Diagnostic tests for Schistosomiasis for low prevalence settings: a systematic review and Meta-Analysis

Michel T Vaillant¹, Fred Philippy¹, Jessica Barré^{1,2}, Dmitry Bulaev¹, Amadou T Garba³

¹Competence Center for Methodology and Statistics, Luxembourg Institute of Health

²present affiliation: Luxembourg National Office of Health

³Schistosomiasis Control Programme, WHO Department of Control of Neglected Tropical Diseases

Abstract

Background: Tests for diagnosing schistosomiasis in areas where prevalence is low due to control programme of the disease should be sufficiently sensitive to detect the residual disease. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use.

Objectives: To compare sensitivity and specificity of new tests, especially rapid diagnostic tests (RDTs), with regard to a certain reference test.

Methods : We searched the electronic databases Pubmed, EMBASE, the Cochrane Library and LILACS up to February 2021. Furthermore we searched results from the previous meta-analyses.

We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear.

Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Grading of evidence was done with the GRADE methodology by using GradePro. Using the variability of test thresholds, we used a bayesian bivariate random-effects summary receiver operating characteristic model for all eligible tests. We investigated heterogeneity, and carried out sensitivity analyses where possible. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI).

Results: The review gathered 203 articles stating a diagnostic test for the diagnosis of S. haematobium and S. mansoni out of which 114 entered the analyses. Microscopy of Urine filtration or Kato-Katz smears were used as the reference standard.

Compared with Kato-Katz smears, AWE-SEA ELISA (Se=94%; Sp=64%) is comparable to CCA1 (Se=87%; Sp=60%). IgG ELISA (Se=93%; Sp=68%) has also a very good ability to detect true positive as well as CAA cassette (Se=73%; Sp=68%). For S. haematobium, proteinuria (Se=59%; Sp=83%) and haematuria (Se=74%; Sp=87%) reagent strips showed reasonably high specificities with a considerably better sensitivity for the haematuria test.

There are interesting promising new diagnostic tests that were tested in field studies. However prevalences of the locations where these studies took place are variable and there are no specific study with a high number of patients in areas with low level of schistosomiasis infection.

Background

Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes (trematode worms) of the genus Schistosoma. Transmission occurs when people suffering from schistosomiasis contaminate freshwater sources with their excreta containing parasite eggs. Preventive chemotherapy for schistosomiasis, where people and communities are targeted for large-scale treatment, is required in 52 endemic countries with moderate-to-high transmission. Estimates show that at least 218 million people required preventive treatment worldwide in 2015. The neglected tropical diseases (NTD) road map launched in 2012 followed by the London Declaration of NTD created a new emphasis for the control of schistosomiasis with commitments of various partners to support the fight against schistosomiasis. The NTD road map set as target to reach the 75-100% coverage of school aged children in 2020, and to eliminate the disease in some regions.

Currently there is no guidance available for the evaluation of the interruption of the transmission of schistosomiasis. The current implementation guidelines based mainly on expert opinion need to be revised according to the available scientific evidence.

The goal of the WHO guidelines is to provide evidence based recommendations to countries in their effort to move from control to interruption of transmission. It will help countries on the implementation of preventive chemotherapy for schistosomiasis and on how to verify if the transmission of the disease is interrupted in the country.

Currently, the guideline in use for the morbidity control of schistosomiasis is based on the recommendations by the expert committee in 2002, updated in 2006 to take into account additional strategies, the treatment in low prevalence areas and of special groups at risk and in 2017 for the use of the Circulating Cathodic Antigen (CCA) diagnostic tests.

New updated guidelines are needed, in particular, because new sensitive diagnostic tools have been developed and to guide their utilisation in low transmission areas. The target condition being diagnosed are infections to Schistosoma mansoni and Schistosoma Heamatobium.

For S. mansoni, the reference standard test is the index microscopy test namely the two Kato-Katz smear performed on 2 sample of feces (quadruple KK). However double KK is also found as well as 6KK. It is Urine Microscopy for S. heamatobium. The comparators are based on the Hemastix dipstick, CCA, CAA, PCR, serology. All diagnostic tests found in the literature search are in Table 1.

Theoretical sensitivity of some of the diagnostic tests described in Table 1 were investigated (Table 2).

The objectives of the systematic review and meta-analysis were to compare sensitivity and specificity of new tests with regard to the Kato-Katz test.

Materials and Methods

Criteria for considering studies for this review

Types of studies

Use of diagnostic test, validation study, availability of tests performances and/or quantity of patients/data in crossed categories of at least 2 tests

Participants

Adults and Children (SAC and pre SAC) living in endemic areas that have received elimination interventions

Target conditions

Schistosomiasis based on infection by Schistosoma mansoni or Schistosoma haematobium

Search methods for identification of studies

Electronic searches

To identify articles relevant to the question, a search in Pubmed, EMBASE, the Cochrane Library and LILACS up to February 2021 will be undergone using analogous search terms. A combination of medical subject headings (MeSH) and title and abstract keywords such as "Schistosomiasis", "Schistosoma", "", or "", focusing on terms to describe the relevant population: ((schistosomiasis[Title] OR schistosoma[Title]) OR (schistosomiasis[Other Term] OR schistosoma[Other Term])) AND ((diagnostic*[Title]) OR (diagnostic*[Other Term])).

More precisely, the full electronic database search result can be broken down as follows:

- Search in EMBASE on 10/12/2020
 - MeSH: ('schistosomiasis':ti OR 'schistosoma':ti OR 'schistosomiasis':kw OR 'schistosoma':kw) AND ('diagnostic*':ti OR 'diagnostic*':kw)
 - o 345 results
- Search in PubMed on 10/12/2020
 - MeSH: ((("schistosomiasis"[Title] OR "schistosoma"[Title]) OR ("schistosomiasis"[Other Term] OR "schistosoma"[Other Term])) AND ("diagnostic*"[Title] OR "diagnostic*"[Other Term])) OR (("schistosomiasis"[Title] OR "schistosoma"[Title] OR ("schistosomiasis"[Other Term] OR "schistosoma"[Other Term])) AND ("specificity"[Title] OR "sensitivity"[Title] OR ("specificity"[Other Term] OR "sensitivity"[Other Term])))))
 - o 416 results
- Search in EMBASE on 03/02/2021 for the years 2018-2021
 - MeSH: ('schistosomiasis':ti OR 'schistosoma':ti OR 'schistosomiasis':kw OR 'schistosoma':kw) AND ('diagnostic*':ti OR 'diagnostic*':kw) AND (2018:py OR 2019:py OR 2020:py OR 2021:py)
 - o 80 results
- Search in PubMed on 03/02/2021 for the years 2018-2021
 - MeSH: ((("schistosomiasis"[Title] OR "schistosoma"[Title]) OR ("schistosomiasis"[Other Term] OR "schistosoma"[Other Term])) AND ("diagnostic*"[Title] OR "diagnostic*"[Other Term])) OR (("schistosomiasis"[Title] OR "schistosoma"[Title] OR ("schistosomiasis"[Other Term] OR "schistosoma"[Other Term])) AND ("specificity"[Title] OR "sensitivity"[Other Term])) AND ("specificity"[Title] OR "sensitivity"[Title] OR ("schistosoma"]))) Filters: from 2018 2021
 - o 95 results
- Search in LILACS on 03/02/2021

- MeSH: ti:(schistosomiasis OR schistomosa) AND (ti:diagnostic* OR mh:diagnostic*) AND (db:("LILACS") AND la:("en"))
- o 38 results
- Search in Cochrane on 03/02/2021
 - MeSH: (schistosomiasis OR schistosoma) AND diagnostic*
 - o 20 results
- 76 additional references could be found by screening bibliographies of other meta-analyses or by executing specific searches
- 370 database search results from previous study

All in all, the search yielded 1440 results, of which 756 were identified as duplicates.

Data collection and analysis

For each analysis paired forest plots of sensitivity and specificity were created and summary ROC plots were produced:

- Plots of the summary ROC curve,
- Average operating points including 95% confidence intervals and 95% prediction regions
- Bayesian bivariate random effects model used to estimae Sentivity, specificity.

Selection of studies

We looked for the use of diagnostic tests, validation studies, availability of test performance measurements and/or quantity of patients/data in crossed categories of at least 2 tests.

All search results have been uploaded in the web app Rayyan QRCI (<u>https://rayyan.qcri.org/welcome</u>) to perform sorting and selection of articles based on an extended list of keywords by two review authors. After submitting all their inclusion and exclusion decisions on the 674 uploaded references, the results were compared. 203 references were declared eligible for full-text assessment.

Subsequently, data could be extracted from 114 references. The quality of the data has been assessed using QUADAS-2, and meta-analysis was performed where appropriate.

Reasons for the exclusion of studies can be found in Appendix B.

Data extraction and management

We included studies that provide participant data. Only studies in which true-positives (TPs), true-negatives (TNs), false-positives (FPs), and false-negatives (FNs) were reported or could be extracted from the data were included.

Other data were extracted such as:

- Study authors, publication year, and journal
- Study design.
- Study participants' age and sex.

- Prevalence of schistosomiasis.
- Treatment status of participants with praziquantel before study
- Reference standard (microscopy), including number of samples per individual
- Index tests

Assessment of methodological quality

This review is based on the QUADAS-2 guidelines for the review of diagnostic accuracy. It collects estimates from the scientific literature and aggregate them to provide meta-analytic estimates

Assessment of methodological quality table:

The assessment of the recommended 11 QUADAS items was performed.

Associated charcacteristics of the studies, as well as the 11 QUADAS items for every included study can be found in Appendix B.

Grading of the evidence

The GRADE methodology was used to rate the evidence concerning each diagnostic tool. The GradePro GDT tool (https://gradepro.org/) helped in gathering information and rating. Summary of Findings (SoF) tables will be created for every test comparison to evaluate quality of evidence (or certainty) of evidence and strength of recommendations. These tables can be found in Appendix C.

Statistical analysis and data synthesis

Intervention:

Diagnostic tests: Urine Microscopy, Hemastix dipstick, CCA, CAA, PCR, serology tests, reagent strips

Comparison:

Comparison of various tests found in the litterature

Outcomes:

- Performances of the tests (sensitivity, specificity, PPV, NPV)
- Disease prevalence with the reference test and with the index test

Using the variability of test thresholds, we used a bayesian bivariate random-effects summary receiver operating characteristic model for all eligible tests.

In order to improve the summary measures considering the group reference test, the Kato-Katz thick smears (single, duplicate, triplicate, etc.) were lumped together based on known differences in sensitivity. This work was carried out for CCA1, CCA2. For FLOTAC we also considered lumping FLOTAC fresh, FLOTAC (10 days) and FLOTAC (30 days). This has been added in the respective tools paragraphs.

Investigations of heterogeneity

We investigated heterogeneity by examining the forest plots, and carried out sensitivity analyses where possible.

Assessment of reporting bias

We did not assess reporting bias.

PICO question

In people living in schistosomiasis endemic settings (s. mansoni and s. haematobium), do newer diagnostics when compared to conventional standard (KK for s. mansoni and urine microscopy for s. haem) have better sensitivity and specificity?

Results

Results of the search

Together with the records yielded during the first attempt of this study, our search yielded 1364 records. Out of the 1364 records, 608 records were suitable for the review after duplicates were removed. Abstracts were reviewed and 127 articles were eligible for-full text assessment. 76 additionnal records were identified through reading of the references tables of these articles, which results in a total of 203 records eligible for full-text assessment.

Out of these 203 records, 89 were excluded for the following reasons:

- Article in Chinese (n=5)
- Article in Portuguese (n=1)
- Use of a combined gold standard (n=17)
- Empirical data not available (n=5)
- Ongoing study (n=1)
- No indication regarding the reference test (n=2)
- Meta-analysis (n=3)
- Wrong type of study (n=40)
- Statistical analysis (n=5)
- Paper retracted (n=1)
- Article was not retrieved (n=9)

The PRISMA flow diagram can be found in Appendix A (Figure 1).

Methodological quality of included studies

Using the Quadas-2 tool we evaluated the risk of bias in the quality appraisal of the included studies. We evaluated an unclear risk of bias of about 12.30% in patient selection and 6.56% in the use of the index test. Concerning the reference standard the risk of bias was 29.50%. In terms of applicability concerns, only patient selection would show a 2.46% unclear evaluation.

Figures 2 and 3 provide a visual illustration of the evaluation of risk of bias and applicability concerns.

Findings

Prevalence of schistosomiasis

The raw prevalences detected in the different studies that were included in the review are shown in Table 3.

Number of studies and participants

The number of studies and the number of participants for each study are given in Table 6.

Forest plots and Summary ROC curves

For every test comparison, the forest plot as well as the SROC curve can be found in Figures 4 - 59.

Publication Bias & Heterogeneity

For every test comparison, included in at least 4 studies, Publication Bias and Heterogeneity has been assessed by multiple methods.

In order to evaluate publication bias, funnel plots were created by plotting, for every test comparison, logtransformed Diagnostic Odds Ratio against its Standard Error. Additionally, given that standard funnel plots are less appropriate for DTA meta-analyses, Deeks' funnel plot and asymmetry test have been used. Heterogeneity was studied by using the l^2 statistic and by performing Cochran's Q tests on the Diagnostic Odds Ratio (DOR) as well as separately on sensitivity and specificity.

