
Pathway-based integration of multi-omics data reveals lipidomics 1 

alterations validated in an Alzheimer´s Disease mouse model and risk loci 2 

carriers  3 

 4 
Monica Emili Garcia-Segura 1,2, Brenan R. Durainayagam 2,3, Sonia Liggi 2, Gonçalo Graça4, 5 
Beatriz Jimenez5, Abbas Dehghan3,6,7, Ioanna Tzoulaki3, 6,8,9, Ibrahim Karaman4,6, Paul 6 
Elliott3,6,7,8 and Julian L. Griffin2,3,10 * 7 
 8 
1 Department of Brain Sciences, Imperial College London, London, UK. 9 
2 Section of Biomolecular Medicine, Department of Metabolism, Digestion and 10 
Reproduction, Imperial College London, London, UK.  11 
3 UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK. 12 
4 Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, 13 
Imperial College London, London, UK. 14 
5 Section of Bioanalytical Chemistry and the National Phenome Centre, Department of 15 
Metabolism, Digestion and Reproduction, Imperial College London, London, UK. 16 
6 Department of Epidemiology and Biostatistics, Imperial College London, London, UK. 17 
7 MRC Centre for Environment and Health, Imperial College London, London, UK. 18 
8 National Institute for Health Research Imperial Biomedical Research Centre, Imperial 19 
College London, UK. 20 
9 Department of Hygiene and Epidemiology, University of Ioannina Medical School, 21 
University Campus Road 455 00, Ioannina, Greece. 22 
10 Department of Biochemistry and Cambridge Systems Biology Centre, University of 23 
Cambridge, Cambridge, UK. 24 
 25 
Correspondence 26 
Julian L. Griffin, Biomolecular Medicine, Division of Systems Medicine, Department of 27 
Metabolism, Digestion and Reproduction, Imperial College London, London, United 28 
Kingdom. Email: julian.griffin@imperial.ac.uk ; Tel.: +44-(0)20-7594-3220  29 
 30 
Abstract 31 
Alzheimer´s Disease (AD) is a highly prevalent neurodegenerative disorder. Despite 32 
increasing evidence of important metabolic dysregulation in AD, the underlying metabolic 33 
changes that may impact amyloid plaque formation are not understood, particularly for late 34 
onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics 35 
and proteomics data obtained from several data repositories to obtain differentially expressed 36 
(DE) multi-omics elements in mouse models of AD. We characterized the metabolic 37 
modulation in these datasets using gene ontology, and transcription factor, pathway and cell-38 
type enrichment analysis. A predicted lipid signature was extracted from genome-scale 39 
metabolic networks (GSMN) and subsequently validated in a lipidomic dataset derived from 40 
cortical tissue of ABCA7-null mice, a mouse model of one of the genes associated with late 41 
onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to 42 
further characterize the association between dysregulated lipid metabolism in human blood 43 
serum and AD.  44 
We found 203 DE transcripts, 164 DE proteins and 58 DE GWAS-derived mouse orthologs 45 
associated with significantly enriched metabolic biological processes. Lipid and bioenergetics 46 
metabolic pathways were significantly over-represented across the AD multi-omics datasets. 47 
Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic 48 
transcriptome. We also extracted a predicted lipid signature that was validated and robustly 49 
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modelled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid 50 
species exhibiting statistically significant modulations. MWAS revealed 298 AD single 51 
nucleotide polymorphisms (SNP)-metabolite associations, of which 70% corresponded to 52 
lipid classes. 53 
These results support the importance of lipid metabolism dysregulation in AD and highlight 54 
the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations. 55 
 56 
 57 
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 100 

1 Introduction  101 
 102 
Alzheimer´s Disease (AD) is a neurodegenerative disorder prevalent in later life 103 
characterized by amyloid deposition, hyperphosphorylated tau aggregation into 104 
neurofibrillary tangles and a sustained neuroinflammatory response (DeTure & Dickson 105 
2019). With the proportion of the population over 65 years of age increasing annually, a 106 
mechanistic understanding of the disease is urgently needed (Xie et al. 2020). There are 107 
several emerging lines of evidence highlighting the importance of metabolic dysfunctions in 108 
AD. Impaired glycolysis and bioenergetics shifts towards fatty-acid and amino-acid 109 
metabolism seem to indicate that mitochondrial dysfunction or substrate switch play a role in 110 
AD pathogenesis (Perez Ortiz & Swerdlow 2019). Cholesterol metabolism can also exert 111 
lipotoxic effects in the AD brain via ceramide production modulation (Cutler et al. 2004). 112 
Furthermore, there are several genes linked to AD onset and progression that are also related 113 
to brain lipid metabolism. The apolipoprotein epsilon4 (APOE4) allele, the strongest risk 114 
factor for AD development, is known to cause significant disruptions in brain lipid 115 
homeostasis in both human carriers and transgenic animals (Fernandez et al. 2019). 116 
Similarly, triggering receptor expressed on myeloid cells-2 (TREM2), another gene strongly 117 
associated with AD, actively undergoes lipid-sensing and consequently induces changes in 118 
the microglia lipidome (Nugent et al. 2020). Finally, loss-of-function variant of the ATP-119 
binding-casette, subfamily-A, member-7 gene (ABCA7) has been strongly associated with 120 
late-onset AD (De Roeck et al. 2019). ABCA7 has been implicated in AD pathology through 121 
amyloid-precursor protein (APP) endocytosis, impaired amyloid-beta (Aβ) clearance and, 122 
although not fully elucidated, lipid metabolism dysregulation via sterol regulatory element 123 
binding protein 2 (SREBP2) (Aikawa et al. 2018).  124 
 125 
Despite all the accumulating evidence, mechanistic explanations of AD have mostly been 126 
centered around amyloid or tau-centric hypotheses, and therefore much remains to be 127 
understood regarding the underlying metabolic processes (Johnson et al. 2020).  128 
Multi-omics approaches have the potential to overcome the limitations of the current 129 
knowledge in this field. These approaches can provide a comprehensive view of a particular 130 
pathophysiological state by interrogating molecular changes across several levels of 131 
biological functions (Canzler et al. 2020). A promising methodological approach relevant to 132 
the study of metabolites is genome scale metabolic networks (GSMN), which uses genomics 133 
and transcriptomics data to predict metabolic pathway modulations (Pinu et al. 2019). GSMN 134 
also allow for the interpretation of multi-omics data via metabolic subnetwork curation, thus 135 
providing an attractive metabolic framework which can be effectively validated using 136 
metabolomics and lipidomics data (Frainay & Jourdan 2017).  137 
 138 
The aim of this study was to validate the presence of metabolic perturbations in AD using 139 
multi-omics pathway-based integration and extraction of metabolic subnetworks from open 140 
source data (Figure 1). We found consistent perturbations of lipid and energy metabolism 141 
across three AD multi-omics datasets compiled from previous studies, from which we 142 
extracted 133 lipid species predicted to be dysregulated in AD which we then validated in an 143 
ABCA7 knock-out (KO) mouse dataset acquired with ultraperformance liquid 144 
chromatography-mass spectrometry (UPLC-MS). The importance of this association was 145 
explored further by performing a metabolome-wide association study (MWAS) of the blood 146 
plasma metabolome for AD risk loci carriers in two human cohorts using 1H NMR 147 
spectroscopy. 148 
 149 
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This study also highlights the suitability of interpreting multi-omics data in the context of 150 
GSMNs, as the predicted lipid terms and species were not only found in the cortical ABCA7 151 
lipidome, but its associated multivariate model robustly separated ABCA7 mice from their 152 
wild-type (WT) litter-mates. 153 
 154 
 155 
 156 

