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Abstract 15 

When quantitative longitudinal traits are risk factors for disease progression and subject to random 16 

biological variation, joint model analysis of time-to-event and longitudinal traits can effectively 17 

identify direct and/or indirect genetic association of single nucleotide polymorphisms (SNPs) with 18 

time-to-event. We present a joint model that integrates: i) a multivariate linear mixed model 19 

describing trajectories of multiple longitudinal traits as a function of time, SNP effects, and 20 

subject-specific random effects, and ii) a frailty Cox survival model that depends on SNPs, 21 

longitudinal trajectory effects, and subject-specific frailty accounting for dependence among 22 

multiple time-to-event traits. Motivated by complex genetic architecture of type 1 diabetes 23 

complications (T1DC) observed in the Diabetes Control and Complications Trial (DCCT), we 24 

implement a two-stage approach to inference with bootstrap joint covariance estimation and 25 

develop a hypothesis testing procedure to classify direct and/or indirect SNP association with each 26 

time-to-event trait. By realistic simulation study, we show that joint modelling of two time-to-27 

T1DC (retinopathy, nephropathy) and two longitudinal risk factors (HbA1c, systolic blood 28 

pressure) reduces estimation bias in genetic effects and improves classification accuracy of direct 29 

and/or indirect SNP associations, compared to methods that ignore within-subject risk factor 30 

variability and dependence among longitudinal and time-to-event traits. Through DCCT data 31 

analysis, we demonstrate feasibility for candidate SNP modelling, and quantify effects of sample 32 

size and Winner’s curse bias on classification for two SNPs identified as having indirect 33 

associations with time-to-T1DC traits. Overall, joint analysis of multiple longitudinal and multiple 34 

time-to-event traits provides insight into complex trait architecture. 35 

Running title: Joint models for multiple-trait genetics. 36 
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INTRODUCTION 43 

Despite their known ability to improve inference in clinical and epidemiological studies, 44 

particularly in the presence of informative censoring/dropout or when longitudinal traits are 45 

measured with biological random variation (Hogan and Laird 1998; Ibrahim et al. 2010; Chen et 46 

al. 2011), joint models for longitudinal and time-to-event (TTE) outcomes have received limited 47 

attention in genetic association study design and analysis. Genome-wide association studies 48 

(GWAS) of quantitative traits (QTs) often require follow-up analyses to identify whether SNP 49 

associations detected with each of the QT(s), analyzed separately, also affect related disease 50 

outcomes through direct and/or indirect effects induced by those QTs (Fig. 1). Such QTs can 51 

include established intermediate risk factors for clinical outcomes, which may be measured with 52 

high within-subject variability (e.g. random biological variation). By accounting for random 53 

measurement error in intermediate QT risk factors and dependencies among traits, joint model 54 

analysis can improve accuracy and efficiency of effect estimation, as well as detection and 55 

interpretation of SNP associations. 56 

The multiple-trait extensions we develop stem from a random-effects joint model that consists of 57 

a sub-model for a single longitudinal trait linked to a sub-model for a single right-censored time-58 

to-event trait (Wu et al. 2012; Asar et al. 2015). The longitudinal sub-model describes the QT as 59 

an underlying smooth trajectory that depends on fixed effects of time and baseline covariates, as 60 

well as subject-specific random effects. The joint model association structure is induced via the 61 

functional dependence between the hazard of an event at time t and the longitudinal trait trajectory 62 

(Hickey et al. 2016; Papageorgiou et al. 2019). Specification of this relationship can be based on 63 

prior biological knowledge of the link between the longitudinal and time-to-event traits. As 64 

previously elucidated, this class of joint models provides interpretations of direct and/or indirect 65 
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effects because the relationship between a baseline covariate, such as a SNP genotype, and each 66 

of the longitudinal and time-to-event traits, as well as the relationship between the longitudinal 67 

and time-to-event traits can be specified via model parameters corresponding to direct, indirect 68 

and overall effects (Ibrahim et al. 2010). In this report, we demonstrate that extensions to jointly 69 

model multiple longitudinal and multiple time-to-event traits can further improve inference by (i) 70 

borrowing information shared among correlated traits, and (ii) accounting for indirect genetic 71 

pathways from multiple longitudinal QT risk factors, that if ignored, can confound an indirect 72 

genetic association with a direct association. 73 

Joint model extensions have been reviewed for multiple longitudinal traits (Hickey et al. 2016; 74 

Papageorgiou et al. 2019) and for multiple time-to-event traits (Hickey et al. 2018a). Although a 75 

few extensions have been developed for both multiple longitudinal and multiple time-to-event 76 

traits, for example (Zhu et al. 2012; Tang et al. 2014; Tang and Tang 2014), these models are often 77 

formulated for a specific study question, and thus can lack generalizability. In addition, such 78 

extensions raise computational challenges for maximisation of the marginal likelihood that 79 

integrates over the distribution of the multivariate random effects. Two-stage approaches for joint 80 

model fitting are computationally efficient and allow more flexible model formulations (Self and 81 

Pawitan 1992; Tsiatis et al. 1995; Bycott and Taylor 1998; Dafni and Tsiatis 1998). However, in 82 

some circumstances, inference can be mis-calibrated when parameter estimates and predictions 83 

from Stage 1 are obtained from the longitudinal model without consideration of the time-to-event 84 

outcome, or when the uncertainty in Stage 1 estimates is ignored during Stage 2 estimation  85 

(Wulfsohn and Tsiatis 1997), a problem known as propagation of errors. 86 
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Motivated by the complex genetic architecture of long-term type 1 diabetes complications (T1DC), 87 

we develop a joint-model extension to evaluate genetic associations with multiple longitudinal QT 88 

risk factors and multiple TTE traits. Risk of development of T1DC, including diabetic retinopathy 89 

(DR) and diabetic nephropathy (DN), is hypothesized to result from multiple genetic factors with 90 

potential direct and/or indirect effects induced via multiple shared and/or specific QT risk factors 91 

(Paterson and Bull 2012). Besides potential genetic factors, hyperglycemia (measured by 92 

Hemoglobin A1c, hereafter abbreviated as HbA1c) represents a major risk factor for T1DC; 93 

intensive insulin therapy to control the HbA1c level to a normal range prevents and delays 94 

progression of long-term T1DC, as demonstrated by the Diabetes Control and Complications Trial 95 

(DCCT, (The Diabetes Control and Complications Trial Research Group 1993)). The first GWAS 96 

to analyze the DCCT study phenotypes identified two SNPs associated with within-patient mean 97 

HbA1c at genome-wide significance in the Conventional treatment arm, namely rs10810632 (in 98 

BNC2, 9p22.2) and rs1358030 (near SORCS1, 10q25.1), and reported weaker SNP associations 99 

with the secondary outcomes time-to-DR and/or time-to-DN (Paterson et al. 2010). Genetic 100 

association studies also reported variants with potential pleiotropic effects on DR and DN 101 

(Hosseini et al. 2015). Other measured longitudinal QTs, also influenced by genetic factors, are 102 

postulated to have associations with T1DC, for example, association of systolic blood pressure 103 

(SBP) with DN. 104 

Our objective is to develop an integrated approach to investigate the complex genetic architecture 105 

of disease complications, and associated risk factors, as in the motivating study of type 1 diabetes 106 

complications. The approach we develop entails multiple longitudinal risk factors and multiple 107 

time-to-event outcomes, as well as multiple SNP associations with multiple traits. In addition to 108 

genetic variants associated with risk factors, the model needs to handle multiple longitudinal 109 
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quantitative risk factors that can be related to more than one complication, and genetic variants 110 

that can affect risk of more than one complication directly and/or indirectly through intermediate 111 

risk factor(s); accounting for known intermediate longitudinal QTs is essential to correctly 112 

distinguish between direct and indirect genetic effects on each T1DC trait. To this end, we 113 

formulate a general model extension to multiple longitudinal QTs and multiple TTE traits, which 114 

proposes correlated random effects and a frailty term to address dependency among QTs and 115 

among TTE traits. 116 

Based on the DCCT study, we hypothesize a multi-trait model for T1DC genetic architecture, and 117 

develop methods to investigate it. Because the goal of intensive therapy in DCCT was to reduce 118 

HbA1c into the non-diabetic range, which produced treatment differences in HbA1c values, we 119 

base our joint model evaluation and application on N=667 unrelated individuals of European 120 

ancestry from the Conventional treatment group. Longitudinal measurements for HbA1c and SBP 121 

were recorded irrespective of the occurrence of any complication event(s) at up to 39 quarterly 122 

visits (See File S1 for a description of the DCCT dataset we analysed). HbA1c and SBP are 123 

established risk factors for T1DC, and genetic association with either risk factor can induce an 124 

indirect genetic association with T1DC. The latter can be mistaken as a direct genetic association 125 

when the intermediate longitudinal risk factor(s) is ignored. Distinguishing between direct and/or 126 

indirect genetic effects can help to reveal genetic pathways in the aetiology of T1DC with 127 

implications for the direction of on-going investigations, and development of new intervention 128 

strategies. Nevertheless, accurate classification of direct and/or indirect SNP associations is 129 

challenged by within-patient variability in intermediate QT(s), and unmeasured shared risk factors 130 

among longitudinal and time-to-event traits. 131 
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The primary contribution of our work is a general formulation of a joint model for multiple 132 

longitudinal QT risk factors and multiple time-to-event traits in genetic association studies. We 133 

develop inference methods for statistical genetic analysis using a two-stage approach to joint 134 

model parameter estimation and hypothesis testing, including a procedure to classify SNP 135 

associations with each time-to-event trait as direct and/or indirect. A second contribution of this 136 

paper is the development of a data-informed simulation algorithm, under the postulated multi-trait 137 

model for T1DC genetic architecture, to generate multiple causal SNPs with various direct effects 138 

on simulated TTE traits and/or indirect effects via observed (measured) longitudinal QTs in DCCT 139 

and unobserved (simulated) longitudinal QTs. This algorithm provides a general approach to 140 

estimate power of the joint modeling approach (in comparison to alternative methods) given study 141 

sample size and various direct/indirect genetic associations via observed or unobserved 142 

longitudinal QT(s) risk factors for time to disease complications. Our numerical investigations 143 

show that the proposed method reduces estimation bias and improves accuracy of classification of 144 

direct and/or indirect SNP associations in comparison with separate joint models for each pair of 145 

longitudinal QT and time-to-event trait, and approaches that ignore measurement error in 146 

longitudinal QT(s). Lastly, we show computational feasibility and interpretation in an extended 147 

joint model application to DCCT genetic association analyses of candidate SNPs. Using the 148 

proposed procedure, we classify rs10810632 and rs1358030 as having indirect association with 149 

two T1DC traits via the HbA1c longitudinal risk factor, and obtain similar conclusions using 150 

alternative time-dependent association structures that account for cumulative and time-weighted 151 

effects of HbA1c on T1DC traits (Lind et al. 1995; Lind et al. 2010). Example programs written 152 

in R for data simulation and for application of the proposed joint model are available on GitHub. 153 
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MATERIALS AND METHODS 154 

Model Formulation 155 

We assume that a set of M SNPs have been genotyped, together with observation of K (1 ≤ k ≤ K) 156 

unordered and non-competing time-to-event traits, such as multiple disease complications, and L 157 

(1 ≤ l ≤ L) longitudinal QTs (i.e. intermediate risk factors) measured in N unrelated individuals 158 

indexed by i (1 ≤ i ≤ N). To characterize the genetic architecture of multiple longitudinal risk 159 

factors and multiple time-to-events, we formulate a shared-random-effects joint model that 160 

connects longitudinal and time-to-event sub-models through specified time-dependent association 161 

structures. For ease of presentation, we simplify the model notation by assuming no adjusting 162 

covariates but note that trait-specific and/or shared covariates, such as confounding factors or 163 

ancestry-related principal components can be easily incorporated. We first introduce the joint 164 

model for one longitudinal trait ( 𝐿 = 1 ) and one time-to-event trait (𝐾 = 1) . Then, in the 165 

subsequent subsection, we present the extension for an arbitrary number of longitudinal and time-166 

to-event traits. 167 

Joint model for one longitudinal and one time-to-event trait – For each individual i, we define 168 

𝒚𝒊  = (𝑦𝑖,1, … , 𝑦𝑖,𝑗, … , 𝑦𝑖,𝐽), as the vector of QT measures collected over the J visit times 𝒕𝒊 =169 

(𝑡𝑖,1, … , 𝑡𝑖,𝑗, … , 𝑡𝑖,𝐽 )T  with 1 ≤ 𝑗 ≤ 𝐽  and 𝑡𝑖,1 ≤ ⋯ ≤ 𝑡𝑖,𝑗 ≤ ⋯ ≤ 𝑡𝑖,𝐽 . We denote (𝑇𝑖, 𝛿𝑖) as the 170 

vector of right-censored event time 𝑇𝑖 and event indicator 𝛿𝑖 for the time-to-event trait, and assume 171 

𝑇𝑖 = min(𝑇𝑖
∗, 𝐶𝑖), where 𝑇𝑖

∗ is the latent (uncensored) event time and 𝐶𝑖 is the censoring time (e.g., 172 

administrative censoring). We define 𝛿𝑖= 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖), with 𝛿𝑖 = 1 if the event occurs during the 173 

observation period, and 𝛿𝑖 = 0 otherwise.  174 
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Longitudinal sub-model. This is specified by a mixed-effects model for the longitudinal QT, based 175 

on the (Laird and Ware 1982) linear mixed model. The model builds on the assumption that for 176 

every individual in the sample there exists an underlying smooth trajectory of the longitudinal QT 177 

that describes the subject-specific evolution dependent on time, SNP effect, and individual-level 178 

random effects 𝒃𝒊. To simplify the presentation, we assume a linear QT trajectory (Equation 1), 179 

but the longitudinal sub-model can be adapted for nonlinear trajectories using, for example, higher 180 

order polynomials or splines (Rizopoulos 2012):  181 

 𝑦𝑖
∗(𝑡) = 𝛽0 + 𝑏𝑖,0 + (𝛽1 + 𝑏𝑖,1)𝑡 + 𝛽𝑔𝑔𝑖                  (Equation 1, smooth linear trajectory) 182 

Where: 183 

• 𝑔𝑖, is the genotype of the individual i for the SNP being tested, coded as the number of 184 

copies of the minor allele, 185 

• 𝜷 = (𝛽0, 𝛽1, 𝛽𝑔)
𝑇

 is the vector of fixed intercept and slope time effects and fixed genetic 186 

effect on the longitudinal QT, 187 

• 𝒃𝒊 = (𝑏𝑖,0, 𝑏𝑖,1)
𝑇
 are the subject-specific random intercept and slope time effects assuming 188 

             𝒃𝒊~𝑁2(0, 𝑫) and 𝑫 is the variance-covariance matrix. 189 

This trajectory cannot be observed directly, rather we observe longitudinal measurements 𝒚𝒊 190 

collected at discrete time points 𝒕𝒊 ; measurements are subject to independent and identically 191 

distributed noise contamination variables 𝜺𝒊~𝑁𝐽(0, 𝜮),  where 𝜺𝒊 = (휀𝑖,1, … , 휀𝑖,𝑗, … , 휀𝑖,𝐽)𝑇 , 𝜮 =192 

𝜎2𝑰𝑱, with 𝜎2, the residual variance of the QT:  193 
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 𝒚𝒊 = 𝑦𝑖
∗(𝒕𝒊)  + 𝜺𝒊                                            (Equation 2, vector of observed trait values) 194 

We assume that 𝒃𝒊 and 𝜺𝒊 are independent (Laird and Ware 1982).  195 

Equation 2 implies that 𝒚𝒊 in ℜ𝐽 follows a multivariate normal distribution with:  196 

𝐸[𝒚𝒊] = 𝑿𝒊𝜷    and   𝑉𝑎𝑟[𝒚𝒊] = 𝒁𝒊𝑫𝒁𝒊
𝑻 + 𝜮,  197 

where 𝑿𝒊 = (𝟏𝑱, 𝒕𝒊, 𝑔𝑖𝟏𝑱) denotes the (J-by-3) design matrix for the fixed intercept, slope, and 198 

SNP effects, and 𝒁𝒊 = (𝟏𝑱, 𝒕𝒊) is the (J-by-2) design matrix for the random intercept and slope 199 

effects, with 𝟏𝑱 = (1, … ,1, … ,1)𝑇 . To increase robustness to misspecification of the variance-200 

covariance matrix 𝑫, we adopt an unstructured form for the random-effects variance, defined as 201 

𝑫 = (
Var(𝑏𝑖,0) Cov(𝑏𝑖,0, 𝑏𝑖,1)