Results of both analyses (for test comparisons included in at least 4 studies) can be found in Appendix D.

CCA1

CCA1 cassette versus single Kato-Katz smear

1 study with a total of 217 individuals was found for this comparison. Prevalence was 5.35%.

CCA1 cassette versus duplicate Kato-Katz smears

14 studies totalling 17 comparisons with a total of 4884 individuals were found for this comparison. Prevalence ranged from 6% to 91%. The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 85.47% and 59.09% respectively.

CCA1 cassette versus quadruplicate Kato-Katz smears

10 studies totalling 11 comparisons with a total of 4592 individuals were found for this comparison. Prevalence ranged from 6.37% to 60%. The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 87.05% and 58.63% respectively.

CCA1 cassette versus sextuplicate Kato-Katz smears

7 studies with a total of 2325 individuals were found for this comparison. Prevalence ranged from 5.73% to 94.74%. The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 83.48% and 67.86% respectively.

CCA1 cassette versus 16 Kato-Katz smears

1 study with a total of 217 individuals was found for this comparison. Prevalence was 14.29%.

CCA1 cassette versus single, duplicate, quadruplicate, sextuplicate and 16 Kato-Katz smears

There were 25 studies totalling 37 comparisons against single, duplicate, quadruplicate, sextuplicate or 16 Kato-Katz smears in 12,235 individuals. The prevalence ranged from 5.73% to 91%. The forest plot shows heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 87.22% and 60.14% respectively.

CCA1 cassette versus Urine Microscopy

There were 4 studies with a total of 991 individuals. The prevalence ranged from 18.11% to 57.60%. The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 51.43% and 74.13% respectively.

CCA1 cassette versus Helmintex

1 study with a total of 214 individuals was found for this comparison. Prevalence was 24.77%.

CCA1 cassette versus RT-PCR

1 study with a total of 196 individuals was found for this comparison. Prevalence was 55.10%.

CCA2

CCA2 cassette versus duplicate Kato-Katz smears

1 study with a total of 100 individuals was found for this comparison. Prevalence was 8%.

CCA2 cassette versus quadriplicate Kato-Katz smears

1 study with a total of 100 individuals was found for this comparison. Prevalence was 11%.

CCA2 cassette versus duplicate and quadruplicate Kato-Katz smears

There was 1 study totalling 2 comparisons against duplicate and quadruplicate Kato-Katz smears in 200 individuals. Prevalence ranged from 8% to 11%. The forest plots show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 51.75% and 87.59% respectively.

CAA

CAA cassette versus duplicate Kato-Katz smears

There were 2 studies totalling 3 comparisons against duplicate Kato-Katz smears in 830 individuals. Prevalence ranged from 28.43% to 91%. The forest plots show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 60.70% and 66.63% respectively.

CAA cassette versus quadriplicate Kato-Katz smears

1 study with a total of 377 individuals was found for this comparison. Prevalence was 6.37%.

CAA cassette versus duplicate and quadruplicate Kato-Katz smears

There were 3 studies totalling 4 comparisons against duplicate or quadruplicate Kato-Katz smears in 1207 individuals. Prevalence ranged from 6.37% to 91%. The forest plots show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 72.65% and 68.07% respectively.

CAA cassette vs Urine Microscopy

There were 4 studies with a total of 1247 individuals. Prevalence ranged from 18.11% to 57.60%. The forest plots show heterogeneity which is also observed in the HSROC curve.

Meta-analytic sensitivity and specificity of data were 70.93% and 78.57% respectively.

FLOTAC

FLOTAC (fresh) versus triplicate Kato-Katz smears

1 studies with a total of 112 individuals was found for this comparison. Prevalence was 64.29%.

FLOTAC (10 days) versus triplicate Kato-Katz smears

1 studies with a total of 112 individuals was found for this comparison. Prevalence was 64.29%.

FLOTAC (30 days) versus triplicate Kato-Katz smears

1 studies with a total of 112 individuals was found for this comparison. Prevalence was 64.29%.

FLOTAC (all) versus triplicate Kato-Katz smears

1 study with 3 different comparisons totaling 336 individuals was found for this comparison. Prevalence was 64.29%.

The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 79.37% and 64.71% respectively.

SmCTF-RDT

SmCTF-RDT versus quadriplicate Kato-Katz smears

3 studies totalling 4 comparisons with a total of 291 individuals was found for this comparison. Prevalence ranged from 20.34% to 60%.

The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 85.60% and 35.48% respectively.

SmCTF-RDT versus Urine Microscopy

1 study with a total of 117 individuals was found for this comparison. Prevalence was 5.13%.

Sm DNA PCR

Sm DNA PCR versus duplicate Kato-Katz smears

1 study with a total of 89 individuals was found for this comparison. Prevalence was 50.56%.

ELISA

SWAP ELISA versus sextuplicate Kato-Katz smears

1 study with a total of 482 individuals was found for this comparison. Prevalence was 38.80%.

IgM ELISA versus triplicate Kato-Katz smears

1 study with a total of 137 individuals was found for this comparison. Prevalence was 36.50%.

IgG ELISA versus triplicate Kato-Katz smears

4 studies with a total of 954 individuals were found for this comparison. Prevalence ranged from 36.50% to 93.64%.

The forest plot shows heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 93.02% and 68.43% respectively.

Anti IgG RDT-Sh

Anti IgG RDT-Sh versus Urine Microscopy

1 study with a total of 160 individuals was found for this comparison. Prevalence was 51.25%.

Proteinuria (Reagent strip)

Proteinuria (Reagent strip) versus Urine microscopy

40 studies with 41 different test comparisons totalling 79,466 individuals were found for this comparison. Prevalence ranged from 4% to 88.57%.

The forest plots show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 58.66% and 82.56% respectively.

Haematuria (Reagent strip)

Haematuria (Reagent strip) versus Urine microscopy

71 studies with 72 different test comparisons totalling 156,279 individuals were found for this comparison. Prevalence ranged from 3.23% to 86.93%.

The forest plot show heterogeneity which is also observed in the HSROC curve.

Meta analytic sensitivity and specificity of data were 74.38% and 86.78% respectively.

AWE-SEA ELISA

AWE-SEA ELISA versus quadriplicate Kato-Katz smears

2 studies with a total of 484 individuals were found for this comparison. Prevalence ranged from 6.37% to 21.50%. The forest plot did not show great heterogeneity as well as the HSROC curve. Meta analytic sensitivity and specificity of data were 93.74% and 64.17% respectively.

LAMP

LAMP versus triplicate Kato-Katz smears

2 studies with a total of 493 individuals was found for this comparison. Prevalence ranged from 45.95% to 100%.

Meta-analytic sensitivity and specificity of data were 94.29% and 98.23% respectively.

LAMP versus Urine Microscopy

2 studies with a total of 266 individuals was found for this comparison. Prevalence ranged from 26.60% to 50.58%.

Meta-analytic sensitivity and specificity of data were 77.06% and 63.50% respectively.

IHA

IHA versus triplicate Kato-Katz smears

1 study with a total of 2 comparisons and 203 individuals was found for this comparison. Prevalence ranged from 95.45% to 100%. The forest plot did not show great heterogeneity as well as the HSROC curve.

Meta analytic sensitivity and specificity of data were 81.48% and 7.15% respectively.

IHA versus Urine Microscopy

1 studies with a total of 145 individuals was found for this comparison. Prevalence was 60.96%. The forest plot did not show great heterogeneity as well as the HSROC curve.

Colorimetric test

Colorimetric test versus Urine Microscopy

1 study with a total of 1279 individuals was found for this comparison. Prevalence was 61.85%.

rSP13 ELISA

rSP13 ELISA versus 27 Kato-Katz smears

1 study with a total of 1371 individuals was found for this comparison. Prevalence was 5.40%.

IgG SEA-ELISA

IgG SEA-ELISA vs CCA1 cassette

1 study with a total of 258 individuals was found for this comparison. Prevalence was 56.98%.

IgG SEA-ELISA vs Urine Microscopy

4 studies with a total of 503 individuals were found for this comparison. Prevalence ranged from 30.67% to 78%. The forest plot did not show great heterogeneity as well as the HSROC curve.

Meta analytic sensitivity and specificity of data were 88.94% and 71.29% respectively.

Leukocyturia (reagent strip)

Leukocyturia (reagent strip) vs Urine Microscopy

5 studies with a total of 1532 individuals were found for this comparison. Prevalence ranged from 4% to 76.78%. The forest plot did not show great heterogeneity as well as the HSROC curve.

Meta analytic sensitivity and specificity of data were 55.70% and 59.95% respectively.

COPT

COPT vs duplicate Kato-Katz smears

1 study with a total of 572 individuals was found for this comparison. Prevalence was 0.87%.

PCR

PCR vs Kato-Katz smears

2 studies with a total of 3 comparisons and 551 individuals were found for this comparison. Prevalence ranged from 12.88% to 85.19%.

Meta analytic sensitivity and specificity of data were 95.79% and 46.92% respectively.

PCR vs CCA1 cassette

1 study with a total of 258 individuals was found for this comparison. Prevalence was 56.98%.

Helmintex

Helmintex vs duplicate KK

1 study with a total of 461 individuals was found for this comparison. Prevalence was 11.93%.

Helmintex vs RT-PCR

1 study with a total of 176 individuals was found for this comparison. Prevalence was 59.09%.

DDIA

DDIA vs Urine Microscopy

1 study with a total of 146 individuals was found for this comparison. Prevalence was 60.96%.

RT-PCR

RT-PCR vs duplicate KK

1 study with a total of 206 individuals was found for this comparison. Prevalence was 19.90%.

RT-PCR vs sextuple KK

1 study with a total of 198 individuals was found for this comparison. Prevalence was 32.32%.

Analyses with the bayesian bivariate random-effects HSROC model

The Bayesian bivariate random effects hierarchical summary ROC model allowed to identify the sensitivity and specificity for each comparisons previously made. It gave for each of them the meta-analystic estimates of sensitivity and specificity. The results are shown in Table 4 (raw outputs of the model) and Table 5 (cf. Appendix A) with the evaluation of sensitivity and specificity with their 95% Bayesian Credible Intervals.

Results are not valid when the number of studies is 1. In that case the result in the forest plot is to be considered.

Discussion

Summary of main results

The review gathered 203 articles stating a diagnostic test for the diagnosis of S. haematobium and S. mansoni out of which 114 entered the analyses. Microscopy of Urine Microscopy or Kato-Katz smears were used as reference standards.

There was a great heterogeneity in the reference standards used over the studies. For S. mansoni, duplicate to sextuplicate Kato-Katz smears and even 16 or 27 smears were used. For S. haematobium Urine Microscopy could be simple or double.

However concerning S. mansoni CCA1 (Se=87%; Sp=60%) seems to show higher superiority in sensitivity and specificity (estimated by the bayesian bivariate model) than CCA2 (Se=52%; Sp=88%) as compared with Kato-Katz smears.

SmCTF-RDT (Se=86%; Sp=36%) has a similar sensitivity but a much lower specificity.

IgG ELISA (Se=93%; Sp=68%) is comparable to CCA1 but there is only 4 studies in this comparison.

AWE-SEA ELISA (Se=94%; Sp=64%) has also a very ability to detect true positive but with only two studies in the comparison.

Based on 4 studies of 1207 individuals CAA cassette was comparable (Se=73%; Sp=68%) to FLOTAC (Se=79%; Sp=65%).

SWAP ELISA evaluated in 1 study of 482 individual showed a sensitivity of 92% and specificity of 57%.

For S. haematobium proteinuria (Se=59%; Sp=83%) and haematuria (Se=74%; Sp=87%) reagent strips showed reasonably high specificities with a considerable better sensitivity for the haematuria test.

The colorimetric test gave interesting results despite low sensitivity (Se=52%; Sp=75%)

The new tests would have better feasibility (i.e. commercialized and available) and should be the other argument for choosing them on top of this analysis. Other laboratory tests (e.g. various ELISAs) that are not ready for public health application are less important in the short term.