 157 
 158 
Figure 1. Schematic representation of the experimental design implemented in this 159 
study. Abbreviations: GEO = gene expression omnibus database, PRIDE = protein 160 
identification database, AD = Alzheimer´s Disease, ABCA7 KO = ATP-binding-cassette, 161 
subfamily A, member 7 gene knock-out. 162 
 163 
 164 
 165 
 166 
 167 

2 Materials and Methods 168 
 169 
2.1 Data collection of AD mouse brain transcriptomics and proteomics data  170 
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The gene expression omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo/) 171 
(Clough & Barrett 2016) was queried on 15/06/20 for gene expression studies using 172 
“Alzheimer’s Disease” as our search term. The following criteria were employed for dataset 173 
selection: Mus musculus organism, expression profiling by array as study-type, tissue as 174 
attribute, brain tissue expression compared to WTs and a minimum of 3 animals per 175 
condition. This search yielded 11 datasets (GSE25926, GSE53480, GSE60460, GSE77574, 176 
GSE77373, GSE109055, GSE111737, GSE113141, GSE141509 and GSE74441) from 9 177 
studies (Aydin et al. 2011; Polito et al. 2014; Hamilton et al. 2015; Marsh et al. 2016; Wang 178 
et al. 2017; Faivre et al. 2018; Hou et al. 2018; Fang et al. 2019; Preuss et al. 2020). 179 
The proteomics identifications (PRIDE) repository (Jones et al. 2006) was queried on 180 
01/07/20 for proteomics studies applying the following filters: Alzheimer’s Disease as 181 
disease, brain as organism-part and Mus musculus as organism. Datasets comparing the AD 182 
proteome against WTs, with minimum 3 animals per condition and with deposited 183 
proteinGroups.txt files were included. This search yielded 4 datasets (PXD007795, 184 
PXD011068, PXD012238, and PXD007813) from 4 publications (Palomino-Alonso et al. 185 
2017; Hamezah et al. 2019; Kim et al. 2019; Lachen-Montes et al. 2019). However, 186 
differences in protein expression failed to reach statistical significance after controlling for 187 
the false discovery rate (FDR) in two studies (Palomino-Alonso et al. 2017; Hamezah et al. 188 
2019), and thus their corresponding datasets were excluded. A description of all included 189 
datasets can be found in Table 1. 190 
 191 
Table 1. Characteristics of the transcriptomics and proteomics datasets included in this study 192 

Brain region GEO/PRIDE 

accession number 

AD 

animal model 

Age Sample size Platform 

Transcriptomics      

Frontal cortex GSE113141 APP/PS1 9-10 months AD (n=6) 

WT (n=6) 

Agilent-074809 SurePrint 

G3 Mouse GE v2 8x60K 

Microarray 

 GSE109055 3xTgAD 22-24 

months 

AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

 GSE77373 5xFAD 5 months AD (n=3) 

WT(n=3) 

Affymetrix Mouse Gene 

1.0 ST Array 

 GSE74441 APP/PS1 Not 

disclosed 

AD (n=6) 

WT (n=6) 

Illumina MouseRef-8 v2.0 

expression beadchip 

 GSE25926 APP-KI 24-28 

months 

AD (n=3) 

WT(n=3) 

Affymetrix Mouse 

Genome 430 2.0 Array 

Hippocampus GSE111737 APP/PS1 8 months AD (n=6) 

WT (n=6) 

Agilent-074809 SurePrint 

G3 Mouse GE v2 8x60K 

Microarray 

 GSE109055 3xTgAD 22-24 

months 

AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

 GSE53480 Tg4510 4 months AD (n=4) 

WT(n=4) 

Affymetrix Mouse 

Genome 430 2.0 Array 

Subventricular zone GSE60460 3xTgAD 7 months AD (n=4) 

WT(n=4) 

Agilent-028005 SurePrint 

G3 Mouse GE 8x60K 

Microarray 

Half-brain GSE141509 5xFAD 6 months AD (n=6) 

WT (n=6) 

NanoString nCounter® 

Mouse AD panel 
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Whole brain GSE77574 5xFAD 6-7 months AD (n=4) 

WT(n=4) 

Affymetrix Mouse 

Transcriptome Array 1.0 

Proteomics      

Hippocampus PXD012238 5xFAD 10 months AD (n=6) 

WT (n=6) 

Orbitrap MS/MS- Q-

Exactive 

Olfactory bulb PXD007813 Tg2576 6 months AD (n=3) 

WT(n=3) 