Cov(𝑏𝑖,0, 𝑏𝑖,1) Var(𝑏𝑖,1)
) , with the added benefit of not requiring additional 202 

constraints on the serial dependence between the repeated measurements for each individual. This 203 

choice implies that the covariance function between any pair of QT observations for individual i 204 

collected at two distinct visit times 𝑡𝑖,𝑗 ≠ 𝑡𝑖,𝑠 (1 ≤ 𝑗 ≤ 𝐽 and 1 ≤ 𝑠 ≤ 𝐽, with 𝑗 ≠ 𝑠) is given by 205 

𝐶𝑜𝑣(𝑦𝑖,𝑗 , 𝑦𝑖,𝑠) = 𝑡𝑖,𝑗𝑡𝑖,𝑠𝑉𝑎𝑟(𝑏𝑖,1) + (𝑡𝑖,𝑗 + 𝑡𝑖,𝑠)𝐶𝑜𝑣(𝑏𝑖,0, 𝑏𝑖,1) + 𝑉𝑎𝑟(𝑏𝑖,0) + 𝜎2 , with variance 206 

function 𝑉𝑎𝑟(𝑦𝑖,𝑗) = 𝑡𝑖,𝑗
2 𝑉𝑎𝑟(𝑏𝑖,1) + 2𝑡𝑖,𝑗𝐶𝑜𝑣(𝑏𝑖,0, 𝑏𝑖,1) + 𝑉𝑎𝑟(𝑏𝑖,0) + 𝜎2 , which is quadratic 207 

over time with positive curvature at 𝑉𝑎𝑟(𝑏𝑖,1). 208 

Time-to-event sub-model. This is specified by a proportional hazards model (PH model), in which 209 

the hazard function of the time-to-event trait is defined as the instantaneous event rate in a small 210 

interval around 𝑇𝑖
∗ given that the event has not occurred before time t, genetic effect and a function 211 

of the history of the true unobserved longitudinal process up to time t that is associated with risk 212 
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of the event, 𝑊𝑖(𝑡) = 𝑓(𝑌𝑖
∗(𝑡)) , with 𝑌𝑖

∗(𝑡)={ 𝑦𝑖
∗(𝑠), 0 ≤ 𝑠 ≤ 𝑡} . We specify that the hazard 213 

function (Equation 3) depends on the SNP effect adjusted for association of the longitudinal QT 214 

risk factor with the time-to-event trait.  215 

Now, 𝜆𝑖(𝑡) = lim
𝑑𝑡→ 0

Pr{ 𝑡 ≤ 𝑇𝑖
∗ < 𝑡 + 𝑑𝑡 | 𝑇𝑖

∗ ≥ 𝑡,  𝑊𝑖(𝑡) = 𝑓(𝑌𝑖
∗(𝑡)),  𝑔𝑖}/𝑑𝑡 216 

and we assume 𝜆𝑖(𝑡) = 𝜆0(𝑡) × 𝑒𝑥𝑝{𝛼𝑤𝑖(𝑡) + 𝛾𝑔𝑔𝑖}                                       (Equation 3) 217 

Where:  218 

• 𝜆0(𝑡) is a (parametric or non-parametric) baseline hazard function; 219 

• 𝑤𝑖(𝑡) = 𝑓(𝑦𝑖
∗(𝑡)) specifies the function of the longitudinal QT trajectory accounting for 220 

trajectory values at time t that is associated with risk of the event. In the case of a 221 

contemporaneous parametrization, the hazard of an event at a time t depends on the 222 

longitudinal trajectory value at the same time t (i.e. 𝑤𝑖(𝑡) = 𝑦𝑖
∗(𝑡)). Other functional forms 223 

of the QT trajectory can weight earlier QT values according to prior knowledge of the 224 

relationship of the QT with the time-to-event trait (Hickey et al. 2016; Mauff et al. 2017; 225 

Papageorgiou et al. 2019); 226 

• 𝛼 is the effect of the longitudinal QT risk factor on the time-to-event trait; 227 

• 𝛾𝑔 denotes the genetic effect on the time-to-event trait accounting for association of the 228 

longitudinal QT risk factor with the time-to-event trait.  229 

Interpretation. As depicted in Fig. 1, the joint model parameters characterize relationships among 230 

a SNP, an intermediate QT, and a time-to-event trait and decompose possible effects of a SNP on 231 
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a time-to-event trait into: an indirect effect induced via the SNP effect on the longitudinal QT; and 232 

a direct SNP effect independent of the QT (Ibrahim et al. 2010; Hickey et al. 2018b). 233 

Based on the SNP effects, 𝛽𝑔 and 𝛾𝑔, and assuming 𝛼 ≠ 0, a SNP association with a time-to-event 234 

trait can be one of three types: 235 

• indirect SNP association: the SNP has a non-null effect on the longitudinal QT (𝛽𝑔 ≠ 0), 236 

but no effect on the time-to-event trait (𝛾𝑔 = 0);  the overall SNP effect 𝜃 depends on the 237 

indirect effect (𝜃 = µ𝑔, with µ𝑔 = 𝛼𝛽𝑔).  238 

• direct SNP association: the SNP has a non-null effect on the time-to-event trait (𝛾𝑔 ≠ 0), 239 

but no effect on the longitudinal QT (𝛽𝑔 = 0); the overall SNP effect depends only on the 240 

direct effect (𝜃 = 𝛾𝑔).  241 

• both direct and indirect SNP associations: the SNP has non-null effects on the longitudinal 242 

risk factor (𝛽𝑔 ≠ 0) and on the time-to-event trait (𝛾𝑔 ≠ 0). In this case, the overall SNP 243 

effect 𝜃 aggregates the indirect and direct SNP effects (𝜃 = µ𝑔 + 𝛾𝑔, with µ𝑔 = 𝛼𝛽𝑔).  244 

In later subsections, we detail statistical implementation for estimation of the 𝛼, 𝛽𝑔 and 𝛾𝑔 245 

parameters and associated hypothesis testing in the joint model, which underlie the procedure we 246 

then propose to classify the SNP association as indirect, direct, or both direct and indirect.  247 

When an associated longitudinal risk factor is omitted from the time-to-event model, the estimated 248 

SNP effect on the time-to-event trait captures the overall SNP effect (𝜃 = µ𝑔 + 𝛾𝑔). This can 249 

occur in GWAS when the time-to-event analysis ignores an intermediate risk factor or when the 250 

time-to-event trait is associated with more than one intermediate risk factor. This observation also 251 

illustrates one of the limitations of the joint model for one longitudinal with one time-to-event trait, 252 
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with the consequence that an indirect SNP association can be mistaken as a direct association when 253 

other longitudinal risk factors are omitted in the joint model. 254 

Generalization of the joint model to multiple longitudinal and multiple time-to-event traits –255 

To characterize the genetic architecture of a system of multiple longitudinal risk factors and 256 

multiple time-to-events, we propose an extension of the joint model to L longitudinal and K time-257 

to-event traits (L>1, K>1), as shown in Fig. 2 and detailed as follows. We define 𝒚𝒊,𝒍  =258 

(𝑦𝑖,𝑙,1, … , 𝑦𝑖,𝑙,𝑗, … , 𝑦𝑖,𝑙,𝐽) as the observed longitudinal measures for each lth QT, 1 ≤ l ≤ L, collected 259 

over the J visit times 𝒕𝒊. We define (𝑇𝑖,𝑘, 𝛿𝑖,𝑘) as the vector of observed right-censored event time 260 

𝑇𝑖,𝑘 and event indicator 𝛿𝑖,𝑘 for each kth time-to-event trait for individual i, with 𝛿𝑖,𝑘 = 𝐼(𝑇𝑖,𝑘
∗ ≤261 

𝐶𝑖). We assume the same censoring time 𝐶𝑖 across all K outcomes, but the model can be extended 262 

to situations where 𝐶𝑖  varies for each time-to-event trait. Again, for ease of presentation, we 263 

simplify the model notation with no adjusting covariates and assume linear trajectories for all L 264 

longitudinal traits and contemporaneous effects of L longitudinal traits on the K time-to-event 265 

traits. The model can be extended to account for non-linear trajectories, cumulative longitudinal 266 

effects, and trait-specific and/or shared covariates such as confounding factors or ancestry-related 267 

principal components. 268 

 269 

Multivariate longitudinal sub-model. In the extension of the longitudinal sub-model to L 270 

longitudinal traits, we index subscripts in Equations 1 and 2 for each lth longitudinal trait 271 

(Equations 4 and 5 in Fig 2). The vector of observed trait values becomes: 272 

𝒚𝒊,𝒍 = 𝑿𝒊,𝒍𝜷𝒍 + 𝒁𝒊𝒃𝒊,𝒍  + 𝜺𝒊,𝒍                            (observed repeated measures for the lth QT) 273 

Where: 274 
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•  𝑿𝒊,𝒍 = (𝟏𝑱, 𝒕𝒊, 𝑔𝑖𝟏𝑱)  and 𝒁𝒊,𝒍 = (𝟏𝑱, 𝒕𝒊)  are the design matrices for fixed and random 275 

effects, 276 

• 𝜷𝒍 = (𝛽0,𝑙, 𝛽1,𝑙, 𝛽𝑔,𝑙)
𝑇

 and 𝒃𝒊,𝒍 = (𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑙)
𝑇 denote the QT-specific fixed and random 277 

effects, 278 

• 𝜺𝒊,𝒍 = (𝜺𝒊,𝟏,𝒍, … , 𝜺𝒊,𝒋,𝒍, … , 𝜺𝒊,𝑱,𝒍)
𝑻 is the vector of residual error terms, with 𝜺𝒊,𝒍~𝑵𝑱(𝟎, 𝜮𝒍), 279 

where 𝚺𝒍 = 𝜎𝑙
2𝑰𝑱  with 𝜎𝑙

2 , the residual variance for the lth QT; we assume the 𝜺𝒊,𝒍  are 280 

independent for all L traits. 281 

To account for dependence among the L longitudinal QTs, we assume the overall random effects 282 

vector for all L QTs, 𝒃𝒊 = (𝒃𝒊,𝟏, … , 𝒃𝒊,𝒍, … , 𝒃𝒊,𝑳)𝑻~𝑁2𝐿(𝟎, 𝑫), where 𝑫 = (

𝑫𝟏,𝟏 ⋯ 𝑫𝟏,𝑳

⋮ 𝑫𝒍,𝒍 ⋮

𝑫𝑳,𝟏 ⋯ 𝑫𝑳,𝑳

) is 283 

the variance-covariance matrix for all L QTs, accounting for serial dependencies within each lth 284 

QT, i.e. 𝑫𝒍,𝒍 = (
Var(𝑏𝑖,0,𝑙) Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑙)

Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑙) Var(𝑏𝑖,1,𝑙)
) , and  accounting for cross-dependencies 285 

between each pair l, m of QTs with l≠m, that is 𝑫𝒍,𝒎 = (
Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,0,𝑚) Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑚)

Cov(𝑏𝑖,1,𝑙, 𝑏𝑖,0,𝑚) Cov(𝑏𝑖,1,𝑙, 𝑏𝑖,1,𝑚)
).  286 

This formulation implies that the vector of stacked repeated measures for all L longitudinal QTs 287 

for individual i, 𝒚𝒊 = (𝒚𝒊,𝟏, … , 𝒚𝒊,𝒍, … , 𝒚𝒊,𝑳)𝑇  in  ℜ𝐽×𝐿 follows a multivariate normal distribution 288 

with mean 𝐸[𝒚𝒊] = 𝑿𝒊𝜷 and variance 𝑉𝑎𝑟[𝒚𝒊] = 𝒁𝒊𝑫𝒁𝒊
𝑻 + 𝚺,  where: 289 

•  𝑿𝒊 = 𝑑𝑖𝑎𝑔( 𝑿𝒊,𝟏, . . . ,  𝑿𝒊,𝒍, … ,  𝑿𝒊,𝑳)  and  𝒁𝒊 = 𝑑𝑖𝑎𝑔( 𝒁𝒊,𝟏, . . . ,  𝒁𝒊,𝒍, … ,  𝒁𝒊,𝑳)  are the 290 

overall (JL-by-3L) and (JL-by-2L) design block diagonal matrices for the fixed and 291 

random effects respectively; 292 

• 𝜷 = (𝜷𝟏, … , 𝜷𝒍, … , 𝜷𝑳)𝑇 is the 3L-length stacked vector of fixed effects, 293 
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• 𝑫 is the (2L-by-2L) covariance matrix for random effects 𝒃𝒊 = (𝒃𝒊,𝟏, … , 𝒃𝒊,𝒍, … , 𝒃𝒊,𝑳)
𝑻
, 294 

• 𝚺 = 𝑑𝑖𝑎𝑔(𝜮𝟏, … , 𝜮𝒍, … , 𝜮𝑳)𝑇  is the (JL-by-JL) block diagonal matrix of residual 295 

variances. 296 

Assuming, for each lth QT, an unstructured variance-covariance matrix 𝑫𝒍,𝒍, the variance at each 297 

visit time  𝑡𝑖,𝑗 is 𝑉𝑎𝑟(𝑦𝑖,𝑗,𝑙) and the covariance function 𝐶𝑜𝑣(𝑦𝑖,𝑗,𝑙, 𝑦𝑖,𝑠,𝑙) between two visit times 298 

 𝑡𝑖,𝑗 ≠  𝑡𝑖,𝑠 are analogous to those defined above for the joint model with a single longitudinal and 299 

single time-to-event trait. The multivariate mixed model accounts for dependencies between each 300 

QT pair 𝑙 ≠ m via random-effect covariance functions in the 𝑫𝒍,𝒎 matrices where the covariance 301 

between observations of two QTs (l, m; 𝑙 ≠ m) measured at the same visit time 𝑡𝑖,𝑗  is 302 

𝐶𝑜𝑣(𝑦𝑖,𝑗,𝑙, 𝑦𝑖,𝑗,𝑚) = 𝑡𝑖,𝑗
2 Cov(𝑏𝑖,1,𝑙, 𝑏𝑖,1,𝑚) + 𝑡𝑖,𝑗 (Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑚) + Cov(𝑏𝑖,0,𝑚, 𝑏𝑖,1,𝑙)) +303 

Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,0,𝑚) which is quadratic over time, and the covariance function between two 304 

longitudinal QTs (l ≠ 𝑚 ) measured at different visit times 𝑡𝑖,𝑗 ≠ 𝑡𝑖,𝑠  is 𝐶𝑜𝑣(𝑦𝑖,𝑗,𝑙, 𝑦𝑖,𝑠,𝑚) =305 

𝑡𝑖,𝑗𝑡𝑖,𝑠Cov(𝑏𝑖,1,𝑙, 𝑏𝑖,1,𝑚) + 𝑡𝑖,𝑗Cov(𝑏𝑖,1,𝑙, 𝑏𝑖,0,𝑚) +  𝑡𝑖,𝑠Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,1,𝑚) +  Cov(𝑏𝑖,0,𝑙, 𝑏𝑖,0,𝑚). Thus, 306 

joint analysis of correlated longitudinal QTs is expected to improve power over separate analysis 307 

of each QT by borrowing information through implied dependency structures among the random 308 

effects.  309 

Multivariate time-to-event sub-model. Finally, we extend Equation 3 to a multivariate PH frailty 310 

time-to-event sub-model, with a subject-specific random effect (frailty term, 𝑢𝑖 ) introduced to 311 

capture potential unexplained dependencies (e.g. due to unmeasured baseline shared factors) 312 

among the time-to-event traits. In Equation 6 (Fig 2), 𝜆0,𝑘(𝑡) and 𝛾𝑔,𝑘 , correspond to the baseline 313 

hazard function, and SNP effect on the kth time-to-event trait (1 ≤ k ≤ K), accounting for association 314 
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of each lth QT with the time-to-event trait k (𝛼𝑙,𝑘 , 1 ≤  𝑙 ≤  𝐿). We assume that the subject-315 

specific frailty term follows a gamma distribution, that is 𝑢𝑖~Γ(𝑎, 𝑏) with a, b>0, and represents 316 

dependencies among the K traits. Equation 6 (Fig 2) can be expressed as: 317 

𝜆𝑖,𝑘(𝑡) = 𝜆0,𝑘(𝑡) × 𝑒𝑥𝑝{𝜶𝒌𝒘𝒊,𝒌(𝑡) + 𝛾𝑔,𝑘𝑔𝑖 + 𝑢𝑖}, 318 

where 𝜶𝒌 = (𝛼1,𝑘, … , 𝛼𝑙,𝑘, … . , 𝛼𝐿,𝑘)𝑇 is the vector of all L QT effects on the kth time-to-event trait, 319 

and 𝒘𝒊,𝒌(𝑡) = (𝑤𝑖,1,𝑘(𝑡), … . , 𝑤𝑖,𝑙,𝑘(𝑡), … , 𝑤𝑖,𝐿,𝑘(𝑡))  specifies the corresponding association 320 

profile of each QT with the kth time-to-event trait. We note 𝑤𝑖,𝑙,𝑘(𝑡) = 𝑓𝑙,𝑘 (𝑦𝑖,𝑙
∗ (𝑡)) , where 321 

