publicly available by a Swiss government
website at: ge.ch/document/covid-19-donnees-completes-debut-pandemie
(accessed on April 28, 2021).

• For Vos et al. (2021), mortality data for the Netherlands was obtained from
the Our World in Data COVID-19 dataset available at: ourworldindata.org/
coronavirus/country/netherlands (accessed on April 28, 2021).

• For Ward et al. (2020), infection rate estimates are based on survey data from
from the first survey (20 June - 13 July). We obtained the number of cumu-
lative deaths for England, from Wikipedia (en.wikipedia.org/wiki/COVID-
19_pandemic_in_England; accessed on April 28, 2021) which sources data from
the UK coronavirus dashboard (coronavirus.data.gov.uk/).
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6.3 Sensitivity analysis

As a sensitivity analysis, we repeated the entire analysis with an alternative set of
priors. For this alternative analysis, we used: g−1(θ) ∼ Uni f orm(0, 1); g−1(β) ∼

Uni f orm(0, 1) ; θ1 ∼ N (0, 100) σ ∼ half-N (0, 100) and τ ∼ half-N (0, 100). The
results are plotted in Figure 2. We also conducted a leave-one-out sensitivity analysis
whereby, for each of the K = 23 individual seroprevalence studies, we removed the
data associated with the individual study and repeated our analysis (Higgins, 2008,
Iyengar and Greenhouse, 2009). Results are listed in Table 4 and suggest that our
estimates are somewhat sensitive to the data associated with Sharma et al. (2020)
and with Hallal et al. (2020).

Study excluded IFR(z∗ = 9) 95% PrI θ1 95% CrI τ 95% CrI
Appa et al. 0.39 [0.04,1.22] 0.26 [-0.06,0.64] 0.64 [0.43,0.96]

Barchuk et al. 0.38 [0.04,1.36] 0.29 [-0.17,0.67] 0.66 [0.42,0.95]
Bendavid et al. 0.40 [0.03,1.20] 0.30 [-0.13,0.81] 0.63 [0.41,0.97]

Biggs et al. 0.39 [0.04,1.36] 0.27 [-0.12,0.70] 0.65 [0.42,0.95]
Bruckner et al. 0.41 [0.06,1.28] 0.30 [-0.13,0.62] 0.59 [0.34,0.86]

Carrat et al. 0.38 [0.02,1.27] 0.32 [-0.13,0.71] 0.66 [0.40,0.94]
Government of Jersey 0.37 [0.03,1.22] 0.32 [-0.06,0.82] 0.66 [0.41,0.98]

Hallal et al. 0.32 [0.03,0.96] 0.44 [0.01,0.87] 0.57 [0.33,0.83]
McLaughlin et al. 0.38 [0.04,0.98] 0.40 [0.04,0.79] 0.54 [0.32,0.78]

Murhekar et al. (1) 0.41 [0.05,1.36] 0.26 [-0.13,0.71] 0.65 [0.41,0.95]
Office of National Stat 0.38 [0.04,1.23] 0.28 [-0.12,0.67] 0.65 [0.43,0.97]

Petersen et al. 0.39 [0.02,1.31] 0.32 [-0.07,0.75] 0.64 [0.41,0.97]
PollÃ¡n et al. 0.39 [0.04,1.16] 0.27 [-0.16,0.73] 0.64 [0.42,0.96]

Rosenberg et al. 0.37 [0.04,1.15] 0.31 [-0.03,0.80] 0.66 [0.41,0.96]
Samore et al. 0.37 [0.02,1.20] 0.33 [-0.08,0.71] 0.65 [0.41,0.95]

Santos-Hovener et al. 0.38 [0.03,1.37] 0.31 [-0.12,0.69] 0.65 [0.40,0.94]
Sharma et al. 0.48 [0.05,1.47] 0.13 [-0.30,0.61] 0.63 [0.39,0.91]
Snoeck et al. 0.36 [0.03,1.16] 0.32 [-0.10,0.80] 0.65 [0.41,0.93]
Sood et al. 0.39 [0.04,1.26] 0.32 [-0.06,0.73] 0.63 [0.40,0.95]

Streeck et al. 0.38 [0.03,1.21] 0.33 [-0.08,0.74] 0.64 [0.40,0.94]
Stringhini et al. 0.38 [0.04,1.23] 0.33 [-0.12,0.73] 0.66 [0.40,0.96]

Vos et al. 0.40 [0.06,1.30] 0.25 [-0.20,0.61] 0.66 [0.41,0.93]
Ward et al. 0.38 [0.05,1.26] 0.29 [-0.17,0.66] 0.64 [0.39,0.93]