iTRAQ-LC MS/MS 

with Triple TOF MS 5600 

 193 
2.2 Differential expression (DE) analysis of AD mouse transcriptomics and proteomics data 194 
Processed transcriptomics datasets were retrieved from GEO using the GEOquery 195 
Bioconductor-based package (version 2.54.1) (Davis & Meltzer 2007) in the R environment, 196 
version 3.6.2 (https://www.R-project.org). Datasets were log-2 transformed and graphically 197 
inspected to verify appropriate data normalization; probes that were not mapped to any genes, 198 
mapped to more than one gene and probes with missing values (N/As) were filtered out. 199 
Differential expression analysis was performed using significance analysis of microarray 200 
(SAM) with samr package (version 3.0) (Tusher et al. 2001) within the R environment. SAM 201 
can control for the total number of false positives through both gene specific t-tests and a 202 
maximum local tolerable FDR (Tusher et al. 2001). Upon 200 permutation-based SAM 203 
analysis, multiple testing correction was applied by adjusting the total false positives to 3% 204 
and the local FDR for 90th percentile of DE genes to 5% in every dataset. 205 
 206 
Proteomics datasets were analyzed using Perseus (version 1.6.5) (Tyanova et al. 2016). 207 
Initially, proteins only identified by reverse-decoy, site or known contaminants were 208 
excluded, as well as proteins with 2/3 of replicates per group reporting N/As. Protein 209 
intensities were then log-2 transformed and remaining N/As were replaced using normal 210 
distribution values, as most proteomics studies assume N/As are indicative of low-expression 211 
proteins (Tyanova et al. 2016). DE proteins were determined using a two-tailed Student´s t-212 
test with a 200 FDR permutation-based method and a 0.050 p-value cut-off (Tusher et al. 213 
2001). In isobaric tag for relative and absolute quantification (iTRAQ) experiments, an 214 
additional fold change (FC) 1.17-0.83 cut-off was introduced to determine DE proteins. 215 
iTRAQ experiments are prone to interference/ratio distortion (Pappireddi et al. 2019), and 216 
thus a combination of p-value, FDR and FC cut-off is the most suitable approach to detect 217 
biological variability (Oberg & Mahoney 2012).  218 
 219 
2.3 AD genome-wide association studies (GWAS) gene-based analysis and mouse ortholog 220 
determination 221 
AD GWAS summary statistics were obtained from a meta-analysis of the UK-Biobank and 222 
International Genomics of Alzheimer’s Project (IGAP) cohorts, which evaluated GWAS with 223 
AD by-proxy in 388364 individuals across both cohorts (Marioni et al. 2018). Summary 224 
statistics (ID: GCST005922) were retrieved from the NHGRI-EBI GWAS-Catalog 225 
(https://www.ebi.ac.uk/gwas/) (Buniello et al. 2019) on 07/07/2020.  226 
 227 
Gene-based analysis was performed with multi-marker analysis of genomic annotation 228 
(MAGMA, version 1.07bb) (de Leeuw et al. 2015), using gene locations from the genome 229 
reference consortium-human build-37 (GRCh37, NCBI) and a reference panel of European 230 
ancestry from the 1000 genomes project phase-3 (Auton et al. 2015). MAGMA provides a 231 
combined p-statistic of genes significantly associated with single nucleotide polymorphisms 232 
(SNPs) (de Leeuw et al. 2015); we used a combined 0.050 p-value as a significance cut-off. 233 
Significant genes were imported into Ensembl–Biomart on 20/07/2020 (version GrCh37.13; 234 
https://grch37.ensembl.org/biomart/martview) to determine high confidence mouse orthologs 235 
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(Zerbino et al. 2018). Upon excluding genes associated with either several or no mouse 236 
orthologs, only those exhibiting one-to-one bidirectional orthology with 60% protein 237 
sequence similarity across both species were considered high-quality mouse orthologs 238 
(Mancuso et al. 2019).  239 
 240 
2.4 Gene ontology (GO) analysis and AD-metabolic multi-omics extraction 241 
DE transcripts, proteins and GWAS-orthologs were initially mapped onto the BioCyc Mus 242 
musculus GSMN (Caspi et al. 2016) using MetExplore, which provides a framework for 243 
metabolic subnetwork extraction(Cottret et al. 2018). DE transcripts, protein-coding and 244 
GWAS-orthologs genes that were not mapped onto the GSMN were removed; the resulting 245 
omics lists are referred to as “all-mapped” data throughout this study. Significantly enriched 246 
functional terms were identified in all-mapped AD omics datasets using the database for 247 
annotation, visualization and integrated discovery (DAVID, version 6.8) 248 
(https://david,neifcrf.gov/) (Dennis et al. 2003). and the Mus musculus genome as 249 
background. GO analysis was performed using a hypergeometric test with an EASE score of 250 
0.1 and a count threshold of 2. Terms with both raw p-value and Benjamini-Hochberg (B-H) 251 
FDR-adjusted p-value (α) below 0.050 were considered statistically significant. Metabolism-252 
related transcripts, proteins and GWAS-orthologs were manually extracted from significantly 253 
enriched biological processes (BP). 254 
 255 
2.5 Transcription Factor (TF) enrichment analysis 256 
TF enrichment analysis was performed on all-mapped AD genes and proteins, as well as their 257 
metabolic counterparts, using ChIP-X enrichment analysis 3 (ChEA3) 258 
(https://maayanlab.cloud/chea3/). ChEA3 performs enrichment analysis based on TF´s target 259 
genes coverage using the Fishers exact test and B-H adjusted p-value at 0.050 threshold 260 
(Keenan et al. 2019). The ENCODE library was chosen as our reference set, as it 261 
incorporates TF-target associations from human and mouse data (Davis et al. 2018). 262 
Significantly enriched TF were manually cross-referenced with the mouse transcription factor 263 
atlas to verify its mouse tissue expression (Zhou et al. 2017).  264 
 265 
2.6 Pathway enrichment analysis of AD-metabolic multi-omics data 266 
AD metabolic transcripts, proteins and GWAS-orthologs lists were mapped onto the BioCyc 267 
Mus musculus GSMN (Caspi et al. 2016) in MetExplore (Cottret et al. 2018). Metabolic 268 
pathway enrichment analysis was performed using hyper-geometric tests with right-tailed 269 
Fishers exact tests with B-H correction for multiple testing (α=0.050). 270 
 271 
2.7 Expression-weighted cell-type enrichment (EWCE) of AD-metabolic multi-omics data 272 
EWCE was conducted on AD-metabolic transcriptomics, proteomics and GWAS-orthologs 273 
datasets using the EWCE package in R (version 0.99.2)(Skene & Grant 2016). EWCE 274 
computes an enrichment p-value that describes the probability of an input gene list having a 275 
meaningful expression within a specific cell-type upon 10000 random permutations (Skene & 276 
Grant 2016). A cortical and hippocampal single-cell RNA-sequencing dataset with large 277 
coverage was used as background (Zeisel et al. 2015); B-H adjusted p-values were calculated 278 
using the R base package. A conditional EWCE analysis was also performed on the 279 
combined AD-metabolic multi-omics dataset to probe the relationships between enriched 280 
cell-types, using an approach originally developed for GWAS data analysis (Skene et al. 281 
2018).  282 
 283 
2.8 Metabolic subnetwork extraction 284 
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To ultimately validate lipid alterations highlighted during pathway enrichment analysis, a 285 
metabolic subnetwork containing all lipid terms or species in significantly enriched lipid 286 
pathways was mined across the AD-metabolic transcriptome and proteome using MetExplore 287 
(Cottret et al. 2018). After excluding non-lipid metabolites, a combined predicted lipid 288 
signature across the AD multi-omics datasets was created, which was visualized using 289 
MetExploreViz (Chazalviel et al. 2018). Lipid identifiers were then retrieved from 290 
LIPIDMAPS (Fahy et al. 2009).  291 
 292 
2.9 Cortical ABCA7-KO lipidomics dataset 293 
We also employed a lipidomics dataset of cortical extracts of 7 WT and 7 ABCA7-KO 11-294 
months old mice, with 3 females and 4 males per group, as described previously (Aikawa et 295 
al. 2018). Lipidomic extraction was performed on ~50mg cortex tissue using a modified 296 
Folch extraction (Su et al. 2019). Global lipidomic profiling of the cortical extracts and 3 297 
pooled samples was acquired using a reverse-phase ultraperformance liquid chromatography-298 
mass spectrometry (RP-UPLC-MS) on a Synapt Quadruple-Time of Flight mass spectrometer 299 
(Waters Corp., Manchester, UK) in positive and negative mode. Details of systems 300 
configuration and analytical conditions have been previously reported (Andreas et al. 2020). 301 
Data processing was performed with KniMet (Liggi et al. 2018). Briefly, signals extracted 302 
using the R library XCMS (Tautenhahn et al. 2012) were retained if present in at least 50% 303 
of the pooled samples with a Coefficient of Variation <= 20. Remaining signals were 304 
subjected to imputation of N/As using K-Nearest Neighbour (KNN), probabilistic quotient 305 
normalization (PQN) based on pooled samples, and annotation using LIPID MAPS 306 
(https://lipidmaps.org/; (Fahy et al. 2009)), retention time matching to standards and 307 
fragmentation data. 308 
 309 
2.10 Multivariate statistical analysis  310 
Multivariate statistical analysis was performed on both positive and negative mode for the 311 
original ABCA7-KO and validated lipid signature subsets using P-SIMCA (Umetrics, 312 
Sweden) following log-transformation of intensities and Pareto-scaling. Orthogonal 313 
projections to latent structures-discriminant analysis (OPLS-DA) models, which allow to 314 
evaluate the impact of group membership by separating the variance attributed or orthogonal 315 
to class membership into components, were created for both original datasets and validated 316 
subset in positive and negative ion mode (Griffin et al. 2020). Lipids in the validated subset 317 
in positive and negative mode with variable influence of projection (VIP) > 1 were retained 318 
for univariate analysis, as OPLS-DA generated VIP > 1 indicate specific variables with 319 
important contributions to the model (Liu et al. 2020). The suitability of the models were 320 
assessed through inspection of their R2(cum)X and Q2 values, which respectively represent 321 
the percentage of model-captured variation and predictive capability (Liu et al. 2020). 322 
Models were further validated with a 100 permutation-based test, in which the correlation 323 
coefficient for the permuted class-membership variable is plotted against the R2(cum)X and 324 
Q2(cum) (Murgia et al. 2017). 325 
 326 
2.11 Univariate statistical analysis  327 
AD multi-omics lipid species that had an associated VIP score above 1 in the original 328 
ABCA7 KO lipidomics dataset underwent univariate statistical analysis using GraphPad 329 
Prism (p<0.05). Negative-mode acquired lipids underwent both a Student t-test and Mann-330 
Whitney non-parametric test comparing genotype (p<0.05), whereas positive-mode acquired 331 
lipids were analyzed using One-way ANOVA comparing genotype and sex correcting for 332 
multiple testing using B-H method (α<0.05).  333 
 334 
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2.12 Metabolome-wide association study (MWAS) of the blood plasma metabolome for AD 335 
risk loci carriers 336 
We performed an MWAS using nuclear magnetic resonance (NMR) spectra of blood from 337 
3258 individuals from the Airwave Health Monitoring Study (Airwave) and the Rotterdam 338 
Study (RS) prospective cohorts (Elliott et al. 2014; Ikram et al. 2020). Ethical approval for 339 
access to the Airwave cohort was granted following application to the access committee via 340 
the Dementia Platform UK (https://portal.dementiasplatform.uk/). Access to the RS cohort 341 
was granted following access to the Management Committee and conducted under approval 342 
from the Ministry of Health, Welfare and Sport of the Netherlands. Blood samples were 343 
heparin plasma for Airwave and serum for RS. Average age at enrolment in 2004 was 40.9 344 
years for men and 38.5 years for women in the Airwave cohort; the RS cohort mean age of 345 
recruitment was 55 for both genders in 1990 (Elliott et al. 2014; Ikram et al. 2020) 346 
Sample preparation and metabolic profiling in these cohorts have been extensively described 347 
(Tzoulaki et al. 2019; Robinson et al. 2020). Briefly, 1H NMR solvent suppression pulse and 348 
T2-Carr-Purcell-Meiboom-Gill (CPMG) spectra were acquired per sample (Dona A.C. et al. 349 
2014) and additionally lipid quantification was applied on the 1H NMR solvent suppression 350 
pulse spectra using a commercial package (Jiménez et al. 2018). Resonances associated with 351 
both protons attached to the fatty acid and the head group (largely choline and glycerol) along 352 
with protons from cholesterol and cholesterol esters were classified as belonging to the lipid 353 
class. 354 
 355 
MWAS was performed using 47 unique genetic loci based on three recent GWAS meta-356 
analysis on AD to identify AD risk loci carriers (Lambert et al. 2013; Jansen et al. 2019; 357 
Kunkle et al. 2019). These studies evaluated genome-wide associations with late-onset AD 358 
(LOAD) in individuals across the IGAP and UK-Biobank cohorts.  359 
 360 
2.13 MWAS association statistics 361 
We carried out a linear regression to calculate the effect estimates of each SNP with all 362 
metabolomic features (23,571 data points for original NMR spectra and 105 features for the 363 
fitted lipid data) with adjustment for age, sex, and cohort. Prior to the analysis, each cohort 364 
data was residualised using 10 principal components from genome-wide scans to adjust for 365 
population stratification. To account for multiple testing, we used a permutation-based 366 
method to estimate the Metabolome Wide Significance Level (MWSL) to consider the high 367 
degree of correlation in metabolomics datasets (Chadeau-Hyam M et al. 2010; Castagné R et 368 
al. 2017). A P-value threshold giving a 5% Family-Wise Error Rate was computed for each 369 
SNP in each data platform. 370 