𝑦𝑖,𝑙
∗ (𝑡), denotes the lth QT trajectory (1 ≤ 𝑙 ≤ 𝐿 ) at time t, which depends on the fixed and random 322 

effects 𝜷𝒍 and 𝒃𝒊,𝒍 . 323 

Comparisons with joint model of one longitudinal and one time-to-event trait. In the proposed 324 

joint model extension for multiple longitudinal and multiple time-to-event traits, the direct, indirect 325 

and overall SNP effects defined above for the joint model with one longitudinal and one time-to-326 

event trait are interpreted similarly. However, there are important practical differences between 327 

the latter model for a pair of traits and the proposed multi-trait. First, because the joint model 328 

extension can account for multiple intermediate longitudinal QT risk factors associated with one 329 

(or multiple) time-to-event trait(s), it improves inference for SNP association and accuracy of SNP 330 

classification, particularly when a time-to-event trait depends on more than one longitudinal risk 331 

factor as illustrated in our numerical experiments. Second, in the multivariate longitudinal sub-332 

model, the variance-covariance matrix D for the random effects specifies non-null covariance 333 

terms in 𝑫𝒍,𝒎  for each pair of longitudinal QT 𝑙, 𝑚  (1 ≤ 𝑙 ≤ 𝐿  and 1 ≤ 𝑚 ≤ 𝐿  , 𝑙 ≠ 𝑚 ). In 334 

contrast, under the assumption of null covariance terms in 𝑫𝒍,𝒎 for all QT pairs inherent in separate 335 

analyses of each QT, the multivariate sub-model reduces to independent sub-models for each 336 
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longitudinal QT. When longitudinal QTs are correlated, assuming null covariances can fail to make 337 

use of information borrowed through the random effects and reduce efficiency of the parameter 338 

estimates in the longitudinal trajectories (Shah et al. 1997; Jensen and Ritz 2018). This, in turn, 339 

can affect estimation in the time-to-event model. Third, without a frailty term 𝑢𝑖, the time-to-event 340 

sub-model (Equations 6 and 7) reduces to separate time-to-event sub-models for each time-to-341 

event trait. Thus, through use of a shared frailty term, the extended joint model accounts for 342 

residual dependency between the K time-to-event traits, not explained by the covariates shared by 343 

the time-to-event sub-models. Overall, the proposed joint model for multiple longitudinal and 344 

multiple time-to-event traits can improve inference by accounting for intermediate longitudinal 345 

QT(s) and their dependencies, as well as dependencies among the time-to-event traits, and thereby 346 

improve classification accuracy of direct and/or indirect SNP associations. 347 

Implementation 348 

Effect estimation and test statistic construction – To address computational obstacles involved in 349 

the maximization of the joint likelihood and allow more flexible inference, we estimate the 350 

parameters using a two-stage approach (see details in the Appendix). We work within the 351 

framework originally defined by (Tsiatis et al. 1995; Wulfsohn and Tsiatis 1997; Dafni and Tsiatis 352 

1998; Tsiatis and Davidian 2001) and in the spirit of subsequent authors (Ye et al. 2008; Yuen et 353 

al. 2018; Arisido et al. 2019); (Tsiatis and Davidian 2001; Tsiatis and Davidian 2004) specify 354 

conditions that guarantee the two-stage estimators are consistent and asymptotically normal. 355 

Specifically, in Stage 1 we fit a multivariate mixed model (Equation 5) using the mvlme() function 356 

from the R package JoineRML [(Hickey et al. 2018c), version 0.4.2] to estimate the parameters of 357 

the longitudinal trajectories of the risk factors, and obtain fitted values of the smoothed trajectories. 358 
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In Stage 2, we fit a Cox PH frailty time-to-event model (Equations 6 or 7) adjusting for functions 359 

of the smoothed trajectories as time-dependent covariates using the coxph() function from the R 360 

package survival [(Therneau and Grambsch 2000; Therneau 2020), versions 3.2.7 and 3.2.13]. We 361 

assume a Gamma distribution for the frailty term (𝑢𝑖) and a separate non-parametric baseline 362 

hazard function for each time-to-event trait using the strata argument in coxph().  363 

To account for propagation of errors, due to uncertainty in Stage 1 estimates that is not accounted 364 

for during Stage 2 parameter estimation (Wulfsohn and Tsiatis 1997), and to empirically estimate 365 

the joint covariance matrix of SNP-QT trajectory (𝛽𝑔,𝑙) and SNP-TTE effects (𝛾𝑔,𝑘), we apply a 366 

nonparametric bootstrap. The bootstrap also provides reliable standard error estimates in the joint 367 

time-to-event sub-model needed when using an unspecified baseline hazard (Hsieh et al. 2006; 368 

Lawrence Gould et al. 2015; Furgal et al. 2019). For each bootstrap sample b (1 ≤ b ≤ B, B is the 369 

total number of bootstrap repetitions), we generate a new dataset by randomly sampling N 370 

individuals with replacement and refitting the joint model on each new dataset b. We compute the 371 

empirical joint covariance matrix for all 𝛽𝑔,𝑙,  𝛾𝑔,𝑘 and 𝛼𝑙,𝑘  parameter estimates using the B 372 

bootstrap parameter vector estimates. Wald statistics for each 𝛽𝑔,𝑙 are computed as 𝑆𝛽𝑔
=373 

𝛽𝑔,�̂� 𝑠𝑒𝛽𝑔,𝑙
⁄  using the empirical bootstrap standard errors 𝑠𝑒𝛽𝑔,𝑙

 (to test H0: 𝛽𝑔,𝑙 = 0 vs H1: 𝛽𝑔,𝑙 ≠374 

0), and similarly for each 𝛾𝑔,𝑘 as 𝑆𝛾𝑔
= 𝛾𝑔,�̂� 𝑠𝑒𝛾𝑔,𝑘

⁄  (to test H0: 𝛾𝑔,𝑘 = 0 vs H1: 𝛾𝑔,𝑘 ≠ 0). 375 

In contrast to the two-stage joint model, a conventional one-stage analysis to assess whether a SNP 376 

has an association with the time-to-event trait, independent from the QT-TTE association, relies 377 

on regression adjustment using observed longitudinal QT values as time-dependent covariates in 378 

a Cox-PH model (Paterson et al. 2010; Deng and Pan 2017). This approach, based only on the 379 
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time-to-event model, does not provide information about SNP-QT association (𝛽𝑔,𝑙) and interprets 380 

the SNP as having a direct association with the time-to-event if the test of SNP-TTE effect (𝛾𝑔,𝑘) is 381 

declared significant, given the observed QT. Inference for 𝛼𝑙,𝑘 under this approach can be biased 382 

or inefficient when the QT is measured with random error or high within-subject variability 383 

(Faucett and Thomas 1996; Wulfsohn and Tsiatis 1997; Xu and Zeger 2001; Song et al. 2002; 384 

Brown and Ibrahim 2003), and inference for 𝛾𝑔,𝑘 may also be affected. Although estimates of the 385 

SNP-QT effect (𝛽𝑔,𝑙) obtained from mixed model QT analysis, fitted separately, may be used to 386 

distinguish between direct alone versus both direct and indirect SNP association, unlike the joint 387 

model, this two-step conditional approach ignores measurement error in the observed QT values.  388 

Procedure to classify direct and/or indirect SNP associations – In Table 1, we present a 389 

practical procedure to classify a SNP as having direct and/or indirect association with a time-to-390 

event trait k, that accounts for the SNP association with a longitudinal risk factor l. This procedure 391 

requires two significance thresholds, 𝑃𝛽𝑔

∗  and 𝑃𝛾𝑔
∗  for hypothesis tests of each of 𝛽𝑔,𝑙  and 𝛾𝑔,𝑘 392 

respectively, to be specified prior to the analysis and adjusted for the number of SNPs tested. 393 

Depending on the research question, we can choose different values for 𝑃𝛽
∗ and 𝑃𝛾

∗, or the same 394 

value (𝑃∗ = 𝑃𝛽𝑔

∗ = 𝑃𝛾𝑔
∗ ). The latter is applicable, for instance, to systematically classify direct 395 

and/or indirect association for a set of M SNPs, and the former to assess which SNPs, among those 396 

reported to be associated with the longitudinal risk factor, have a direct effect on a time-to-event 397 

trait. To our knowledge, no comparable procedure to classify direct and/or indirect SNP 398 

association, based on SNP effect estimates from joint models, has been proposed for studies with 399 

longitudinal risk factors and time-to-event traits. A key feature of the proposed joint model 400 

extension to multiple longitudinal and multiple time-to-event traits is inference for SNP effects on 401 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2023. ; https://doi.org/10.1101/2021.05.10.21256880doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21256880
http://creativecommons.org/licenses/by-nc/4.0/


20/74 

each of the traits in a single integrated statistical model, while accounting for within-subject QT 402 

variability and dependencies among the traits. The focus of the simulation study and DCCT data 403 

application, which follow, is to evaluate the SNP classification procedure applied in extended joint 404 

model analysis. 405 

Simulation study 406 

Design of the DCCT-data-based simulation study – To assess parameter estimation accuracy, 407 

hypothesis testing for tests of each genetic effects under the proposed joint model, and evaluate 408 

accuracy of the procedure we propose to classify SNPs as directly and/or indirectly associated with 409 

a time-to-event trait, we generate R=1000 replicated datasets simulated under a complex genetic 410 

architecture informed by the DCCT Genetics Study data (Fig. 3). The latter involves: N=667 411 

subjects from the Conventional treatment group, M=5 simulated causal SNPs with direct effects 412 

on K=2 simulated time-to-T1DC (with ~54% DR events and ~25% DN events on average) and/or 413 

indirect effects via L=3 longitudinal QTs: two as measured in DCCT (HbA1c, SBP) and another 414 

simulated QT (U) that is unmeasured and designed to induce shared dependency among the T1DC 415 

traits. We assume effects of sex on SBP, and effects of T1D duration (at baseline) on both T1DC 416 

traits, as estimated in the original DCCT data, and specify contemporaneous association structures 417 

for the association of HbA1c and SBP on T1DC traits. We specify SNP effects and minor allele 418 

frequencies (MAFs) of genetic associations, as well as other parameter values according to the 419 

DCCT Genetics Study and the T1DC literature (Fig. 3). For SBP and DN, we inflate the typical 420 

SNP effect sizes observed in the literature to achieve power sufficient to detect SNP associations 421 

given the available DCCT sample size. Under the global null genetic scenario in which none of 422 

the SNPs is associated with any traits, we also simulate M SNPs with the same MAFs as for the 423 

causal SNPs, independently of the traits.  424 
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Algorithm for realistic data generation under a complex genetic architecture – To generate a 425 

data structure that combines observed and simulated traits, we formulate a genotype-phenotype 426 

multi-trait model including: (i) L=3 linear mixed models linking each SNP with an indirect effect 427 

to a longitudinal risk factor, and (ii) K=2 non-independent parametric time-to-event models 428 

depending on fitted longitudinal QT trajectories and SNPs with direct effects. For each DCCT 429 

individual i with observed longitudinal measures for HbA1c and SBP, and observed baseline 430 

covariates (T1D duration, sex), we simulate: genotypes at M causal SNPs with MAF vector p, 431 

longitudinal trait values 𝑼𝒊, and time-to-event traits ((𝑇𝑖,𝑘, 𝛿𝑖,𝑘), k=1,2 for DR and DN), using the 432 

algorithm illustrated in Fig. 4 and detailed in File S2 (sections 1-5). All SNP genotypes are 433 

generated under Hardy-Weinberg and linkage equilibrium assumptions. SNPs with indirect effects 434 

through longitudinal QTs associated with DR and/or DN are generated from the observed (SNP1, 435 

SNP5) or simulated (SNP3) QTs, while SNPs with direct effects (SNP2, SNP4) are generated 436 

independently of the longitudinal QTs and are included in the hazard function used to generate 437 

each time-to-event trait (Fig. 4).  438 

Scenario for DCCT-based complex genetic architecture – Overall, the complex genetic 439 

architecture represents multiple types of SNP-trait associations (Fig. 3): direct association with 440 

each T1DC trait (SNP2, SNP4), indirect association with both T1DC traits via measured (SNP1) 441 

and unmeasured (SNP3) longitudinal QTs; and direct and indirect association via a measured 442 

longitudinal QT (SNP5); all longitudinal risk factors exhibit within-subject random variability. 443 

Except for SNP3, all other SNP scenarios represent SNP association with a longitudinal QT risk 444 

factor (SNP1, SNP5) or a time-to-event trait (SNP2, SNP4, SNP5) testable in a single-trait GWAS. 445 
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SNP1, SNP3 and SNP5 have indirect effects on T1DC traits, such that their associations with the 446 

T1DC traits are detectable in discovery analysis for each TTE trait, using Cox PH time-to-event 447 

models fitted separately for each TTE trait and ignoring the longitudinal QT risk factors (File S2, 448 

section 8). SNP1 corresponds roughly to rs10810632 and rs1358030 associations reported in the 449 

motivating DCCT GWAS of HbA1c (Paterson et al. 2010), while SNP5 represents a strong signal 450 

that would be detected in separate GWAS analysis of each longitudinal and time-to-event trait. 451 

Analysis of the simulated data – To evaluate the statistical performance under the complex 452 

genetic architecture outlined above, focusing on direct and/or indirect classification, we compare 453 

extended joint model analysis of multiple longitudinal QT risk factors and multiple T1DC with 454 

alternative analysis methods that do not fully exploit the data structure. These alternative 455 

approaches include joint model analyses limited to two longitudinal QT and one time-to-event 456 

trait, joint model analyses of one longitudinal QT and one time-to-event trait, and a conditional 457 

time-to-event analysis of two time-to-event traits adjusted for observed values of two longitudinal 458 

QTs. We assess the impact of model specification on the classification accuracy of direct and/or 459 

indirect SNP associations by fitting mis-specified joint models that leave out important covariates 460 

or traits. Altogether, the comparisons are designed to assess the merits of extended joint model 461 

analysis over simpler available methods. In each replicated dataset, each of the five SNPs is 462 

separately analysed for association with the longitudinal QTs and TTE traits, using four alternative 463 

analytic approaches:  464 

• JM-cmp: a completely specified joint model analysis that includes observed (HbA1c, SBP) 465 

and unobserved (U) longitudinal QT as well as baseline covariates (sex, T1D duration) 466 

used in the data simulation. Due to the latent nature of unobserved U, JM-cmp cannot be 467 
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fitted in practice, but we include it as a benchmark for comparison against the data analysis 468 

models JM-mis that are fitted without U. 469 

• JM-mis: includes the same variables as in JM-cmp, but excludes U, the unobserved 470 

longitudinal QT.  471 

• JM-sep: joint models of two longitudinal traits and one time-to-event trait that do not 472 

account for dependency between the time-to-event traits (where JM-sep (l = 1,2; k=1) 473 

denotes the joint model for DR; and JM-sep(l = 1,2; k=2) the joint model for DN),  and 474 

joint models of one longitudinal and one time-to-event trait that do not account for 475 

dependence between the longitudinal traits, nor between the time-to-event traits (referred 476 

to as JM-sep(l = 1; k=1), JM-sep(l = 1; k=2),  and JM-sep(l = 2; k=2)). Altogether, the JM-477 

sep models assess the merits of the extended joint model methods in comparison to JM-478 

mis and JM-cmp. 479 

• CM-obs: a Cox PH frailty survival analysis of both time-to-event traits (DR, DN) that 480 

includes the same variables as in JM-mis but adjusts for the observed longitudinal QT 481 

values as time-dependent covariates; this model corresponds to the conditional analysis 482 

approach mentioned above. Here, to classify SNPs as indirect association, we fit a linear 483 

mixed model for both QTs to test the SNP effects on the QT(s) adjusted for the same 484 

covariates as used for the joint models. Comparisons of estimation, hypothesis testing, and 485 

classification results based on CM-obs to those based on JM-mis and JM-cmp allow us to 486 

assess the impact of within-subject QT variation/measurement errors on hypothesis testing 487 

and classification results for each SNP.  488 

For each of these analyses, we compute empirical covariance matrices for the effect estimates 489 

using 500 bootstrap iterations and construct large sample test statistics for each of the SNP effect 490 
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parameters. Under two-stage JM inference, in stage 1 we fit a bivariate (l=1,2) or univariate (l=1 491 

or l=2) longitudinal QT model and test the 𝛽𝑔,𝑙 parameters for indirect SNP association. Then in 492 

stage 2, we fit the time-to-event models with the QT trajectories from stage 1 according to the TTE 493 

model specification (k=1,2; k=1, or k=2), and test the 𝛾𝑔,𝑘 parameters for direct SNP association. 494 

