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Abstract

Oral squamous cell carcinoma (OSCC) is a subset of head and neck squamous cell carcinoma

(HNSCC), the 7th most common cancer worldwide, and accounts for more than 90% of oral

malignancies. Early detection of OSCC is essential for effective treatment and reducing the

mortality rate. However, the gold standard method of microscopy-based histopathological

investigation is often challenging, time-consuming and relies on human expertise. Automated

analysis of oral biopsy images can aid the histopathologists in performing a rapid and arguably

more accurate diagnosis of OSCC. In this study, we present deep learning (DL) based auto-

mated classification of 290 normal and 934 cancerous oral histopathological images published

by Tabassum et al (Data in Brief, 2020). We utilized transfer learning approach by adapt-

ing three pre-trained DL models to OSCC detection. VGG16, InceptionV3, and Resnet50

were fine-tuned individually and then used in concatenation as feature extractors. The con-

catenated model outperformed the individual models and achieved 96.66% accuracy (95.16%

precision, 98.33% recall, and 95.00% specificity) compared to 89.16% (VGG16), 94.16% (In-

ceptionV3) and 90.83% (ResNet50). These results demonstrate that the concatenated model

can effectively replace the use of a single DL architecture.
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1. Introduction

Oral squamous cell carcinoma (OSCC), is a heterogeneous group of cancer arising from

the mucosal lining of the oral cavity [1] accounting for more than 90% of oral malignancies [2].

It is a subset of head and neck squamous cell carcinoma (HNSCC), the 7th most common

cancer worldwide [3]. According to World Health Organization, the estimated number of

new cases each year is 657,000 with more than 330,000 deaths worldwide. The South Asian

countries were observed to have significantly higher incidence rates of OSCC. Among them,

India has the largest number of cases globally (one–third), while in Pakistan, it is the first

and second most prevalent cancer in males and females, respectively [4]. The risk factors

include use of alcohol and tobacco, poor oral hygiene, exposure to human papillomavirus

(HPV), genetic background, lifestyle, ethnicity, and geographical location.

The early diagnosis of OSCC is crucial for effective treatment, improvement in survival

chances, and reducing morbidity and death rates [5]. The OSCC has a poor prognosis

with a 50% overall survival rate [6]. Currently, the gold standard for diagnosis of OSCC

is microscopy-based histopathological investigation of tissue biopsies [7]. This diagnostic

pathology method relies on the interpretation of histopathologists, which is usually slow and

prone to error, thus limiting its clinical utility [8]. It is, therefore, essential to develop efficient

diagnostic tools that can assist the pathologists in the analysis and diagnosis of OSCC.

Recently, there has been an expanding corpus of research on improving medical diag-

nosis using artificial intelligence (AI). The increased use of diagnostic imaging has enabled

researchers to investigate AI applications in analyzing medical images. In particular, one

AI technique, i.e., Deep Learning (DL), has shown significant successes in addressing sev-

eral different medical image analysis problems[9], particularly in the diagnosis of cancer in

pathological images [10]. Based on DL, Computer-Aided Diagnosis (CAD) systems have been

proposed and developed on substantial scales for various cancer types such as breast cancer

[11], lung cancer [12], prostate cancer [13], etc. However, for the diagnosis of OSCC from

pathological images, the literature reveals that DL has been scarcely adopted. In a study
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to detect keratin pearls in oral histopathology images, Dev et al used Convolutional Neural

Network (CNN) and Random Forest. The CNN model achieved 98.05% accuracy for keratin

region segmentation, while the Random Forest detected keratin pearls with 96.88% accuracy

[14]. Similarly, Das et al utilized DL to classify oral biopsy images into multiple classes as

per Broder’s histological grading system. Furthermore, CNN was proposed that showed a

classification accuracy of 97.5% [15]. Jonathan et al applied Active Learning (AL) and Ran-

dom Learning (RL) through CNN for the classification of oral cancer tissue into seven classes

(stroma, lymphocytes, tumor, mucosa, keratin pearls, blood, and adipose). It was found that

the accuracy achieved by the AL surpassed that of RL by 3.26% [16]. Moreover, Francesco

et al performed pixel-wise segmentation of oral lesion whole slide images (WSI) into three

classes (carcinoma, non-carcinoma, and non-tissue) using different DL architectures, such

as U-Net, SegNet, U-Net with VGG16 encoder, and U-Net with ResNet50 encoder. It was

shown that a deeper network, such as U-Net modified with ResNet50 as encoder, had better

accuracy than the original U-Net [17]. Recently Rutwik et al performed binary classification

on oral pathology images and achieved an accuracy of 91.13% using ResNet [18].