Limitations

- Imperfect standard tests
- Few number of studies and sparse analyses for some test comparisons
- Limited sample size and prevalence not accounted for in the analyses

 While higher eggs means higher sensitivity and population prevalence, there is a relation between sensitivity/specificity and prevalence. This relation was not accounted for in the analysis due the limited sample size

Evidence to Recommendation:

Certainty of the evidence of

- accuracy: moderate for CCA, SmCTF-RDT, Proteinuria, Haematuria
- Values: Probably no important uncertainty or variability. Prevalences as evaluated by the reference test (Kato-Katz smear or urine microscopy) were always underestimated when compared to the index tests. In general it was below 50% but a few studies showed a prevalence higher than 50%. Only one study in Nigeria (Ugbomoiko 2009) showed lower prevalences with the index test (proteinuria and haematuria against urine microscopy).
- Balance of effects: Probably favors the intervention
- Resources required: depends on the tests' prices, no evidence. Concerning S. mansoni PCO test such as CCA1, CCA2, CAA, SmCTF-RDT would be less resource intensive than IgG ELISA, AWE-SEA ELISA, SWAP ELISA which need a local lab or to be sent to a central lab. For S. haematobium proteinuria and haematuria reagent strips can be used on site while the haematuria test cannot. The colorimetric test is also possible in the field.
- Equity: Probably increased. The use of a diagnostic test will not provide more equity in itself. A diagnostic test that best detect schistosomiasis pathogen may allow mass deworming toward elimination. However as Helminthiases occurs in poor communities, concurrent interventions oriented against degraded and unhealthy living conditions as well as gender equity to break the cycle of chronic poverty and schistosomiasis infections
- Acceptability: Yes. The acceptability of diagnostic test may mostly depends on the cost to be scaled up
- Feasibility: Yes if RDT

• Benefits and harms:

Potential benefits: Concerning S. mansoni CCA1 (Se=88%; Sp=59%) seems to show higher superiority in sensitivity and specificity (estimated by the bayesian bivariate model) than CCA2 (Se=52%; Sp=88%) as compared with Kato-Katz smears. SmCTF-RDT (Se=86%; Sp=36%) has a similar sensitivity but a much lower specificity. IgG ELISA (Se=90%; Sp=76%) is comparable to CCA1 but there is only 4 studies in this comparison. AWE-SEA ELISA (Se=94%; Sp=64%) has also a very ability to detect true positive but with only two studies in the comparison. Based on 4 studies of 1207 individuals CAA cassette was comparable (Se=73%; Sp=68%) to FLOTAC (Se=79%; Sp=65%).

SWAP ELISA evaluated in 1 study of 482 individual showed a sensitivity of 92% and specificity of 57%.

For S. haematobium proteinuria (Se=58%; Sp=82%) and haematuria (Se=74%; Sp=86%) reagent strips showed reasonably high specificities with a considerable better sensitivity for the haematuria test. The colorimetric test gave interesting results despite low sensitivity (Se=52%; Sp=75%).

Potential harms: No potential harm

Type of Recommendation: Conditional recommendation for CCA. Conventional diagnostic tool in humans of Kato-Katz and CCA for S. mansoni and urine microscopy for S. haematobium have reasonable sensitivity and excellent specificity. Conventional diagnostic tool in humans are well accepted, low-cost, and feasible given their widespread implementation. New diagnostic tools, such as molecular-based and immunologic diagnostics, lack sufficient data on sensitivity and specificity, and their utility is further limited by challenges with feasibility and resource implications.

References to studies

Included studies

Abdel-Wahab 1992

Abdel-Wahab, M. F.Esmat, G.Ramzy, I.Fouad, R.Abdel-Rahman, M.Yosery, A.Narooz, S.Strickland, G. T.. Schistosoma haematobium infection in Egyptian schoolchildren: demonstration of both hepatic and urinary tract morbidity by ultrasonography. Transactions of the Royal Society of Tropical Medicine and Hygiene 1992;86(4):406-409.

Abdel-Wahab 2000

Abdel-Wahab, M. F.Esmat, G.Ramzy, I.Narooz, S.Medhat, E.Ibrahim, M.El-Boraey, Y.Strickland, G. T.. The epidemiology of schistosomiasis in Egypt: Fayoum Governorate. Am J Trop Med Hyg 2000;62(2 Suppl):55-64.

Adriko 2014

Adriko, M.Standley, C. J.Tinkitina, B.Tukahebwa, E. M.Fenwick, A.Fleming, F. M.Sousa-Figueiredo, J. C.Stothard, J. R.Kabatereine, N. B. Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda. Acta Trop 2014/04/15;136:50-7.

Al-Shehri 2018

Al-Shehri, H.Koukounari, A.Stanton, M. C.Adriko, M.Arinaitwe, M.Atuhaire, A.Kabatereine, N. B.Stothard, J. R.. Surveillance of intestinal schistosomiasis during control: A comparison of four diagnostic tests across five Ugandan primary schools in the Lake Albert region. Parasitology 2018;145(13):1715-1722.

Al-Sherbiny 1999

Al-Sherbiny, M. M.Osman, A. M.Hancock, K.Deelder, A. M.Tsang, V. C.. Application of immunodiagnostic assays: detection of antibodies and circulating antigens in human schistosomiasis and correlation with clinical findings. Am J Trop Med Hyg 1999;60(6):960-6.

Anosike 2001

Anosike, J. C.Nwoke, B. E.Njoku, A. J.. The validity of haematuria in the community diagnosis of urinary schistosomiasis infections. J Helminthol 2001;75(3):223-5.

Anyan 2020

Anyan, W. K.Pulkkila, B. R.Dyra, C. E.Price, M.Naples, J. M.Quartey, J. K.Anang, A. K.Lodh, N.. Assessment of dual schistosome infection prevalence from urine in an endemic community of Ghana by molecular diagnostic approach. Parasite Epidemiology and Control 2020.

Aryeetey 2000

Aryeetey, M. E.Wagatsuma, Y.Yeboah, G.Asante, M.Mensah, G.Nkrumah, F. K.Kojima, S. Urinary schistosomiasis in southern Ghana: 1. Prevalence and morbidity assessment in three (defined) rural areas drained by the Densu river. Parasitol Int 2000;49(2):155-63.

Assaré 2018

Assaré, R. K.Tra, M. B. I.Ouattara, M.Hürlimann, E.Coulibaly, J. T.N'Goran, E. K.Utzinger, J. Sensitivity of the Point-of-Care Circulating Cathodic Antigen Urine Cassette Test for Diagnosis of Schistosoma mansoni in Low-Endemicity Settings in Côte d'Ivoire. Am J Trop Med Hyg 2018;99(6):1567-1572.

Ayele 2008

Ayele, B.Erko, B.Legesse, M.Hailu, A.Medhin, G. Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia. Parasite 2008;15(1):69-75.

Barakat 1983

Barakat, R. M.El-Gassim, E. E.Awadalla, H. N.El-Molla, A.Omer, E. A. Evaluation of enzyme linked immunosorbent assay (ELISA) as a diagnostic tool for schistosomiasis. Trans R Soc Trop Med Hyg 1983;77(1):109-11.

Bassiouny 2014

Bassiouny, H. K.Hasab, A. A.El-Nimr, N. A.Al-Shibani, L. A.Al-Waleedi, A. A. Rapid diagnosis of schistosomiasis in Yemen using a simple questionnaire and urine reagent strips. East Mediterr Health J 2014;20(4).

Bezerra 2020

Bezerra, D. F.Pinheiro, M. C. C.Barbosa, L.Viana, A. G.Fujiwara, R. T.Bezerra, F. S. M. Diagnostic comparison of stool exam and point-of-care circulating cathodic antigen (POC-CCA) test for schistosomiasis mansoni diagnosis in a high endemicity area in northeastern Brazil. Parasitology.

Birrie 1995 (HPA)

Birrie, H.Medhin, G.Jemaneh, L.. Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia. East Afr Med J 1995;72(3):180-5.

Birrie 1995 (LPA)

Birrie, H.Medhin, G.Jemaneh, L.. Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia. East Afr Med J 1995;72(3):180-5.

Birrie 1995 (MPA)

Birrie, H.Medhin, G.Jemaneh, L.. Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia. East Afr Med J 1995;72(3):180-5.

Bocanegra 2015

Bocanegra, C. Gallego, S. Mendioroz, J. Moreno, M. Sulleiro, E. Salvador, F. Sikaleta, N. Nindia, A. Tchipita, D. Joromba, M. Kavaya, S. Sanchez Montalva, A. Lopez, T. Molina, I.. Epidemiology of Schistosomiasis and Usefulness of Indirect Diagnostic Tests in School-Age Children in Cubal, Central Angola. PLoS Negl Trop Dis 2015/10/17;9(10):e0004055.

Bogoch 2012

Bogoch,, IIAndrews, J. R.Dadzie Ephraim, R. K.Utzinger, J.. Simple questionnaire and urine reagent strips compared to microscopy for the diagnosis of Schistosoma haematobium in a community in northern Ghana. Trop Med Int Health 2012/08/07;17(10):1217-21.

Bosompem 1996

Bosompem, K. M.Ayi, I.Anyan, W. K.Nkrumah, F. K.Kojima, S. Limited field evaluation of a rapid monoclonal antibody-based dipstick assay for urinary schistosomiasis. Hybridoma 1996;15(6):443-7.

Bosompem 2004

Bosompem, K. M.Owusu, O.Okanla, E. O.Kojima, S. Applicability of a monoclonal antibody-based dipstick in diagnosis of urinary schistosomiasis in the Central Region of Ghana. Trop Med Int Health 2004;9(9):991-6.

Bouilhac 1981

Bouilhac, M.Le Bras, J.Payet, M.Savel, J.Coulaud, J. P. [Comparative sensitivity of I. F. A. T. using adult Schistosoma antigen and E. L. I. S. A. with ovular antigen in the immunodiagnosis of schistosomiasis (author's transl)]. Bull Soc Pathol Exot Filiales 1981;74(6):668-75.

Chernet 2017

Chernet, A. Kling, K. Sydow, V. Kuenzli, E. Hatz, C. Utzinger, J. van Lieshout, L. Marti, H. Nickel, B. Labhardt, N. D. Neumayr, A. Accuracy of Diagnostic Tests for Schistosoma mansoni Infection in Asymptomatic Eritrean Refugees: Serology and Point-of-Care Circulating Cathodic Antigen Against Stool Microscopy. Clin Infect Dis 2017/04/22;65(4):567-574.

Colley 2013 cameroon

Colley, D. G. Binder, S. Campbell, C. King, C. H. Tchuem Tchuente, L. A. N'Goran, E. K. Erko, B. Karanja, D. M. Kabatereine, N. B. van Lieshout, L. Rathbun, S. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 2013/01/23;88(3):426-32.

Colley 2013 Côte d'ivoire

Colley, D. G. Binder, S. Campbell, C. King, C. H. Tchuem Tchuente, L. A. N'Goran, E. K. Erko, B. Karanja, D. M. Kabatereine, N. B. van Lieshout, L. Rathbun, S.. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 2013/01/23;88(3):426-32.

Cooppan 1987

Cooppan, R. M.Schutte, C. H.Dingle, C. E.van Deventer, J. M.Becker, P. J.. Urinalysis reagent strips in the screening of children for urinary schistosomiasis in the RSA. S Afr Med J 1987;72(7):459-62.

Coulibaly 2013

Coulibaly, J. T. N'Goran, E. K. Utzinger, J. Doenhoff, M. J. Dawson, E. M. A new rapid diagnostic test for detection of anti-Schistosoma mansoni and anti-Schistosoma haematobium antibodies. Parasit Vectors 2013/01/31;6:29.

Coulibaly 2016

Coulibaly, J. T.Ouattara, M.Becker, S. L.Lo, N. C.Keiser, J.N'Goran, E. K.Ianniello, D.Rinaldi, L.Cringoli, G.Utzinger, J.. Comparison of sensitivity and faecal egg counts of Mini-FLOTAC using fixed stool samples and Kato-Katz technique for the diagnosis of Schistosoma mansoni and soil-transmitted helminths. Acta Trop 2016/10/30;164:107-116.

Dawson 2013

Dawson, E. M. Sousa-Figueiredo, J. C. Kabatereine, N. B. Doenhoff, M. J. Stothard, J. R. Intestinal schistosomiasis in pre school-aged children of Lake Albert, Uganda: diagnostic accuracy of a rapid test for detection of anti-schistosome antibodies. Trans R Soc Trop Med Hyg 2013/08/27;107(10):639-47.

De Clercq 1995

De Clercq, D.Sacko, M.Vercruysse, J.Diarra, A.Landouré, A.vanden Bussche, V.Gryseels, B.Deelder, A.. Comparison of the circulating anodic antigen detection assay and urine filtration to diagnose Schistosoma haematobium infections in Mali. Trans R Soc Trop Med Hyg 1995;89(4):395-7.

De Oliveira 2005

Oliveira, E. J.Kanamura, H. Y.Lima, D. M.. Efficacy of an enzyme-linked immunosorbent assay as a diagnostic tool for schistosomiasis mansoni in individuals with low worm burden. Mem Inst Oswaldo Cruz 2005/08/23;100(4):421-5.

Elbasheir 2020

Elbasheir, M. M.Karti, I. A.Elamin, E. M.. Evaluation of a rapid diagnostic test for schistosoma mansoni infection based on the detection of circulating cathodic antigen in urine in central Sudan. PLoS Neglected Tropical Diseases 2020.

El-Morshedy 1996

El-Morshedy, H.Kinosien, B.Barakat, R.Omer, E.Khamis, N.Deelder, A. M.Phillips, M. Circulating anodic antigen for detection of Schistosoma mansoni infection in Egyptian patients. Am J Trop Med Hyg 1996;54(2):149-53.

El-Sayed 1995

El-Sayed, H. F.Rizkalla, N. H.Mehanna, S.Abaza, S. M.Winch, P. J.. Prevalence and epidemiology of Schistosoma mansoni and S. haematobium infection in two areas of Egypt recently reclaimed from the desert. Am J Trop Med Hyg 1995;52(2):194-8.

Eltiro 1992

Eltiro, F.Ye-ebiyo, Y.Taylor, M. G.. Evaluation of an enzyme linked immunosorbent assay (ELISA) using Schistosoma mansoni soluble egg antigen as a diagnostic tool for Schistosoma mansoni infection in Ethiopian schoolchildren. J Trop Med Hyg 1992;95(1):52-6.