  371 
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3 Results  372 
 373 
3.1 DE analysis of mapped AD mouse transcriptomics and proteomics data   374 
DE transcripts and proteins in the AD mouse brain with potential metabolic functions were 375 
extracted from the GEO and PRIDE repositories, respectively. Microarray expression profiles 376 
from 11 datasets were obtained from 5 distinct brain regions (frontal cortex, hippocampus, 377 
sub-ventricular zone, brain hemisphere and whole-brain) and 5 AD mouse models (APP/PS1, 378 
5xFAD, 3xTgAD, APP-KI and Tg4510; Table 1). SAM revealed 2884 DE genes with a 90th 379 
percentile FDR below 5%. Of these, 594 were accurately mapped onto the GSMN, which 380 
were used to generate the all-mapped AD transcriptomics dataset. Furthermore, proteomics 381 
datasets from the hippocampus and olfactory bulb of 5xFAD and Tg2576 mice, respectively, 382 
were also obtained (Table 1). Permutation-based analysis revealed 1537 DE proteins (FDR p 383 
< 0.050), of which 392 were mapped onto the GSMN and therefore constituted the all-384 
mapped AD proteomics dataset. DE proteins from two additional studies (Palomino-Alonso 385 
et al. 2017; Hamezah et al. 2019) failed to reach statistical significance upon FDR correction 386 
and thus these datasets were removed from further analysis.  387 
 388 
3.2 Mapped high-quality mouse orthologs identification from gene-based AD GWAS analysis  389 
High-confidence mouse orthologs of significantly associated genes in human AD GWAS 390 
studies were also identified to gain a more comprehensive view of metabolic perturbations in 391 
AD. Gene-based analysis with MAGMA (de Leeuw et al. 2015) using summary statistics 392 
from 388364 individuals in the UK-Biobank and IGAP cohorts (Marioni et al. 2018) revealed 393 
18178 gene-level associations with human AD SNPs, of which 1664 were considered 394 
significant (combined p-value < 0.05). After applying high-quality mouse orthology criteria 395 
(Mancuso et al. 2019), 1356 high-quality orthologs of AD SNPs-associated human genes 396 
were identified. The all-mapped AD GWAS-orthologs dataset was generated by accurately 397 
mapping 258 GWAS-orthologs onto the GSMN. 398 
 399 
3.3 Differential GO and TF enrichment analysis across AD multi-omics datasets 400 
Potential TF and GO enrichment were investigated across the AD multi-omics datasets. More 401 
than 25% of mapped AD protein-coding genes were also found in the AD transcriptomics 402 
dataset (Figure 2A). In terms of up-stream regulation, 67 TF were significantly enriched in 403 
the all-mapped AD proteome, whereas only 17 TF were enriched in the all-mapped AD 404 
transcriptome (Table S1). Despite these differences, CCCTC-binding factor (CTCF), TAL 405 
BHLH transcription factor 1 (TAL1), MYC associated factor X (MAX) and basic helix-loop-406 
helix family member E40 (BHLHE40) were among the top10 potential enriched TFs across 407 
both datasets (FDR p<0.050, Figure 2B, Table S1). 408 
 409 
GO analysis revealed shared functional terms across the three datasets (Figure 2C-D). 410 
Oxidation-reduction, lipid and fatty-acid metabolic processes were enriched in all-mapped 411 
AD transcriptomics and proteomics (FDR p<0.050, Figure 2C). Six additional lipid-related 412 
BP terms were over-represented in all-mapped AD transcriptomics data, whereas the TCA 413 
cycle was only enriched in the AD proteome (FDR p<0.050, Figure 2C). Transferase, 414 
catalytic, ATP binding, kinase activity, nucleotide binding and serine/threonine-kinase 415 
activity were among the top10 over-represented terms across all-mapped AD multi-omics 416 
datasets (FDR p<0.050, Figure 2D). Cytosol and mitochondria were the cellular 417 
compartment (CC) terms most over-represented in the all-mapped AD transcriptome and 418 
proteome respectively; membrane was the only significant CC term in the AD GWAS-419 
orthologs dataset (Table S2). 420 

