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ABSTRACT 

The sharp increase in the number of new COVID-19 patients in India in the second half of April 2021 
has caused alarm around the world. A detailed analysis of this pandemic storm is still ahead. We 
present the results of anterior analysis using a generalized SIR-model (susceptible-infected-removed). 
The final size of this pandemic wave and its duration are predicted. Obtained results show that the 
COVID-19 pandemic will be a problem for mankind for a very long time. 
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                  Introduction 

        The daily number of new laboratory-confirmed COVID-19 cases in India exceeded 400,000 in the 

end of April 2021. This huge figure is frightening, but if we take into account the population of India, 

the number of new cases per capita is not yet higher than the maximum for some other countries, 

including Ukraine. It is very important to assess the growing trends in the number of new cases and the 

ability of the Indian medical system to cope with the huge number of patients and deaths. 

     Any mathematical modeling of the epidemic dynamics will be of particular value if we make an 

accurate long-term forecast of its duration and number of diseases using statistics data sets obtained 

immediately after the outbreak. Many authors are trying to predict the Covid-19 pandemic dynamics in 

many countries and regions [1-72]. We will not analyze these studies in details and only note that the 

correct mathematical simulation of the Covid-19 pandemic is very difficult for at least two reasons.   

        First, data on the number of cases are clearly incomplete immediately after the epidemic outbreak, 

there are quite long hidden periods [67, 70, 73-77]. In particular, first COVID-19 cases probably have 

appeared already in August 2019 [67, 70]. The reason is the large number of asymptomatic patients and 

the lack of skills to detect a new disease. It must be noted that large discrepancy between registered and 

actual number of cases occurred even for later periods of Covid-19 pandemic [72, 78-80].  

      The second reason for the limited accuracy of long-term forecasts is the constant changes in the 

conditions of the pandemic (quarantine measures, social behavior, virulence of the pathogen, etc.). 

Therefore, a prediction made using statistics for a certain time period is not suitable for other periods of 

time. To solve this problem a generalized SIR-model and the methods of its parameter identification 
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was proposed in [70, 81, 82]. Since the new pandemic wave in India is not the first one we will use the 

generalized SIR-model and the method of direct parameter identification (without calculations of the 

previous epidemic waves) [83]. Corresponding results for the first Covid-19 epidemic waves in 

mainland China, USA, Germany, the UK, the Republic of Korea, Austria,  Italy, Spain, France, the 

Republic of Moldova, Qatar, Ukraine, the city of Kyiv and for the world are already published in [65, 

67, 69-72, 81, 82] and showed rather good accuracy. In this article we will apply the same approach to 

the case of India.  

 

Data 

 

Table 1. Cumulative numbers of laboratory confirmed Covid-19 cases in India Vj  according to 

JHU, [84]. 

Day in   
March 
2021, 

tj 

Number 
of cases, 

 Vj 

Day 
in 

April
2021

 

Number of 
cases, 

 Vj  

1 11124527 1 12303131

2 11139516 2 12392260

3 11156923 3 12485509

4 11173761 4 12589067

5 11192045 5 12686049

6 11210799 6 12801785

7 11229398 7 12928574

8 11244786 8 13060542

9 11262707 9 13205926

10 11285561 10 13358805

11 11308846 11 13527717

12 11333728 12 13689453

13 11359048 13 13873825

14 11385339 14 14074564

15 11409831 15 14291917

16 11438734 16 14526609

17 11474605 17 14788003

18 11514331 18 15061805

19 11555284 19 15320972

20 11599130 20 15616130

21 11646081 21 15930774

22 11686796 22 16263695

23 11734058 23 16610481

24 11787534 24 16960172

25 11846652 25 17313163

26 11908910 26 17636186

27 11971624 27 17997113

28 12039644 28 18376421

29 12095855 29 18762976

30 12149335 30 19164969

31 12221665 - - 
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     We will use the data set regarding the accumulated numbers of confirmed COVID-19 cases 

in India (Vj) from Data Repository by the Center for Systems Science and Engineering (CSSE) at 

Johns Hopkins University (JHU) [84]. The values Vj and corresponding time moments tj  

(measured in days) are shown in Table 1. 