Table 4: Estimates obtained from the leave-one-out sensitivity analysis. For each of the K = 23 individual seropreva-
lence studies, we removed the data associated with the individual study and repeated our analysis.
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0.18 [0.07,0.31]

0.26 [0.06,0.62]

1.06 [0.82,1.35]
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Figure 2: Analysis results with alternative priors - Posterior median estimates for the IRk and IFRk variables (for
k = 1, . . . , 23) with 95% HPD CIs. Studies are listed from top to bottom according to increasing 65yo. Also
plotted, under the labels “World Avg. (9% over 65 yo)”, “USA Avg. (16% over 65 yo)”, “EU Avg. (20% over
65 yo)”, are the posterior median estimate and 95% HPD prediction intervals for the IFR corresponding to
values for the proportion of the population aged over 65 years and older of 9% (the worldwide value), 16%
(the USA value), and 20% (the EU value).
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6.4 MCMC details and R code

Note that, in order to improve the MCMC mixing, we replace the binomial distribu-
tion for CCk as described in (2), with

CCk ∼ Binom(Tk, IRk), (7)

for k = 1, . . . , K. For any sufficiently large Pk, this simplification will make little to
no difference. Then, since the distributions of Ck and Dk|Ck are both binomials (see
(2) and (3)), we have that unconditionally:

Dk ∼ Binom(Pk, IFRk × IRk). (8)

The following R-code can be used to reproduce the analysis results:

#### load required libraries:

library("rjags"); library("RCurl")

#### model in JAGS:

metaIFR <- "model {

# Priors:

icloglog_theta ~ dbeta(0.3, 30);

icloglog_beta ~ dbeta(1, 3);

theta <- log(-log(1-icloglog_theta));

beta <- log(-log(1-icloglog_beta));

inv.var_sig <- (1/sigma)^2 ;

inv.var_tau <- (1/tau)^2 ;

sigma ~ dnorm(0, 1/10) T(0,);

tau ~ dnorm(0, 1/10) T(0,);

theta1 ~ dnorm(0, 1/10);

# Likelihood:

for(k in 1:K){

cc[k] ~ dbin(ir[k], tests[k]);

censor.index[k] ~ dinterval(deaths[k],

c(deaths_lower[k], deaths_upper[k]))

deaths[k] ~ dbin(ifr[k]*ir[k], pop[k]);

cloglog(ir[k]) <- cloglog_ir[k];

cloglog(ifr[k]) <- cloglog_ifr[k];

cloglog_ir[k] ~ dnorm(beta, inv.var_sig);
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cloglog_ifr[k] ~ dnorm(theta + theta1*Z[k], inv.var_tau);}

# Summary:

g_IFR_9p = theta + theta1*(-1.041098);

g_IFR_16p = theta + theta1*(0.1890347);

g_IFR_20p = theta + theta1*(0.6661173);

IFR_9p <- 1 - exp(-exp(g_IFR_9p))

IFR_16p <- 1 - exp(-exp(g_IFR_16p))

IFR_20p <- 1 - exp(-exp(g_IFR_20p))

epsilon ~ dnorm(0,1);

predictIFR_9p <- 1 - exp(-exp(g_IFR_9p + tau*epsilon))

predictIFR_16p <- 1 - exp(-exp(g_IFR_16p + tau*epsilon))

predictIFR_20p <- 1 - exp(-exp(g_IFR_20p + tau*epsilon)) }"

#### read in dataset:

csvfile <- getURL(

"https://raw.githubusercontent.com/harlanhappydog/BayesianSeroMetaAnalysis/main/IFRdata.csv")

IFRdata <- read.csv(text = csvfile)

#### Fit model ###

K <- length(IFRdata$total_tests)

jags.modelIFR <- jags.model(textConnection(metaIFR),

data = list(K = K,

tests = IFRdata$total_tests,

cc = IFRdata$total_cases,

pop = IFRdata$Population,

deaths_lower = IFRdata$deaths14_lower-1,

deaths_upper = IFRdata$deaths14_upper,

deaths = rep(NA, K),

Z = c(scale(log(IFRdata$aged_65_older))),

censor.index = rep(1, K)),

n.chains = 5, n.adapt = 5000,

inits = list(deaths = round(apply(cbind(IFRdata$deaths14_lower,

IFRdata$deaths14_upper), 1, mean))))

params <- c("IFR_9p", "predictIFR_9p", "IFR_16p",

"predictIFR_16p", "IFR_20p", "predictIFR_20p",

"icloglog_theta", "theta", "theta1", "ir", "ifr", "tau", "sigma")

sampsIFR <- coda.samples(jags.modelIFR, params, n.iter = 1000000, thin = 100, n.adapt = 100000)

summary(sampsIFR)
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