Because stage 1 QT analysis is shared among methods, differences in classification among analytic 495 

methods largely arise through differences in the test results in stage 2 TTE analysis. 496 

Under two-stage and conditional independence assumptions described in an Appendix, the SNP 497 

association estimates of 𝛽𝑔,𝑙  and 𝛾𝑔,𝑘  and corresponding test statistics are expected to be 498 

uncorrelated under the global null scenario, but this may not necessarily hold under the genetic 499 

alternative scenario when the analysis model is mis-specified or when the time-to-event estimation 500 

uses observed longitudinal trait values. We therefore compute empirical correlations in each 501 

replicate under both scenarios. 502 

Given hypothesis test results for a pair of QT/TTE traits for each SNP, we apply the procedure 503 

defined in Table 1 to classify the SNP-TTE association.  504 

Evaluation criteria – We compare type I error and power of hypothesis tests of SNP-QT (𝛽𝑔,𝑙) 505 

and SNP-TTE (𝛾𝑔,𝑘) association among the alternative analytic approaches (JM-cmp, JM-mis, JM-506 

sep, CM-obs) under the global null and causal genetic scenarios for each of the 5 SNPs analysed 507 

separately, at P* = 5% and 1% critical values. We assess estimation accuracy using mean bias for 508 

𝛽𝑔,𝑙 and 𝛾𝑔,𝑘 estimates, and confidence interval coverage across replicates, and similarly examine 509 

the distribution and mean of their bootstrap standard errors and correlation for all the compared 510 

models. 511 
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For each of the 5 SNPs, we evaluate accuracy of the procedure presented in Table 1 to classify 512 

SNP association with each of the TTE traits as direct and/or indirect. Specifically, under the global 513 

null and causal genetic scenarios, we compare the empirical classification frequencies to the 514 

expected classification frequencies under the assumption of indirect and/or direct association built 515 

into the generating model. The empirical frequencies are tabulated from the distribution of 516 

simulation replicates in the four classification categories (direct, indirect, direct and indirect, not 517 

direct and not indirect) as defined in Table 1, using specified classification thresholds such that 518 

𝑃𝛽
∗ = 𝑃𝛾

∗ =  𝑃∗, with 𝑃∗=0.05. We calculate expected frequencies under the assumption that the Z 519 

statistics, constructed from the estimates of 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and their bootstrap variances, follow a 520 

bivariate normal distribution with correlation specified by the bootstrap estimates (see File S2, 521 

section 9 for details), to allow for potential dependence between the SNP parameter tests. We judge 522 

the classification procedure for a SNP association with each QT-TTE trait pair to have high 523 

accuracy when the empirical frequencies are consistent with those expected, and we compare 524 

accuracy among the different models. We also assess empirical classification frequencies for SNPs 525 

with non-null effects across variation in stringency of significance thresholds up to 𝑃∗=10−5. 526 

Availability 527 

DCCT data are available to authorized users at https://repository.niddk.nih.gov/studies/edic/  528 

and https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000086.v3.p1       529 

(IRB #07-0208-E). Example R codes for DCCT-data-based simulation and analysis of the 530 

simulated data are provided on GitHub (https://github.com/brossardMyriam/Joint-model-for-531 

multiple-trait-genetics). Supplementary files are available online 532 

(https://figshare.com/s/2b9f6b3da5e1f03e8086). File S1 includes the description of the DCCT 533 
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dataset as well as the list of the participants of the DCCT/EDIC Research Group; File S2 534 

includes supplemental information for the DCCT-based simulation study; File S3 includes 535 

supplemental information for the Analysis of the DCCT Genetics Study data; File S4 includes 536 

the list of SNPs analyzed in DCCT; File S5 includes some notes on a multi-trait SNP association 537 

test for SNP effects estimated under the proposed joint model framework. Computations were 538 

run on the Niagara supercomputer (see 539 

https://docs.computecanada.ca/wiki/Niagara#Niagara_hardware_specifications and 540 

https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart for the hardware specifications and 541 

characteristics). Computational resources and time used to fit the joint model of two quantitative 542 

traits (HbA1c, SBP) and two time-to-event traits (DR, DN) in DCCT for one SNP are provided 543 

as part of the discussion section.  544 

RESULTS 545 

Simulation Study 546 

SNP association test validity and power – Under the global null scenario of no genetic 547 

association with any of the traits, the type I error of each SNP test (𝛽𝑔,𝑙 and 𝛾𝑔,𝑘) is reasonably well 548 

controlled (Table 2, left-hand side), and the P-values 𝑃𝛽𝑔
 and 𝑃𝛾𝑔

 from the joint models show no 549 

departure from the expected large sample distributions (𝜒2 with 1 degree of freedom, see section 550 

7 in File S2). 551 

Under the alternative multi-SNP causal genetic scenario (Table 2, right-hand side), type I errors 552 

for tests of each null 𝛽𝑔,𝑙 tend to be close to the nominal level of 5% for most analysis models (with 553 

exceptions for SNP2 and SNP5), while tests of the two SNPs with effects on intermediate 554 
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measured longitudinal QT risk factors (SNP1 (βg,1) and SNP5 (βg,2)) reach 100% power for all the 555 

analysis models (Table 2, right-hand side). Tests of null 𝛾𝑔,𝑘  by JM-cmp, JM-mis and JM-556 

sep(l=1,2; k, with k=1 or 2) show overall good type I error control for all SNPs with direct and/or 557 

indirect effects via measured longitudinal QTs (i.e. all SNPs but SNP3). However, for SNP1 with 558 

indirect effects on both T1DC traits via HbA1c, tests of null γg,2 exhibit liberal type I errors in JM-559 

sep(l=2; k=2), which may be explained by bias in SNP1 effect on DN (𝛾𝑔,2 ̂ , see File S2, section 560 

6) towards the indirect SNP1 effect via HbA1c QT risk factor, which is ignored from JM-sep(l=2; 561 

k=2). For SNP2 which has direct effect on DR (𝛾𝑔,1), tests of non-null 𝛾𝑔,1 exhibit equivalent or 562 

higher power under JM-cmp and JM-mis (closely followed by JM-sep(l=1,2; k)). However, the 563 

power to detect the direct SNP4 effect on DN (𝛾𝑔,2) appears reduced in JM-sep(l=1; k=2); which 564 

can be explained by the bias in 𝛾𝑔,2̂ towards the null, due to ignoring SBP QT risk factor in JM-565 

sep(l=1; k=2). For SNP5 with direct and indirect effects on DN via SBP, 𝛾𝑔,2 appears detected by 566 

a larger number of replicates under JM-sep(l=1; k=2) and CM-obs (Table 2, right-hand side); 567 

which may be explained by bias in SNP5 effect (𝛾𝑔,2̂,  see File S2, section 6) towards the overall 568 

SNP5 effect (combining direct and indirect SNP5 effects via SBP), given that SBP is ignored from 569 

JM-sep(l=1; k=2) and random SBP variation in CM-obs. Finally, for SNP3 that has indirect effects 570 

on both T1DC traits via the unmeasured longitudinal risk factor U, only JM-cmp accounts for 571 

indirect SNP3 pathways via U. This translates into elevated type I errors for tests of each null 𝛾𝑔,𝑘 572 

likely explained by the biased SNP3 effects on both T1DC traits (𝛾𝑔,�̂�, see File S2, section 6) in 573 

JM-mis, all JM-sep, and CM-obs, towards the indirect SNP3 effect via U. Overall, the relative 574 

ranking of empirical powers among the analysis models persists for tests of each 𝛾𝑔,𝑘 across P* 575 

varying up to 10-5 (File S2, section 8), with steeper power reduction for detection of SNP4 effect 576 
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on DN (𝛾𝑔,2) in JM-sep(l=1; k=2), and markedly misleading detection of SNP5 effect on DN (𝛾𝑔,2) 577 

in JM-sep(l=1; k=2) and CM-obs. 578 

As noted above, the improvement of the type I errors control and powers in tests of each 𝛾𝑔,𝑘 under 579 

the alternative simulation scenario by JM-cmp (closely followed by JM-mis and JM-sep(l=1,2; 580 

k=1 or 2)) compared to JM-sep(l=1 or 2; k=1 or 2) for one longitudinal and one time-to-event trait 581 

and CM-obs can be explained by more efficient estimation accuracy in 𝛾𝑔,�̂�, but also in the QT 582 

effect estimates on the TTE (𝛼𝑙,�̂�) as illustrated by: bias reduction, coverage probabilities closer to 583 

the nominal level (95%), and empirical 95% confidence intervals of the parameter estimates 584 

narrower around the true parameter (File S2, section 6). Moreover, we find little evidence for 585 

correlation between 𝛽𝑔,�̂� and 𝛾𝑔,�̂�. The average bootstrap correlation 𝜌𝑙,�̂� across replicates is low 586 

for each QT/TTE trait pair (l; k) under the alternative genetic (Tables 3-7) and global null scenarios 587 

(File S2, section 9) for all joint model analyses (|𝜌𝑙,�̂�| < 0.05). However, we see larger |𝜌𝑙,�̂�| 588 

values in CM-obs, particularly for the SBP/DN trait pair; this may be explained by larger random 589 

variation in SBP which is ignored by CM-obs.  590 

Classification of direct and/or indirect SNP associations with time-to-event traits –  591 

Under the global null scenario, the empirical classification frequencies for direct and/or indirect 592 

SNP association with each T1DC trait at significance level 𝑃∗ =0.05 agree with the expected 593 

classification frequencies for all the categories of SNP associations and for all the models (File S2, 594 

section 9); this observation confirms the accuracy of the proposed hypothesis procedure under the 595 

global null genetic scenario. We also find the expected classification frequencies to be insensitive 596 

to larger bootstrap correlation values (|𝜌𝑙,�̂�| < 0.4, see File S2, section 9). Overall, empirical and 597 
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expected classification frequencies are close to the nominal rate of 5% for the categories of direct 598 

or indirect association, but conservative for the category of direct and indirect association (see File 599 

S2, section 10); which requires rejection of single-parameter hypothesis for the two tests of SNP 600 

effects 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘 (Table1).  601 

Under the alternative simulation scenario, when SNPs have direct and/or indirect effects via 602 

measured longitudinal QTs, we find that the proposed multivariate joint models, JM-cmp, JM-mis 603 

(and JM-sep(l=1,2; k with k=1 or 2)) lead to improved classification accuracy (empirical 604 

classification frequencies closer to the expected ones for each of the four categories of association) 605 

at specified significance level P* = 0.05, and correctly classify the simulated SNP associations for 606 

each trait pair in more than 88% of replicates for SNP1, SNP2 and SNP4 (Tables 3 to 5), and in 607 

more than 61% of replicates for SNP5 (Table 6). In contrast, JM-sep(l=1 or 2; k=1 or 2) and CM-608 

obs models exhibit larger differences between empirical and expected classification frequencies, 609 

which suggests lower ability of these models to correctly distinguish between direct and/or indirect 610 

association; which can lead to misleading inference. This is especially the case for the SNPs with 611 

bias in 𝛾𝑔,�̂� and low type I error control or power for test of 𝛾𝑔,�̂� in JM-sep(l=1 or 2; k=1 or 2) and 612 

CM-obs models, as illustrated for: 613 

• SNP1 that has indirect association with both T1DC traits via HbA1c; it exhibits lower-614 

than-expected empirical classification frequencies for the correct association category 615 

with HbA1c/DR (indirect association) and with SBP/DN (not direct and not indirect 616 

association), see Table 3; 617 

• SNP4 that has a direct association with DN, with lower than expected empirical 618 

classification frequency for the correct direct association category with HbA1c/DN in JM-619 

sep(l=1; k=2) as shown in Table 5; 620 
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• SNP5 with direct and indirect effects on DN via SBP, which exhibit larger than expected 621 

empirical classification frequencies for the correct association category with HbA1c/DN 622 

(direct association), and with SBP/DN (direct and indirect association), see Table 6. 623 

On the other hand, for SNP3 which has indirect effects on both T1DC traits via the unmeasured 624 

longitudinal QT risk factor (U); except JM-cmp which exhibits accurate (and high) classification 625 

frequencies, all the other compared models (which ignore U), exhibit poor classification accuracy 626 

(Table 7) and tend to mistakenly classify SNP3 as a direct association with each T1DC trait in 627 

~30-86% of the replicates. 628 

As stringency of 𝑃∗  increases up to 10-5 for the same effect sizes, empirical classification 629 

frequencies decrease in the correct association category, while mis-classification frequencies 630 

increase in the other categories; for example SNP5 tends to be mistakenly classified as an indirect 631 

association with SBP/DN with JM-cmp (File S2, section 11).  632 

In summary, our simulations show that by using smoothed trajectories and accounting for all QT 633 

associations, the extended joint model improves parameter estimation efficiency and classification 634 

accuracy of SNPs directly associated with each time-to-event trait or indirectly associated via a 635 

measured longitudinal QT in comparison to classification using JM-sep models for analysis of 636 

each time-to-event trait with one or multiple longitudinal traits or CM-obs. Reduced classification 637 

accuracy translate to increased risk of misclassifying a SNP as direct and/or indirect association. 638 

In addition, when a SNP has both direct and indirect effects on a time-to-event trait, the proposed 639 

classification procedure can be conservative because it requires the joint significance of the two 640 

SNP effects, 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, where the power of each test depends on effect size, MAF and trait 641 

distribution. As a result, a SNP with both direct and indirect associations can be misclassified as 642 
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either a direct or an indirect association, as we will also illustrate in the application results in 643 

DCCT. Finally, when a SNP has an indirect effect on both T1DC traits via an unmeasured QT, the 644 

testing procedure based on JM-mis, that captures some of the unmodeled dependency between 645 

time-to-event traits through the frailty term, does not prevent misclassification as a direct 646 

association, which could be due to the limitation of using a time-invariant frailty term. In addition, 647 

this observation also demonstrates the importance of the proposed joint model extension, which 648 

allows analysis on all the intermediate QT(s), as opposed to JM-sep, to avoid misclassification of 649 

direct and/or indirect SNP associations. 650 

Application in the DCCT Genetics Study data 651 

We demonstrate feasibility of the proposed two-stage extended joint model method by analysis in 652 

the DCCT Genetics Study data. The application is based on DCCT individuals from the 653 

Conventional treatment group genotyped on HumanCoreExome Bead Array (Illumina, San Diego, 654 

CA, USA) with ungenotyped autosomal SNPs imputed using 1000 Genomes data phase 3 (The 655 

1000 Genomes Project Consortium 2015), as detailed in File S1. We use time to mild retinopathy 656 

and time to persistent microalbuminuria, for DR and DN outcomes respectively, as previously 657 

defined in the motivating GWAS of HbA1c (Paterson et al. 2010); see File S3, section 1 for details. 658 

Out of 667 conventionally-treated DCCT individuals with genetic data, we analyze N=516 659 

subjects, excluding those with mild to moderate non-proliferative retinopathy or DN at DCCT 660 

baseline. By the time of the DCCT close-out visit, 297 (57.6%) had a DR event, and 61 (11.8%) 661 

had a DN event, including 47 subjects (9.1%) that experienced both events. After SNP filtering 662 

and pruning on linkage disequilibrium (File S3, section 2), we analyze 307 SNPs reported as 663 

associated with HbA1c, SBP, or multiple definitions of DR and/or DN (Paterson et al. 2010; Grassi 664 
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et al. 2011; Sandholm et al. 2012; Hosseini et al. 2015; Wheeler et al. 2017; Evangelou et al. 2018; 665 

Pollack et al. 2019), see File S4 for the full list of SNPs. 666 

Joint model fitting – We fit the joint model for each SNP one at a time, including baseline 667 

covariates (age at diagnosis, T1D duration, cohort, sex, and year of DCCT study entry), 668 

longitudinal HbA1c and SBP, and T1DCs DR and DN (File S3, section 3). Given prior evidence 669 

for long term HbA1c effects on T1DC, we present results under the time-weighted cumulative for 670 

