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 2 

ABSTRACT 25 

There is a long-standing interest in exploring the relationship between blood-based biomarkers 26 

of biological exposures and psychiatric disorders, despite their causal role being difficult to 27 

resolve in observational studies. In this study, we leverage genome-wide association study data 28 

for a large panel of heritable biochemical traits measured from serum to refine our 29 

understanding of causal effect in biochemical-psychiatric trait parings. In accordance with 30 

expectation we observed widespread evidence of positive and negative genetic correlation 31 

between psychiatric disorders and biochemical traits. We then implemented causal inference 32 

to distinguish causation from correlation and found strong evidence that C-reactive protein 33 

(CRP) exerts a causal effect on psychiatric disorders, along with other putatively causal 34 

relationships involving urate and glucose. Strikingly, these analyses suggested CRP has a 35 

protective effect on three disorders including anorexia nervosa, obsessive-compulsive disorder, 36 

and schizophrenia, whilst being a risk factor for major depressive disorder. Multivariable 37 

models that conditioned CRP effects on interleukin-6 signalling and body mass index 38 

suggested that CRP-schizophrenia relationship was not likely mediated by those factors. 39 

Collectively, these data suggest that there are shared pathways that influence both biochemical 40 

traits and psychiatric illness, including factors such as CRP that are likely to constitute a causal 41 

effect and could be targets for therapeutic intervention and precision medicine. 42 
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MAIN TEXT 50 

INTRODUCTION 51 

Psychiatric disorders arise from a complex interplay between genetic and environmental risk 52 

factors. Indeed, twin-based and genome-wide association (GWAS) studies’ heritability 53 

estimates have demonstrated the importance of genetic risk to the spectrum of psychiatric 54 

illness (1–3). In particular, GWAS have been successful in identifying regions of the genome 55 

associated with psychiatric disorders, as well as revealing both overlapping and distinct 56 

features amongst the genetic architecture of these traits (2–6). For example, our group 57 

previously demonstrated that several genes associated with schizophrenia were shared with 58 

other psychiatric disorders, along with genes that appeared more specifically linked to 59 

schizophrenia (4).  The challenge for psychiatric genetics from here onwards is to integrate and 60 

expand these data such that the biological insights gained may be directly relevant for 61 

psychiatric practice.  62 

 63 

GWAS has proven valuable beyond just gene discovery in psychiatry, in that it allows the study 64 

of relationships between sets of traits in terms of genetic correlation (7), as well as GWAS 65 

informed methods for causal inference (8,9). An area of continued interest is the interplay 66 

between circulating biochemical factors and the pathophysiology of psychiatric disorders (10–67 

13). These studies have endeavoured to find biochemical traits readily detectable in blood, that, 68 

in theory, could be diagnostic or prognostic biomarkers for a given psychiatric disorder. Many 69 

of these hypotheses stem from the idea that peripheral biochemical traits may exert an effect 70 

on the brain, directly or indirectly through their effect on other mediators, and that the 71 

manifestation of mental illness is in part attributed to these factors which primarily act in the 72 

periphery (11,12,14–16). Identifying these biochemical-psychiatric relationships would be 73 

clinically valuable as many of these traits can be modulated by existing drugs and/or lifestyle 74 
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interventions. However, progress in this field has been hampered by small sample size studies, 75 

along with the fact that the majority of these studies are observational in nature, and thus, likely 76 

subject to at least some confounding. Genetics offers an attractive prospect for studying 77 

biochemical traits in psychiatry as many such measures are heavily influenced by genetic 78 

factors, with germline genetic variants fixed at birth and immune to reverse causation in most 79 

instances. In this study, we attempt to harmonise inter-study variability by using a panel of 80 

large sample size (N > 300,000) biochemical GWAS from a single cohort (UK biobank) to 81 

investigate genetic overlap with different psychiatric disorders, along with putative causal 82 

effects. We found that the majority of biochemical traits tested were genetically correlated with 83 

at least one psychiatric trait, with evidence of convergent and divergent correlation profiles 84 

amongst the different disorders. Interestingly, we also demonstrated evidence that there may 85 

be a causal relationship on psychiatric phenotypes through circulating C-reactive protein 86 

(CRP), glucose, and urate – which may have direct implications for clinical practice.  87 

 88 
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METHODS AND MATERIALS  100 

Psychiatric genome-wide association studies 101 

GWAS summary statistics for nine European ancestry cohorts for the following disorders were 102 

obtained from the psychiatric genomics consortium (PGC): attention/deficit hyperactivity 103 

disorder (ADHD) (17), anorexia nervosa (AN) (18), autism spectrum disorder (ASD) (19), 104 

bipolar disorder (BIP) (20), major depressive disorder (MDD) (21), obsessive compulsive 105 

disorder (OCD), post-traumatic stress disorder (PTSD) (22), schizophrenia (SZ) (23), and 106 

Tourette’s syndrome (TS) (24). Given that cognitive symptoms are pervasively associated with 107 

psychiatric illness, we also included a GWAS of general cognitive ability (25).  Further 108 

information regarding these studies is provided in the supplementary text.  109 

 110 

Blood-based biomarker genome-wide association studies 111 

We obtained GWAS summary statistics for a series of blood-based biochemical traits from the 112 

large UK biobank (UKBB) sample performed by the Neale group (http://www.nealelab.is/uk-113 

biobank). The key advantage of these data is its large sample size (N > 300,000) and that the 114 

biochemical traits analysed were obtained from a single large cohort. Specifically, we utilised 115 

a panel of 50 biochemical GWAS which had high or medium confidence estimates of SNP 116 

heritability that were significantly different from zero as outlined in supplementary table 1 and 117 

supplementary text. These traits included lipids, micronutrients, hormones, metabolites, and 118 

enzymes. 119 

 120 

Genetic correlation 121 

Genetic correlation between each psychiatric and biochemical trait was estimated using linkage 122 

disequilibrium score regression (LDSR) (7), with summary statistic cleaned (‘munged’) to 123 

contain around one million HapMap 3 SNPs outside the major histocompatibility complex 124 
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(MHC) with minor allele frequency > 0.05 for consistency (https://github.com/bulik/ldsc). 125 

Briefly, LDSR estimates genetic covariance by regressing SNP-wise 𝜒!, the product of the 126 

marginal SNP effects from both traits (𝑍"𝑍!), on its LD score, which is an estimate of total LD 127 

existing with that SNP. Trait hertiabilities are utilised to normalise the genetic covariance to 128 

obtain genetic correlation (𝑟#). A key advantage of LDSR is that sample overlap only affects 129 

the LDSR intercept and not the slope, meaning we can accurately estimate 𝑟# between UKBB 130 

biochemical GWAS and psychiatric GWAS with UKBB samples included. We used the 131 