 421 
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 422 
 423 

 424 
Figure 2. Transcription factor and functional enrichment analysis reveal shared 425 
functional processes between all-mapped AD multi-omics datasets (A) Venn Diagram 426 
showing the amount of overlap between AD mapped transcripts, proteomics and GWAS-427 
orthologs genes. (B) Top 10 TF enrichment analysis results of AD transcriptomics and 428 
proteomics datasets. (C) Selected Biological Process (BP) functional enrichment analysis of 429 
three AD multi-omics datasets. “M.p”, “b.p.” and “c.p.” refer to metabolic, biosynthetic and 430 
catabolic processes, respectively.  (D) Top 10 Molecular (MF) functional enrichment analysis 431 
of three AD multi-omics datasets. “Ac” refers to molecular function activity. TF ratio refers 432 
to the number of mapped input genes in relation to the total TF´s target genes. –log10(FDR) 433 
refers to the inverse, log-transformed FDR-adjusted enrichment p-value. Gene ratio refers to 434 
the number of mapped input genes in relation to all Gene Ontology (GO) term-associated 435 
genes. The entire list of over-represented TF and GO terms can be found in Table S1 and S2, 436 
respectively. 437 
 438 
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 439 
3.4 Lipid-related metabolic pathways and regulators are enriched across AD-metabolic 440 
multi-omics datasets 441 
Given the elevated number of metabolic BP significantly enriched across the three multi-442 
omics datasets, the DE 203 transcripts, 164 proteins and 58 GWAS-orthologs genes mapped 443 
to these BP were subjected to further characterization. The largest degree of overlap was 444 
again found between AD-metabolic transcripts and proteins (Figure 3A). Although there 445 
were substantially more enriched TFs in the AD-metabolic proteome (Table S3), lipid-446 
associated TFs such as estrogen-related receptor alpha (ESRRα) and sterol regulatory 447 
element binding transcription factor 1 (SREBF1) were overrepresented in the AD-metabolic 448 
transcriptome and proteome (FDR p<0.050, Figure 3B). Pathway enrichment analysis 449 
reflected differential metabolic processes across the multi-omics datasets (Figure 3C). 450 
Pathways related to cholesterol, phospholipases and fatty-acid metabolism were significantly 451 
over-represented in the AD-metabolic transcriptomics dataset, whereas the AD-metabolic 452 
proteome was associated with mitochondrial processes such as TCA cycle, glycolysis and 453 
NADH electron transfer (FDR p<0.050, Figure 3C). Lipid processes such as CPD-454 
diacylglycerol and phosphatidylglycerol synthesis were also enriched in AD-metabolic 455 
proteome (Figure 3C). Thyroid hormone metabolism was significantly enriched in the 456 
GWAS-orthologs dataset with 66% pathway coverage (Table S4). 457 
 458 