HbA1c association with time-to-T1DC traits, which exhibits stronger prior association with T1DC 671 

in the DCCT individuals analyzed here, but we obtained similar classification results under the 672 

two alternative specifications considered for HbA1c association (i.e. contemporaneous value and 673 

updated mean, see File S3, section 4). We apply diagnostic tools in the joint model analysis, 674 

including residual analysis in the longitudinal and time-to-event sub-models, finding little 675 

evidence for model misspecification (File S3, section 5). In the Cox PH frailty time-to-event sub-676 

model, PH assumptions are well-satisfied when the baseline hazard is stratified on the cohort 677 

variable; overall conclusions are equivalent when cohort is included as a covariate. As shown in 678 

File S3 (section 5), the martingale residuals of the Cox PH frailty model are consistent with the 679 

assumption of a linear relationship between the QTs and each time-to-T1DC outcome.  680 

In Fig. 5 (Panel A), we show that rs1358030 and rs10810632, which were discovered in a previous 681 

GWAS of HbA1c in DCCT (Paterson et al. 2010), are classified as indirect associations with both 682 

T1DC traits via their association with the HbA1c shared risk factor (𝑃𝛽𝑔
≤ 𝑃∗  and 𝑃𝛾𝑔

> 𝑃∗,683 

𝑃∗=1.7x10-4 after Bonferroni correction for the 289.02 effective SNPs tested (Li and Ji 2005)). 684 

Although the other candidate SNPs were selected from larger meta-analysis in T1D and/or 685 

independent studies in general populations (Paterson et al. 2010; Grassi et al. 2011; Sandholm et 686 
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al. 2012; Hosseini et al. 2015; Wheeler et al. 2017; Evangelou et al. 2018; Pollack et al. 2019), the 687 

SNP-trait association tests did not reach Bonferroni-corrected significance thresholds in our 688 

analysis (File S3, section 4), potentially due to effect heterogeneity and low power to detect these 689 

variants or by some inherent heterogeneity factors in the study designs and/or phenotypic 690 

definitions. Thus, classification for these candidate SNPs is uninformative. 691 

Sample size and power considerations –The DCCT-based simulation study shows that multiple-692 

trait joint model analysis can achieve high classification rates for direct and/or indirect SNP 693 

associations under SNP effect sizes in the specified range (SNP effects: on the QTs 0.7-7, on T1DC 694 

0.4-0.8; and MAFs 10-40%) and classification rates under the global null hypothesis (null SNP 695 

effects on all traits) controlled to the nominal levels for direct or indirect SNP association but 696 

conservative for direct and indirect association. Compared to the simulation, the number of DN 697 

events is lower in the DCCT data application. We thus expect lower power to detect direct SNP 698 

association with DN; this implies reduced accuracy to classify a SNP as having either a direct, or 699 

a direct and indirect association.  700 

In light of the simulation results, we acknowledge that a larger sample size would be required to 701 

maintain performance in DCCT for genetic associations with lower MAFs/effect sizes than the 702 

ones specified. In particular, lower effect sizes and MAFs can lead to larger variances of estimated 703 

effects and larger 95% confidence intervals, as observed for the direct effects of rs10810632 704 

(MAF=7%) compared to rs1358030 (MAF=36%) for both time-to-T1DC traits (Fig. 5, Panels B 705 

and C). SNP effects with larger variances have lower power to detect association. Although we 706 

expect the effect sizes estimated by the joint model to be relatively insensitive to the study sample 707 
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size, reduction in variances by increasing study sample size would be expected to improve 708 

classification accuracy for these two SNPs (particularly for rs10810632 that has a lower MAF). 709 

To assess how genetic association and classification results for rs10810632 and rs1358030 may be 710 

affected by increasing sample size, we applied parametric resampling (see File S3, section 6 for 711 

details) to draw datasets with sample size up to five times the DCCT sample of N=516, and we 712 

then extrapolated the classification beyond N=2580. This analysis demonstrates decreasing 713 

variances of the SNP effects for both SNPs as sample size increases and narrowing of the 95% and 714 

99% confidence intervals (File S3, section 6); panel A in Fig. 6 illustrates the corresponding shift 715 

in classification of rs10810632 association with DR as indirect via HbA1c towards classification 716 

as both indirect and direct. On the other hand, given that both SNPs were previously discovered in 717 

a GWAS of HbA1c in DCCT, SNP effect estimates for HbA1c association ( 𝛽𝑔,1̂ ) may be 718 

overestimated due to Winner’s curse bias (Kraft 2008; Sun et al. 2011), which would impact the 719 

classification results. We therefore repeated the sample size analyses specifying an adjusted SNP 720 

effect size for the HbA1c association equal to 50% of its effect estimate in our DCCT analysis. In 721 

this scenario the test of SNP association with HbA1c falls just below the P* threshold in the 722 

resample size N=516, although power improves in larger sample sizes (Fig. 6). Here again 723 

classification tends to shift from indirect towards both direct and indirect SNP associations with 724 

both T1DC traits (see File S3, section 6 for complete results for both SNPs); however, a much 725 

larger sample size is needed to cross the P* threshold for test of direct association. 726 

In the DCCT application, we take advantage of the largest available clinical study of T1D 727 

complications with long-term follow-up and high-density longitudinal QT measurements. This 728 

highlights the dearth of longitudinal studies with both a large number of individuals and long-term 729 
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clinical follow-up, as well as the related challenges in joint model analysis. In prospective study 730 

designs with both longitudinal and time-to-event traits, an inherent imbalance can exist among 731 

traits in detection of SNP associations, in that power for QT(s) depends on the number of 732 

measurements while power for time-to-event traits depends on the number of events and duration 733 

of follow-up. Although there is currently a trade-off between epidemiological studies with large 734 

sample sizes but low density of longitudinal measurements, and clinical studies with more modest 735 

sample sizes but high measurement densities, we anticipate informative application of joint model 736 

analysis in large biobanks, for example (Scholtens et al. 2015; Bycroft et al. 2018; Dummer et al. 737 

2018), now assembling longitudinal measures jointly with binary outcomes and genetic data. 738 

DISCUSSION 739 

We present new, more informative methods for statistical genetic analysis under a joint model 740 

specification of multiple longitudinal risk factors and multiple time-to-event traits, designed to 741 

characterize the complex genetic architecture of related traits in longitudinal studies of disease 742 

progression. The proposed extended model is formulated to deal with dependencies within and 743 

between traits and can account for trait-specific and shared covariates, within-subject random 744 

variability in the longitudinal traits, as well as effects of unobserved baseline confounding factors 745 

between the time-to-event traits through a subject-specific frailty term. We also introduce a 746 

realistic data-based simulation algorithm to assess joint model performance that can also be used 747 

to estimate achievable power in clinical studies such as DCCT characterized by extensive 748 

longitudinal follow-up but limited sample size. 749 
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Evaluation by realistic simulation study of complex T1DC genetic architecture shows that 750 

accounting for trait dependencies and measurement errors in longitudinal QT risk factors using the 751 

proposed joint model extension improves classification accuracy of SNP as direct and/or indirect 752 

association compared to (i) separate joint model analysis of each time-to-event trait with one or 753 

multiple longitudinal traits, and (ii) Cox-PH frailty model analysis adjusted for multiple observed 754 

longitudinal trait values. This improvement in classification accuracy under the joint models of 755 

multiple longitudinal and multiple TTE traits results from improved Type I error control for single-756 

parameter tests of each of the two SNP effects (𝛽𝑔,𝑙 or 𝛾𝑔,𝑘), and improved power to detect SNP 757 

association, that can be explained by reduced estimation bias in parameters. However, we also 758 

observe that estimation bias and misclassification can be severe in the presence of SNP association 759 

with a longitudinal risk factor that is unmeasured or absent from the joint model, and mis-760 

classification may be non-negligible when the study has limited power to detect either of the two 761 

SNP effects (𝛽𝑔,𝑙 or 𝛾𝑔,𝑘), as in the DCCT study. We apply parametric resampling to evaluate how 762 

study sample size or Winner’s curse bias affects classification accuracy and anticipate that this 763 

approach may also help inform replication study design with sufficient power. Nevertheless, we 764 

conclude that application of joint model analysis in longitudinal studies of disease progression, 765 

such as in the DCCT Genetics Study, improves classification of direct and/or indirect SNP 766 

association and helps to elucidate the genetic architecture of complex traits. 767 

Although the primary aim in this report is to develop statistical methods to distinguish among 768 

direct and/or indirect SNP associations with each time-to-event trait, the multi-trait extension of 769 

the joint model lends itself to development of multi-trait SNP association testing for SNP 770 

discovery. In File S5, we present a joint-parameter test for global SNP association with all the 771 

longitudinal and time-to-event traits, based on a generalized Wald statistic. In application to the 772 
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simulated DCCT-based complex genetic architecture, we observe good type I error control under 773 

the global genetic null scenario, improved power for SNP discovery when a SNP has multiple trait 774 

effects, and power maintenance in other SNP association scenarios. 775 

Although the extended joint model can be applied to studies where longitudinal QT measurements 776 

are missing at some of the visits, choice of the joint model estimation method depends on the 777 

missing data mechanism. In the presence of informative missing data mechanisms, we recommend 778 

sensitivity analysis using existing implementations of joint likelihood estimation that assume the 779 

time-to-dropout mechanism depends on missing longitudinal QT values through the posterior 780 

distribution of the random effects; this corresponds to an informative missing data mechanism 781 

(Rizopoulos 2012). To our knowledge these implementations exist only for simple joint model 782 

formulations with either one longitudinal and one time-to-event trait (Rizopoulos 2010) or with 783 

multiple longitudinal traits and one time-to-event outcome (Rizopoulos 2016; Hickey et al. 2018c). 784 

Alternatively multiple imputation methods have been implemented for two-stage estimation 785 

(Rubin 1987; Moreno-Betancur et al. 2018); these impute missing values for multiple longitudinal 786 

continuous traits using the conditional distribution of each QT trait given one time-to-event trait 787 

and other QTs. More generally for missing data, further development of methods to maximize the 788 

extended joint likelihood, for example using Bayesian methods, would alleviate numerical 789 

challenges with increasing model complexity in multivariate extensions of joint models (Lawrence 790 

Gould et al. 2015); but this would require the design of an efficient sampling algorithm to study 791 

the posterior distribution. 792 

We acknowledge several features of the joint model approach that warrant examination in further 793 

work. Firstly, to reduce computational complexity and improve model flexibility, we use two-794 
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stage parameter estimation. In some circumstances, this approach can produce biased estimates in 795 

the longitudinal and/or time-to-event sub-models as well as underestimation of their standard 796 

errors (Tsiatis et al. 1995; Wulfsohn and Tsiatis 1997; Dafni and Tsiatis 1998; Ye et al. 2008; 797 

Albert and Shih 2010; Sweeting and Thompson 2011; Ye and Wu 2017; Huong et al. 2018; Mauff 798 

et al. 2020). Biased estimates can result from informatively missing data in the presence of non-799 

random censoring of the longitudinal trait values due to the occurrence of an event or from 800 

informative dropout (Ye et al. 2008; Albert and Shih 2010; Mauff et al. 2020). The simulation 801 

results show minimal biases in the absence of informative censoring, even when an associated 802 

longitudinal QT variable is omitted from the joint model. In the DCCT application, characterized 803 

by administrative censoring and a high completion rate, these biases are of less concern because 804 

longitudinal trait values continued to be recorded on a pre-specified visit schedule regardless of 805 

the occurrence of any T1DC events; we estimated the trajectories using all the available 806 

measurements. Furthermore, we obtain robust non-parametric bootstrap estimates of the 807 

covariance matrix for the SNP effects, and simulation results under the null do not show deviation 808 

from expected distributions. Secondly, because the joint model integrates longitudinal and time-809 

to-event sub-models, model misspecification can occur in multiple ways and lead to invalid 810 

inference (Arisido et al. 2019). We recommend a careful assessment of model assumptions and 811 

data-based simulation studies to evaluate the robustness of classification of direct and/or indirect 812 

associations to two-stage assumptions. In the DCCT application, we provide an illustration of 813 

diagnostic analyses which could serve as guidance in other applications. Thirdly, patient visits 814 

were scheduled with high frequency in DCCT, so we ignored the modest degree of interval 815 

censoring in the current implementation of the joint model; when there are longer gaps between 816 
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visits, extended methods are needed to account for interval censoring in the time-to-event sub-817 

model with additional simulation studies to assess impact on joint model estimates.  818 

Computationally, joint model fitting can be very demanding, particularly for genetic association 819 

studies that test millions of variants. In the DCCT application, it took ~1 minute to fit the joint 820 

model for each SNP and ~ 18 more minutes to estimate the covariance matrix with 500 bootstraps 821 

run in parallel on 4 nodes (each node with 40 CPU and 202 GB RAM). While analysis at the 822 

genome-wide level, involving for example ~9 million imputed autosomal SNPs in DCCT Study 823 

(Roshandel et al. 2018), is computationally unrealistic at present, a screening approach without 824 

bootstrap to select informative SNPs, followed by bootstrap refinement would reduce the 825 

computational burden to feasible levels. Recently, computationally efficient algorithms have been 826 

developed to improve feasibility of linear mixed model (Sikorska et al. 2018) and Cox PH model 827 

(Rizvi et al. 2019; Bi et al. 2020) analyses for genome-wide genetic association studies, but to 828 

date, they remain to be implemented for multivariate outcomes. Lastly, (Liu et al. 2018) discuss 829 

various formulations and interpretations of joint models in the context of mediation analysis, with 830 

shared-random-effects accounting for potential unmeasured baseline confounding factors between 831 

one longitudinal and one time-to-event traits. Using applications in datasets from two clinical 832 

trials, they illustrate interpretation of sensitivity analysis to unmeasured baseline confounders. 833 

Adaptation of the joint model we propose for multiple longitudinal and multiple time-to-event 834 

traits for mediation analysis requires extension of the mediation assumptions (Sobel 1982; 835 

Mackinnon et al. 1995) to the case of multiple mediators and multiple time-to-event traits. Specific 836 

evaluations of the proposed model under these assumptions are also warranted. 837 
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We expect application of joint model methods in large biobank datasets to be informative in 838 

characterization of the genetic architecture of complex traits. Some extensions of joint models 839 

have been proposed to account for additional challenges raised by large biobanks, for example 840 

informative visiting processes (Gasparini et al. 2020). By providing more efficient SNP effect 841 

estimates and increased precision in polygenic risk score development, results of such analysis 842 

have potential to contribute to the translation of human genetic findings into personalized medicine 843 

(Young et al. 2019), as well as to causal inference using mediation and mendelian randomization 844 

studies. Finally, the joint model framework has potential to enable dynamic prediction beneficial 845 

for dynamic risk assessment (Papageorgiou et al. 2019; Bull et al. 2020) and optimization of 846 

intervention strategies (Sweeting and Thompson 2011; Yuen et al. 2018). 847 
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Appendix  1141 

Joint likelihood function of the joint model of one longitudinal and one time-to-event trait (L=K=1) 1142 

Under the following assumptions (A1-A3), 1143 

(A1) 𝒃𝒊~𝑁2(0, 𝑫), where 𝒃𝒊 = (𝑏𝑖,0, 𝑏𝑖,1)
𝑇

are subject-specific random effects 1144 

(A2) 휀𝑖,𝑗~𝑁(0, 𝜎2 ) and 휀𝑖,𝑗 ⊥ 휀𝑖,𝑠  between visit times 𝑡𝑖,𝑗 ≠ 𝑡𝑖,𝑠 , with 𝑗 ≠ 𝑠, for all 1 ≤1145 