Bonferroni method to correct for the fifty traits tested. One biochemical trait was excluded 132 

from further analysis, Apolipoprotein B, as it exhibited negative heritability within the block 133 

jackknifing procedure to estimate the 𝑟# standard error in some instances. The resulting 49 x 134 

10 matrix of LDSR 𝑟#, divided by its standard error to obtain Z, was subjected to a latent 135 

clustering method, finite Gaussian mixture modelling (GMM), with the mclust R package 136 

version 5.4.6 (26). We selected the most parsimonious clustering configuration based on 137 

parametrisation of the covariance matrix utilising the largest Bayesian Information Criterion 138 

(BIC) value. 139 

 140 

Biochemical polygenic scoring in a severe cognitive deficit subtype of schizophrenia 141 

We sought to further investigate biochemical traits displaying psychiatric genetic correlation 142 

and examine their relevance to the clinical dimensions of psychiatric disorders. Specifically, 143 

we considered the heterogeneity of cognitive impairment observed in schizophrenia, wherein 144 

deficits often manifest before the first psychotic episode and are highly variable in their 145 

presentation throughout clinical course (27,28). We considered biochemical traits that were 146 

genetically correlated with either schizophrenia or cognition after the application of multiple 147 

testing correction and interrogated their relationship with severe cognitive deficit in a cohort 148 

of schizophrenia cases from the Australian Schizophrenia Research Bank (ASRB) cohort. The 149 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.11.21257061doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21257061
http://creativecommons.org/licenses/by/4.0/


 7 

use of these data was approved by the University of Newcastle Human Research Ethics 150 

Committee (HREC) and the ASRB (28–31). Previously, Green et al. utilised multidimensional 151 

Grade of Membership (GoM) clustering with nine cognitive measures to derive subgroups of 152 

cognitive performance in the ASRB (28). The most parsimonious configuration were two 153 

clusters of schizophrenia cases termed cognitive deficit (CD), with more pervasive cognitive 154 

impairment, and cognitively spared (CS), displaying intermediate cognitive performance 155 

relative to CD cases and healthy controls. Polygenic scores (PGS) were constructed for the 25 156 

biochemical traits correlated with either schizophrenia or cognitive ability in a genotyped 157 

subset of the ASRB with schizophrenia cases subtyped as CD or CS (N = 391, Supplementary 158 

materials). The full details of this cohort and the generation of PGS is described in the 159 

supplementary text. We tested the association of each biochemical PGS with CD status using 160 

binomial logistic regression covaried for sex and the first three SNP-derived principal 161 

components (Supplementary Materials). The variance explained (Nagelkerke’s R2) in the full 162 

model with the PGS versus the null (covariates and intercept only) model, was converted to 163 

the liability scale assuming a population prevalence for CD of 0.33% (32). The population 164 

prevalence for CD is somewhat arbitrary, however, given the population prevalence of 165 

schizophrenia is around 0.7%, and 43% of this portion of the schizophrenia cases in the ASRB 166 

cohort was subtyped as CD, we believe this was an appropriate value to select. A polygenic 167 

score for general cognitive ability and a schizophrenia polygenic risk score (PRS) was also 168 

derived in this cohort for comparison (Supplementary Materials).  169 

 170 

Latent causal variable models 171 

Genetic correlation may reveal important insights into shared biology between two traits, 172 

however, this should not be interpreted as implying a causal relationship in either direction. To 173 

evaluate evidence for a causal relationship, we implemented the latent causal variable (LCV) 174 
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model to estimate genetic causality between traits, as outlined extensively elsewhere (9,33). 175 

The LCV framework leverages the bivariate genome-wide distribution of marginal SNP effects 176 

on both traits to estimate partial genetic causality. Specifically, the LCV assumes a latent 177 

variable, L, mediates the genetic correlation between the traits, and tests the strength of the 178 

correlation of each trait with L. The mixed fourth moments (cokurtosis) of marginal effect sizes 179 

for each trait (𝑍", 𝑍!) are compared to evaluate the proportionality of effects on either trait. The 180 

main output of the LCV model is the posterior mean genetic causality proportion (𝐺𝐶𝑃(), 181 

whereby 𝐺𝐶𝑃( > 0 implies partial genetic causality of trait one on trait two, and vice versa. In 182 

other words, given 𝐺𝐶𝑃( > 0, then trait one SNP effects (𝑍"!) tend to be proportionally large on 183 

trait two (𝑍"𝑍!), such that |𝐸(𝑍"!	𝑍"𝑍!)| 	≥ 	 |𝐸(𝑍!!	𝑍"𝑍!)|.  As in LDSR, the LDSR intercept 184 

is utilised here to guard against inflation due to sample overlap. We defined partial genetic 185 

causality using the recommended threshold of a significantly non-zero |𝐺𝐶𝑃( | > 0.6, as this was 186 

shown by O’Connor and Price in simulations to guard against false positives (9). An LCV 187 

model was constructed for all genetically correlated psychiatric-biochemical trait pairs. Weak 188 

GCP estimates close to zero for genetically correlated traits imply that their relationship is 189 

potentially mediated by horizontal pleiotropy, whereby there are shared pathways, but the two 190 

traits do not likely exhibit vertical pleiotropy by acting within the same pathway. We also 191 

attempted to replicate the observed 𝐺𝐶𝑃( using a non-UKBB biochemical GWAS (34–37).  It 192 

should be noted that the posterior mean 𝐺𝐶𝑃( is not an estimate of the magnitude of any 193 

potential causal relationship and should not be interpreted as such – rather it evaluates the 194 

strength of evidence for a putative causal relationship using genome-wide SNP effects. The 195 

scripts to construct an LCV model are available from (https://github.com/lukejoconnor/LCV).  196 

 197 

 198 
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Mendelian randomisation 200 

C-reactive protein (CRP) exhibited strong evidence of partial genetic causality on multiple 201 

psychiatric disorders, and thus, we sought to estimate the magnitude of this causal relationship 202 

using univariable and multivariable Mendelian randomisation (MR). A detailed description of 203 

the MR methodology in this study is provided in the supplementary materials. MR is different 204 

from the LCV approach in that it leverages independent SNPs strongly associated with trait 205 

one (the exposure trait) as instrumental variables (IVs) to estimate the effect of the exposure 206 

on an outcome. The theoretical justification for using SNPs as IVs has been discussed 207 

extensively previously (8,38). We estimated the total effect of CRP on each disorder using 208 

independent genome-wide significant SNPs from a smaller non-UKBB GWAS as sample 209 

overlap between exposure and outcome can bias MR estimates (Supplementary Materials) (34). 210 