 459 
 460 
Figure 3. TF and pathway enrichment analysis highlights enrichment of lipid-related 461 
metabolic processes in metabolic transcriptomic and proteomic datasets from mouse 462 
models of AD. (A) Venn Diagram showing the amount of overlap between AD metabolic 463 
multi-omics datasets. (B) Top 10 TFs significantly overrepresented in AD metabolic 464 
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transcripts and proteins. (C) Pathway enrichment analysis of the three AD multi-omics 465 
datasets. “bs.”, “e.d.” and “e.t.”  refer to biosynthesis, electron donors and electron transfer 466 
processes, respectively.  –log10(FDR) refers to the inverse, log-transformed FDR-adjusted 467 
enrichment p-value. TF ratio refers to the number of mapped input genes in relation to the 468 
total TF´s target genes. Gene and protein coverage refer to the number of mapped input 469 
elements in relation to all pathway-mapped elements. The entire list of significantly enriched 470 
metabolic TF and pathways can be found in Table S3 and S4. 471 
 472 
3.5 Astrocytes and microglia are independently enriched in the AD-metabolic transcriptome 473 
To determine whether cell-type enrichment differences across the AD-metabolic multi-omics 474 
datasets could account for the differential pathway over-representation described previously, 475 
unconditional EWCE was performed. Significant astrocyte (FDR p-value=0.0000001, 476 
standard deviation from the bootstrapped mean or S.D.f.M=7.266) and microglia enrichment 477 
(FDR p-value=0.0000001, S.D.f.M=5.770) was found in the AD-metabolic transcriptomics 478 
dataset (Figure 4A). Oligodendrocyte and astrocyte enrichment in the AD-metabolic 479 
proteome lost significance upon multiple-testing correction (FDR p-value=0.07 & 480 
S.D.f.M=2.474 and FDR p-value=0.095 & S.D.f.M=2.049 respectively, Figure 4B). 481 
Astrocyte enrichment was also similarly lost in the GWAS-orthologs dataset (FDR p-482 
value=0.336, S.D.f.M=1.75, Figure 4C). 483 
 484 
Conditional cell-type enrichment was performed on a combined AD-metabolic multi-omics 485 
dataset to investigate enrichment relationships. Controlling for microglia did not ablate 486 
astrocytic enrichment (FDR p-value=0.0000001, S.D.f.M=7.540) and vice-versa (FDR p-487 
value=0.0000001, S.D.f.M=4.476), suggesting astrocyte and microglia enrichments were 488 
independent of each other (Figure 4D). Oligodendrocyte enrichment was however dependent 489 
on microglia and astrocytes, as significance was lost upon controlling for either of them 490 
(FDR p-value=0.0389 & S.D.f.M=2.531 and FDR p-value=0.0389 & S.D.f.M= 2.387 491 
respectively, Figure 4D). Cell-type enrichment statistics can be found in Table S5. 492 
 493 
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 494 
 495 
Figure 4. Cell-type enrichment analysis of individual and combined AD-metabolic 496 
multi-omics datasets highlight independent astrocyte and microglia enrichment. 497 
Unconditional cell type enrichment analysis of AD metabolic (A) transcriptomics (B) 498 
proteomics and (C) GWAS-orthologs datasets. (D) Conditional cell-type enrichment analysis 499 
of combined AD multi-omics dataset. “S.S.f.M” indicates standard deviation from the 500 
bootstrapped mean. Asterisk indicates statistical significance upon adjusting for FDR with 501 
the Benjamini-Hochberg (B-H) method (p<0.050).  502 
 503 
3.6 Validation of AD multi-omics lipid signatures in ABCA7 KO mice cortex 504 
Given the number of significantly enriched lipid pathways, the results obtained from the 505 
multi-omics datasets were validated by comparing them to an internally acquired lipidomics 506 
UPLC-MS dataset from cortical extracts of ABCA7-KO and WT mice. To do so, a metabolic 507 
subnetwork containing all the significantly enriched lipid pathways was extracted from the 508 
generic mouse GSMN (Figure 3C, Table S4). This subnetwork involved 119 genes, 81 509 
reactions and 107 metabolites. Of these, 73 were lipid species or terms, as some of them 510 
referred to a lipid sub-class, for example a CDP-diacylglycerol, rather than unique species. 511 
Upon lipid identifier retrieval, those 73 terms were associated with 133 lipid species, which 512 
generated the AD multi-omics predicted lipid signature.  513 
 514 
Twenty-eight terms and 60 lipid species from the predicted AD multi-omics lipid signature 515 
were found and therefore validated in the ABCA7-KO and WT lipidomes. In particular, 40 516 
lipid species were validated in the negative-mode dataset and 20 species in the positive-mode 517 
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dataset. The original MS data, containing 5025 and 5811 features in positive and negative 518 
ionization mode, respectively, was hence filtered based on these two subsets of lipid species.  519 
OPLS-DA was then performed on both original and filtered datasets to assess the presence of 520 
any possible separation based on gender and/or genotype, and the potential impact of this 521 
feature reduction procedure on the model robustness.  522 
 523 
The OPLS-DA model for the negative-mode validated lipid signature was able to separate 524 
ABCA7 and WT samples with an even higher degree of robustness than the original dataset 525 
(Q2cum=0.74 and Q2cum=0.56, respectively), which was validated via permutation testing 526 
(Table 2, Figure 5A-B). As illustrated by the model´s score plot, sample separation was 527 
substantially influenced by genotype rather that by variation orthogonal to class membership 528 
(Figure 5B).  529 
 530 
Table 2. OPLS-DA model parameters for each original ABCA7 dataset and the validated 531 
multi-omics lipid signatures subsets. 532 
 533 
 534 

Model Class 

number 

R
2
x 

(cum) 

R
2
y 

(cum) 

Q
2
 

(cum) 

100 permutations 

R
2
y(cum) intercept 

100 permutations 

Q
2
(cum)intercept 

Original ABCA7-KO negative-

mode 

2 0.65 0.90 0.56 (0.0, 0.90) (0.0, -0.35) 

Validated lipid signature, 

negative-mode subset 

2 0.91 1.00 0.74 (0.0, 1.00) (0.0, -0.37) 

Original ABCA7-KO negative-

mode 

4 0.80 0.88 0.36 (0.0, 0.83) (0.0, -0.27) 

Validated lipid signature, 

negative-mode subset 

4 0.81 0.77 0.25 (0.0, 0.56) (0.0, -0.64) 

Original ABCA7 KO positive-

mode 

2 0.92 0.80 0.56 (0.0, 0.82) (0.0, -0.44) 

Validated lipid signature, 

positive-mode subset 

2 0.94 0.77 0.43 (0.0, 0.57) (0.0, -0.71) 

Original ABCA7 KO positive-

mode 

4 0.93 0.85 0.41 (0.0, 0.61) (0.0, -0.44) 

Validated lipid signature, 

positive-mode subset 

4 0.89 0.47 0.20 (0.0, 0.16) (0.0, -0.31) 

 535 
Genotype separation was also captured in the OPLS-DA models for the positive-mode 536 
original dataset, although less readily differentiated than its negative-mode counterpart 537 
(Table 2). The robustness of the OPLS-DA model assessing genotype separation for the 538 
positive-mode validated lipid signature was impacted by the presence of an outlier (Table 2). 539 
A strong genotype-sex interaction influenced sample separation in the original positive-mode 540 
cortical dataset (Q2cum=0.406, Figure 5C), but not in the negative mode cortical dataset 541 
(Q2cum=0.36, Table 2). Since the AD multi-omics datasets did not consider sex composition, 542 
the positive-mode validated lipid signature should not account for genotype-sex interactions 543 
either. Indeed, the genotype-sex interaction was not recapitulated in the positive-mode 544 
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validated signature subset (Q2cum=0.20, Table 2, Figure 5D), while the same model for the 545 
negative subset was not calculated due to the lack of statistical power on the correspondent 546 
analysis of the original dataset. Therefore, the validated lipid signature in the negative mode 547 
seemed robustly influenced by ABCA7 genotype.  548 
 549 

 550 
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 551 
Figure 5. OPLS-DA analysis and permutation test of lipidomics analysis of ABCA7-KO 552 
cortical samples and validated lipid signature subsets. OPLS-DA score plot and 553 
subsequent 100 permutation test of A) Original ABCA7-KO lipidomics dataset in negative 554 
mode (R2x cum = 0.65, Q2 cum = 0.56, R2x cum intercept at 0.0, 0.90 and Q2 cum intercept at 555 
0.0, -0.35). B) ABCA7 KO lipidomics subset corresponding to the validated lipid signature in 556 
negative mode (R2x cum = 0.91, Q2 cum = 0.74, R2x cum intercept at 0.0, 1.00 and Q2 cum 557 
intercept at 0.0, -0.37). C) Original ABCA7-KO lipidomics dataset in positive mode (R2x 558 
cum = 0.93, Q2 cum = 0.41, R2x cum intercept at 0.0, 0.61 and Q2 cum intercept at 0.0, -0.44). 559 
D) ABCA7-KO lipidomics subset corresponding to the validated lipid signature in positive 560 
mode (R2x cum = 0.89, Q2 cum = 0.20, R2x cum intercept at 0.0, 0.16 and Q2 cum intercept at 561 
0.0, -0.31). 562 
 563 
We then inspected the VIP scores of the original ABCA7 datasets to investigate whether the 564 
predicted lipid signature could play a role in driving class separation in relation to the entire 565 
ABCA7 lipidome. Out of the 17 predicted lipid species with a VIP score above 1 in the 566 
original ABCA7 lipidome (Table 3), 11 were significantly modulated, suggesting the AD 567 
multi-omics lipid signature was able to successfully predict significant changes in the 568 
ABCA7 cortical lipidome.  569 
 570 
Table 3. 17 predicted lipid species in the AD multi-omics datasets with a VIP score > 1 in 571 
the ABCA7 cortical lipidome. 572 
 573 