𝑗 ≤ 𝐽 and 1 ≤ 𝑠 ≤ 𝐽  1146 

(A3) 𝒃𝒊 ⊥ 𝜺𝒊,  where 𝜺𝒊 = (휀𝑖,1, … , 휀𝑖,𝑗, … , 휀𝑖,𝐽)𝑇, 𝜺𝒊~𝑁𝐽(0, 𝜎2𝑰𝑱)  1147 

Then conditional on the random effects 𝒃𝒊 and fixed effects 𝜴, it is appropriate to assume: the 1148 

repeated measurements in the longitudinal process are independent (Laird and Ware 1982), in 1149 

other words that the serial correlation is taken into account; and the longitudinal and time-to-event 1150 

trait models are independent (Ibrahim et al. 2001). Under these conditional independence 1151 

assumptions, the joint likelihood function of the joint model parameters 𝜴 given the observed data 1152 

is: 1153 

𝐿(𝜴|𝒚𝒊, 𝑇𝑖, 𝛿𝑖) = ∏ ∫ 𝑓1(𝒚𝒊| 𝒃𝒊, 𝜴)  × 𝑓2(𝑇𝑖, 𝛿𝑖  | 𝒃𝒊, 𝜴)  × 𝑓3(𝒃𝒊|𝜴)𝒅𝒃𝒊

𝑁

𝑖=1

 1154 

where:  1155 

• 𝑓1(𝒚𝒊| 𝒃𝒊, 𝜴) = (2𝜋𝜎2)−𝐽/2 ∏ exp (
(𝑦𝑖,𝑗−𝑦𝑖

∗(𝑡𝑖,𝑗))2

2𝜎2

𝐽
𝑗=1 ) 1156 

• 𝑓2(𝑇𝑖, 𝛿𝑖  | 𝒃𝒊, 𝜴) =  [𝜆𝑖(𝑇𝑖| 𝒃𝒊, 𝜴) ]𝛿𝑖  𝑆𝑖(𝑇𝑖| 𝒃𝒊, 𝜴),   with 1157 

• 𝑆𝑖(𝑇𝑖| 𝒃𝒊, 𝜴) =  𝑒𝑥𝑝 [− ∫ 𝜆0(𝑠)𝑒𝑥𝑝{ 𝛼𝑤𝑖(𝑠) + 𝛾𝑔𝑔𝑖} 𝑑𝑠
𝑇𝑖

0
]   and 𝑤𝑖(𝑡) =  𝑓(𝑦𝑖

∗(𝑡)) , 1158 

where 𝑦𝑖
∗(𝑡), denotes the lth QT trajectory at time t  for 1 ≤ 𝑙 ≤ 𝐿  which depends on the 1159 

fixed and random effects 𝜷 and 𝒃𝒊 . The survival function depends on the whole QT history 1160 
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of the true unobserved longitudinal process up to time t, noted as 𝑌𝑖
∗(𝑡)={ 𝑦𝑖

∗(𝑠), 0 ≤ 𝑠 ≤1161 

𝑡}; 1162 

• 𝑓3(𝒃𝒊|𝜴) =  (2𝜋)−𝑞/2|𝑫|−1/2𝑒𝑥𝑝 {−
1

2
𝒃𝒊

𝑇𝑫−1𝒃𝒊} , where q is the dimension of the D 1163 

matrix. 1164 

The event indicator 𝛿𝑖 is used to distinguish the contribution of the individuals who experience the 1165 

event during the observation period from the individuals who are still at risk up to that time point 1166 

but do not experience the event. Individuals who experience the event (𝛿𝑖 = 1) contribute to the 1167 

cumulative hazard function and to the hazard function both evaluated at the 𝑇𝑖; the individuals who 1168 

do not experience the event (𝛿𝑖 = 0) contribute to the hazard function only. 1169 

Joint model parameter estimation can be performed by maximization of the full joint likelihood 1170 

function directly or by Bayesian computation. Direct maximization of the joint likelihood function 1171 

can be performed using the Expectation-Maximization (EM) algorithm, treating the random effects 1172 

as missing data (Wulfsohn and Tsiatis 1997). However, integrals with respect of time in the 1173 

definition of the survival function, as well as the integral with respect to the 𝒃𝒊 do not have an 1174 

analytical solution; therefore, numerical approaches, such as adaptive Gauss-Hermit quadrature, 1175 

need to be used. Implementations of this model using a maximization of the above joint likelihood 1176 

function have been proposed in different R packages (see (Furgal et al. 2019) for a review). 1177 

However, as the dimension of the random effects increases, the integral over the random effects 1178 

becomes computationally burdensome and Bayesian approaches can be employed instead, where 1179 

the random effects are also considered model parameters obtained as a posterior sample and thus 1180 

the integral over the random effects is no longer required. 1181 
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Joint model of multiple longitudinal and multiple time-to-event traits 1182 

Joint likelihood function 1183 

Extending the previous joint model assumptions (A1-A3) to L>1 and K>1, we have 1184 

(A1) 𝒃𝒊~𝑁2(0, 𝑫), where 𝒃𝒊 = (𝒃𝒊,𝟏, … , 𝒃𝒊,𝒍, … , 𝒃𝒊,𝑳)
𝑇

are subject-specific random effects 1185 

for all L QTs 1186 

(A2) 𝜺𝒊,𝒍~𝑁𝐽(𝟎, 𝜎𝑙
2𝑰𝑱)  for all lth QT with 1 ≤ 𝑙 ≤ 𝐿 1187 

(A3) 𝒃𝒊,𝒍 ⊥ 𝜺𝒊,𝒍 for all lth QT with 1 ≤ 𝑙 ≤ 𝐿,  and  1188 

(A4)  𝑢𝑖 ⊥ 𝒃𝒊,𝒍, where  𝑢𝑖 is a shared subject-specific frailty for k time-to-event traits. 1189 

Then, conditional on the random effects 𝒃𝒊, the frailty  𝑢𝑖 , and fixed effects 𝜴, we further assume:  1190 

𝒃𝒊 accounts for association among the L longitudinal traits (Shah et al. 1997) and association 1191 

between the longitudinal and time-to-event outcomes (Ibrahim et al. 2001); and the frailty term 1192 

accounts for residual dependence among the time-to-event traits (Hougaard 1995). Under these 1193 

conditional independence assumptions, the joint likelihood function of the joint model parameters 1194 

𝜴 given the observed data is: 1195 

𝐿(𝜴|𝒚𝒊, 𝑻𝒊, 𝜹𝒊) = ∏ ∫ 𝑓1(𝒚𝒊| 𝒃𝒊, 𝜴)  × 𝑓2(𝑻𝒊, 𝜹𝒊 | 𝒃𝒊, 𝑢𝑖 , 𝜴)  × 𝑓3(𝒃𝒊|𝜴) × 𝑓4(𝑢𝑖|𝜴) 𝑑𝑢𝑖𝑑𝑏𝑖

𝑁

𝑖=1

 1196 

where:  1197 

• (𝑻𝒊, 𝜹𝒊) = ((𝑇𝑖,1, 𝛿𝑖,1),…, (𝑇𝑖,𝑘, 𝛿𝑖,𝑘),…,(𝑇𝑖,𝐾, 𝛿𝑖,𝐾))𝑇 is defined as the vector of K stacked 1198 

time-to-event outcomes for individual i, 1199 
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• 𝑓1(𝒚𝒊| 𝒃𝒊, 𝜴) = ∏ 𝑓(𝒚𝒊,𝒍| 𝒃𝒊,𝒍, 𝜴𝒍)
𝐿
𝑙=1  with 𝑓(𝒚𝒊,𝒍| 𝒃𝒊,𝒍, 𝜴𝒍) =1200 

 (2𝜋𝜎𝑙
2)−

𝐽

2𝑒𝑥𝑝 [−
1

2𝜎𝑙
2 ∏ (𝑦𝑖,𝑗,𝑙 − 𝑦𝑖,𝑙

∗ (𝑡𝑖,𝑗))2𝐽
𝑗=1 ] 1201 

• 𝑓2(𝑻𝒊, 𝜹𝒊 | 𝒃𝒊, 𝑢𝑖 , 𝜴) =  ∏ [𝜆𝑖,𝑘(𝑇𝑖,𝑘| 𝒃𝒊, 𝑢𝑖 , 𝜴) ]
𝛿𝑖,𝑘

 𝑆𝑖,𝑘(𝑇𝑖,𝑘| 𝒃𝒊, 𝑢𝑖 , 𝜴)𝐾
𝑘=1 , with 1202 

𝑆𝑖,𝑘(𝑇𝑖,𝑘| 𝒃𝒊, 𝑢𝑖 , 𝜴) =  𝑒𝑥𝑝 [− ∫ 𝜆0,𝑘(𝑠)𝑒𝑥𝑝{∑ 𝛼𝑙,𝑘𝑤𝑖,𝑙,𝑘(𝑠))𝐿
𝑙=1 + 𝛾𝑔,𝑘𝑔𝑖 + 𝑢𝑖} 𝑑𝑠

𝑇𝑖,𝑘

0
]  and 1203 

𝑤𝑖,𝑙,𝑘(𝑠) = 𝑓𝑙,𝑘 (𝑦𝑖,𝑙
∗ (𝑡)), where 𝑦𝑖,𝑙

∗ (𝑡), denotes the lth QT trajectory at time t  for 1 ≤ 𝑙 ≤1204 

𝐿  which depends on the fixed and random effects 𝜷𝒍 and 𝒃𝒊,𝒍 . 1205 

• 𝑓3(𝒃𝒊|𝜴) =  (2𝜋)−𝑞/2|𝑫|−
1

2 𝑒𝑥𝑝 [−
1

2
𝒃𝒊

𝑇𝑫−1𝒃𝒊], where q is the dimension of the D matrix 1206 

• 𝑓4(𝑢𝑖|𝜴) =
𝑢𝑖

𝑎−1exp (−𝑢𝑖/𝑏)

Γ(𝑎)𝑏𝑎 , i.e. we assume 𝑢𝑖~Gamma(𝑎, 𝑏)  with 𝑢𝑖 > 0, a corresponds 1207 

to the shape parameter and b to the scale parameter, and a, b>0. Γ(𝑎) is the gamma function 1208 

evaluated at 𝑎. 1209 

We are not aware of any existing implementations of full likelihood maximization of the extended 1210 

model in the literature. Calculation of the full likelihood requires multivariate integration with 1211 

respect to the random effects distribution, which can lead to demanding computation. When the 1212 

random effect vector 𝒃𝒊, has a small dimension, say less than 3, the integral can be evaluated via 1213 

Gaussian quadrature which approximates the integral by a weighted sum of the target function 1214 

evaluated at pre-specified sample points. However, when the dimension is larger, it is demanding 1215 

to calculate the integrals with satisfactory approximation accuracy. Although a full likelihood 1216 

specification enables rigorous study of asymptotic properties, its large sample approximation may 1217 

not be accurate when sample size is small. In comparison, the Bayesian paradigm does not require 1218 

asymptotic approximations, but the design of an efficient sampling algorithm to study the posterior 1219 

distribution is challenging. Because of these limitations, we implement a two-stage approach to 1220 
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estimation of fixed effect parameters in the extended multi-trait model that is reasonable for the 1221 

GWAS application of interest; in particular the longitudinal measurements in DCCT are taken 1222 

according to a pre-specified schedule and are not terminated by the observation of diabetes 1223 

complications, loss to follow-up and mortality are minimal, censoring is administrative, and each 1224 

individual has a dense and nearly complete set of measurements. 1225 

Likelihood functions under the two-stage approximation 1226 

Let 𝜴𝑳𝒐𝒏𝒈  and 𝜴𝑺𝒖𝒓𝒗 be the vectors containing all fixed parameters from the longitudinal and 1227 

time-to-event sub-models respectively. 1228 

Stage 1: Multivariate mixed model 1229 

𝐿(𝜴𝑳𝒐𝒏𝒈|𝒚𝒊) = ∏ ∫ 𝑓1(𝒚𝒊| 𝒃𝒊,  𝜴𝑳𝒐𝒏𝒈) × 𝑓3(𝒃𝒊| 𝜴𝑳𝒐𝒏𝒈)

𝒃𝒊

𝒅𝒃𝒊

𝑁

𝑖=1

 1230 

Where:  1231 

• 𝑓1(𝒚𝒊| 𝒃𝒊, 𝜴𝑳𝒐𝒏𝒈) = ∏ 𝑓(𝒚𝒊,𝒋,𝒍| 𝒃𝒊, 𝜴𝑳𝒐𝒏𝒈)𝐿
𝑙=1  with 𝑓(𝒚𝒊,𝒍| 𝒃𝒊, 𝜴𝑳𝒐𝒏𝒈) =1232 

 (2𝜋𝜎𝑙
2)−

𝐽

2𝑒𝑥𝑝 [−
1

2𝜎𝑙
2 ∏ (𝑦𝑖,𝑗,𝑙 − 𝑦𝑖,𝑙

∗ (𝑡𝑖,𝑗))2𝐽
𝑗=1 ] 1233 

• 𝑓3(𝒃𝒊|𝜴𝑳𝒐𝒏𝒈) =  (2𝜋)−𝑞/2|𝑫|−
1

2 𝑒𝑥𝑝 [−
1

2
𝒃𝒊

𝑇𝑫−1𝒃𝒊]  where q is the dimension of the D 1234 

matrix. 1235 

The fixed-effect and random-effect parameters are estimated jointly for all longitudinal traits using 1236 

all available repeated measurements, without using the time-to-event information. Then fitted 1237 

trajectory values are obtained by plugging the parameter estimates into: 1238 
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 𝒚𝒊,𝒍
∗ (𝑡) = 𝑿𝒊(𝑡)𝜷𝒍 + 𝒁𝒊(𝑡)𝒃𝒊,𝒍 1239 

where  𝑿𝒊(𝑡) = (1, 𝑡, 𝑔𝑖)   and 𝒁𝒊(𝑡) = (1, 𝑡) 1240 

Stage 2: Multivariate Cox PH model adjusted for fitted trajectory values for the vector of L 1241 

longitudinal outcomes  1242 

𝐿(𝜴𝑺𝒖𝒓𝒗|𝑻𝒊, 𝜹𝒊, 𝑤𝑖(𝑇𝑖)̂ ) = ∏ ∫ 𝑓2(𝑻𝒊, 𝜹𝒊 |𝑢𝑖, 𝒘𝒊(𝑻𝒊)̂ , 𝜴𝑺𝒖𝒓𝒗)

𝑢𝑖

𝑁

𝑖=1
× 𝑓4(𝑢𝑖|𝜴𝑺𝒖𝒓𝒗) × 𝑑𝑢𝑖 1243 

With: 1244 

𝑓2(𝑻𝒊, 𝜹𝒊 |𝑢𝑖, 𝒘𝒊(𝑻𝒊)̂ , 𝜴𝑺𝒖𝒓𝒗) =1245 

              ∏ [𝜆𝑖,𝑘(𝑇𝑖,𝑘| 𝑢𝑖, 𝒘𝒊,𝒌(𝑻𝒊,𝒌)̂ , 𝜴𝑺𝒖𝒓𝒗) ]
𝛿𝑖,𝑘

 𝑆𝑖,𝑘(𝑇𝑖,𝑘| 𝑢𝑖, 𝒘𝒊,𝒌(𝑻𝒊,𝒌)̂ , 𝜴𝑺𝒖𝒓𝒗)𝐾
𝑘=1 , and  1246 

𝑆𝑖,𝑘(𝑇𝑖,𝑘| 𝑢𝑖, 𝒘𝒊,𝒌(𝑻𝒊,𝒌)̂ , 𝜴𝑺𝒖𝒓𝒗) =  𝑒𝑥𝑝 [− ∫ 𝜆𝑖,0(𝑠)𝑒𝑥𝑝{∑ 𝛼𝑙,𝑘
𝐿
𝑙=1  𝑤𝑖,𝑙,𝑘(s)̂ + 𝛾𝑔,𝑘 𝑔𝑖 + 𝑢𝑖}𝑑𝑠

𝑇𝑖,𝑘

0
],  1247 

where 𝑤𝑖,𝑙,𝑘(s)̂   is obtained by plugging fitted trajectory values into 𝑤𝑖,𝑙,𝑘(𝑡) = 𝑓𝑙,𝑘 (𝑦𝑖,𝑙
∗ (𝑡)). 1248 

Unlike the joint likelihood function, where the shared random effects  𝒃𝒊  account for the 1249 

dependencies between the longitudinal and the time-to-event traits, the two-stage approach 1250 

accounts for the dependencies between the longitudinal and time-to-event traits via the fitted 1251 

values of the longitudinal trajectories. This approximation can produce biased estimates and/or 1252 

underestimated standard errors for longitudinal and survival model parameters, when there is non-1253 

random censoring of the longitudinal trait values due to the occurrence of an event or from 1254 

informative dropout (Ye et al. 2008; Albert and Shih 2010), and because of propagation errors of 1255 

Stage 1 parameter estimates into Stage 2 (Wulfsohn and Tsiatis 1997). Under longitudinal model 1256 
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mis-specification and estimation bias, the conditional independence assumption can fail, 1257 

undermining the accurate of trajectory estimates. Because the time-to-event processes are related 1258 

to length of follow-up, informative missingness/dropouts can lead to differential follow-up 1259 

between subjects with and without an event, and thus the random effects 𝒃𝒊 can depend on the 1260 

event times (e.g. patients who have an event early are more likely to have positive random slopes). 1261 

However, as we show in the simulation studies, in absence of model mis-specification and 1262 

informative dropouts/missingness, this approach has low bias and is computationally feasible for 1263 

genetic association studies. 1264 
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Fig. 1. Directed acyclic graph (DAG) illustrating the joint model parameters to characterize the direct SNP effect on the time-to-event trait 

and the indirect SNP effect via the intermediate longitudinal QT associated with the time-to-event trait. Figure adapted from (Ibrahim et al. 