In this paper, we improved the classification of OSCC histopathological images into nor-

mal and cancerous classes. This improvement is achieved by utilizing the concept of trans-

fer learning through pre-trained CNN models (VGG16, ResNet50, and InceptionV3). The

models were used both as individually fine-tuned classifiers and in a combination as feature

extractors. We also provided a detailed analysis of models’ performance using various metrics

to report the best network for OSCC detection.

2. Data and Methodologies

2.1. Experimental Setup

Experiments in this study were conducted on an HP Z8 workstation with NVIDIA P2000

GPU and 64 GB RAM. The network architectures were implemented using Python’s Keras

library with Tensorflow backend.
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2.2. Dataset

The OSCC dataset is publicly available and was published by Tabassum et al [19]. It is

composed of 1224 oral histopathological images (290 non-cancerous and 934 cancerous) from

230 patients. Figure 1 shows instances of both the classes from the dataset. The images

were captured at two different magnifications (100x and 400x) from Hematoxylin and Eosin

(H&E) stained tissue slides using Leica ICC50 HD microscope. 89 images with the normal

epithelium and 439 images of OSCC were in 100x magnification, while 201 normal and 495

OSCC images were in 400x magnification (Figure 2).

Figure 1: Vignettes of H&E stained oral biopsy images from the OSCC dataset by Tabassum et al [19]
capturing normal epithelium (a) and cancerous epithelium(b)

2.3. Data Pre-processing

Image pre-processing is an essential step in any computer vision task and involves opera-

tions to give the data a format suitable for training. Deep learning models are computation-

ally expensive and require all input images to have the same shape. The dataset used in this

research work contains high-dimensional images with different shapes. We reduced the size

of images by reshaping them to the same dimension of 300×300×3. Moreover, the images

were normalized by rescaling the pixel values between 0 and 1. Normalizing input images

removes the difference in magnitude between different pixels, which benefits learning [20].
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Figure 2: Distribution of images in the OSCC dataset.The Normal and Cancerous class contains 290 and
934 images, respectively. The images are in two different magnifications — 100x (89 Normal, 439 Cancerous)
and 400x (201 Normal, 495 Cancerous)

2.4. Data Augmentation

The images in the dataset were deficient and had imbalanced classes. DL models, if

trained with a small dataset, results in over-fitting, and as a result, the models’ generalization

capability becomes very poor. In the case of imbalanced data, the models have poor predictive

performance, specifically for the minority class. We overcame these issues by using data

augmentation techniques. The images in the minority class (non-cancerous) were augmented

by two folds applying geometrical transformations such as horizontal-flip and vertical-flip

(Figure 3). Since the pathologists can easily interpret the images from different angles, the

flipped images are invariant [21]. Similarly, the overall size of the data was increased by

augmenting the images during training.
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Figure 3: (a) Original image (b) Horizontal-flip (c) Vertical-flip

2.5. Network Architectures

2.5.1. VGG16

VGG16 is a sixteen layers deep CNN. It consists of thirteen convolution layers arranged

into five blocks, each followed by a pooling operation. The network uses filters of size 3×3 for

convolution and 2×2 size windows for pooling operation. The convolutional stack is followed

by two fully connected layers, each consisting of 4096 nodes. The final layer is a softmax

layer that assigns a class to each image [22]. The architecture of VGG16 is depicted in Figure

4.

Figure 4: VGG16 architecture consisting of five convolutional blocks (each followed by a pooling operation),
two FC layers (each with 4096 nodes) and one Softmax layer (1000 nodes that equals the number of classes
in ImageNet dataset) at the end.

2.5.2. InceptionV3

InceptionV3, developed by Christian et al [23], is the third version of Google’s Inception

CNN. It focuses on reducing the computational cost and the information loss that occurs due

to a drastic reduction in input dimension in deeper networks. An important technique used

in InceptionV3 to improve computational speed is smaller and factorized convolution filters.
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For example, the 5×5 filters are replaced with two 3×3 filters, further factorized into 1×3 and

3×1 filters. Similarly, the filter banks are widened instead of making deeper to deal with the

representational bottleneck. For this purpose, each inception module in the network deploys

filters of different dimensions and concatenates their outputs together. Figure 5 shows a

module of the Inception network.

Figure 5: A schematic of an inception module that uses smaller and factorized convolutions and widens the
filter bank. 5×5 convolutions are replaced with two 3×3 filters which are further factorized into 1×3 and
3×1 filters.

2.5.3. ResNet50

ResNet, which is short for Residual network, is almost similar to a conventional DL model

with convolution layers stacked one over the other. The only difference, which makes it a

residual network, is the identity connection between the layers. These connections reduce

vanishing gradient in deeper architectures and ensure that the higher layers perform at least

as well as the lower layers and not worse. Figure 6 depicts an example of a residual block.