Predicted 

lipid species 

GSMN´s ID Detected 

lipids 

LIPIDMAPS 

ID 

Ionization 

mode 

VIP  

score 

Statistical 

test 

A fatty aldehyde Fatty-Aldehydes C26H52O LMFA06000107 Negative  1.45 0.455 

A saturated-Fatty-

AcylCoA 

Saturated Fatty-acyl 

CoA 

C40H72N7O18P3S LMFA07050225 Negative 1.32 0.0530 

Lathosterol CPD-4186 C27H46O LMST01010089 Negative 1.19 0.0070* 

A L-1-

phosphatidyl-

glycerol 

L-1-PHOSPHA 

TIDYL-

GLYCEROL 

C49H85O10P LMGP04010004 Negative 1.14 0.1282 

A Phosphatidyl-

choline 

PHOSPHATIDYL

CHOLINE 

C44H88NO8P LMGP01010006 Negative 1.13 0.6200 

Cholesterol CHOLESTEROL C27H46O  LMST01010001 Negative 1.11 0.0262* 

A fatty acid Fatty-Acids C22H37NO2 LMFA08040001 Negative 1.04 0.5350 

  C18H30O2  LMFA01030152 Positive 1.09 0.0268$ 

A 1-acyl glycero- 

phosphocholines 

1-Acylglycero-

Phosphocholines 

C28H50NO7P LMGP01050140 Negative & 

Positive 

1.03 0.5530 

  C26H52NO7P LMGP01050138 Positive 1.17 0.0342$ 

A CDP- 

diacyl-glycerol 

CDPDIACYL- 

GLYCEROL 

C48H85N3O15P2 LMGP13010004 Negative 1.09 0.0273* 

A diacylglycerol DIACYL 

GLYCEROL 

C35H68O5  LMGL02010001 Positive 1.50 0.0291$ 

  C39H76O5 LMGL02010002 Positive 1.18 0.0227$ 
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4α-hydroxymethyl-

4β-methyl-5α-

cholesta-8,24-dien-

3β-ol 

CPD-4575 C29H48O2  LMST01010232 Positive 1.44 0.0291$ 

Ubiquinol-8 CPD-9956 C49H74O4  LMPR02010005 Positive 1.07 0.0247$ 

An acyl-sn- 

Glycerol-

3phosphate 

ACYL-SN-

GLYCEROL-3P 

 C21H43O7P LMGP10050005 Positive 1.07 0.0295$ 

7-dehydro-

cholesterol 

CPD-4187 C27H44O  LMST01010069 Positive 1.04 0.0427$ 

 574 
Predicted lipid signature was derived from an extracted metabolic subnetwork containing all 575 
significantly enriched lipid metabolic pathways in the AD transcriptomics and proteomics datasets, 576 
which contained 73 lipid terms. If species in the predicted lipid signature referred to a lipid class, all of 577 
the detected compounds belonging to that lipid class were considered for the analysis. This approach 578 
yielded 133 unique lipid species, which were mapped to 60 and 20 lipids detected in negative and 579 
positive ion mode, respectively. Of these predicted lipid species, 17 had a VIP score > 1 in the OPLS-580 
DA models for the original ABCA7 datasets. *References to p <0.050 significance upon unpaired t-test 581 
and Mann Whitney non-parametric testing on intensity differences between ABCA7 and WT mice in 582 
the original negative mode ABCA7 dataset. $ refers to significance upon One-way ANOVA using B-H 583 
correction for multiple testing on differences between ABCA7-males and ABCA7-females, WT-584 
females or WT-males in the original positive mode ABCA7 dataset.  585 
 586 
3.7 Validation of lipid-AD risk loci associations in the Airwave and RS cohorts.  587 
Lastly, we performed a MWAS using 1H NMR spectra of human blood serum from 3258 588 
individuals from the Airwave and RS cohorts (Elliott et al. 2014; Ikram et al. 2020). As these 589 
cohorts consist of predominantly healthy individuals, we used 47 known AD risk loci to 590 
identify AD risk carriers (Lambert et al. 2013; Jansen et al. 2019; Kunkle et al. 2019). 591 
 592 
After performing MWAS, we detected 298 SNP-metabolite associations from the three NMR 593 
pulse sequences, out of which 107 in the lipoprotein, 13 in the CPMG, and 178 in the solvent 594 
suppression pulse sequence spectra datasets. Association with APOE was found for 83% of 595 
these, reflecting the importance of this gene in regulating components of the blood 596 
metabolome (Figure 6a). 597 
 598 
To examine the associations further we classified the detected metabolites according to their 599 
chemical characteristics and biological role into lipids, amino acids, carbohydrates, glycolysis 600 
intermediates, TCA cycle intermediates, ketone bodies and other metabolites. Lipids included 601 
resonances that were associated with both protons attached to the fatty acid and the head 602 
group (largely choline and glycerol) along with protons from cholesterol and cholesterol 603 
esters. The dominant class was represented by lipids, comprising over 70% of the 604 
associations (Figure 6b). 605 
 606 
 607 
 608 
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 609 
 610 
Figure 6: Metabolome-wide association study of the blood metabolome for AD risk 611 
genes in the Airwave and RS cohorts. A) Proportion of AD risk genes significantly 612 
associated with fluctuating metabolite levels detected in the blood samples of individuals in 613 
the Airwave and RS cohorts. MWSL was set to 0.05 upon 10,000 permutations to control for 614 
FWER. B) Proportion of metabolite classes associated with AD risk loci in the Airwave and 615 
RS cohorts. MWSL was set to 0.05 upon 10,000 permutations to control for FWER. 616 
 617 
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 642 