The F-statistic for IVs for this CRP GWAS was sufficiently strong (F-statistic > 10), as 211 

reported previously (34).  212 

 213 

Our primary model was an inverse-variance weighted effect (IVW) estimator with 214 

multiplicative random effects, which assumes all IVs are valid and is less biased by 215 

heterogeneity than a fixed-effects IVW estimator (8). Whilst the IVW estimator is generally 216 

considered the most well-powered approach, the assumption that all IVs are valid is probably 217 

unrealistic in practice. As a result, we implemented a series of models which make different 218 

underlying assumptions regarding IV validity. Specifically, median based estimators which 219 

assume the majority of IVs are valid (39); a weighted mode estimator and a contamination 220 

mixture model, that both assume out of groups of IVs having the same asymptotic estimate, 221 

the largest group will be comprised of valid IVs (plurality valid) (40,41); and MR-Egger, which 222 

includes a non-zero intercept as a test of the average pleiotropic effect and assumes that there 223 

is no significant correlation between direct IV effects on the outcome and genetic association 224 
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of IVs with the exposure (Instrument Strength Independent of Direct Effect (InSIDE) 225 

assumption) (42). As recommended by Bowden et al., we ensured that the I2 statistic of IV-226 

exposure effects exceeded 0.9, as this assesses the relative strength of the no-measurement 227 

error assumption, and thus, the suitability of using an MR-Egger model (43). We also tested 228 

the effect of using robust regression and penalised estimates for heterogeneity on the IVW, 229 

median, and Egger regression estimates (44). Evidence of horizontal pleiotropy and outliers 230 

were further investigated by testing heterogeneity in the IV/exposure-outcome effects (45), 231 

performing a leave-one-IV out analysis (38), testing for a non-zero MR Egger intercept (42), 232 

and an MR PRESSO test of global pleiotropy (also related to heterogeneity)  (46). Furthermore, 233 

we also tested whether there was evidence of a causal effect in the reverse direction (psychiatric 234 

disorder as exposure), although MR estimates with binary exposures should be treated 235 

cautiously, as described elsewhere (47,48). Given only approximately 2,000,000 SNPs were 236 

available in the non-UKBB CRP GWAS utilised, we utilised the more deeply imputed UKBB 237 

CRP GWAS as the outcome here, although these results could therefore be inflated by sample 238 

overlap for AN and MDD.  239 

 240 

Multivariable MR (MVMR) was then performed to evaluate the direct effect of CRP on each 241 

psychiatric outcome tested when conditioned on BMI and interleukin six (IL-6) signalling, 242 

which are both postulated to be closely functionally related to circulating CRP (Supplementary 243 

Text) (49,50). MVMR assumes that IVs are strongly associated with at least one exposure, and 244 

therefore, SNPs were chosen which were genome-wide significant for at least one phenotype. 245 

We constructed an IL-6 and BMI multivariable model separately – that is CRP conditioned on 246 

circulating IL-6 and its receptor (IL6R), and CRP conditioned on BMI, as well as BMI and IL-247 

6R. The strength of the IVs in each multivariable model was assessed using a two-sample 248 

conditional F statistic – which tests whether the IVs strongly predict each exposure, conditional 249 
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on the other exposures in the model (51,52). When an F statistic > 10 could not be achieved, 250 

we relaxed the SNP inclusion threshold to represent suggestive significance in the GWAS 251 

(PGWAS < 1 x 10-5, Supplementary Text). We compared direct estimates for each exposure using 252 

four different MVMR models – an IVW MVMR estimator, a median based MVMR estimator, 253 

an Egger regression based MVMR estimator, and a regularisation approach whereby LASSO 254 

type penalisation is applied to shrink intercept terms corresponding to IVs predicted as valid 255 

(MVMR-LASSO) (53). Given that CRP was genetically correlated with several psychiatric 256 

GWAS, genetic correlation may result in bias in MR estimates (9). However, MR is a valuable 257 

extension to the LCV model as it allows for specification of several different assumptions about 258 

IV validity and facilitates the estimate of total (univariable MR) and direct (MVMR) effects. 259 

The MR analyses were performed using the following packages in R version 3.6.0 – 260 

TwoSampleMR v 0.5.5 (54), MendelianRandomization v 0.5 (55), MRPRESSO v 1.0 (46), 261 

and MVMR v 0.3 (51).  262 

 263 

Genetic overlap between C-reactive protein and schizophrenia 264 

We investigated whether any of the lead SNPs (genome-wide significant) reported in the PGC3 265 

SZ GWAS were also associated with CRP (P < 5 x 10-8). For overlapping genome-wide 266 

significant signals, we tested whether there was a shared causal variant or different causal 267 

variants underlying these loci, assuming a single causal variant, using the coloc package 268 

colocalisation method (56). Moreover, we utilised 𝜌-HESS 269 

(https://github.com/huwenboshi/hess) to estimate local genetic covariance between SZ and 270 

CRP, as opposed to a genome-wide estimate by LDSR, with local genetic covariance (𝜌#,%&'(%) 271 

calculated for munged HapMap3 SNPs in around 1,600 approximately independent LD blocks 272 

outside the MHC (57,58). Genes within the five LD blocks with the most statistically 273 

significant 𝜌#,%&'(% were subjected to pathway analysis using g:Profiler 274 
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(https://biit.cs.ut.ee/gprofiler/gost) (59). We derived an estimate of genetic correlation (𝑟#,%&'(%) 275 

by dividing 𝜌#,%&'(% by the product of the square roots of CRP and SZ local heritability per LD 276 

block, respectively.  277 

 278 

Downstream effects of C-reactive protein 279 

We investigated the downstream effect of CRP on circulating levels of 3284 proteins in blood 280 

using MR (60). We used the larger UKBB CRP GWAS to select IVs to maximise power. The 281 

principal MR model was the IVW estimator with multiplicative random effects to maximise 282 

power. Proteins which demonstrated at least nominal association with CRP levels after multiple 283 

testing correction (FDR < 0.1) were investigated for protein-protein interaction and 284 

overrepresentation in biological pathways using STRING v 11.0 (61).  285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 
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RESULTS 300 

Widespread genetic correlation between blood-based biomarkers and psychiatric traits 301 

We tested the genetic correlation between a panel of blood-based biomarkers and 10 302 

psychiatric GWAS using LDSR. Interestingly, we found that 61% (N = 30) of the biochemical 303 

traits tested were significantly correlated with at least one psychiatric trait after multiple-testing 304 

correction, with every psychiatric trait exhibiting a significantly non-zero biochemical 305 

correlation after correction except for Tourette’s syndrome (Figure 1a, Supplementary Tables 306 

2 – 11) The most significantly correlated biomarker for each trait is outlined in table 1.  307 