Eltoum 1992

Eltoum, I. A.Sulaiman, S.Ismail, B. M.Ali, M. M.Elfatih, M.Homeida, M. M. Evaluation of haematuria as an indirect screening test for schistosomiasis haematobium: a population-based study in the White Nile province, Sudan. Acta Trop 1992;51(2):151-7.

Espirito-Santo 2015

Espirito-Santo, Mcc. Alvarado-Mora, Mv. Pinto, Pls. Sanchez, Mca. Dias-Neto, E. Castilho, Vlp. Goncalves, Emdn. Chieffi, Pp. Luna, Ejda. Pinho, Jrr. Carrilho, Fj. Gryschek, Rcb.. Comparative Study of the Accuracy of Different Techniques for the Laboratory Diagnosis of Schistosomiasis Mansoni in Areas of Low Endemicity in Barra Mansa City, Rio de Janeiro State, Brazil. Biomed research international 2015;2015.

Fatiregun 2005

Fatiregun, AkinolaOsungbade, KayodeOlumide, E. A.. Diagnostic performance of screening methods for urinary schistosomiasis in a school-based control programme, in Ibadan, Nigeria. Journal of Community Medicine and Primary Health Care 2005;17(1).

Fereira 2017

Ferreira, Ft. Fidelis, Ta. Pereira, Ta. Otoni, A. Queiroz, Lc. Amancio, Ff. Antunes, Cm. Lambertucci, Jr.. Sensitivity and specificity of the circulating cathodic antigen rapid urine test in the diagnosis of schistosomiasis mansoni infection and evaluation of morbidity in a low-endemic area in Brazil. Revista da sociedade brasileira de medicina tropical 2017;50(3):358-364.

French 2007

French, M. D.Rollinson, D.Basáñez, M. G.Mgeni, A. F.Khamis, I. S.Stothard, J. R. School-based control of urinary schistosomiasis on Zanzibar, Tanzania: monitoring micro-haematuria with reagent strips as a rapid urological assessment. J Pediatr Urol 2007;3(5):364-8.

Fuss 2018

Fuss, A.Mazigo, H. D.Tappe, D.Kasang, C.Mueller, A.. Comparison of sensitivity and specificity of three diagnostic tests to detect Schistosoma mansoni infections in school children in Mwanza region, Tanzania. PLoS ONE 2018;13(8).

Gabr 2000

Gabr, N. S.Hammad, T. A.Orieby, A.Shawky, E.Khattab, M. A.Strickland, G. T.. The epidemiology of schistosomiasis in Egypt: Minya Governorate. Am J Trop Med Hyg 2000;62(2 Suppl):65-72.

Gandasegui 2015

Gandasegui, J. Fernandez-Soto, P. Carranza-Rodriguez, C. Perez-Arellano, J. L. Vicente, B. Lopez-Aban, J. Muro, A. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis. PLoS Negl Trop Dis 2015/08/01;9(7):e0003963.

Gandasegui 2018

Gandasegui, J.Fernández-Soto, P.Dacal, E.Rodríguez, E.Saugar, J. M.Yepes, E.Aznar-Ruiz-de-Alegría, M. L.Espasa, M.Ninda, A.Bocanegra, C.Salvador, F.Sulleiro, E.Moreno, M.Vicente, B.López-Abán, J.Muro, A.. Field and laboratory comparative evaluation of a LAMP assay for the diagnosis of urogenital schistosomiasis in Cubal, Central Angola. Tropical Medicine and International Health 2018;23(9).

Glintz 2010

Glinz, D.Silue, K. D.Knopp, S.Lohourignon, L. K.Yao, K. P.Steinmann, P.Rinaldi, L.Cringoli, G.N'Goran, E. K.Utzinger, J.. Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 2010/07/24;4(7):e754.

Gundersen 1996

Gundersen, S. G.Kjetland, E. F.Poggensee, G.Helling-Giese, G.Richter, J.Chitsulo, L.Koumwenda, N.Krantz, I.Feldmeier, H.. Urine reagent strips for diagnosis of schistosomiasis haematobium in women of fertile age. Acta Trop 1996;62(4):281-7.

Hammad 1997

Hammad, T. A.Gabr, N. S.Talaat, M. M.Orieby, A.Shawky, E.Strickland, G. T.. Hematuria and proteinuria as predictors of Schistosoma haematobium infection. Am J Trop Med Hyg 1997;57(3).

Hammam 2000a

Hammam, H. M.Zarzour, A. H.Moftah, F. M.Abdel-Aty, M. A.Hany, A. H.El-Kady, A. Y.Nasr, A. M.Abd-El-Samie, A.Qayed, M. H.Mikhail, N. N.Talaat, M.Hussein, M. H.. The epidemiology of schistosomiasis in Egypt: Qena governorate. Am J Trop Med Hyg 2000;62(2 Suppl):80-7.

Hammam 2000b

Hammam, H. M.Allam, F. A.Moftah, F. M.Abdel-Aty, M. A.Hany, A. H.Abd-El-Motagaly, K. F.Nafeh, M. A.Khalifa, R.Mikhail, N. N.Talaat, M.Hussein, M. H.Strickland, G. T.. The epidemiology of schistosomiasis in Egypt: Assiut governorate. Am J Trop Med Hyg 2000;62(2 Suppl):73-9.

Kassim 1989

Kassim, O. O.. Proteinuria and haematuria as predictors of schistosomiasis in children. Ann Trop Paediatr 1989;9(3):156-60.

Kiliku 1991

Kiliku, F. M.Kimura, E.Muhoho, N.Migwi, D. K.Katsumata, T.. The usefulness of urinalysis reagent strips in selecting Schistosoma haematobium egg positives before and after treatment with praziquantel. J Trop Med Hyg 1991;94(6):401-6.

King 1988a

King, C. H.Lombardi, G.Lombardi, C.Greenblatt, R.Hodder, S.Kinyanjui, H.Ouma, J.Odiambo, O.Bryan, P. J.Muruka, J.et al.,. Chemotherapy-based control of schistosomiasis haematobia. I. Metrifonate versus praziquantel in control of intensity and prevalence of infection. Am J Trop Med Hyg 1988;39(3):295-305.

King 1988b

King, C. H.Keating, C. E.Muruka, J. F.Ouma, J. H.Houser, H.Siongok, T. K.Mahmoud, A. A.. Urinary tract morbidity in schistosomiasis haematobia: associations with age and intensity of infection in an endemic area of Coast Province, Kenya. Am J Trop Med Hyg 1988;39(4):361-8.

Kitange 1993

Kitange, H. M.Swai, A. B.McLarty, D. G.Alberti, K. G. Schistosomiasis prevalence after administration of praziquantel to school children in Melela village, Morogoro region, Tanzania. East Afr Med J 1993;70(12):782-6.

Knopp 2015

Knopp, S.Corstjens, P. L.Koukounari, A.Cercamondi, C. I.Ame, S. M.Ali, S. M.de Dood, C. J.Mohammed, K. A.Utzinger, J.Rollinson, D.van Dam, G. J.. Sensitivity and Specificity of a Urine Circulating Anodic Antigen Test for the Diagnosis of Schistosoma haematobium in Low Endemic Settings. PLoS Negl Trop Dis 2015;9(5).

Knopp 2018

Knopp, S.Ame, SM.Hattendorf, J.Ali, SM.Khamis, IS.Bakar, F.Khamis, MA.Person, B.Kabole, F.Rollinson, D.. Urogenital schistosomiasis elimination in Zanzibar: accuracy of urine filtration and haematuria reagent

strips for diagnosing light intensity Schistosoma haematobium infections. Parasites & vectors 2018;11(1):552.

Kosinski 2011

Kosinski, K. C.Bosompem, K. M.Stadecker, M. J.Wagner, A. D.Plummer, J.Durant, J. L.Gute, D. M.. Diagnostic accuracy of urine filtration and dipstick tests for Schistosoma haematobium infection in a lightly infected population of Ghanaian schoolchildren. Acta Trop 2011/03/01;118(2):123-7.

Lamberton 2014

Lamberton, P. H.Kabatereine, N. B.Oguttu, D. W.Fenwick, A.Webster, J. P. Sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment. PLoS Negl Trop Dis 2014;8(9).

Legesse 2008

Legesse, M.Erko, B.. Field-based evaluation of a reagent strip test for diagnosis of schistosomiasis mansoni by detecting circulating cathodic antigen (CCA) in urine in low endemic area in Ethiopia. Parasite 2008;15(2):151-5.

Lengeler 1993

Lengeler, C.Mshinda, H.Morona, D.deSavigny, D.. Urinary schistosomiasis: testing with urine filtration and reagent sticks for haematuria provides a comparable prevalence estimate. Acta Trop 1993;53(1):39-50.

Lindholz 2018

Lindholz, C. G.Favero, V.Verissimo, C. D. M.Candido, R. R. F.de Souza, R. P.dos Santos, R. R.Morassutti, A. L.Bittencourt, H. R.Jones, M. K.St. Pierre, T. G.Graeff-Teixeira, C.. Study of diagnostic accuracy of Helmintex, Kato-Katz, and POC-CCA methods for diagnosing intestinal schistosomiasis in Candeal, a low intensity transmission area in northeastern Brazil. PLoS Neglected Tropical Diseases 2018;12(3).

Lodh 2013

Lodh, N.Mwansa, J. C.Mutengo, M. M.Shiff, C. J.. Diagnosis of Schistosoma mansoni without the stool: comparison of three diagnostic tests to detect Schistosoma [corrected] mansoni infection from filtered urine in Zambia. Am J Trop Med Hyg 2013/05/30;89(1):46-50.

Mafe 1997

Mafe, M. A.. The diagnostic potential of three indirect tests for urinary schistosomiasis in Nigeria. Acta Trop 1998/03/11;68(3):277-84.

Mafe 2000

Mafe, M. A.von Stamm, T.Utzinger, J.N'Goran, E. K.. Control of urinary schistosomiasis: an investigation into the effective use of questionnaires to identify high-risk communities and individuals in Niger State, Nigeria. Trop Med Int Health 2000;5(1):53-63.

Magalhaes 2020

Magalhães, F.D.C.Resende, S.D.Senra, C.Graeff-Teixeira, C.Enk, M.J.Coelho, P.M.Z.Oliveira, E.Negrão-Corrêa, D.A.Geiger, S.M.Carneiro, M. Accuracy of real-time polymerase chain reaction to detect Schistosoma mansoni - Infected individuals from an endemic area with low parasite loads. Parasitology 2020;147(10):1140-1148.

Magnussen 2001

Magnussen, P.Ndawi, B.Sheshe, A. K.Byskov, J.Mbwana, K.Christensen, N. O.. The impact of a school health programme on the prevalence and morbidity of urinary schistosomiasis in Mwera Division, Pangani District, Tanzania. Trans R Soc Trop Med Hyg 2001;95(1):58-64.

Mazigo 2018

Mazigo, H. D.Kepha, S.Kinung'hi, S. M. Sensitivity and specificity of point-of-care circulating Cathodic antigen test before and after praziquantel treatment in diagnosing Schistosoma mansoni infection in adult population co-infected with human immunodeficiency virus-1, North-Western Tanzania. Arch Public Health 2018;76:29.

Midzi 2009

Midzi, N. Butterworth, Ae. Mduluza, T. Munyati, S. Deelder, Am. Dam, Gj.. Use of circulating cathodic antigen strips for the diagnosis of urinary schistosomiasis. Transactions of the royal society of tropical medicine and hygiene 2009;103(1):45-51.

Morenikeji 2014

Morenikeji, O.Quazim, J.Omoregie, C.Hassan, A.Nwuba, R.Anumudu, C.Adejuwon, S.Salawu, O.Jegede, A.Odaibo, A. A cross-sectional study on urogenital schistosomiasis in children; haematuria and proteinuria as diagnostic indicators in an endemic rural area of Nigeria. Afr Health Sci 2014;14(2):390-6.

Mott 1985 Ghana

Mott, K. E.Dixon, H.Osei-Tutu, E.England, E. C.Ekue, K.Tekle, A. Indirect screening for Schistosoma haematobium infection: a comparative study in Ghana and Zambia. Bull World Health Organ 1985;63(1):135-42.

Mott 1985 Zambia

Mott, K. E.Dixon, H.Osei-Tutu, E.England, E. C.Ekue, K.Tekle, A. Indirect screening for Schistosoma haematobium infection: a comparative study in Ghana and Zambia. Bull World Health Organ 1985;63(1):135-42.

Mtasiwa 1996

Mtasiwa, D.Mayombana, C.Kilima, P.Tanner, M. Validation of reagent sticks in diagnosing urinary schistosomiasis in an urban setting. East Afr Med J 1996;73(3):198-200.

Murare 1987

Murare, H. M.Taylor, P.. Haematuria and proteinuria during Schistosoma haematobium infection: relationship to intensity of infection and the value of chemical reagent strips for pre- and post-treatment diagnosis. Trans R Soc Trop Med Hyg 1987;81(3):426-30.