ResNet50, as the name indicates, is a variant of Residual Networks consisting of fifty layers

— forty-eight convolution, one max-pooling, and one average pooling [24].
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Figure 6: A residual block with an identity connection that passes input(x) directly to a later convolutional
layer to minimize vanishing gradient.

2.6. Transfer Learning

Transfer learning is a technique in which knowledge learned by a model from one problem

is stored and applied to another relevant problem. Using this technique, instead of starting

the training process from scratch, the patterns learned by a model previously are adjusted

to the new problem. Transfer learning lowers the training time and enables the training of

DL models with small data. A standard research practice is to use DL models pre-trained on

publicly available large datasets such as ImageNet, CIFAR, etc. These pre-trained models

are either fine-tuned or used as feature extractors for the target task (Figure 7).

Figure 7: Transfer of knowledge from a source model trained on large data (i.e. ImageNet) to a target model
with small data (i.e. OSCC Dataset). The target model is either keep fixed and used as a feature extractor
or fine-tuned and adapted to the new task. The newly added classifier to the target model is trained from
scratch.
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2.7. Model Training

We trained our models on 1684 images containing 810 normal and 874 cancerous. VGG16,

InceptionV3, and ResNet50 architectures were already trained on a large publicly available

dataset called ImageNet (consisting of millions of images with 1000 classes). To train these

models for our OSCC detection task, we utilized the concept of transfer learning in two

different ways.

2.7.1. Fine Tuning Individual Models

We replaced the actual classifier (softmax layer with 1000 nodes) in each pre-trained

model with a new one (sigmoid layer with 1 node) for binary classification of OSCC images.

During training, for each model, the bottom layers were kept fixed and not retrained, while

a few top layers and the appended classifier were fine-tuned (figure 8 (a)). The primary aim

of fine-tuning the upper layers was to adapt the formerly learned advanced patterns from the

ImageNet to our OSCC detection task.

2.7.2. Concatenated Model as Feature Extractor

We designed a new model by concatenating the features extracted by the three fine-tuned

models. A fully-connected (FC) layer with ten nodes, and a classifier was added to the model

at the end. In this case, the three models were kept fixed and used as feature extractors during

the training. The newly added FC layer and classifier were trained from scratch to help the

model learn more valuable information from the combined features 8 (b)).

2.8. Functions and Parameters

We used Sigmoid as a classification function, Binary cross-entropy as loss function, and

Adam as an optimizer for each model. The learning rate was set to 0.001 for individual

models while 0.0001 for the concatenated model. As the concatenated model had fewer

trainable parameters than the individual models, it used a large batch size and fewer epochs

(converged quickly). Similarly, different augmentations were applied to the training data on
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Figure 8: Flow diagram of the model training (a) Pre-trained VGG16, ResNet50 and InceptionV3 are fine-
tuned separately on the OSCC dataset (b) Features extracted by fine-tuned models are concatenated and
passed through an FC layer. The concatenated model is not retrained while the FC layer is trained from
scratch.

the fly during the training to avoid over-fitting. Table 1 presents various parameters and

functions used during the training.

Function/Parameter VGG16 InceptionV3 ResNet50 Concatenated

Classification Function Sigmoid Sigmoid Sigmoid Sigmoid

Loss Function Adam Adam Adam Adam

Optimizer
Binary-cross
Entropy

Binary-cross
Entropy

Binary-cross
Entropy

Binary-cross
Entropy

Epochs 50 50 50 10

Batch Size 32 32 32 64

Learning Rate 0.001 0.001 0.001 0.0001

Horizontal-Shift 5% 5% 5% 5%

Vertical-shift 5% 5% 5% 5%

Zoom 5% 5% 5% 5%

Rotation 400 400 400 400

Table 1: Functions and parameters used for each model during the training. All the model used the same
classification function, loss function, optimizer and geometrical transformations for data augmentation. As
the concatenated model has less trainable parameters and is computationally inexpensive, it used less epochs
and large batch size for training.
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2.9. Models Evaluation

We validated the performance of models with 120 images, including an equal number of

instances from both classes. The test dataset contained images with both 100x and 400x

magnification. Moreover, The train/test split was performed before the augmentation, which

means the test dataset contained original images.

To evaluate the performance, we calculated accuracy, precision, Recall, F1-score, speci-

ficity, and AUC value for each model. These statistical metrics are based on True Positives

(TP), False Negatives (FN), False Positives (FP), and True Negatives (TN). Here, TP and

TN represent the number of correctly identified cancerous and normal images, while FP and

FN denote misclassified normal and cancerous images, respectively.

The accuracy scores tell how often the models produced correct result (Eq. 1).