 308 

Table 1: The most significant genetic correlation between each trait and a biochemical 309 

GWAS 310 

Biochemical trait Psychiatric trait1 𝒓𝒈2 SE P 

High light scatter reticulocyte percentage ADHD 0.256 0.033 4.58 x 10-15 

High light scatter reticulocyte count OCD -0.212 0.046 3.37 x 10-6 

C-reactive protein AN -0.286 0.038 9.76 x 10-14 

Vitamin D ASD -0.177 0.047 2 x 10-4 

Creatinine BIP -0.106 0.027 7.23 x 10-5 

Leukocyte count Cognition -0.198 0.024 2.66 x 10-16 

Leukocyte count MDD 0.155 0.025 9.77 x 10-10 

Leukocyte count PTSD 0.225 0.043 1.37 x 10-7 

Lymphocyte count SZ 0.075 0.017 1.52 x 10-5 

Lymphocyte count TS -0.093 0.039 0.017 

1Psychiatric GWAS: attention/deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), autism 311 

spectrum disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), obsessive 312 

compulsive disorder (OCD), post-traumatic stress disorder (PTSD), schizophrenia (SZ), and Tourette’s 313 

syndrome (TS). 314 
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2𝑟" is the estimate of genetic correlation from LDSR 315 

 316 

There was clear evidence of biomarkers with divergent genetic correlations between different 317 

psychiatric phenotypes – for instance, CRP, alanine aminotransferase (ALT), and sex-hormone 318 

binding globulin (SHBG, Figure 1b). In the case of CRP, it displayed a negative correlation 319 

after correction with OCD, AN, and cognition, as well as a trend towards a negative correlation 320 

with schizophrenia (P = 1.7 x 10-3), whilst its correlation with PTSD, MDD, and ADHD was 321 

strongly positive. These data provide some support to recent cohort studies, including lower 322 

CRP observed in patients with eating disorder (62), whilst elevated CRP was associated with 323 

ADHD (63). Notably, this contradicts previous observational estimates of elevated CRP in 324 

schizophrenia (64). Moreover, there were 14 biochemical traits which were only correlated 325 

after multiple testing correction with two or fewer psychiatric GWAS. A few such of examples 326 

of these more specific correlations included albumin and ADHD (𝑟# = -0.151), mean 327 

corpuscular volume and AN (𝑟# = 0.087), mean sphered cell volume and SZ (𝑟# = 0.06), and 328 

creatinine with BIP and SZ (SZ: 𝑟# = -0.07, BIP:	𝑟# = -0.106).  329 

 330 

We further investigated the relationship between the profile of 49 LDSR biochemical Z scores 331 

for each psychiatric trait. We observed strong positive and negative correlations between the 332 

trait-wise LDSR biochemical Z for each trait, which we term the biochemical correlation 333 

profile (Figure 1c). For instance, the ADHD biochemical correlation profile demonstrates large 334 

magnitude positive correlations with ASD, MDD, and PTSD but negative correlations with 335 

OCD, AN, and Cognition. This can be interpreted as traits which tend to be positively 336 

correlated with ADHD are also positively correlated with ASD, MDD, and PTSD and vice 337 

versa for OCD, AN, and Cognition. These relationships were further interrogated by subjecting 338 

the 10 biochemical correlation profiles to finite Gaussian mixture modelling (GMM, Figure 339 
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1d). We observed five components (clusters) with diagonal distribution, variable volume, and 340 

equal shape as the most parsimonious parameterisation of the covariance matrix 341 

(Supplementary Table 12). The biochemical correlation profile LDSR Z within each cluster are 342 

plotted in figure 1e. Briefly, the first component was composed of a series of traits with 343 

discordant correlations between the disorders, such as CRP, ALT, and glycaeted haemoglobin 344 

(HbA1c), whilst the second and third component were a diverse set of biomarkers with more 345 

similar LDSR Z across the psychiatric disorders tested. Component four was notable as it was 346 

solely composed of reticulocyte (immature erythrocytes) related traits, which analogous to 347 

component one was quite discordant in its correlation profiles. The fifth and final component 348 

was composed of other erythrocytic related traits, however, the differences between disorders 349 

were less marked than component four. Taken together, this demonstrates that groups of 350 

biomarkers tend to have similar relationships with different psychiatric traits.  351 

 352 

 353 

 354 

 355 
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 360 
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Figure 1. Genetic correlation between blood-based biomarkers and psychiatric 386 

GWAS. (a) Heatmap of LDSR correlation Z scores (𝑟#/standard error) between each 387 

psychiatric trait and 49 biochemical GWAS. The psychiatric and biochemical traits 388 

are grouped on the x and y axes, respectively, by hierachial clustering using Pearson’s 389 

distance. (b) Examples of biochemical traits with evidence of discordant genetic 390 

correlations amongst the different psychiatric phenotypes. C-reactive protein (CRP), 391 

alanine aminotransferase (ALT), and sex-hormone binding globulin (SHBG) are 392 

presented for illustration. The forest plot denotes the LDSR 𝑟# with its standard error 393 

representing the confidence bars. Traits highlighted in blue, orange, and red, for CRP, 394 

ALT, and SHBG, respectively, were significantly correlated after the application of 395 

multiple testing correction. (c) Correlation matrix (Pearson) of LDSR Z between each 396 

trait, correlation estimates that survive correction for the number of tests performed 397 

are highlighted. (d) Components of biochemical LDSR Z scores derived using finite 398 

Gaussian mixture modelling (GMM) – the optimal parametrisation of the variance-399 

covariance matrix was five components with diagonal distribution, variable volume, 400 

and equal shape (VEI). The components are plotted relative to their contribution to 401 

the first and second principal component of the LDSR Z matrix. (e) Box-and-whisker 402 

plots of the LDSR Z for each disorder composed of traits assigned to each of the five 403 

components derived from the GMM procedure.  404 

 405 

 406 

 407 

 408 

 409 
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Genetically proxied biochemical measures were associated with a severe cognitive 410 

deficit schizophrenia subtype 411 

We tested the association between 25 genetically proxied biomarkers (polygenic scores – PGS) 412 

that were correlated with either the schizophrenia or general cognitive ability GWAS and a 413 

severe cognitive deficit subtype of schizophrenia (Cognitive Deficit - CD) and a subset of cases 414 

with less marked impairment (Cognitively Spared – CS). There were two biochemical PGS 415 

that displayed a relatively significant association with CD status – haematocrit percentage and 416 

immature reticulocyte faction (Figure 2, Supplementary Table 13). Each standard deviation 417 

increase in the immature reticulocyte fraction PGS was associated with a 35.7% (95% CI:  418 