 
                    Generalized SIR model and parameter identification procedure 

The classical SIR model for an infectious disease [85-87] was generalized in [70, 72, 81] to 

simulate different epidemic waves. We suppose that the SIR model parameters are constant for every 

epidemic wave, i.e. for the time periods: * *
1, 1,2,3,...i it t t i   . Than for every wave we can use the 

equations, similar to [85-87]: 

 

                                                  i

dS
SI

dt
   ,                                                                     (1) 

                                                           i i

dI
SI I

dt
   ,                                                                   (2)  

                                                                  i

dR
I

dt
  .                                                                     (3) 

   

Here S is the number of susceptible persons (who are sensitive to the pathogen and not protected); I 

is the number of infectious persons (who are sick and spread the infection ); and R is the number of 

removed persons (who no longer spread the infection). It must be noted that I(t) is not the number 

of active cases. People can be ill (among active cases), but isolated. In means, that they don’t spread 

the infection anymore. There are many people spreading the infection but not tested and registered as 

active cases. The use of number of active cases as I(t) in some papers a principal mistake which may 

lead to incorrect results. Parameters i  and i  are supposed to be constant for every epidemic wave.  

         To determine the initial conditions for the set of equations (1)–(3), let us suppose that at the 

beginning of every epidemic wave *
it : 

In [70, 72, 81] the set of differential equations (1)-(3) was solved with the use of initial 

conditions  

                                         
*( )i iI t I , *( )i iR t R , *( )i i i iS t N I R                                                     

                                                       iN S I R                                                                                

 

and by introducing the function  ( ) ( ) ( )V t I t R t  , corresponding to the number of victims or the 

cumulative confirmed number of cases. For many epidemics (including the COVID-19 pandemic) we 

cannot observe dependencies ( ), ( )S t I t  and ( )R t  but observations of the accumulated number of cases 
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Vj corresponding to the moments of time tj provide information for direct assessments of the 

dependence ( )V t . The corresponding analytical formulas for this exact solution; the saturation levels  

iS  ; i i iV N S    (corresponding the infinite time moment) and the final day of the i-th epidemic 

wave (corresponding the moment of time when the number of persons spreading the infection will be 

less than 1) can be found in [70, 72, 81]. 

            The exact solution depends on five parameters - , , , ,i i i i iN I R   . The values Vj , corresponding to 

the moments of time tj  can be used to find the optimal values of this parameters corresponding to the 

maximum value of the correlation coefficient ri  [88]. The details of this approach can be found in [89, 

90]. It was successfully used in [65, 67, 69-72, 81-83, 89, 91, 92] to simulate the COVID-19 pandemic 

dynamics and other phenomena. The exact solution [70, 72, 81]  allows avoiding numerical solutions of 

differential equations (1)-(3) and significantly reduces the time spent on calculations. The new 

algorithm proposed in [90] allows estimating the optimal values of SIR parameters for the i-th 

epidemic wave directly (without simulations of the previous waves) with the use of only two 

independent parameters 
 

iN  and i .  

 

Results 

       The optimal values of parameters and other characteristics of the severe COVID-19 pandemic 

wave in India are calculated and listed in Table 2. We have used the number  i=2 and the time period: 

Tc2  - April 10-23, 2021 for SIR simulations of this wave. Corresponding values of Vj and tj are listed in 

Table 1. The value of the correlation coefficient ri  = 0.999959712033103 is very high (see Table 2), 

nevertheless we are not satisfied with the convergence procedure by isolation of the maximum of this 

parameter. Probably new simulation with the use of fresher datasets could fix this problem. The 

estimate of the average duration of the infection spread in India 1/ 35i i    days is significantly 

higher than in Ukraine in the end of March 2021, [72].  