4 Discussion  643 

 644 
The main aim of this study was to validate the presence of metabolic perturbations in AD 645 
using multi-omics pathway-based integration and metabolic-subnetwork extraction. We 646 
hypothesized that metabolic alterations detected at multiple omics levels could predict a 647 
robust metabolic signature in the AD metabolome. If validated, these results would provide a 648 
comprehensive perspective on AD metabolism while supporting the use of GSMNs to 649 
identify consistent metabolic alterations in AD. 650 
 651 
GO analysis of AD transcriptomics, proteomics and GWAS-orthologs data revealed 652 
numerous enriched metabolic BP. Although the initial mapping of DE transcripts, proteins 653 
and GWAS-orthologs certainly removed elements with no metabolic roles, this step did not 654 
disproportionately influence metabolic BP term over-representation per se, as only 3 out of 655 
11 BP in mapped GWAS-orthologs were metabolic. Lipid and fatty-acid BP enrichment was 656 
found across the AD all-mapped transcriptome and proteome. This observation was further 657 
supported by TAL1, MAX and BHLHE40 over-representation in both datasets. TAL1 658 
modulates lipid metabolism in the context of cell membrane integrity (Kassouf et al. 2010), 659 
MAX-MYC interaction strongly dysregulates fatty-acid metabolism in neurodegeneration 660 
(Carroll et al. 2018) and BHLHE40 is necessary for insulin-mediated SREBP1 induction, a 661 
lipid homeostasis regulator (Tian et al. 2018).  662 
 663 
Pathway and TF enrichment analysis implicated differential metabolic processes across the 664 
AD multi-omics datasets, which also exhibited different cell-type enrichments. Cholesterol 665 
biosynthesis, phospholipases, fatty-acid metabolism and SREBF1 were strongly enriched in 666 
the AD-metabolic transcriptome, which also exhibited astrocyte and microglia cell-type 667 
enrichment. These multi-level results provide further evidence supporting the existence of 668 
wide-spread lipidomic alterations in AD microglia (Wang et al. 2015). Previously, an allele 669 
variant in the SREPF1 gene was found to be neuroprotective in APOE4 carriers in terms of 670 
dementia incidence (Spell et al. 2004). Extensive lipidome changes are present in TREM2-671 
defficent microglia, another gene variant heavily implicated in AD pathogenesis (Nugent et 672 
al. 2020). Phospholipase-amyloid interactions seem to facilitate microglia Aβ endocytosis, 673 
therefore contributing to neuroinflammation (Teng et al. 2019). Aerobic respiration, TCA 674 
cycle and glycolysis were enriched in the AD-metabolic proteome; these pathways are 675 
consistent with signs of mitochondrial dysfunction that are commonly found in 676 
neurodegeneration (Wang et al. 2020). Indeed, significant energy metabolism deficits have 677 
been detected in human(Johnson et al. 2020) and AD mice brain proteomes (Yu et al. 2018).  678 
 679 
The main finding in this study is the validation of a predicted lipid signature derived from an 680 
extracted metabolic subnetwork with all significantly enriched lipid pathways in AD multi-681 
omics datasets. The OPLS-DA model for the validated lipid signature in negative ion mode 682 
LC-MS dataset was capable of driving class separation based on ABCA7 genotype with a 683 
higher degree of robustness than in the original dataset; the reduced number of features was 684 
not a confounding factor for the model, but instead allowed for the removal of features 685 
originally decreasing the model robustness. Multi-omics integration is being increasingly 686 
used to draw biologically meaningful conclusions over large datasets (Pinu et al. 2019), and 687 
has been  previously applied to AD data to infer metabolic perturbations using protein 688 
ranking and gene-set enrichment (Bundy et al. 2019; Bai et al. 2020), gene-protein 689 
interaction networks (Canchi et al. 2019) and protein-protein interaction networks (Zhang et 690 
al. 2020). To our knowledge, this is the first study using multi-omics pathway-based 691 
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integration and metabolic subnetwork extraction to identify and subsequently validate a lipid 692 
metabolic signature in the AD lipidome. 693 

 694 
Eleven lipid species from the validated lipid signature were significantly modulated in the 695 
cortical ABCA7 lipidome, of which four belonged to the cholesterol biosynthesis pathway. 696 
Lathosterol and cholesterol were significantly decreased in the ABCA7-KO lipidome 697 
compared to WT, whereas 7-dehydro-cholesterol and 4α-hydroxymethyl-4β-methyl-5α-698 
cholesta-8,24-dien-3β-ol were significantly decreased in ABCA7-females compared to 699 
ABCA7-males. The evidence is mixed regarding cholesterol and intermediate sterols changes 700 
in ABCA7 mice. One study showed no cholesterol changes in ABCA7-KO mice brains 701 
(Satoh et al. 2015); serum cholesterol levels were however decreased in female ABCA7-KO 702 
mice (Kim et al. 2005). This study appears more aligned with the latter, as decreased free-703 
cholesterol levels and sex-specific sterol intermediates differences were detected. This 704 
discrepancy is extended to other AD mouse models. Free-cholesterol and lathosterol levels 705 
exhibited non-significant changes in TgCRND8 (Yang et al. 2014) and APP/PS1 mice (Bogie 706 
et al. 2019), whereas lanosterol and cholesteryl acetate were up-regulated in APOE4 mice 707 
(Nuriel et al. 2017). Despite these disagreements, the importance of sterol intermediates in 708 
AD is reflected therapeutically, as a recent drug-repurposing screen identified several tau-709 
reducing compounds which targeted cholesterol-esters (van der Kant et al. 2019).  710 
 711 
We also performed an MWAS analysis using SNPs previously associated with LOAD and 712 
metabolites detected in blood plasma from the Airwave and Rotterdam cohorts using 1H 713 
NMR spectroscopy. Mean ages of recruitment in these cohorts are relatively young, and thus 714 
our reported 298 SNP-metabolite associations may represent early stages of the disease, as 715 
the brain begins to accumulate neurodegenerative features that ultimately results in Mild 716 
Cognitive Impairment (MCI) and AD. Using three distinct NMR pulse sequences, we were 717 
able to detect a range of metabolites including lipids, amino acids, glycolysis, TCA cycle 718 
intermediates and ketone bodies. Lipids were the commonest metabolite class represented in 719 
metabolite-SNP associations, suggesting that dysregulation of lipid metabolism may be some 720 
of the earliest events in AD.  721 

 722 
There are important limitations associated with this study. Firstly, this study included multi-723 
omics data from several brain regions, ages and AD mouse models. Therefore, region and 724 
age-specific TF upstream-regulation and metabolic alterations that are frequent in AD 725 
(González-Domínguez et al. 2014) were not assessed. It is also notoriously difficult to 726 
annotate lipid species into GSMNs due to the complexities associated with lipid 727 
nomenclature and identification (Poupin et al. 2020). This study successfully overcame this 728 
limitation by allowing second-order lipid species matching to their associated broader lipid 729 
term whenever unique lipid species matching was not possible (Poupin et al. 2020). This 730 
study was also limited in that cell type enrichment analysis could not distinguish whether 731 
astrocytic and microglia enrichment was associated with gliosis in disease rather than AD 732 
pathology per se, as cell type proportions could not be adequately controlled in silico.  733 
Additionally, APOE-associated SNPs dominated our MWAS analysis, which could be 734 
attributed to the known association of ApoE with dyslipidemia and atherosclerosis 735 
(Bouchareychas & Raffai 2018). Furthermore, 1H NMR spectra of blood plasma detect a high 736 
proportion of lipids compared with other classes of metabolites and is relatively insensitive as 737 
a technique. We are currently performing mass spectrometry to expand the coverage of the 738 
metabolome to further investigate the earliest molecular events in AD. 739 
 740 

5 Conclusions 741 
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In summary, this study highlights the suitability of integrating multi-omics data into GSMNs 742 
to identify metabolic alterations in AD. Pathway-based integration of multi-omics data 743 
revealed distinct perturbations in lipid metabolism in the AD mouse brain. Predicted lipids 744 
extracted from the over-represented lipid pathway´s metabolic subnetwork was validated in 745 
the ABCA7 lipidome, with its associated multi-variate model robustly modelling class 746 
separation. Furthermore, more than 70% of 298 SNP-metabolite associations in a MWAS 747 
corresponded to lipid species, thus validating the presence of lipidomic dysregulation in AD.  748 
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