14.5%, 56.9%, P = 4.72 x 10-3, q = 0.07) increase in the odds of severe cognitive deficit. 419 

Conversely, genetically proxied haemtocrit percentage exerted a protective effect – OR = 0.744 420 

[95% CI: 0.533, 0.954], P = 5.82 x 10-3, q = 0.07. We emphasise that these signals only survive 421 

multiple testing correction using a lenient false-discovery rate (FDR) threshold of 10%, 422 

however, given the small sample size of this cohort, we believe that these findings remain 423 

noteworthy. Immature reticulocyte fraction was negatively correlated with cognition, with a 424 

trend towards a negative relationship with schizophrenia as well. Interestingly, haemtocrit 425 

percentage was also negatively correlated with cognition, however, there was a depletion of 426 

haemtocrit percentage alleles amongst CD vs CD schizophrenia cases, suggesting a more 427 

complex relationship may be present. Both the haemtocrit and reticulocyte fraction PGS 428 

explained around 1% of phenotypic variance in CD on the liability scale, which is similar to a 429 

PGS for general cognitive ability (Figure 2). A model constructed with all nominally CD- 430 

associated PGS (P < 0.05) explained almost 3% in phenotypic variance. There was a non-431 

significant trend of enrichment of schizophrenia PRS (P = 0.054) in CD. Whilst these values 432 

are modest, it does suggest that the genetic architecture of biochemical traits is correlated with 433 

the severity of cognitive impairment in schizophrenia. 434 
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 435 

  436 

Figure 2. The association between biochemical polygenic scores and a severe 437 

cognitive deficit subtype of schizophrenia. Left panel is a forest plot of the association 438 

(odds ratio with 95% confidence interval) between a standard deviation increase in each 439 

polygenic score (PGS) a severe cognitive deficit (CD), relative to schizophrenia cases 440 

with less marked impairment (CS). The right panel is the variance explained on the 441 

liability scale (Nagelkerke’s R2, assuming an 0.33% CD population prevalence) for 442 

biochemical and a general cognitive ability PGS. 443 

 444 

Strong evidence of partial genetic causality between blood-based biomarkers and 445 

neuropsychiatric illness 446 

A latent causal variable (LCV) model was constructed between each significantly correlated 447 

biochemical-psychiatric trait pair to estimate partial genetic causality (|𝐺𝐶𝑃(| > 0.6 as strong 448 

evidence of partial genetic causality). We can then infer the consequence of the partial genetic 449 

causality of one trait on another using the sign of the genetic correlation. There were five 450 

instances where we found strong evidence of a potential causal relationship, with all of them 451 

suggesting an effect of the biochemical measure on the psychiatric trait, rather than vice versa 452 

(Table 2, Supplementary table 14). These were as follows: glucose on ADHD (𝐺𝐶𝑃( = 0.64), 453 

CRP on AN (𝐺𝐶𝑃( = 0.92), urate on cognition (𝐺𝐶𝑃( = 0.88), CRP on MDD (𝐺𝐶𝑃( = 0.62), and 454 
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CRP on OCD (𝐺𝐶𝑃( = 0.75). It is important to emphasise that these posterior mean 𝐺𝐶𝑃( are not 455 

magnitudes of causal effect and only imply that there is a causal relationship between the 456 

biochemical traits and the psychiatric phenotype. Given the sign of the genetic correlation, we 457 

can likely infer that glucose may increase the risk of ADHD and urate could have a deleterious 458 

effect on general cognitive function. As outlined in a previous section, CRP has highly 459 

divergent correlations, and these data coupled with the LDSR further support a protective effect 460 

on AN and OCD, whilst it is likely risk increasing for MDD. SZ did not quite survive multiple-461 

testing correction for a genetic correlation with CRP, however, given previous evidence of a 462 

protective effect of CRP on SZ from MR studies (65–67), we also constructed an LCV model 463 

between CRP and SZ and found moderate support for this relationship (𝐺𝐶𝑃( = 0.56, SE = 0.23, 464 

P = 5.11 x 10-6). Given the genetic correlation is only small it is less likely that previous MR 465 

studies were unduly biased by genetic correlation. In addition, we also observed an unusual 466 

phenomenon in the HbA1c and PTSD model, whereby the posterior mean 𝐺𝐶𝑃( was strongly 467 

positive (𝐺𝐶𝑃( = 0.76), implying an effect of HbA1c on PTSD, whilst its Z score was negative 468 

(Z = -6.51), which signifies the opposite. As described in the supplementary material and 469 

supplementary figure 1, we found that these conflicting data was likely attributable to a rare 470 

violation of the LCV model assumptions, whereby the mixed fourth moments had opposite 471 

signs to each other and the genetic correlation. This could be explained by certain SNPs having 472 

highly divergent effects from the rest of the genome-wide signal. Moreover, there were two 473 

other trait pairs that trended towards partial genetic causation (|𝐺𝐶𝑃(| > 0.5) but did not exceed 474 

the stringent 0.6 threshold. These were SHBG on cognition (𝐺𝐶𝑃( = 0.55) and triglycerides on 475 

OCD (𝐺𝐶𝑃( = 0.55). We then sought to replicate the LCV findings by utilising different 476 

previously published GWAS for glucose, urate, CRP, and HbA1c. Despite smaller sample 477 

sizes, we found relatively consistent GCP estimates which supported the above models using 478 

the UKBB GWAS (supplementary table 14). The exception to this was HbA1c, which did not 479 
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show strong evidence of partial genetic causality (𝐺𝐶𝑃( = 0.13) using a smaller sample size 480 

GWAS by Wheeler et al. (37).  481 

 482 

Table 2: Strong evidence of partial genetic causality of a biochemical measure on a 483 

psychiatric trait 484 

Biochemical trait Psychiatric trait1 GCP2 SE P3 rg 

Glucose ADHD 0.64 0.28 0.035 0.134 

C-reactive protein AN 0.92 0.07 5.95 x 10-56 -0.286 

C-reactive protein MDD 0.62 0.21 1.57 x 10-12 0.154 

C-reactive protein OCD 0.75 0.16 2.07 x 10-18 -0.201 

Urate Cognition 0.88 0.09 5.27 x 10-114 -0.1047 

1Psychiatric GWAS: attention/deficit hyperactivity disorder (ADHD), anorexia nervosa (AN), major 485 

depressive disorder (MDD), and obsessive-compulsive disorder (OCD). 486 

2The posterior mean genetic causality proportion (GCP), with its accompanying posterior standard error 487 

in the adjacent column. 488 

3P value which tests whether the GCP estimate is significantly different from zero. 489 