         Unfortunately the estimations of the pandemic duration in India are very pessimistic (4,434 days 

or 12.1 years after April 30, 2021). If we suppose that the end of the epidemic corresponds the moment 

when the number of persons spreading the infection is less than 20, the calculations yield the middle of 

January 2023.  Probably a strict quarantine and vaccination could change this sad trend, but it looks 

that some new cases of COVID-19 will appear if not always, then for a very long time. The very long 

duration of the epidemic in India and the large number of cases increase the likelihood of new 

mutations in the coronavirus, which can make existing vaccines ineffective and pose a threat to all 

mankind. 
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Characteristics               i=2  

      
Time period taken 
for calculations Tci 

     April 10-23, 2021 

Ii     1,388,033.10466357 
 

Ri 11,836,652.8953364 

Ni 43,000,000 

i  
7,965,355.17869963 

    i  3.58639081028928e-09 

   i  0.0285668766135785 

    1/ i  35.0055770368917 

                ri 0.999959712033103 

iS   645,561 

iV  42,354,439 

Final day of  the 

epidemic wave 

June 23, 2033 

 

  Table 2.  The  COVID-19 pandemic storm in India. Optimal values of SIR parameters and other 

characteristics. 

    

      Knowing the optimal values of parameters, the corresponding SIR curves can be easily calculated 

with the use of exact solution [70, 72, 81] and compared with the pandemic observations before and 

after Tc2. The results are shown in Figure by blue lines: V(t)=I(t)+R(T) – solid;  dashed one represents 

the number of infectious persons multiplied by 5, i.e. ( ) 5I t  ; dotted line shows the derivative 

( / ) 100dV dt   calculated with the use of  formula: 

 

                                                               i

dV
SI

dt
                                                                    (4) 

 
Equation (4) follows from (2) and (3) and yields an estimation of the real daily number of new cases. 

Red “Circles” and “stars” correspond to the accumulated numbers of cases registered during the period 

of time taken for SIR simulations Ti2  and beyond this time period, respectively (all taken from Table 

1). It can be seen that these values are in good agreement with the theoretical blue solid line. 
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Figure. The COVID-19 epidemic dynamics in India. 
The results of SIR simulations are shown by blue lines. Numbers of victims V(t)=I(t)+R(t) – solid; 
numbers of infected and spreading I(t) multiplied by 5 – dashed; derivatives dV/dt (eq. (4)) multiplied 
by 100 – dotted. Red markers show the real number of cases and its derivatives: “circles” correspond to 
the accumulated numbers of cases taken for calculations (during period of time Tc2); “stars” – number 
of cases beyond Tc2 (all the values from Table1); “crosses” – the first derivative (6) multiplied by 100; 
“dots”- the second derivative (7) multiplied by 1000. 
 
 
       The blue dotted line shows that the daily number of the new cases will start to diminish after May 

10, 2021, but the number of people spreading the infection I(t) will have its maximum only in the end 

of May, 2021. We can also compare the theoretical curve (4) with the average daily number of new 

cases which can be calculated with the use of smoothing registered Vj values [70, 81, 82]: 

 

                                                              

3

3

1

7

j i

i j
j i

V V
 

 

  ,                                                                 (5) 

 

and its first derivative:  

 

                                                           1 1

1

2
i

i i

t t

d V
V V

dt  


                                                         (6) 

 

(see, e.g., [70, 81, 82]). The red “crosses” represent the results of calculations of the first derivatives 

(15) and are in a good agreement with the theoretical dotted line for moments of time before April 22, 

2021.  
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Discussion 

     Rather large differences between the real (15) and theoretical (13) values of the first derivative after 

April 22, 2021 can be explained by two factors. The first is related to changes in the dynamics of the 

epidemic. This is evidenced by the sharp changes in the second derivative of the average number of 

reported cases, which can be estimated using formulas: 

                  

                                                

2

1 12
2

i

i i i

t t

d V
V V V

dt  


                                                                        (7) 

 

and (5) (see, e.g., [70, 81, 82]).  

          So we can talk about a new wave of pandemic in India, which may be weaker than the one we 

see in April 2021 due to the sharp decrease in the second derivative (7) after April 20, 2021 (see red 

dots in the figure). The course of the epidemic and new simulations will help to clarify these findings. 

         The second reason for discrepancies between formulae (4) and (6) may be the large number of 

unregistered cases observed in other countries [72, 78-80]. Estimates for Ukraine made in [72] showed 

that the real number of cases is about four times higher than registered and reflected in official 

statistics. Similar estimates can be made for the case of India. But the results already obtained show 

that the COVID-19 pandemic will be a problem for mankind for a very long time. 
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