2010) which proposed a general joint model formulation for one longitudinal QT and one time-to-event trait to address questions specific to testing 

for treatment effects in randomized-controlled clinical trials.  

 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2023. ; https://doi.org/10.1101/2021.05.10.21256880doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.10.21256880
http://creativecommons.org/licenses/by-nc/4.0/


63/74 

Fig. 2. Proposed joint modelling approach for characterization of complex genetic architecture of multiple disease progression 
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Fig. 3. Realistic DCCT-data-based causal genetic scenario  

We generated R=1000 replicates of N=667 DCCT individuals with M=5 causal variants and K=2 time-to-event traits simulated under this causal 

genetic scenario, and R=1000 replicates of M=5 SNPs (with same MAF as the causal ones) simulated under a global null genetic scenario where none 

of the SNPs is associated with any traits. The effects of gender on SBP, and of T1D duration at baseline on both time-to-T1DC traits are not 

represented in this figure, but are included in the data generating model, see File S2 (sections 2 and 3) for details. 
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Fig. 4. Illustration of the procedure developed for DCCT-based simulation study under the scenario from Fig. 3 

 

 

For each individual i, with {𝒕𝒊, 𝒚𝒊,𝟏, 𝒚𝒊,𝟐} observed in DCCT, the algorithm simulate: latent longitudinal QT values for U (𝒚𝒊,𝒖), genetic data at M causal SNPs (with p, the specified 

vector of MAFs) and time-to-T1DC data (𝑇𝑖,𝑘 , 𝛿𝑖,𝑘) for K=2 time-to-T1DC traits. The genetic data are simulated under Hardy-Weinberg and linkage equilibrium assumptions. SNPs 

with indirect effects are simulated from a multinomial distribution with calculated conditional genotype probabilities for individual i (𝜋𝑔𝑖=0, 𝜋𝑔𝑖=1, 𝜋𝑔𝑖=2) based on 𝒚𝒊,𝒍. Each 𝒚𝒊,𝒍 is 

assumed to follow a multivariate normal distribution with 𝑿𝒊,𝒍 and 𝒁𝒊,𝒍 the specified fixed and random effect design matrices in longitudinal trait models and  𝜴𝒍 = { 𝜷𝒍, 𝑫𝒍, 𝝈𝒍
𝟐} the 

vector of specified parameter values  for each lth QT. SNPs with direct effects are simulated from the population probabilities, that depend only on the MAF. The specified hazard 

function for each kth time-to-event trait depends on the effects of the longitudinal QT trajectories and on the SNPs with direct effects in 𝜂𝑖,𝑘, with 𝜂𝑖,1 = 𝛾𝑔,1 𝑆𝑁𝑃2𝑖 + 𝛼1,1𝑦𝑖,1
∗ (𝑡) for 

DR and 𝜂𝑖,2 = 𝛾𝑔𝑆𝑁𝑃4𝑖 + 𝛾′𝑔 𝑆𝑁𝑃5𝑖 + 𝛼1,2 𝑦𝑖,1
∗ (𝑡) + 𝛼2,2 𝑦𝑖,2

∗ (𝑡) for DN, as well as the effect of the shared latent QT trajectory 𝑦𝑖,𝑢
∗ (𝑡) used to induce some dependencies between 

the time-to-event traits. We define 𝜞𝒌 as the vectors of specified parameter values for each kth time-to-event trait. The uncensored event time 𝑇𝑖,𝑘
∗ , is simulated by calculating the 

inverse of the cumulative specified hazard function using the Brent univariate root-finding method (Brent 2013; Crowther and Lambert 2013). To simplify the exposition of the 

simulation procedure, we ignore the effects of the sex on SBP and of the T1D duration on both T1DC traits, but they were included in the data generating model, see File S2 for 

details. Parameters for the causal genetic scenario are shown in Fig. 3 and File S2 (section 4)
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Fig. 5. Classification of direct and/or indirect SNP associations in the DCCT Genetics Study data. 

(A) Scatter plots of the P-values (-log10) for tests of 𝛽𝑔,𝑙 (H0: 𝛽𝑔,𝑙 = 0 vs H1 𝛽𝑔,𝑙 ≠ 0) on the X axis and 𝛾𝑔,𝑘 

(H0: 𝛾𝑔,𝑘 = 0 vs H1: 𝛾𝑔,𝑘 ≠ 0) on the Y axis for HbA1c/DR, HbA1c/DN and SBP/DN trait pairs. Significance 

levels 𝑃∗ =1.7x10-4 and 𝑃∗ = 0.05 are indicated by red and grey horizontal and vertical dashed lines. (B) and (C) 

represent association results for rs10810632 and rs1358030 detected as indirect associations at 𝑃∗ =1.7x10-4. Left 

panels present results from separate analysis of each trait (ie. longitudinal model for each QT and Cox PH time-

to-event model without adjusting for the longitudinal traits) as used in naïve discovery GWAS; and right panels 

show results from the joint model with bootstrap 95% confidence intervals for the direct and indirect SNP effects. 

Results are presented using time-weighted cumulative HbA1c effects on T1DC traits. 
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Fig. 6. Change in classification results for rs10810632 with HbA1c/DR to increasing sample size (A) and to the Winner’s curse 

bias for the SNP effect on HbA1c (B) investigated using parametric resampling. 

 

 

 

We used parametric resampling (File S3, section 6) to draw datasets with sample size up to five times the DCCT sample size of 

N=516, and then extrapolated the classification results beyond N=2580. The X axes of (A) and (B), show the P-values (-log10) for the 

test of rs10810632 effect on HbA1c (H0: 𝛽𝑔,1 = 0 vs H1 𝛽𝑔,1 ≠ 0)), while the Y axes show the P-values (-log10) for the test of 

rs10810632 effect on DR (H0: 𝛾𝑔,1 = 0 vs H1: 𝛾𝑔,1 ≠ 0) for the sample sizes investigated (shown by different colors). We fitted a 

regression line on each plot to project the trend of the classification beyond N=2580 individuals. These plots illustrate the 

corresponding shift in classification of rs10810632 association with DR as indirect via HbA1c towards classification as both indirect 

and direct association. Complete results with HbA1c/DN are shown in File S3 (section 6).
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 SNP association with the longitudinal risk factor l 

𝑃𝛽𝑔,𝑙
≤ 𝑃𝛽𝑔

∗  𝑃𝛽𝑔,𝑙
> 𝑃𝛽𝑔

∗  

SNP association with the 

time-to-event trait k 

𝑃𝛾𝑔,𝑘
≤ 𝑃𝛾𝑔

∗  
Direct & Indirect 

𝛽𝑔,𝑙 ≠ 0 AND 𝛾𝑔,𝑘 ≠ 0 

Direct 

𝛽𝑔,𝑙 = 0 AND 𝛾𝑔,𝑘 ≠ 0 

𝑃𝛾𝑔,𝑘
> 𝑃𝛾𝑔

∗  
Indirect 

𝛽𝑔,𝑙 ≠ 0 AND  𝛾𝑔,𝑘 = 0 

Not Direct & Not Indirect 

𝛽𝑔,𝑙 = 0 AND  𝛾𝑔,𝑘 = 0 

𝑃𝛽𝑔,𝑙
 and 𝑃𝛾𝑔,𝑘

 are P-values from Wald tests (1df) for each of SNP effects 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘. For the former, we test H0: 𝛽𝑔,𝑙 = 0 vs H1: 𝛽𝑔,𝑙 ≠ 0. 

For the latter, H0: 𝛾𝑔,𝑘 = 0 vs H1: 𝛾𝑔,𝑘 ≠ 0. 𝑃𝛽𝑔

∗  and 𝑃𝛾𝑔
∗  are the corresponding classification thresholds (see Materials and Methods for details). 

For example, if the H0: 𝛽𝑔,𝑙 = 0 is rejected and H0: 𝛾𝑔,𝑘 = 0 is rejected by the corresponding test statistics, then the SNP is classified as being 

both indirectly and directly associated with the time-to-event trait k. The classification procedure is based on the two separate test statistics and 

does not require a joint test statistic of the overall SNP effect; it thus partitions the two-dimensional parameter space into four mutually exclusive 

quadrants. In the simulations and application, we use 𝑃∗ =  𝑃𝛽𝑔

∗ = 𝑃𝛾𝑔
∗ , although different thresholds can be specified for 𝑃𝛽𝑔

∗  and 𝑃𝛾𝑔
∗ . 

 

 

 

Table 1. Procedure to classify a SNP as having an association with a time-to-event trait k, indirectly through an associated 

longitudinal risk factor l and/or directly with trait k, based on hypothesis tests of SNP effects 𝜷𝒈,𝒍 and 𝜸𝒈,𝒌. 
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 SNPs1 Analysis Models 
Global null at P*=5% Genetic alternative at P*=5% 

HbA1c SBP DR DN HbA1c SBP DR DN 

SNP1 

(MAF=

30%) 

  βg,1=0 βg,2=0 γg,1=0 γg,2=0 βg,1=0.7 βg,2=0 γg,1=0 γg,2=0 

JM-cmp 5.2 5.8 4.4 4.8 100 5.1 4.1 5.4 

JM-mis 5.2 5.8 3.6 4.9 100 5.1 4.2 4.6 

JM-sep(l=1,2; k=1) 5.2 5.8 3.8 . 100 5.1 4.7 . 

JM-sep(l=1,2; k=2) 5.2 5.8 . 5.2 100 5.1 . 4.6 

JM-sep(l=1; k=1) 5.6 . 4.0 . 100 . 4.6 . 

JM-sep(l=1; k=2) 5.6 . . 4.6 100 . . 5.7 

JM-sep(l=2; k=2) . 5.9 . 4.6 . 5.2   11.2 

SNP2 

(MAF=

10%) 

  βg,1=0 βg,2=0 γg,1=0 γg,2=0 βg,1=0 βg,2=0 γg,1=0.8 γg,2=0 

JM-cmp 5.5 6.0 5.8 3.9 6.6 5.4 100 3.9 

JM-mis 5.5 6.0 4.5 3.8 6.6 5.4 100 4.6 

JM-sep(l=1,2; k=1) 5.5 6.0 5.0 . 6.6 5.4 100  . 

JM-sep(l=1,2; k=2) 5.5 6.0 . 4.4 6.6 5.4 . 5.2 

JM-sep(l=1; k=1) 5.0 . 5.0 . 6.1 . 100  . 

JM-sep(l=1; k=2) 5.0 . . 5.1 6.1 . . 4.6 

JM-sep(l=2; k=2) . 6.7 . 4.9 . 5.2 . 4.7 

SNP31 

(MAF=

40%) 

  βg,1=0 βg,2=0 γg,1=0 γg,2 =0 βg,1=0 βg,2=0 γg,1=0 γg,2=0 

JM-cmp 4.0 6.7 4.3 4.5 4.5 4.6 4.7 3.8 

JM-mis 4.0 6.7 4.6 3.9 4.5 4.6 89.9 58.4 

JM-sep(l=1,2; k=1) 4.0 6.7 4.7 . 4.5 4.6 89.7 . 

JM-sep(l=1,2; k=2) 4.0 6.7 . 4.4 4.5 4.6 . 57.7 

JM-sep(l=1; k=1) 4.1 . 4.6 . 4.8 . 89.7 . 

JM-sep(l=1; k=2) 4.1 . . 4.6 4.8 . . 33.0 

JM-sep(l=2; k=2) . 6.5 . 4.8 . 4.4 . 56.4 

SNP4 

(MAF=

30%) 

  βg,1=0 βg,2=0  γg,1 =0 γg,2 =0 βg,1=0 βg,2=0 γg,1 =0 γg,2 =0.7 

JM-cmp 4.8 6.3 3.9 4.9 5.4 4.8 6.0 100 

JM-mis 4.8 6.3 4.9 4.7 5.4 4.8 5.4 100 

JM-sep(l=1,2; k=1) 4.8 6.3 4.9 . 5.4 4.8 5.1 . 

JM-sep(l=1,2; k=2) 4.8 6.3 . 5.1 5.4 4.8 . 99.9 

JM-sep(l=1; k=1) 5.0 . 4.6 . 6.1 . 5.1 . 

JM-sep(l=1; k=2) 5.0 . . 5.0 6.1 . . 93.9 

JM-sep(l=2; k=2) . 5.6 . 4.8 . 4.8 . 99.9 

SNP5 

(MAF=

20%) 

  βg,1=0 βg,2=0 γg,1=0 γg,2=0 βg,1=0 βg,2=7 γg,1 =0 γg,2 =0.4 

JM-cmp 5.0 5.5 4.7 5.6 2.8 100 5.5 66.4 

JM-mis 5.0 5.5 4.6 4.5 2.8 100 4.6 64.5 

JM-sep(l=1,2; k=1) 5.0 5.5 5.2 . 2.8 100 4.8 . 

JM-sep(l=1,2; k=2) 5.0 5.5 . 5.0 2.8 100 . 63.2 

JM-sep(l=1; k=1) 5.1 . 5.3 . 2.8 . 4.6 . 

JM-sep(l=1; k=2) 5.1 . . 4.9 2.8 . . 100 

JM-sep(l=2; k=2) . 5.6 . 5.4 . 100 . 64.9 
1Except for JM-cmp, none of the analyses account for indirect genetic pathways via the longitudinal risk factor U. This 

translates into elevated T1E in the direct genetic effects 𝛾𝑔,𝑘 for both time-to-T1DC traits. 

Table 2. Empirical type-I error and power (%) for SNP hypothesis tests of each of βg,l and γg,k based on the 

complete joint model and compared models, assessed using R=1000 replicates of N=667 DCCT subjects, 

with SNPs simulated under global genetic null  and genetic alternative simulation scenarios.  

Values are computed for each SNP and each genetic association parameter as the proportion of replicates that 

reject the null hypothesis at significance threshold P*=0.05. Results at other significance levels P*, and also for 

CM-obs, are shown in File S2, under the global null scenario at P* ≤ 0.01 (section 7), and under the alternative 

genetic scenario at 𝑃∗ ≤ 10−5 (section 8). 
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Table 3. Classification frequencies for SNP1 association with each of the QT/time-to-event trait pairs based on the complete joint model and 

compared models at significance threshold P*=0.05, using R=1000 replicates of N=667 DCCT subjects, with SNPs simulated under the alternative 

genetic scenario from Fig. 3 

SNP 
Trait 

pairs 
Analysis Model  Mean Bias1 

Mean Bootstrap SE’s 

and Correlation2 

Classification frequencies (%) 

Expected3 (above) vs Empirical Values4 

SNP1 

(MAF= 

30%) 

HbA1c(l=1)/ 

DR(k=1) 

 

  βg,1=0.7 γg,1=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,1̂

   𝜌1,1̂ 
Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

95.0 0 5.0 0 

JM-cmp 

-0.051 

0.002 

0.006 

0.009 -0.003 95.9 0 4.1 0 

JM-mis <0.001 0.010 -0.002 95.8 0 4.2 0 

JM-sep(l=1,2; k=1) <0.001 0.008 -0.002 95.3 0 4.7 0 

JM-sep(l=1; k=1) -0.047 <0.001 0.006 0.008 -0.002 95.4 0 4.6 0 

CM-obs -0.051 0.032 0.006 0.009 0.041 93.6 0 6.4 0 

HbA1c(l=1)/ 

DN(k=2) 

  βg,1=0.7 γg,2=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,2̂

   𝜌1,2̂ 
Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

95.0 0 5.0 0 

JM-cmp 

-0.051 

-0.011 

0.006 

0.021 -0.012 94.6 0 5.4 0 

JM-mis -0.014 0.024 -0.010 95.4 0 4.6 0 

JM-sep(l=1,2; k=2) -0.011 0.021 -0.009 95.4 0 4.6 0 

JM-sep(l=1; k=2) -0.047 -0.004 0.006 0.019 -0.005 94.3 0 5.7 0 

CM-obs -0.051 0.018 0.006 0.016 0.018 94.3 0 5.7 0 

SBP(l=2)/ 

DN(k=2) 

  βg,2=0 γg,2=0 𝜎𝛽𝑔,2̂
 𝜎𝛾𝑔,2̂

   𝜌2,2̂ 
Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.053 

-0.011 

0.233 

0.021 -0.021 5.0 5.3 0.1 89.6 

JM-mis -0.014 0.024 -0.012 5.1 4.6 0 90.3 

JM-sep(l=1,2; k=2) -0.011 0.021 -0.009 5.1 4.6 0 90.3 

JM-sep(l=2; k=2) -0.053 0.095 0.232 0.019 -0.007 4.3 10.3 0.9 84.5 

CM-obs -0.053 0.018 0.233 0.016 0.313 4.5 5.1 0.6 89.8 
1Mean Bias in the SNP1 effects, 𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘 ̂ ,  estimated by each of the analysis models. 
2Mean Bootstrap SE’s, 𝜎𝛽𝑔,𝑙

 and 𝜎𝛾𝑔,𝑘
, for respectively 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and mean correlation 𝜌𝑙,𝑘  over the R=1000 replicates. 