 490 

C-reactive protein levels exert a direct protective effect on schizophrenia conditioned on 491 

body mass index and interleukin-6 signalling 492 

CRP displayed strong evidence of partial genetic causality on three psychiatric disorders, and 493 

thus, we sought to further analyse these relationships by estimating total effects and direct 494 

impact of CRP using univariable and multivariable Mendelian randomisation (MR), 495 

respectively (Supplementary Tables 16-22). We included SZ in these analyses, due to evidence 496 

from previous SZ GWAS that CRP exerts a protective effect on schizophrenia liability, as 497 

discussed in the previous section. The CRP GWAS utilised here was drawn from a non-UKBB 498 

cohort such that there was no sample overlap with the AN and MDD GWAS (Supplementary 499 
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Materials) (34). Using our primary model (IVW estimator with multiplicative random effects), 500 

we found evidence that a natural log transformed mg/L increase in CRP was associated with a 501 

statistically significant reduction in the odds of SZ (OR = 0.91 [95% CI: 0.85,0.98], P = 0.01) 502 

and AN (OR = 0.91 [95% CI: 0.83,0.99], P = 0.03), which supports the LDSR inferred direction 503 

of the LCV relationship. Using a less conservative IVW estimator with fixed effects yielded a 504 

more precise estimate in both instances, as expected (CRP → SZ P = 6.29 x 10-5, CRP → AN 505 

P = 9.79 x 10-3). There was a trend towards an odds increasing effect of CRP on MDD (P = 506 

0.19), whilst there was no indication of a reliable effect in the OCD model (P = 0.82). It should 507 

be noted that as MR exploits independent (relative linkage equilibrium) genome-wide 508 

significant variants as IVs, as opposed to using genome-wide marginal effects in the LCV 509 

approach, and thus, a non-significant estimate from MR does not necessarily preclude the 510 

existence of a causal relationship, although LCV models with corresponding MR support 511 

would perhaps be viewed as stronger evidence. We discuss the sensitivity analyses for each of 512 

these univariable models in detail in the supplementary text. Briefly, the five MR tests deployed 513 

with different assumptions regarding IV validity (plurality valid, majority valid, and InSIDE 514 

assumption) had very similar point estimates (OR range: 0.88-0.91) and were all statistically 515 

significant for CRP → SZ with the exception of the simple median (P = 0.07). The CRP → AN 516 

estimate across the different models were also directionally consistent, however, they were not 517 

statistically significant (except for some contamination mixture models with different 518 

prespecified standard deviation of invalid IVs), and thus, the total effect of CRP on AN by MR 519 

has comparatively weaker evidence compared to SZ.  The effect of using robust, penalised, or 520 

robust penalised weights in the median, IVW, and Egger models was not marked for each of 521 

the CRP psychiatric models (Figure 3a, Supplementary Table 21). In the CRP → SZ and CRP 522 

→ AN model, the Egger intercept was not significantly different than zero (although there was 523 

a trend in the AN model, P = 0.07), and thus, there was no strong statistical evidence of 524 
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confounding pleiotropy using this metric. However, there was evidence of heterogeneity 525 

between the IV ratio estimates for AN and SZ: the MR PRESSO global test of pleiotropy was 526 

significant and Cochran’s Q statistic significant for AN and SZ, although both causal estimates 527 

remained statistically significant in the MR-PRESSO outlier corrected estimates 528 

(Supplementary table 19). Given the biological complexity of these phenotypes, heterogeneity 529 

does not necessarily imply confounding pleiotropy. Moreover, using a leave-one-out-analysis, 530 

we found evidence of one outlier IV in the SZ model, whilst there were three outlier SNPs in 531 

the AN model (Supplementary Table 20), although the effects of removing these IVs were 532 

relatively small. The outlier IV in the SZ model was also proximal to the CRP gene itself (IVW 533 

P = 0.07 when removed), meaning it is likely to influence SZ through CRP, rather than being 534 

indicative of confounding pleiotropy. Given the CRP estimates on AN and SZ remained 535 

significant removing outliers by MR PRESSO or through iterative single IV exclusion, it is 536 

less likely that horizontal pleiotropy fully explains these signals. There was also no evidence 537 

using a reverse MR model, with the psychiatric disorder as the exposure, that there were 538 

bidirectional effects, although these models are inherently underpowered and are best treated 539 

as a test of the null hypothesis only (Supplementary Table 22). 540 

 541 
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 542 

Figure 3. Total and direct estimated effect of C-reactive protein on psychiatric 543 

illness. (a) Total effect of CRP on each psychiatric outcome considered. Each point 544 

represents the IV-exposure vs IV-outcome effect. Trend lines are indicative of the 545 

slope of each MR method utilised. The outcomes plotted from left to right are AN, 546 
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MDD, OCD, and SZ. (b) Direct effect of CRP in multivariable MR models – the three 547 

models contained the following phenotypes as additional exposures: i) circulating 548 

interleukin 6 (IL6) and its receptor (IL6R), body mass index (BMI), and IL6R and 549 

BMI. 550 

 551 

We sought to investigate the direct effect of circulating CRP on the above psychiatric 552 

phenotypes using multivariable Mendelian randomisation (MVMR) conditioning on IL-6 553 

signalling and BMI. We found that CRP exhibited a robust direct protective effect on 554 

schizophrenia conditioned on IL-6 signalling and BMI (Supplementary table 23, Figure 3b). 555 

For instance, using a multivariable IVW estimator, the direct effect of CRP on schizophrenia 556 

conditioned on BMI and IL-6R was analogous to the univariable IVW total estimate (OR = 557 

0.88 [95% CI: 0.79, 0.98], P = 0.01). There was no evidence of an effect of BMI or IL-6 558 

signalling on schizophrenia conditioned on CRP. Similarly, the effect size of the CRP → AN 559 

MVMR models remained similar to that estimated in the univariable constructs (Figure 3b), 560 

however, these estimates were only statistically significant in a subset of the models 561 

(Supplementary table 23). As a result, the MR evidence for the direct protective effect of CRP 562 

on AN is comparatively weaker than the CRP → SZ model, as was seen in the univariable 563 

estimates. We also observed some evidence to suggest that IL-6 abundance exerts a protective 564 

effect on AN conditional on CRP and IL-6R, which was nominally non-zero in every MVMR 565 

model except for the median estimator (OR = 0.96 [95% CI: 0.93, 0.99] per unit increase in 566 

IL-6, P = 0.037 – multivariable IVW-multiplicative random effects). Interestingly, whilst 567 

evidence for a direct effect of CRP on MDD conditioned on each variable set was weak (Figure 568 