Mwangi 2018

Mwangi, I. N.Agola, E. L.Mugambi, R. M.Shiraho, E. A.Mkoji, G. M. Development and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Diagnosis of Schistosoma mansoni Infection in Faecal Samples. J Parasitol Res 2018.

N'Goran 1989

N'Goran, K. E.Yapi Yapi, Y.Rey, J. L.Soro, B.Coulibaly, A.Bellec, C. [Screening for urinary schistosoma by strips reactive to hematuria. Evaluation in zones of intermediate and weak endemicity in the Ivory Coast]. Bull Soc Pathol Exot Filiales 1989;82(2):236-42.

Nausch 2014

Nausch, N.Dawson, E. M.Midzi, N.Mduluza, T.Mutapi, F.Doenhoff, M. J.. Field evaluation of a new antibody-based diagnostic for Schistosoma haematobium and S. mansoni at the point-of-care in northeast Zimbabwe. BMC Infect Dis 2014/03/29;14:165.

Navaratnam 2012

Navaratnam, A. M. D.Mutumba-Nakalembe, M. J.Stothard, J. R.Kabatereine, N. B.Fenwick, A.Sousa-Figueiredo, J. C.. Notes on the use of urine-CCA dipsticks for detection of intestinal schistosomiasis in preschool children. Transactions of the Royal Society of Tropical Medicine and Hygiene 2012;106(10):619-622.

Ndamukong 2001

Ndamukong, K. J.Ayuk, M. A.Dinga, J. S.Akenji, T. N.Ndiforchu, V. A.Titanji, V. P.. Prevalence and intensity of urinary schistosomiasis in primary school children of the Kotto Barombi Health Area, Cameroon. East Afr Med J 2001;78(6):287-9.

Ndhlovu 1996

Ndhlovu, P.Cadman, H.Gundersen, S.Vennervald, B. J.Friis, H.Christensen, N. O.Mutasa, G.Kaondera, K.Mandaza, G.Deelder, A. M.. Circulating anodic antigen (CAA) levels in different age groups in a Zimbabwean rural community endemic for Schistosoma haematobium determined using the magnetic beads antigen-capture enzyme-linked immunoassay. Am J Trop Med Hyg 1996;54(5):537-42.

Nduka 1995

Nduka, F. O.Ajaero, C. M.Nwoke, B. E.. Urinary schistosomiasis among school children in an endemic community in south-eastern Nigeria. Appl Parasitol 1995;36(1):34-40.

Ndyomugyenyi 2001

Ndyomugyenyi, R.Minjas, J. N.. Urinary schistosomiasis in schoolchildren in Dar-es-Salaam, Tanzania, and the factors influencing its transmission. Ann Trop Med Parasitol 2001;95(7):697-706.

Ng'andu 1988

Ng'andu, N. H.. The use of Baye's theorem and other indices of agreement in evaluating the use of reagent strips in screening rural schoolchildren for Schistosoma haematobium in Zambia. Int J Epidemiol 1988;17(1):202-8.

Ngasala 2020 Mta Dam area

Ngasala, B.Juma, H.Mwaiswelo, R. O.. The usefulness of indirect diagnostic tests for Schistosoma haematobium infection after repeated rounds of mass treatment with praziquantel in Mpwapwa and Chakechake districts in Tanzania. International Journal of Infectious Diseases 2020.

Ngasala 2020 Uwandani Shehia

Ngasala, B.Juma, H.Mwaiswelo, R. O.. The usefulness of indirect diagnostic tests for Schistosoma haematobium infection after repeated rounds of mass treatment with praziquantel in Mpwapwa and Chakechake districts in Tanzania. International Journal of Infectious Diseases 2020.

Nwaorgu 1992

Nwaorgu, O. C.Anigbo, E. U.. The diagnostic value of haematuria and proteinuria in Schistosoma haematobium infection in southern Nigeria. J Helminthol 1992/09/01;66(3):177-85.

Ofori 1986

Ofori-Adjei, D.Adjepon-Yamoah, K. K.Ashitey, G. A.Osei-Tutu, E. Screening methods for urinary schistosomiasis in an endemic area (the Kraboa/Coaltar district of Ghana). Ann Trop Med Parasitol 1986;80(3):365-6.

Okeke 2014 (LPA)

Okeke, O. C.Ubachukwu, P. O.. Performance of three rapid screening methods in the detection of Schistosoma haematobium infection in school-age children in Southeastern Nigeria. Pathog Glob Health 2014;108(2).

Okeke 2014 (MPA)

Okeke, O. C.Ubachukwu, P. O.. Performance of three rapid screening methods in the detection of Schistosoma haematobium infection in school-age children in Southeastern Nigeria. Pathog Glob Health 2014;108(2).

Onayade 1996

Onayade, A. A.Abayomi, I. O.Fabiyi, A. K.. Urinary schistosomiasis: options for control within endemic rural communities: a case study in south-west Nigeria. Public Health 1996;110:221-7.

Poggensee 2000 (HPA)

Poggensee, G.Krantz, I.Kiwelu, I.Feldmeier, H.. Screening of Tanzanian women of childbearing age for urinary schistosomiasis: validity of urine reagent strip readings and self-reported symptoms. Bull World Health Organ 2000;78(4):542-8.

Poggensee 2000 (LPA)

Poggensee, G.Krantz, I.Kiwelu, I.Feldmeier, H.. Screening of Tanzanian women of childbearing age for urinary schistosomiasis: validity of urine reagent strip readings and self-reported symptoms. Bull World Health Organ 2000;78(4):542-8.

Polman 1995

Polman, K.Stelma, F. F.Gryseels, B.Van Dam, G. J.Talla, I.Niang, M.Van Lieshout, L.Deelder, A. M.. Epidemiologic application of circulating antigen detection in a recent Schistosoma mansoni focus in northern Senegal. Am J Trop Med Hyg 1995;53(2):152-7.

Pugh 1980

Pugh, R. N.Bell, D. R.Gilles, H. M. Malumfashi Endemic Diseases Research Project, XV. The potential medical importance of bilharzia in northern Nigeria: a suggested rapid, cheap and effective solution for control of Schistosoma haematobium infection. Ann Trop Med Parasitol 1980;74(6):597-613.

Rasendramino 1998

Rasendramino, M. H.Rajaona, H. R.Ramarokoto, C. E.Ravaoalimalala, V. E.Leutscher, P.Cordonnier, D.Esterre, P.. [Prevalence of uro-nephrologic complications of urinary bilharziasis in hyperendemic focus in Madagascar]. Nephrologie 1998;19(6):341-5.

Robinson 2009

Robinson, E.Picon, D.Sturrock, H. J.Sabasio, A.Lado, M.Kolaczinski, J.Brooker, S.. The performance of haematuria reagent strips for the rapid mapping of urinary schistosomiasis: field experience from Southern Sudan. Trop Med Int Health 2009;14(12):1484-7.

Rollinson 2005

Rollinson, D.Klinger, E. V.Mgeni, A. F.Khamis, I. S.Stothard, J. R. Urinary schistosomiasis on Zanzibar: application of two novel assays for the detection of excreted albumin and haemoglobin in urine. J Helminthol 2005;79(3):199-206.

Sarda 1986

Sarda, R. K. Frequency of haematuria and proteinuria in relation to prevalence and intensity of Schistosoma haematobium infection in Dar es Salaam, Tanzania. East Afr Med J 1986;63(2):105-8.

Savioli 1990

Savioli, L.Hatz, C.Dixon, H.Kisumku, U. M.Mott, K. E.. Control of morbidity due to Schistosoma haematobium on Pemba Island: egg excretion and hematuria as indicators of infection. Am J Trop Med Hyg 1990;43(3):289-95.

Sellin 1982

Sellin, B.Simonkovich, E.Ovazza, L.Sellin, E.Desfontaine, M.Rey, J. L.. [Value of macroscopic urine examination and reagent strips for the detection of hematuria and proteinuria in the mass diagnosis of urinary schistosomiasis, before and after treatment] [Valeur de l'examen macroscopique des urines et des bandelettes réactives pour la détection de l'hématurie et de la protéinurie dans le diagnostic de masse de la schistosomiase urinaire, avant et après traitement.]. Med Trop (Mars) 1982;42(5):521-6.

Shane 2011

Shane, H. L.Verani, J. R.Abudho, B.Montgomery, S. P.Blackstock, A. J.Mwinzi, P. N.Butler, S. E.Karanja, D. M.Secor, W. E.. Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya. PLoS Negl Trop Dis 2011 Jan 25;5(1):e951.

Shaw 1998

Shaw, D. J.Picquet, M.Ly, A.Sambou, B.Vercruysse, J.. Evaluation of dipsticks in Schistosoma haematobium infections in four villages in the middle valley of the Senegal River Basin, Senegal. Trans R Soc Trop Med Hyg 1998;92(6):634-5.

Sheele 2013

Sheele, J. M.Kihara, J. H.Baddorf, S.Byrne, J.Ravi, B. Evaluation of a novel rapid diagnostic test for Schistosoma haematobium based on the detection of human immunoglobulins bound to filtered Schistosoma haematobium eggs. Trop Med Int Health 2013/01/22;18(4):477-84.

Song 2018

Song, HB.Kim, J.Jin, Y.Lee, JS.Jeoung, HG.Lee, YH.Saeed, AAW.Hong, ST.. Comparison of ELISA and Urine Microscopy for Diagnosis of Schistosoma haematobium Infection. Journal of Korean Medical Science 2018;33(33).

Sousa 2020

Sousa, SRM.Nogueira, JFC.Dias, IHL.Fonseca, ÁLS.Favero, V.Geiger, SM.Enk, MJ.. The use of the circulating cathodic antigen (CCA) urine cassette assay for the diagnosis and assessment of cure of Schistosoma mansoni infections in an endemic area of the Amazon region. Revista da Sociedade Brasileira de Medicina Tropical 2020;53.

Standley 2010

Standley, C. J.Lwambo, N. J.Lange, C. N.Kariuki, H. C.Adriko, M.Stothard, J. R. Performance of circulating cathodic antigen (CCA) urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria. Parasit Vectors 2010;3(1):7.

Stephenson 1984

Sensitivity and specificity of reagent strips in screening of Kenyan children for Schistosoma haematobium infection. Stephenson, L. S.Latham, M. C.Kinoti, S. N.Oduori, M. L. Am J Trop Med Hyg 1984;33(5):862-71.

Stothard 2009a

Stothard, J. R.Sousa-Figueiredo, J. C.Standley, C.Van Dam, G. J.Knopp, S.Utzinger, J.Ameri, H.Khamis, A. N.Khamis, I. S.Deelder, A. M.Mohammed, K. A.Rollinson, D.. An evaluation of urine-CCA strip test and fingerprick blood SEA-ELISA for detection of urinary schistosomiasis in schoolchildren in Zanzibar. Acta Trop 2009;111(1).

Stothard 2009b

Russell Stothard, J.Sousa-Figueiredo, J. C.Simba Khamis, I.Garba, A.Rollinson, D.. Urinary schistosomiasis-associated morbidity in schoolchildren detected with urine albumin-to-creatinine ratio (UACR) reagent strips. J Pediatr Urol 2009;5(4).

Tanner 1983 (Liberia)

Tanner, M.Holzer, B.Marti, H. P.Saladin, B.Degrémont, A. A.. Frequency of haematuria and proteinuria among Schistosoma haematobium infected children of two communities from Liberia and Tanzania. Acta Trop 1983;40(3):231-7.

Tanner 1983 (Tanzania)

Tanner, M.Holzer, B.Marti, H. P.Saladin, B.Degrémont, A. A.. Frequency of haematuria and proteinuria among Schistosoma haematobium infected children of two communities from Liberia and Tanzania. Acta Trop 1983;40(3):231-7.

Tchuem Tchuente 2012

Tchuem Tchuente, L. A.Kuete Fouodo, C. J.Kamwa Ngassam, R. I.Sumo, L.Dongmo Noumedem, C.Kenfack, C. M.Gipwe, N. F.Nana, E. D.Stothard, J. R.Rollinson, D. Evaluation of circulating cathodic

antigen (CCA) urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon. PLoS Negl Trop Dis 2012;6(7):e1758.

Traore 1998

Traore, M.Traore, H. A.Kardorff, R.Diarra, A.Landoure, A.Vester, U.Doehring, E.Bradley, D. J.. The public health significance of urinary schistosomiasis as a cause of morbidity in two districts in Mali. Am J Trop Med Hyg 1998;59(3):407-13.

Uga 1989

Uga, S.Gatika, S. M.Kimura, E.Muhoho, D. N.Waiyaki, P. G. Enzyme-linked immunosorbent assay as a diagnostic method for schistosomiasis haematobium. Standardization and application in the field. J Trop Med Hyg 1989;92(6):407-11.

Ugbomoiko 2009a

Ugbomoiko, U. S. Obiezue, R. N. Ogunniyi, T. A. Ofoezie, I. E.. Diagnostic accuracy of different urine dipsticks to detect urinary schistosomiasis: a comparative study in five endemic communities in Osun and Ogun States, Nigeria. J Helminthol 2008/12/11;83(3):203-9.