Accuracy =
(TP + TN)

(TP + TF + FP + FN)
(1)

Precision score determines the ratio of correctly identified cancerous images to all the

images predicted by a model as cancerous (Eq. 2). In other words, precision reflects a

model’s consistency with respect to cancerous outcomes.

Precision =
TP

(TP + FP )
(2)

Recall calculates the ratio of correctly identified cancerous images to all the cancerous

images in the test data (Eq. 3).

Recall =
TP

(TP + FN)
(3)

Specificity performs the same operation as recall but for normal images (Eq. 4).

Specificity =
TN

(TN + FP )
(4)
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F1 score represents a weighted average of precision and recall (Eq. 5).

F1 = 2 × (Precision×Recall)

(Precision + Recall)
(5)

Receiver Operating Characteristic (ROC) plots TP rate (Eq. 6) versus FP rate (Eq.

6) and helps us understand the relationship between correctly classified cancerous and mis-

classified normal images at different thresholds. Area Under Curve (AUC) is a scalar value

ranging between 0 and 1 and represents how well our models discriminated between normal

and cancerous images.

TPR =
TP

(TP + FN)
(6)

FPR =
FP

(FP + TN)
= 1 − Specificity (7)

3. Results and Discussion

Confusion matrices in figure 9 show the performance of each model on the test data.

It can be observed that the concatenated model, where all of the three models were used

in combination, has the highest TP and TN and lowest FP and FN values. Among the

three models used individually, the InceptionV3 model achieved better performance than

ResNet50 and VGG16. This is also obvious from table 2 where the concatenated model

achieved the highest accuracy, precision, recall, F1-score, and specificity values (96.66%,

95.16%, 98.33%, 96.71%, and 95.00%) followed by InceptionV3 (94.16%, 93.44%, 95.00%,

96.27%, and 93.33%), ResNet50 (90.83%, 88.88%, 93.33%, 91.05%, and 88.33%), and VGG16

(89.16%, 87.30%, 91.66%, 89.42%, and 86.66%). Figure 10 shows a plot of ROC-AUC curves

where each color represents a different model. The highest and lowest AUC values were

achieved by the concatenated model (0.997) and VGG16 (0.951), respectively.

It is understood from the confusion matrices (figure 9) and table 2 that the concatenated
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Figure 9: Confusion matrices for the network architectures

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

VGG16 89.16 87.30 91.66 89.42 86.66

InceptionV3 94.16 93.44 95.00 96.27 93.33

ResNet50 90.83 88.88 93.33 91.05 88.33

Concatenated Model 96.66 95.16 98.33 96.71 95.00

Table 2: Results for the four network architectures

model performed better in detecting OSCC and not detecting false cases and outputs the

best overall accuracy. Individual models, particularly VGG16 and ResNet50, performed

much better on identifying cancerous images than normal, which is evident from their high

FP and low specificity and precision values. This is because we had imbalanced data with

poor representation of the normal class. Interestingly, the concatenated model improved the

performance not only for identifying cancerous images but also normal images (lowest FP

and FN). Similarly, a high AUC value of 0.997 indicates that the concatenated model has

the excellent capability of differentiating between the two classes.

A recent study by Rutwik et al also performed the classification of OSCC images into
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Figure 10: Plot depicting ROC curve and AUC value for each model

normal and cancerous using different pre-trained DL models. The highest accuracy of 91.13%

was obtained by ResNet [18]. Our concatenated model significantly improved the classifi-

cation of OSCC images by achieving an accuracy of 96.66%. The usefulness of combining

features from multiple models has also been reported for the detection of breast cancer [21]and

covid19 [25]. Sanaullah et al reported that the high performance of concatenated models is

because the combined features may contain multiple patterns, i.e., circularity, roundness,

compactness, etc., from a single descriptor [21]. This is the reason that in our study, the

combination of multiple pre-trained CNN architecture boosted up the performance of transfer

learning and may replace the use of traditional single model CNN architecture.

4. Conclusion

In this paper, we performed classification of oral histopathological images into normal and

cancerous classes using three different pre-trained DL architectures (VGG16, InceptionV3,

and ResNet50). First, the models were fine-tuned individually and used for the classification

task. The fine-tuned models were then combined by concatenating their extracted features.

Finally, we compared the performance of the three fine-tuned models with the concatenated

model. It was observed that the concatenated model yielded the best results and outper-
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formed the individual models.

A small test data may not completely represent the data collected in the real world and

may not have good coverage of the distribution in training data. The OSCC dataset used

in this study was both small and imbalanced with 290 normal and 934 cancerous cases. We

could use only 120 images for evaluating the model, which may be acceptable, but not ideal

for translating to real-world applications. In future, we aim to improve this by generating

large datasets, that ideally have matched classes. Similarly, we may also consider using

different cross validation methods that are more appropriate for validating the model on a

large data.
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