3b, Supplementary Table 23), there was consistent evidence that elevated IL-6R was associated 569 

with increased odds of MDD conditioned on CRP and IL-6 or CRP and BMI. For example, 570 

each unit increase in blood IL-6R protein expression was estimated to increase the odds of 571 
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MDD by 2.7% [95% CI: 0.6%, 4.9%] conditioned on CRP and BMI. Finally, there was no 572 

evidence in the MVMR models to support the protective effect of CRP on OCD, however, 573 

there was evidence that increased BMI decreases the odds of OCD conditioned on CRP and 574 

IL-6 signalling (Supplementary Table 23). This BMI → OCD effect estimate was quite large, 575 

albeit with wide confidence intervals – OCD OR per SD increase in BMI conditioned on CRP 576 

and IL-6R = 0.52 [95% CI: 0.14, 0.91], P = 1 x 10-3.  577 

 578 

C-reactive protein displays overlapping association signals with schizophrenia and may 579 

have downstream impacts on the brain 580 

There were five schizophrenia GWAS lead SNPs (P < 5 x 10-8), that also obtained genome-581 

wide significance in the UKBB CRP GWAS. Colocalisation analyses using the European only 582 

subset of the SZ GWAS demonstrated strong evidence for the association of three of these loci 583 

with both SZ and CRP, however, there was likely a different underlying causal variant 584 

(Supplementary Table 24, Supplementary Text, Supplementary Figure 2). Local genetic 585 

correlation estimates with 𝜌-HESS demonstrated that 13 of the LD block partitions of the 586 

human genome displayed non-zero local covariance between CRP and SZ (Supplementary 587 

Table 25, Supplementary Figure 3) after Bonferroni correction. Interestingly, five of these LD 588 

blocks with strong evidence of local genetic covariance were positive, and thus, for these 589 

regions of the genome SZ and CRP were positively correlated in contrast to the genome-wide 590 

estimate of nominal negative correlation. We investigated the pathways overrepresented for 591 

genes physically mapped to the LD blocks of the top five most significant 𝑟#,%&'(% estimates 592 

(Supplementary Table 27). Interestingly, we found that retinol metabolism was the most 593 

significantly overrepresented gene-set after multiple testing correction, which is notable given 594 

evidence that retinoids play a role in the pathogenesis of SZ (30,68).  595 

 596 
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We also sought to investigate the downstream consequences of raised CRP. We estimated the 597 

effect of raised CRP on the expression of 3284 proteins in blood using univariable MR. Using 598 

a liberal FDR cut-off of 10%, we found that 95 proteins were putatively causally influenced by 599 

elevated CRP, with 45 of these proteins surviving a stricter FDR threshold of 5% 600 

(Supplementary Table 28). We emphasise that these analyses are exploratory in nature and we 601 

treat the effect sizes of the CRP effect on each protein largely as a test of the null hypothesis 602 

that the two are not associated. The vast majority of proteins prioritised using the IVW 603 

estimator were directionally consistent in the median, mode, and Egger sensitivity analyses 604 

(Supplementary Table 29). However, 20 of the FDR < 0.1 proteins were suggested to act in the 605 

opposite direction and causally influence CRP as the estimated variance explained by the IVs 606 

was significantly larger in the outcome than the CRP exposure, although this does not rule out 607 

bidirectional effects (Supplementary Table 30). We found that these proteins putatively 608 

influenced by CRP were enriched in several pathways including glycaemic signalling and 609 

lymphocyte biology (Supplementary Tables 31-33). Notably, there were neuronal pathways 610 

overrepresented with CRP-associated proteins – including, axon guidance, dopaminergic 611 

synapse, neurogenesis, glial cell differentiation, and cholinergic synapse. For example, 612 

dopaminergic and cholinergic synapse overrepresentations were driven by the three genes 613 

(AKT1, AKT2, and AKT3) that encode the RAC-alpha/beta/gamma serine/threonine-protein 614 

kinase complex, which was measured as a single entity in the protein study. Collectively, these 615 

data provide preliminary evidence that CRP may influence the expression of neuronally 616 

relevant proteins, and subsequent studies should seek to investigate these associations and their 617 

significance for different psychiatric phenotypes.  618 

 619 

 620 

 621 
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DISCUSSION 622 

In this study, we investigated genetic correlation and causality between a diverse panel of 623 

biochemical traits and psychiatric disorders, as well as general cognitive ability and a cognitive 624 

deficit subtype of schizophrenia. Our data demonstrated that there is clear evidence of genetic 625 

overlap between blood-based measures and psychiatric phenotypes, as quantified by LDSR, 626 

which is likely indicative of shared variants and pathways that predispose to these traits. 627 

Interestingly, the distribution of biochemical-psychiatric correlations demonstrated traits often 628 

exhibited highly divergent correlations (different signs), as well as clusters of biochemical 629 

measures that tended to have similar psychiatric correlation profiles. For instance, we found 630 

that five reticulocyte traits clustered together (Figure 1e), and they tended to have opposing 631 

psychiatric correlations (strong positive correlation with ADHD, MDD, and PTSD, whilst 632 

negative correlations with AN, OCD, SZ, and cognition). The genetic architecture of 633 

reticulocyte related traits remains relatively uncharacterised, however, it is a highly polygenic 634 

trait that also has demonstrated genome-wide significant associations with rare non-635 

synonymous variation in genes such as SPTA1, E2F4, and IFRD2 (69,70).  Future study should 636 

further investigate how the genetic factors which contribute to reticulocyte biology may also 637 

influence psychiatric traits. Given the LCV posterior mean GCP estimates between the 638 

genetically correlated reticulocyte traits and each psychiatric phenotype were low, it suggests 639 

the existence of horizontal rather than vertical pleiotropy.  640 

 641 

A key advantage of our study is that we extended the findings from the LDSR models to 642 

estimate which biochemical-psychiatric trait pairs may represent causal relationships. We 643 

caution that all of these findings require validation in well-powered, replicated, randomised 644 

controlled trials to confirm that the causal effects do indeed exist. The putative effect of urate 645 

and glucose on cognition and ADHD, respectively, may have direct implications for drug 646 
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repurposing given that compounds which modulate these traits are readily available. Both of 647 

these relationships are also supported by previous observational data (71–73). Indeed, data 648 

from an incident cohort study which treated individuals with urate lowering compounds 649 

allopurinol and febuxostat demonstrated evidence of a risk decreasing effect on dementia, 650 

supporting the deleterious effect of urate on general cognitive function (74).  651 

 652 

The inferred effect of CRP on different psychiatric disorders was particularly interesting given 653 

that there was evidence of an odds-decreasing effect on AN, OCD, and SZ, whilst the opposite 654 

is true for MDD. CRP is traditionally conceptualised as a biomarker of chronic inflammation; 655 

however, its biology is likely somewhat more complex given it is also implicated to play a 656 

direct role in pathogen response (75,76). Moreover, as reviewed by Del Giudice and 657 