Ugbomoiko 2009b

Ugbomoiko, Uade SamuelDalumo, VictorAriza, LianaBezerra, Fernando Schemelzer MoraesHeukelbach, Jorg. A simple approach improving the performance of urine reagent strips for rapid diagnosis of urinary schistosomiasis in Nigerian schoolchildren. Memorias do Instituto Oswaldo Cruz 2009;104(3).

Van Lieshout 1995

Van Lieshout, L.Panday, U. G.De Jonge, N.Krijger, F. W.Oostburg, B. F.Polderman, A. M.Deelder, A. M.. Immunodiagnosis of schistosomiasis mansoni in a low endemic area in Surinam by determination of the circulating antigens CAA and CCA. Acta Trop 1995;59(1):19-29.

Verlé 1994

Verlé, P.Stelma, F.Desreumaux, P.Dieng, A.Diaw, O.Kongs, A.Niang, M.Sow, S.Talla, I.Sturrock, R. F.et al.,. Preliminary study of urinary schistosomiasis in a village in the delta of the Senegal river basin, Senegal. Trans R Soc Trop Med Hyg 1994;88(4):401-5.

Vonghachack 2017

Vonghachack, Y.Sayasone, S.Khieu, V.Bergquist, R.van Dam, G. J.Hoekstra, P. T.Corstjens, PlamNickel, B.Marti, H.Utzinger, J.Muth, S.Odermatt, P.. Comparison of novel and standard diagnostic tools for the detection of Schistosoma mekongi infection in Lao People's Democratic Republic and Cambodia. Infect Dis Poverty 2017/08/11;6(1):127.

Wilkins 1979

Wilkins, H. A.Goll, P.Marshall, T. F.Moore, P.. The significance of proteinuria and haematuria in Schistosoma haematobium infection. Trans R Soc Trop Med Hyg 1979;73(1):74-80.

Xu 2014

Xu, X. Zhang, Y. Lin, D. Zhang, J. Xu, J. Liu, Y. M. Hu, F. Qing, X. Xia, C. Pan, W. Serodiagnosis of Schistosoma japonicum infection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in China. Lancet Infect Dis 2014/03/25;14(6):489-97.

Xu 2015

Xu, J. Guan, Z. X. Zhao, B. Wang, Y. Y. Cao, Y. Zhang, H. Q. Zhu, X. Q. He, Y. K. Xia, C. M. DNA detection of Schistosoma japonicum: diagnostic validity of a LAMP assay for low-intensity infection and effects of chemotherapy in humans. PLoS Negl Trop Dis 2015/04/16;9(4):e0003668.

Zhang 2020

Zhang, L. J.Mwanakasale, V.Xu, J.Sun, L. P.Yin, X. M.Zhang, J. F.Hu, M. C.Si, W. M.Zhou, X. N.. Diagnostic performance of two specific schistosoma japonicum immunological tests for screening schistosoma haematobium in school children in Zambia. Acta Tropica 2020.

Zumstein 1983

Zumstein, A. A study of some factors influencing the epidemiology of urinary schistosomiasis at Ifakara (Kilombero District, Morogoro Region, Tanzania). Acta Trop 1983;40(3):187-204.

Excluded studies

Ahmed 1993

Ahmed, M. M.Hussein, H. M.el-Hady, H. M. Evaluation of cercarien hullen reaction (CHR) as a diagnostic test in chronic schistosomiasis and as a parameter for reinfection in acute cases. J Egypt Soc Parasitol 1993;23(2):365-71.

Alarcon 1997

Alarcón De Noya, B.Cesari, I. M.Losada, S.Colmenares, C.Balzán, C.Hoebeke, J.Noya, O.. Evaluation of alkaline phosphatase immunoassay comparison with other diagnostic methods in areas of low transmission of schistosomiasis. Acta Tropica 1997;66(2):69-78.

Allam 2021

Allam, A.F.Farag, H.F.Lotfy, W.Fawzy, H.H.Elhadad, H.Shehab, A.Y.. Comparison among FLOTAC, Kato-Katz and formalin ether concentration techniques for diagnosis of intestinal parasitic infections in school children in an Egyptian rural setting. Parasitology 2021;148(3):289-294.

Ansell 2002

Ansell, JGuyatt, H L. Comparative cost-effectiveness of diagnostic tests for urinary schistosomiasis and the implications for school health programmes (Structured abstract). Annals of Tropical Medicine and Parasitology 2002;96(2):145-153.

Armoo 2020

Armoo, S.Cunningham, L. J.Campbell, S. J.Aboagye, F. T.Boampong, F. K.Hamidu, B. A.Osei-Atweneboana, M. Y.Stothard, J. R.Adams, E. R. Detecting Schistosoma mansoni infections among preschool-aged children in southern Ghana: A diagnostic comparison of urine-CCA, real-time PCR and Kato-Katz assays. BMC Infectious Diseases 2020;20(1).

Bärenbold 2018

Bärenbold, O.Garba, A.Colley, D. G.Fleming, F. M.Haggag, A. A.Ramzy, R. M. R.Assaré, R. K.Tukahebwa,E. M.Mbonigaba, J. B.Bucumi, V.Kebede, B.Yibi, M. S.Meité, A.Coulibaly, J. T.N'Goran, E. K.TchuemTchuenté, L. A.Mwinzi, P.Utzinger, J.Vounatsou, P.. Translating preventive chemotherapy prevalence

thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test. PLoS Negl Trop Dis 2018;12.

Becker 2015

Becker, S. L.Marti, H.Zimmermann, S.Vidacek, D.Herrmann, M.Utzinger, J.Schnabel, P. A.Bohle, R. M.. Application in Europe of a urine-based rapid diagnostic test for confirmation of Schistosoma mansoni infection in migrants from endemic areas. Euro Surveill 2015;20(23).

Belo 2009

Belo, S.Rompão, H.Sousa, B. C.Gonc, alves, L.Ramajo, V.Oleaga, A.Grácio, A. Diagnostic potential of IGg4/ELISA in schistosomiasis intercalatum infection. Tropical Medicine and International Health 2009;14.

Buonfrate 2018

Buonfrate, D.Rodari, P.Brunelli, D.Degani, M.Ragusa, A.Tais, S.Todeschini, M.Bisoffi, Z. Diagnostic study on an immunochromatographic rapid test for schistosomiasis: Comparison between use on serum and on blood spot from fingerprick. BMJ Open 2018;8(3).

Chen 2011

Chen, N. G.Lin, D. D.Xie, S. Y.Wang, Q. Z.Tang, L.Liu, Y. M.Zeng, X. J.Liu, H. Y.Huang, M. J.Chen, H. G.. [Diagnostic efficiency of Indirect Hemagglutination Assay Kit for antibody detection of schistosomiasis japonica]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2011;23(4):377-80.

Clements 2017

Clements, M. N.Donnelly, C. A.Fenwick, A.Kabatereine, N. B.Knowles, S. C. L.Meité, A.N'Goran, E. K.Nalule, Y.Nogaro, S.Phillips, A. E.Tukahebwa, E. M.Fleming, F. M. Interpreting ambiguous 'trace' results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard. PLoS Negl Trop Dis 2017;11(12).

Clements 2018

Clements, M. N.Corstjens, P. L. A. M.Binder, S.Campbell, C. H.De Dood, C. J.Fenwick, A.Harrison, W.Kayugi, D.King, C. H.Kornelis, D.Ndayishimiye, O.Ortu, G.Lamine, M. S.Zivieri, A.Colley, D. G.Van Dam, G. J.. Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi. Parasites and Vectors 2018;11(1):111.

Corstjens 2015

Corstjens, P. L. A. M.Nyakundi, R. K.De Dood, C. J.Kariuki, T. M.Ochola, E. A.Karanja, D. M. S.Mwinzi, P. N. M.Van Dam, G. J.. Improved sensitivity of the urine CAA lateral-flow assay for diagnosing active Schistosoma infections by using larger sample volumes. Parasites and Vectors 2015;8(1).

Diab 2019

Diab, R. G.Mady, R. F.Tolba, M. M.Ghazala, R. A. Urinary circulating DNA and circulating antigen for diagnosis of schistosomiasis mansoni: a field study. Trop Med Int Health 2019;24(3):371-378.

Diab 2021

Diab, R.G.Tolba, M.M.Ghazala, R.A.Abu-Sheasha, G.A.Webster, B.L.Mady, R.F.. Intestinal schistosomiasis: Can a urine sample decide the infection? Parasitol. Int. 2021;80.

Downs 2015

Downs, J. A.Corstjens, P. L. A. M.Mngara, J.Lutonja, P.Isingo, R.Urassa, M.Kornelis, D.van Dam, G. J.. Correlation of serum and dried blood spot results for quantitation of Schistosoma circulating anodic antigen: A proof of principle. Acta Tropica 2015;150:59-63.

Elhag 2011

Elhag, S. M.Abdelkareem, E. A.Yousif, A. S.Frah, E. A.Mohamed, A. B. Detection of schistosomiasis antibodies in urine patients as a promising diagnostic maker. Asian Pac J Trop Med 2011;4(10):773-7.

Enk 2012

Enk, M. J.Oliveira e Silva, G.Rodrigues, N. B.. Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS One 2012;7(6).

Ephraim 2015

Ephraim, R. K. D.Abongo, C. K.Sakyi, S. A.Brenyah, R. C.Diabor, E.Bogoch, I. I.. Microhaematuria as a diagnostic marker of Schistosoma haematobium in an outpatient clinical setting: results from a cross-sectional study in rural Ghana. Tropical Doctor 2015;45(3):194-196.

Espirito-Santo 2014

Espirito-Santo, M. C.Sanchez, M. C.Sanchez, A. R.Alvarado-Mora, M. V.Castilho, V. L.Gonçalves, E. M.Luna, E. J.Gryschek, R. C.. Evaluation of the sensitivity of IgG and IgM ELISA in detecting Schistosoma mansoni infections in a low endemicity setting. Eur J Clin Microbiol Infect Dis 2014;33(12):2275-84.

Etard 2004

Etard, J. E.. [Modelling sensitivity, specificity and predictive values of hematuria testing using reagent sticks in the diagnosis of Schistosoma haematobium infection]. Bull Soc Pathol Exot 2004;97(1):24-8.

Evengard 1990

Evengård, B.. Diagnostic and clinical aspects of schistosomiasis in 182 patients treated at a Swedish ward for tropical diseases during a 10-year period. Scand J Infect Dis 1990;22(5):585-94.

Fenta 2020

Fenta, A.Hailu, T.Alemu, M.Amor, A. Performance Evaluation of Diagnostic Methods for Schistosoma mansoni Detection in Amhara Region, Northwest Ethiopia. BioMed Research International 2020.

Ferrer 2020

Ferrer, E.Villegas, B.Mughini-Gras, L.Hernández, D.Jiménez, V.Catalano, E.Incani, R. N. Diagnostic performance of parasitological, immunological and molecular tests for the diagnosis of Schistosoma mansoni infection in a community of low transmission in Venezuela. Acta Tropica 2020.

Fofana 2017

Fofana, H. K. M.Saye, R.Becker, S. L.Landoure, A.Polman, K.Chappuis, F.Boelaert, M.Traore, M. S.Utzinger, J.Sacko, M. Diagnostic accuracy of point-of-care circulating cathodic antigen, formalin-ether concentration and Kato-Katz techniques for Schistosoma mansoni infection in Niono, Mali. Tropical Medicine and International Health 2017;22.

Fofana 2019

Fofana, H. K. M.Schwarzkopf, M.Doumbia, M. N.Saye, R.Nimmesgern, A.Landouré, A.Traoré, M. S.Mertens, P.Utzinger, J.Sacko, M.Becker, S. L. Prevalence of giardia intestinalis infection in schistosomiasis-endemic areas in south-central Mali. Tropical Medicine and Infectious Disease 2019;4(2).

Galappaththi-Arachchige 2018

Galappaththi-Arachchige, H. N.Holmen, S.Koukounari, A.Kleppa, E.Pillay, P.Sebitloane, M.Ndhlovu, P.Van Lieshout, L.Vennervald, B. J.Gundersen, S. G.Taylor, M.Kjetland, E. F. Evaluating diagnostic indicators of urogenital Schistosoma haematobium infection in young women: A cross sectional study in rural South Africa. PLoS ONE 2018;13(2).

Gargioni 2008

Gargioni, C.Da Silva, R. M.Thomé, C. M.Quadros, C. M. D. S.Kanamura, H. Y. Serology as a diagnostic tool for surveillance and control of schistosomiasis in Holambra, São Paulo State, Brazil. Cadernos de Saude Publica 2008;24(2):373-379.

Graeff-Teixeira 2020

Graeff-Teixeira, C.Favero, V.de Souza, R. P.Pascoal, V. F.Bittencourt, H. R.Fukushige, M.Geiger, S. M.Negrão-Corrêa, D.. Use of Schistosoma mansoni soluble egg antigen (SEA) for antibody detection and diagnosis of schistosomiasis: The need for improved accuracy evaluations of diagnostic tools. Acta Trop 2020;215.

Grenfell 2014

Grenfell, R. F.Coelho, P. M.Taboada, D.de Mattos, A. C.Davis, R.Harn, D. A. Newly established monoclonal antibody diagnostic assays for Schistosoma mansoni direct detection in areas of low endemicity. PLoS One 2014;9(1).