3Expected classification frequencies (%) for each category of association calculated as the probability to classify SNP1 association as Direct, Indirect, Direct & Indirect, or Not 

Direct & Not Indirect, under the assumption that  𝒁�̂� = (𝑍𝛽𝑔,𝑙
̂ , 𝑍𝛾𝑔,𝑘

̂)
𝑇

, constructed from the SNP effect estimates (𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘 ̂ ) and their bootstrap standard errors (𝜎𝛽𝑔,𝑙
̂  and 

𝜎𝛾𝑔,�̂�
) as 𝑍𝛽𝑔,𝑙

̂ = 𝛽𝑔,𝑙  ̂ 𝜎𝛽𝑔,𝑙
̂⁄  and 𝑍𝛾𝑔,𝑘

̂ = 𝛾𝑔,𝑘  ̂ 𝜎𝛾𝑔,�̂�
⁄  from JM-cmp, asymptotically follows a bivariate normal distribution, that is  𝒁�̂�~𝑁2(𝐸[𝒁𝒈], 𝜢), where 𝐸[𝒁𝒈] is the vector of 

expectations, and 𝑯 = (
1 𝜌𝑙,𝑘

𝜌𝑙,𝑘 1
) with 𝜌𝑙,𝑘 = 𝐶𝑜𝑟 (𝑍𝛽𝑔,𝑙

, 𝑍𝛾𝑔,𝑘
) =  𝜎𝛽𝑔,𝑙𝛾𝑔,𝑘

 (𝜎𝛽𝑔,𝑙
⁄ × 𝜎𝛾𝑔,𝑘

) and 𝜎𝛽𝑔,𝑙𝛾𝑔,𝑘
, the covariance between 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘 (See File S2, section 9 for details). 

4Empirical classification frequencies (shown as a percentage, %) for each SNP association under the alternative genetic simulation for 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘 hypothesis tests using the 

procedure described in Table 1 at 𝑃∗ = 𝑃𝛽
∗ = 𝑃𝛾

∗ = 0.05. The results for the correct classification category under the alternative genetic simulation scenario from Fig. 3 are shown 

in bold. Empirical classification frequencies at significance levels 𝑃∗ ≤ 10−5, and their 95% confidence intervals are presented in File S2 (section 11)
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Table 4. Classification frequencies for SNP2 association with each QT/time-to-event trait pairs based on the complete joint model and compared 

models at significance threshold P*=0.05, using R=1000 replicates of N=667 DCCT subjects, with SNPs simulated under the alternative genetic 

scenario from Fig. 3 

SNP Trait pairs Analysis Model  Mean Bias1 
Mean Bootstrap SE’s 

and Correlation2 

Classification frequencies3 (%) 

Expected (above) vs Empirical Values 

SNP2 

(MAF=10%) 

HbA1c(l=1)/ 

DR(k=1) 

  βg,1=0 γg,1=0.8 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,1̂

   𝜌1,1̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

0 95.0 5.0 0 

JM-cmp 

-0.003 

0.003 

0.014 

 

0.015 -0.005 0 93.4 6.6 0 

JM-mis -0.023 0.019 -0.006 0 93.4 6.6 0 

JM-sep(l=1,2; k=1) -0.099 0.015 -0.007 0 93.4 6.6 0 

JM-sep(l=1; k=1) -0.003 -0.099 0.014 0.015 -0.006 0 93.9 6.1 0 

CM-obs -0.003 -0.077 0.014 0.017 0.038 0 93.4 6.6 0 

HbA1c(l=1)/ 

DN(k=2) 

  βg,1=0 γg,2=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,2̂

   𝜌1,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.003 

<0.001 

0.014 

 

0.043 -0.010 6.4 3.7 0.2 89.7 

JM-mis -0.003 0.048 -0.011 6.3 4.3 0.3 89.1 

JM-sep(l=1,2; k=2) 0.002 0.042 -0.011 6.2 4.8 0.4 88.6 

JM-sep(l=1; k=2) -0.003 -0.006 0.011 0.038 0.011 6.1 4.6 0 89.3 

CM-obs -0.003 -0.004 0.014 0.034 0.023 6.6 4.5 0 88.9 

SBP(l=2)/ 

DN(k=2) 

  βg,2=0 γg,2=0 𝜎𝛽𝑔,2̂
 𝜎𝛾𝑔,2̂

   𝜌2,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.004 

<0.001 

0.513 

 

0.043 -0.018 5.4 3.9 0 90.7 

JM-mis -0.003 0.048 -0.012 5.4 4.6 0 90.0 

JM-sep(l=1,2; k=2) 0.002 0.042 -0.008 5.3 5.1 0.1 89.5 

JM-sep(l=2; k=2) -0.004 0.001 0.512 0.042 -0.005 5.0 4.5 0.2 90.3 

CM-obs -0.004 -0.004 0.513 0.034 0.330 5.0 4.1 0.4 90.5 
1Mean Bias in the SNP2 effects,  𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘  ̂ ,  estimated by each of the analysis models. 

2Mean Bootstrap SE’s, 𝜎𝛽𝑔,𝑙
 and 𝜎𝛾𝑔,𝑘

, for respectively 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and their correlation 𝜌𝑙,𝑘 over the R=1000 replicates. 

 3Expected and empirical frequencies (shown as percentage, %) to classify SNP2 association as Direct, Indirect, Direct & Indirect, or Not Direct & Not Indirect, calculated as 

described in the footnote of Table 3. Empirical classification frequencies at significance levels 𝑃∗ ≤ 10−5, and their 95% confidence intervals are presented in File S2 (section 11).   
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Table 5. Classification frequencies for SNP4 association with each pair of QT/time-to-event traits based on the complete joint model and compared 

models at significance threshold P*=0.05, using R=1000 replicates of N=667 DCCT subjects, with SNPs simulated under the alternative genetic 

scenario from Fig. 3 

SNP Trait pairs Analysis Model  Mean Bias1 
Mean Bootstrap SE’s and 

Correlation2 

Classification frequencies3 (%) 

Expected (above) vs Empirical Values 

SNP4 

(MAF=

30%) 

HbA1c(l=1)/ 

DR(k=1) 

  βg,1=0 γg,1=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,1̂

   𝜌1,1̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

0.001 

-0.001 

0.006 

0.007 <0.001 4.9 5.5 0.5 89.1 

JM-mis 0.001 0.009 -0.003 5.0 5.0 0.4 89.6 

JM-sep(l=1,2; k=1) 0.001 0.007 -0.003 5.1 4.8 0.3 89.8 

JM-sep(l=1; k=1) 0.001 0.001 0.006 0.007 -0.002 5.7 4.7 0.4 89.2 

CM-obs 0.001 0.001 0.006 0.008 0.038 5.0 4.2 0.4 90.4 

HbA1c(l=1)/ 

DN(k=2) 

 βg,1=0 γg,2=0.7 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,2̂

   𝜌1,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

0 94.98 5.0 0.02 

JM-cmp 

0.001 

-0.014 

0.006 

0.017 -0.010 0 94.6 5.4 0 

JM-mis -0.028 0.019 -0.010 0 94.6 5.4 0 

JM-sep(l=1,2; k=2) -0.076 0.017 -0.009 0 94.5 5.4 0.1 

JM-sep(l=1; k=2) 0.001 -0.281 0.006 0.015 0.007 0.3 88.1 5.8 5.8 

CM-obs 0.001 -0.216 0.006 0.013 0.025 0 93.5 5.4 1.1 

SBP(l=2)/ 

DN(k=2) 

 βg,2=0 γg,2=0.7 𝜎𝛽𝑔,2̂
 𝜎𝛾𝑔,2̂

   𝜌2,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

0 94.98 5.0 0.02 

JM-cmp 

0.012 

-0.014 

0.215 

0.017 -0.026 0 95.2 4.8 0 

JM-mis -0.028 0.019 -0.021 0 95.2 4.8 0 

JM-sep(l=1,2; k=2) -0.076 0.017 -0.020 0 95.1 4.8 0.1 

JM-sep(l=2; k=2) 0.012 -0.088 0.215 0.016 -0.019 0 95.1 4.8 0.1 

CM-obs 0.012 -0.216 0.215 0.013 0.332 0.1 94.2 4.7 1.0 
1Mean Bias in the SNP4 effects,  𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘 ̂ ,  estimated by each of the analysis models. 

2Mean Bootstrap SE’s, 𝜎𝛽𝑔,𝑙
 and 𝜎𝛾𝑔,𝑘

, for respectively 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and their correlation 𝜌𝑙,𝑘 over the R=1000 replicates. 

3Expected and empirical frequencies (shown as percentage, %) to classify SNP4 association as Direct, Indirect, Direct & Indirect, or Not Direct & Not Indirect, calculated as 

described in the footnote of Table 3. Empirical classification frequencies at significance levels 𝑃∗ ≤ 10−5, and their 95% confidence intervals are presented in File S2 (section 

11). 
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Table 6. Classification frequencies for SNP5 association with each pair of QT/time-to-event traits based on the complete joint model and compared 

models at significance threshold P*=0.05, using R=1000 replicates of N=667 DCCT subjects, with SNPs simulated under the alternative genetic 

scenario from Fig. 3 

SNP Trait pairs Analysis Model  Mean Bias1 
Mean Bootstrap SE’s and 

Correlation2 

Classification frequencies3 (%) 

Expected (above) vs Empirical Values 

SNP5  

(MAF=20%) 

HbA1c(l=1)/ 

DR(k=1) 

 

  βg,1=0 γg,1=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,1̂

   𝜌1,1̂ 
Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.021 

<0.001 

0.010 

0.012 0.001 2.4 5.1 0.4 92.1 

JM-mis 0.017 0.015 <0.001 2.4 4.2 0.4 93.0 

JM-sep(l=1,2; k=1) 0.013 0.012 <0.001 2.4 4.4 0.4 92.8 

JM-sep(l=1; k=1) -0.019 0.013 0.010 0.012 -0.003 2.6 4.4 0.2 92.8 

CM-obs -0.021 0.019 0.010 0.013 0.043 2.4 4.4 0.4 92.8 

HbA1c(l=1)/ 

DN(k=2) 

 βg,1=0 γg,2=0.4 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,2̂

   𝜌1,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

1.44 67.67 3.56 27.33 

JM-cmp 

-0.021 

-0.020 

0.010 

0.025 -0.016 1.1 64.7 1.7 32.5 

JM-mis -0.009 0.029 -0.013 0.8 62.5 2.0 34.7 

JM-sep(l=1,2; k=2) -0.036 0.026 -0.014 1.2 61.6 1.6 35.6 

JM-sep(l=1; k=2) -0.019 0.765 0.010 0.021 -0.008 0 97.2 2.8 0 

CM-obs -0.021 0.505 0.010 0.022 0.017 0 97.2 2.8 0 

SBP(l=2)/ 

DN(k=2) 

  βg,2=7 γg,2=0.4 𝜎𝛽𝑔,2̂
 𝜎𝛾𝑔,2̂

   𝜌2,2̂ 
Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

28.77 0 71.23 0 

JM-cmp 

0.046 

-0.020 

0.385 

0.025 -0.050 33.6 0 66.4 0 

JM-mis -0.009 0.029 -0.047 35.5 0 64.5 0 

JM-sep(l=1,2; k=2) -0.036 0.026 -0.047 36.8 0 63.2 0 

JM-sep(l=2; k=2) 0.039 -0.029 0.384 0.025 -0.041 35.1 0 64.9 0 

CM-obs 0.046 0.505 0.385 0.022 0.280 0 0 100 0 
1Mean Bias in the SNP5 effects,  𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘 ̂ ,  estimated by each of the analysis models. 

2Mean Bootstrap SE’s, 𝜎𝛽𝑔,𝑙
 and 𝜎𝛾𝑔,𝑘

, for respectively 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and their correlation 𝜌𝑙,𝑘 over the R=1000 replicates. 

3Expected and empirical frequencies (shown as percentage, %) to classify SNP5 association as Direct, Indirect, Direct & Indirect, or Not Direct & Not Indirect, calculated as 

described in the footnote of Table 3. Empirical classification frequencies at significance levels 𝑃∗ ≤ 10−5, and their 95% confidence intervals are presented in File S2 (section 

11). 
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Table 7. Classification frequencies for SNP3 association with each pair of QT/time-to-event traits based on the complete joint model and compared 

models at significance threshold P*=0.05, using R=1000 replicates of N=667 DCCT subjects, with SNPs simulated under the alternative genetic 

scenario from Fig. 3 

SNP Trait pairs Analysis Model  Mean Bias1 
Mean Bootstrap SE’s and 

Correlation2 

Classification frequencies3 (%) 

Expected (above) vs Empirical Values 

SNP34 

(MAF=40%) 

HbA1c(l=1)/ 

DR(k=1) 

  βg,1=0 γg,1=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,1̂

   𝜌1,1̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.012 

0.001 

0.006 

0.009 -0.001 4.3 4.5 0.2 91.0 

JM-mis 0.299 0.009 -0.004 0.7 86.1 3.8 9.4 

JM-sep(l=1,2; k=1) 0.274 0.007 -0.004 0.6 85.8 3.9 9.7 

JM-sep(l=1; k=1) -0.014 0.274 0.006 0.007 -0.003 0.5 85.4 4.3 9.8 

CM-obs -0.012 0.280 0.006 0.008 0.035 0.7 85.5 3.8 10.0 

HbA1c(l=1)/ 

DN(k=2) 

  βg,1=0 γg,2=0 𝜎𝛽𝑔,1̂
 𝜎𝛾𝑔,2̂

   𝜌1,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

-0.012 

0.004 

0.006 

0.021 -0.012 4.5 3.8 0 91.7 

JM-mis 0.305 0.021 -0.016 1.7 55.6 2.8 39.9 

JM-sep(l=1,2; k=2) 0.291 0.019 -0.016 1.6 54.8 2.9 40.7 

JM-sep(l=1; k=2) -0.014 0.197 0.006 0.017 0.005 3.2 31.4 1.6 63.8 

CM-obs -0.012 0.228 0.006 0.015 0.019 2.3 46.0 2.2 49.5 

SBP(l=2)/ 

DN(k=2) 

  βg,2=0 γg,2=0 𝜎𝛽𝑔,2̂
 𝜎𝛾𝑔,2̂

   𝜌2,2̂ 
 Indirect Direct 

Direct & 

Indirect 

Not Direct &  

Not Indirect 

4.75 4.75 0.25 90.25 

JM-cmp 

0.157 

0.004 

0.211 

0.021 -0.017 4.4 3.6 0.2 91.8 

JM-mis 0.305 0.021 -0.017 1.8 55.6 2.8 39.8 

JM-sep(l=1,2; k=2) 0.291 0.019 -0.015 1.8 54.9 2.8 40.5 

JM-sep(l=2; k=2) 0.156 0.282 0.212 0.018 -0.009 1.8 53.8 2.6 41.8 

CM-obs 0.157 0.228 0.211 0.015 0.316 1.4 45.0 3.2 50.4 

1Mean Bias in the SNP3 effects,  𝛽𝑔,𝑙  ̂  and 𝛾𝑔,𝑘 ̂ ,  estimated by each of the analysis models. 

2Mean Bootstrap SE’s, 𝜎𝛽𝑔,𝑙
 and 𝜎𝛾𝑔,𝑘

, for respectively 𝛽𝑔,𝑙 and 𝛾𝑔,𝑘, and their correlation 𝜌𝑙,𝑘 over the R=1000 replicates. 

3Expected and empirical frequencies (shown as percentage, %) to classify SNP3 association as Direct, Indirect, Direct & Indirect, or Not Direct & Not Indirect calculated as 

described in the footnote of Table 3. Empirical classification frequencies at significance levels 𝑃∗ ≤ 10−5, and their 95% confidence intervals are presented in File S2 (section 

11).  
4All the models, except JM-cmp, do not account for the indirect genetic pathways via the intermediate longitudinal risk factor U. This translates into a large bias in the direct 

genetic effects 𝛾𝑔,𝑘 on both time-to-T1DC traits, and increased misclassification rates for SNP3 as a direct association. 
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