Gangestad, CRP in its hepatically secreted pentameric isoform demonstrates some anti-658 

inflammatory effects and may be a marker of other non-inflammatory states (77). In our study, 659 

we also provide evidence that CRP levels may also exert an effect on proteins with neurological 660 

significance, including proteins enriched in pathways relevant to psychiatric illness such as 661 

axon guidance. Moreover, we show for the first time the previously documented protective 662 

effect of CRP on SZ through MR is not likely attributable to the effect of BMI and IL-6 663 

signalling, which are closely related variables to CRP.  Data from our study and previous 664 

examinations of the relationship between CRP and SZ through MR seemingly contradict 665 

previous observational evidence that CRP is elevated in SZ (64,78). If we assume that there is 666 

a causal effect, there are a number of explanations that could account for this, although all 667 

require further investigation. Firstly, previous observational studies that directly measured 668 

CRP in case/control cohorts could be confounded due to a variety of variables including 669 

lifestyle and general health, or even be caused by factors related to psychosis and/or 670 

schizophrenia itself. Whilst there was no evidence in this study using the LCV model or reverse 671 
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MR that SZ causally influences CRP levels, local significant estimates of positive and negative 672 

genetic correlation between SZ and CRP observed for several LD blocks suggests a complex 673 

interrelationship between these phenotypes may exist that warrants further study. Secondly, 674 

CRP itself may influence factors that impact the brain, directly or indirectly, and these factors 675 

may play a role in the pathogenesis of psychiatric illness. For instance, CRP was postulated in 676 

this study to causally upregulate the expression of the RAC-alpha/beta/gamma 677 

serine/threonine-protein kinase complex (AKT1, AKT2, and AKT3), with impaired signalling 678 

by these serine/threonine kinases implicated to dysregulate dopaminergic neurotransmission 679 

and downregulation of genetically predicted neuronal AKT3 expression associated with SZ via 680 

a transcriptome-wide association study (23,79). Finally, given that infection has been 681 

associated with liability of SZ, the role of CRP in pathogen defence may contribute to its 682 

putative protective properties. Further study on the neurobiological consequences of CRP 683 

signalling and its role in SZ is warranted, particularly to reconcile the discrepancies between 684 

observational studies and MR.   685 

 686 

The putative causal effect of CRP on AN was demonstrated in this study is, to our knowledge, 687 

a novel finding; however, it does support data from a recent longitudinal study which 688 

demonstrated that elevated CRP was associated with a protective effect on eating disorders 689 

(62), along with decreased measured CRP observed specifically in AN (80). It should be noted 690 

that whilst the LCV data supported strong partial genetic causality of CRP on AN, the MR 691 

evidence was less statistically significant, with some evidence in the MVMR that IL-6 692 

signalling may exert a protective effect on AN conditioned-on CRP. Inhibition of the IL-6 693 

pathway has been associated with weight gain which may be protective for AN (81). 694 

Furthermore, CRP likely is intertwined with other metabolic factors, including insulin 695 

signalling, which our group has previously shown through MR is also putatively protective for 696 
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AN (48). In MDD, we found some evidence to support that upregulation of the IL-6 receptor 697 

may be risk increasing conditioned on CRP and BMI, supporting preliminary data that 698 

blockade of IL-6R by agents like tocilizumab may improve depressive symptoms (82). 699 

However, data related to the anti-depressant qualities of tocilizumab are conflicting (83), and 700 

randomised control trials are warranted to further investigate repurposing opportunities for IL-701 

6 inhibition in MDD. Finally, BMI demonstrated a quite robust protective effect on OCD 702 

conditioned on CRP and IL-6 signalling, in accordance with observational data that OCD is 703 

associated with reduced odds of obesity (84).  704 

 705 

There are a number of important limitations that are central to the interpretation of the data in 706 

this study. Genetic correlations from LDSR likely reflect a shared underlying genetic 707 

architecture, however, this could be mediated by the relationship of the same genetic variants 708 

to another variable or variables (7). Despite this limitation, the existence of horizontal 709 

pleiotropy between traits is still informative as identifying genes which effect both psychiatric 710 

and biochemical traits, and further insight into the mechanisms, would likely refine our 711 

understanding of both traits. Moreover, the genetically informed causal inference approaches 712 

we implement in this study are subject to limitations regarding the data they are performed 713 

with and any biases therein, including potential effects of population stratification (85), 714 

selection bias (86), and the assumption of acyclicity. The LCV model is also fixed to be 715 

bivariate in nature, and thus, the effects of multiple meditators cannot be taken into account. 716 

We address this by constructing multivariable MR models such that direct effects are estimated 717 

conditioned on likely confounders, however, our selection of confounders is not exhaustive, 718 

and other unidentified factors may influence our findings. The UKBB sample is also composed 719 

of older individuals over the age of 40, and thus, more developmentally sensitive effects on the 720 

biochemical traits in question could not be assessed. Genetic variants are also sometimes 721 
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claimed to represent a lifetime effect on a particular variable, although caution is required in 722 

this inference given that factors like age may modulate the effect of a variant (87,88). We assert 723 

that although GWAS informed causal inference has a number of caveats and limitations it 724 

enables an important opportunity to priortise biochemical traits which are putatively clinically 725 

relevant in psychiatry and inform future study into these traits.  726 
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Supplementary Figure 1. Analysis of an LCV model violation in the HbA1c to 

PTSD model. As outlined in the supplementary text, we demonstrated that the two 

mixed fourth moments (cokurtosis) estimates for HbA1c to PTSD were opposite in 

sign, with an outlier jackknifed estimate of  which suggests discordant SNP 

effects relative to the genome-wide signal. Conversely, the CRP to AN and CRP to 

MDD had consistent signs of  and  relative to each other and the 

genetic correlation. In both CRP models, , which implies 

GCP > 0. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.11.21257061doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21257061
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 2. The effect of 
different prior probabilities for the hypothesis 
that the SZ and CRP share a same causal 
variant. Each of these plots represent the 
colocalisation results for the five regions 
outlined in supplementary table 24, in order 
from region 1 to 5, left to right, top to bottom. 
We plot the effects of varying the default prior 

probability for the 
shared causal 
variant above or 
below its default 
of 1 x 10-5. 
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Supplementary Figure 3 
 

 
 

Supplementary Figure 3. Local genetic covariance and correlation between 

schizophrenia and CRP as estimated by �-HESS. The first two panels are 

estimates of local genetic correlation and covariance for each approximately 

independent LD block throughout the genome. Coloured bars represent significant 

estimates. The remaining two panels are local estimates SNP heritability in those 

same regions for CRP and SZ, respectively.  
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