Guegan 2019

Guegan, H.Fillaux, J.Charpentier, E.Robert-Gangneux, F.Chauvin, P.Guemas, E.Boissier, J.Valentin, A.Cassaing, S.Gangneux, JP.Berry, A.Iriart, X. Real-time PCR for diagnosis of imported schistosomiasis. PLoS 2019;13(9).

Hall 1999

Hall, A.Fentiman, A. Blood in the urine of adolescent girls in an area of Ghana with a low prevalence of infection with Schistosoma haematobium. Trans R Soc Trop Med Hyg 1999;93(4):411-2.

Hamidu 2018

Hamidu, B. A. B.Asuming-Brempong, E. E.Idun, B. B.Osei-Atweneboana, M. M. Comparison of pcr diagnostic with Kato Katz technique for diagnosis of soil transmitted helminths and schistosomiasis infections in the ayaloloo cluster of schools in the Accra metropolis of Ghana. American Journal of Tropical Medicine and Hygiene 2018;99(4):396.

Homsana 2020

Homsana, A.Odermatt, P.Southisavath, P.Yajima, A.Sayasone, S.. Cross-reaction of POC-CCA urine test for detection of Schistosoma mekongi in Lao PDR: A cross-sectional study. Infect. Dis. Pover. 2020;9(1).

Honkpehedji 2020

Honkpehedji, Y. J.Adegnika, A. A.Dejon-Agobe, J. C.Zinsou, J. F.Mba, R. B.Gerstenberg, J.Rakotozandrindrainy, R.Rakotoarivelo, R. A.Rasamoelina, T.Sicuri, E.Schwarz, N. G.Corstjens, PlamHoekstra, P. T.van Dam, G. J.Kreidenweiss, A. Prospective, observational study to assess the performance of CAA measurement as a diagnostic tool for the detection of Schistosoma haematobium infections in pregnant women and their child in Lambaréné, Gabon: study protocol of the freeBILy clinical trial in Gabon. BMC Infect Dis 2020;20(1):718.

Ibidapo 2005

Ibidapo, C. A.Mafe, M. A.Awobimpe, O. L.. Comparison of three diagnostic methods for the determination of prevalence of urinary schistosomiasis among residents and pupils of Badagry Area of Lagos State, Nigeria. African Journal of Biotechnology 2005;4(11):1325-1328.

Kanamura 1992

Yohko Kanamura, HerminiaHoshino-Shimizu, SumieSilva, Luiz Caetano da. Schistosoma mansoni cercaria and schistosomulum antigens in serodiagnosis of schistosomiasis. Bull. Pan Am. Health Organ 1992;26(3):220-229.

Kanamura 1998

Kanamura, Herminia YohkoDias, Luiz Candido de SouzaSilva, Rita Maria daGlasser, Carmen MorenoPatucci, Rosa Maria de JesusVellosa, Sylvia Amaral GurgelAntunes, Jose Leopoldo Ferreira. A comparative epidemiologic study of specific antibodies (IgM and IgA) and parasitological findings in an endemic area of low transmission of Schistosoma mansoni. Rev Inst Med Trop Sao Paulo 1998;40(2):85-91.

Kanamura 2002

Kanamura, H. Y.Silva, R. M.Chiodelli, S. G.Glasser, C. M.Dias, L. C. IgM-immunofluorescence test as a diagnostic tool for epidemiologic studies of Schistosomiasis in low endemic areas. Mem Inst Oswaldo Cruz 2002;97(4):485-9.

Knight 1976

Knight, W. B.Hiatt, R. A.Cline, B. L.Ritchie, L. S. A modification of the formol-ether concentration technique for increased sensitivity in detecting Schistosoma mansoni eggs. Am J Trop Med Hyg 1976;25(6):818-23.

Kobayashi 1994

Kobayashi, JunCarrilho, Flair JoseShimabukuro, TetsuSilva, Luiz Caetano daSoares, Elza CotrimNishimura, Nancy FusaeChieffi, Pedro PauloSato, Yoshiya. Gelatin particle indirect agglutination test for serodiagnosis of schistosomiasis: comparative study with enzyme-linked immunosorbent assay. Rev. Inst. Med. Trop. Säo Paulo 1994;36(5):389-94.

Koukounari 2009

Koukounari, A.Webster, J. P.Donnelly, C. A.Bray, B. C.Naples, J.Bosompem, K.Shiff, C.. Sensitivities and specificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data on adults in villages northwest of Accra, Ghana. Am J Trop Med Hyg 2009;80(3):435-41.

Lee 2011

Lee, Y. M.Hancock, K.Noh, J.Tsang, V. C. W.Wilkins, P. P. Development of a serological diagnostic assay for Schistosoma mansoni using recombinant SM25. American Journal of Tropical Medicine and Hygiene 2011;85(6):150.

Lier 2009

Lier, T.Simonsen, G. S.Wang, T.Lu, D.Haukland, H. H.Vennervald, B. J.Johansen, M. V.. Low sensitivity of the formol-ethyl acetate sedimentation concentration technique in low-intensity Schistosoma japonicum infections. PLoS Negl Trop Dis 2009;3(2).

Lima 1998

Lima, Virgília L. C.Guercio, Vânia M. F.Rangel, OsiasKanamura, Hermínia YokoDias, Luiz Candido de Souza. Immunofluorescence test on Schistosoma mansoni worm paraffin sections (IgM-IFT) for the study of shistosomiasis transmission in Campinas, São Paulo, Brazil. Mem Inst Oswaldo Cruz 1998;93:283-8.

Lodh 2014

Lodh, N.Mikita, K.Naples, J. M.Bosompem, K. M.Quartey, J.Shiff, C. J.. Detecting multi schistosome species dna in single urine sample by lamp: A novel diagnostic test for schistosomiasis. American Journal of Tropical Medicine and Hygiene 2014;91(5):348.

Long 1982

Long, G. W.Yogore, M. G.Lewert, R. M.Blas, B. L.Pelley, R. P.. Efficacy of purified schistosoma japonicum egg antigens for ELISA serodiagnosis of human Schistosomiasis japonica: specificity and sensitivity. Am J Trop Med Hyg 1982;31(5):1006-14.

Marti 2020

Marti, H.Halbeisen, S.Bausch, K.Nickel, B.Neumayr, A. Specificity of the POC-CCA urine test for diagnosing S. mansoni schistosomiasis. Travel Med Infect Dis 2020;33.

McManus 2018

McManus, D.Gordon, C.Weerakoon, K.Cai, P.Olveda, R.Gray, D.Ross, A.Li, Y.Williams, G. Research challenges and needs for control and elimination of schistosomiasis: New diagnostics. American Journal of Tropical Medicine and Hygiene 2018;99(4):20.

Midzi 2003

Midzi, N.Ndhlovu, P. D.Nyanga, L.Kjetland, E. F.Reimert, C. M.Vennervald, B. J.Gomo, E.Mudenge, G.Friis, H.Gundersen, S. G.Mduluza, T. Assessment of eosinophil cationic protein as a possible diagnostic marker for female genital schistosomiasis in women living in a Schistosoma haematobium endemic area. Parasite Immunol 2003;25(11):581-8.

Midzi 2020

Midzi, N.Bärenbold, O.Manangazira, P.Phiri, I.Mutsaka-Makuvaza, M. J.Mhlanga, G.Utzinger, J.Vounatsou, P.. Accuracy of different diagnostic techniques for schistosoma haematobium to estimate treatment needs in Zimbabwe: Application of a hierarchical bayesian EGG count model. PLoS Neglected Tropical Diseases 2020;14(8):1-15.

Montenegro 1999

Montenegro, Silvia Maria LucenaSilva, Joanne D.arc Bezerra, daBrito, Maria Edileuza Felinto deCarvalho Júnior, Luiz Bezerra. Dot enzyme-linked immunosorbent assay (dot-ELISA) for schistosomiasis diagnosis using dacron as solid-phase. Rev. Soc. Bras. Med. Trop 1999;32(2):139-43.

Mu 2020

Mu, Y.Cai, P.Olveda, R.M.Ross, A.G.Olveda, D.U.McManus, D.P.. Parasite-derived circulating microRNAs as biomarkers for the detection of human Schistosoma japonicum infection. Parasitology 2020;147(8):889-896.

Nakamura 2017

Nakamura, I.Yagi, K.Kumagai, T.Ohta, N.. Positive fecal occult blood test as a diagnostic cue for Schistosoma mansoni infection in a developed country. IDCases 2017;10:108-109.

Neumayr 2019

Neumayr, A.Chernet, A.Sydow, V.Kling, K.Kuenzli, E.Marti, H.Paris, D. H.Nickel, B.Labhardt, N. D.. Performance of the point-of-care circulating cathodic antigen (POC-CCA) urine cassette test for follow-up after treatment of S. mansoni infection in Eritrean refugees. Travel Med Infect Dis 2019;28:59-63.

Ngasala 2015

Ngasala, B.. Diagnostic performance of screening methods for urinary schistosomiasis in a school-based antihelmithic program in rural endemic District, Tanzania. American Journal of Tropical Medicine and Hygiene 2015;93(4):160.

Ochodo 2015

Ochodo, Eleanor AGopalakrishna, GowriSpek, BeaReitsma, Johannes Bvan, Lieshout LisettePolman, KatjaLamberton, PoppyBossuyt, Patrick MmLeeflang, Mariska Mg. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas. Cochrane Database of Systematic Reviews 2015;(3).

Ochola 2012

Ochola, E. A.Van Lieshout, L.Foo, K. T.Williamson, J. M.Brienen, E.Matete, D. O.Mwinzi, P. N.Montgomery, S. P.Verweij, J. J.Secor, W. E.Karanja, D. M. Comparison of diagnostic methods against PCR for the detection of schistosoma mansoni among school children in western Kenya. American Journal of Tropical Medicine and Hygiene 2012;87(5):434.

Oliveira 2018

Oliveira, W. J.Magalhães, F. D. C.Elias, A. M. S.de Castro, V. N.Favero, V.Lindholz, C. G.Oliveira, Á A.Barbosa, F. S.Gil, F.Gomes, M. A.Graeff-Teixeira, C.Enk, M. J.Coelho, P. M. Z.Carneiro, M.Negrão-Corrêa, D. A.Geiger, S. M. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: Saline gradient, Helmintex, Kato-Katz and rapid urine test. PLoS Neglected Tropical Diseases 2018;12(2).

Pieron 1980

Pieron, R.Lesobre, B.Coutris, G. Diagnostic value of parasitologic examinations and of indirect immunofluorescence test in S. haematobium schistosomiasis. Medecine Tropicale 1980;40(3):259-264.

Rostron 2019

Rostron, P.Pennance, T.Bakar, F.Rollinson, D.Knopp, S.Allan, F.Kabole, F.Ali, S. M.Ame, S. M.Webster, B. L.. Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium. Parasites and Vectors 2019;12(1):514.

Ruppel 1990

Ruppel, A.Idris, M. A.Sulaiman, S. M.Hilali, A. M. Schistosoma mansoni diagnostic antigens (Sm 31/12): a sero-epidemiological study in the Sudan. Trop Med Parasitol 1990;41(2):127-30.

Sarda 1985

Sarda, R. K.Simonsen, P. E.Mahikwano, L. F.. Urban transmission of urinary schistosomiasis in Dar es Salaam, Tanzania. Acta Trop 1985;42(1):71-8.

Sarhan 2014

Sarhan, R. M.Aminou, H. A.Saad, G. A. R.Ahmed, O. A. Comparative analysis of the diagnostic performance of adult, cercarial and egg antigens assessed by ELISA, in the diagnosis of chronic human Schistosoma mansoni infection. Parasitology Research 2014;113(9):3467-3476.

Sayed 2000

Sayed, H. A.el Dusoki, H. H.el Ayyat, A. A.Kamel, L. M.Tawfik, S. A.el Nahal, H. S.Sabry, H. Y.Amer, N. M.. Assessment of the diagnostic system of Schistosoma infection at rural health unit level, Egypt. J Egypt Soc Parasitol 2000;30(2):487-503.

Schwarz 2014

Schwarz, N. G.Rakotozandrindrainy, R.Heriniaina, J. N.Randriamampionona, N.Hahn, A.Hogan, B.Frickmann, H.Dekker, D.Poppert, S.Razafindrabe, T.Rakotondrainiarivelo, J. P.May, J.Hagen, R. M.. Schistosoma mansoni in schoolchildren in a Madagascan highland school assessed by PCR and sedimentation microscopy and Bayesian estimation of sensitivities and specificities. Acta Trop 2014;134:89-94.

Sheele 2016

Sheele, JmBaddorf, SKihara, Jh. Schistosoma haematobium infection is associated with increased urine foam. Pediatrics international 2016;58(11):1243-1245.

Silva-Moraes 2019

Silva-Moraes VShollenberger LMCastro-Borges WRabello ALTHarn DAMedeiros LCSJeremias WJSiqueira LMVPereira CSSPedrosa MLCAlmeida NBFAlmeida ALambertucci JRCarneiro NFFCoelho PMZGrenfell RFQ. Serological proteomic screening and evaluation of a recombinant egg antigen for the diagnosis of low-intensity Schistosoma mansoni infections in endemic area in Brazil. PLoS neglected tropical diseases 2019;13(3).

Siziya 1996

Siziya, S.Mushanga, M.Marufu, T.Mudyarabikwa, O.. Diagnostic and cost comparisons of a questionnaire against a chemical reagent strip test in identifying high risk communities for Schistosoma haematobium infection in northern Zambia. Cent Afr J Med 1996;42(2):40-2.

Stothard 2006

Stothard, J. R.Kabatereine, N. B.Tukahebwa, E. M.Kazibwe, F.Rollinson, D.Mathieson, W.Webster, J. P.Fenwick, A. Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis. Acta Tropica 2006;97(2):219-228.

Stothard 2020

Stothard, R.Webster, B. L.. Acute schistosomiasis: Which molecular diagnostic test is best and why. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2020.

Taylor 1982

Taylor, P.. Proteinuria as a simple diagnostic test for urinary schistosomiasis in schoolchildren in the rural areas of Zimbabwe. Cent Afr J Med 1982;28(9):216-9.

Teesdale 1985

Teesdale, C. H.Fahringer, K.Chitsulo, L. Egg count variability and sensitivity of a thin smear technique for the diagnosis of Schistosoma mansoni. Trans R Soc Trop Med Hyg 1985;79(3):369-73.

Utzinger 2000

Utzinger, J.N'Goran, E. K.Ossey, Y. A.Booth, M.Traoré, M.Lohourignon, K. L.Allangba, A.Ahiba, L. A.Tanner, M.Lengeler, C.. Rapid screening for Schistosoma mansoni in western Cote d'ivoire using a simple school questionnaire. Bulletin of the World Health Organization 2000;78(3):389-398.

Utzinger 2008

Utzinger, J.Rinaldi, L.Lohourignon, L. K.Rohner, F.Zimmermann, M. B.Tschannen, A. B.N'Goran E, K.Cringoli, G. FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Trans R Soc Trop Med Hyg 2008;102(1):84-90.

Van Lieshout 1992

Van Lieshout, L.De Jonge, N.el Masry, N. A.Mansour, M. M.Krijger, F. W.Deelder, A. M. Improved diagnostic performance of the circulating antigen assay in human schistosomiasis by parallel testing for circulating anodic and cathodic antigens in serum and urine. Am J Trop Med Hyg 1992;47(4):463-9.

Viana 2019

Viana, A. G.Gazzinelli-Guimarães, P. H.Castro, V. N.Santos, YlodRuas, A. C. L.Bezerra, F. S. M.Bueno, L. L.Dolabella, S. S.Geiger, S. M.Phillips, A. E.Fujiwara, R. T. Discrepancy between batches and impact on the sensitivity of point-of-care circulating cathodic antigen tests for Schistosoma mansoni infection. Acta Trop 2019;197.

Vinkeles Melchers 2014

Vinkeles Melchers, N. V. S.van Dam, G. J.Shaproski, D.Kahama, A. I.Brienen, E. A. T.Vennervald, B. J.van Lieshout, L.. Diagnostic Performance of Schistosoma Real-Time PCR in Urine Samples from Kenyan Children Infected with Schistosoma haematobium: Day-to-day Variation and Follow-up after Praziquantel Treatment. PLoS Neglected Tropical Diseases 2014;8(4).

Wang 1992

Wang, X. Z. [A highly sensitive diagnostic kit for evaluating therapeutic effect in schistosomiasis cases]. Zhonghua Yi Xue Za Zhi 1992;72(11):686-8,704.

Wang 2011

Wang, M.Li, W. G.Cai, S. F.. The diagnostic value of rSj26-Sj32-IgG-ELISA for acute schistosomiasis japonica. Chinese Journal of Endemiology 2011;30(1):39-43.

Wang 2014

Wang, S.Hu, W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014;5:313.

Weerakoon 2017

Weerakoon, K. G.Gordon, C. A.Williams, G. M.Cai, P.Gobert, G. N.Olveda, R. M.Ross, A. G.Olveda, D. U.McManus, D. P.. Droplet digital PCR diagnosis of human schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. J Infect Dis 2017.

Xu 2018

Xu, X.Cui, X.Zhu, L.Li, Z.Zhang, Y.Ma, L.Pan, W. Effects of polymorphisms in the SjSP-13 gene of Schistosoma japonicum on its diagnostic efficacy and immunogenicity. Frontiers in Microbiology 2018;9.

Zhang 2000

Zhang, E. Y.Lou, W. X.Xue, C. L.Wang, Z. J.. [The diagnostic value of combined detection of circulating antigens and antibodies in urine of patients with schistosomiasis japonica]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2000;18(1):24-5.

Zheng 2005

Zheng, L.Xu, X. J.Dong, H. F.. [Development of the specific antibodies and diagnostic antigens of Schistosoma japonicum]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2005;23(6):463-6.

Zhou 2014

Zhou, X. N.. Value of a novel diagnostics of rSP13-ELISA toward schistosomiasis elimination in China. Sci China Life Sci 2014;57(6):647-8.

Zhu 2000

Zhu, C.Tian, H.Lu, L.Li, Y.Feng, Z.Ma, L.Guan, X. A study on producing monoclonal antibody with one diagnostic marker screened electrophoretically from the urine of individuals infected with Schistosoma japonicum. Diagn Microbiol Infect Dis 2000;38(4):237-41.

Zhu 2010

Zhu, HpYu, ChXia, XDong, GyTang, JFang, LDu, Y. Assessing the diagnostic accuracy of immunodiagnostic techniques in the diagnosis of schistosomiasis japonica: a meta-analysis (Provisional abstract). Parasitology Research 2010;107(5):1067-1073.

Appendix A - Diagnostic tests for Schistosomiasis for low prevalence settings: a systematic review and Meta-Analysis

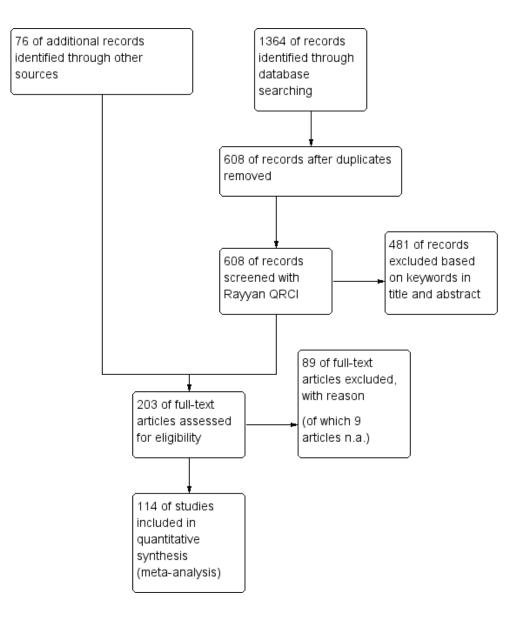
Figures

Figure 1 - PRISMA Flow Diagram	4
Figure 2 - Risk of bias and applicability concerns graph: review authors' judgements about each domain presente	ed as
percentages across included studies	4
Figure 3 - Risk of bias and applicability concerns summary: review authors' judgements about each domain for e	each
included study	5
Figure 4 - Forest plot of CCA1 cassette vs single KK, double KK, quadruple KK, sextuple KK or 16KK	14
Figure 5 - Summary ROC Plot of CCA1 cassette vs single KK, double KK, quadruple KK, sextuple KK or 16KK	15
Figure 6 - Forest plot of CCA1 cassette vs single, duplicate KK, quadruple KK, sextuple KK and 16KK	16
Figure 7 - Summary ROC Plot of CCA1 cassette vs single, duplicate KK, quadruple KK, sextuple KK and 16KK	17
Figure 8 - Forest plot of CCA1 cassette vs Urine Microscopy, Helmintex or RT-PCR	17
Figure 9 - Summary ROC Plot of CCA1 cassette vs Urine Microscopy, Helmintex or RT-PCR	18
Figure 10 - Forest plot of CCA2 cassette vs duplicate KK or quadruple KK	18
Figure 11 - Summary ROC Plot of CCA2 cassette vs duplicate KK or quadruple KK	19
Figure 12 - Forest plot of CCA2 cassette vs duplicate KK and quadruple KK	19
Figure 13 - Summary ROC Plot of CCA2 cassette vs duplicate KK and quadruple KK	20
Figure 14 - Forest plot of CAA cassette vs duplicate KK or quadruple KK	20
Figure 15 - Summary ROC Plot of CAA cassette vs duplicate KK or quadruple KK	21
Figure 16 - Forest plot of CAA cassette vs duplicate KK and quadruple KK	21
Figure 17 - Summary ROC Plot of CAA cassette vs duplicate KK and quadruple KK	22
Figure 18 - Forest plot of CAA cassette vs Urine Microscopy	22
Figure 19 - Summary ROC Plot of CAA cassette vs Urine Microscopy	23
Figure 20 - Forest plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK	23
Figure 21 - Summary ROC Plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK	24
Figure 22 - Forest plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK	24
Figure 23 - Summary ROC Plot of FLOTAC (fresh), FLOTAC (10 days) and FLOTAC (30 days) vs triplicate KK	25
Figure 24 - Forest plot of SmCTF-RDT vs quadruple KK or Urine Microscopy	25
Figure 25 - Summary ROC Plot of SmCTF-RDT vs quadruple KK or Urine Microscopy	26
Figure 26 - Forest plot of Sm DNA PCR vs duplicate KK	26
Figure 27 - Summary ROC Plot of Sm DNA PCR vs duplicate KK	27
Figure 28 - Forest plot of SWAP ELISA vs Sextuple KK, IgM ELISA or IgG ELISA vs triplicate KK	27
Figure 29 - Summary ROC Plot of SWAP ELISA vs Sextuple KK, IgM ELISA or IgG ELISA vs triplicate KK	28
Figure 30 - Forest plot of Anti IGg RDT-Sh vs Urine Microscopy	28
Figure 31 - Summary ROC Plot of Anti IGg RDT-Sh vs Urine Microscopy	29
Figure 32 - Forest plot of Proteinuria (R strip) vs Urine Microscopy	30
Figure 33 - Summary ROC Plot of Proteinuria (R strip) vs Urine Microscopy	31
Figure 34 - Forest plot of Haematuria (R strip) vs Urine Microscop	31

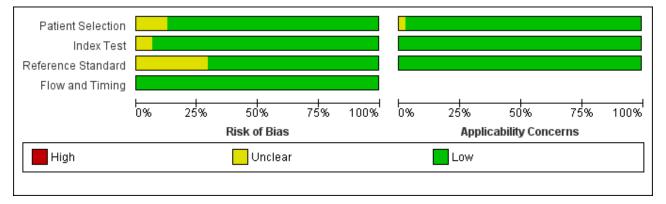
medRxiv preprint doi: https://doi.org/10.1101/2021.05.05.21256678; this version posted May 9, 2021. The copyright holder for (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint It is made available under a CC-BY-NC-ND 4.0 International license.	or this preprint in perpetuity.
Figure 35 - Summary ROC Plot of Haematuria (R strip) vs Urine Microscopy	32
Figure 36 - Forest plot of AWE-SEA ELISA vs quadruple KK	32
Figure 37 - Summary ROC Plot of AWE-SEA ELISA vs quadruple KK	33
Figure 38 - Forest plot of LAMP vs triplicate KK or Urine Microscopy	33
Figure 39 - Summary ROC Plot of LAMP vs triplicate KK or Urine Microscopy	34
Figure 40 - Forest plot of IHA vs triplicate KK or Urine Microscopy	34
Figure 41 - Summary ROC Plot of IHA vs triplicate KK or Urine Microscopy	35
Figure 42 - Forest plot of Colorimetric test vs Urine Microscopy	35
Figure 43 - Summary ROC Plot of Colorimetric test vs Urine Microscopy	36
Figure 44 - Forest plot of rSP13 ELISA vs 27KK	36
Figure 45 - Summary ROC Plot of rSP13 ELISA vs 27KK	37
Figure 46 - Forest plot of IgG SEA-ELISA vs Urine Microscopy	37
Figure 47 - Summary ROC Plot of IgG SEA-ELISA vs Urine Microscopy	38
Figure 48 - Forest plot of Leukocyturia (reagent strip) vs Urine Microscopy	38
Figure 49 - Summary ROC Plot of Leukocyturia (reagent strip) vs Urine Microscopy	39
Figure 50 - Forest plot of COPT vs duplicate KK	39
Figure 51 - Summary ROC Plot of COPT vs duplicate KK	40
Figure 52 - Forest plot of PCR vs KK	40
Figure 53 - Summary ROC Plot of PCR vs KK	41
Figure 54 - Forest plot of Helmintex vs duplicate KK or RT-PCR	41
Figure 55 - Summary ROC Plot of Helmintex vs duplicate KK or RT-PCR	42
Figure 56 - Forest plot of DDIA vs Urine Microscopy	42
Figure 57 - Summary ROC Plot of DDIA vs Urine Microscopy	43
Figure 58 - Forest plot of RT-PCR vs duplicate or sextuple KK	43
Figure 59 - Summary ROC Plot of RT-PCR vs duplicate or sextuple KK	44

Tables

Table 1 - Diagnostic tests	3
Table 2 - Theoretical sensitivity of diagnostic tests	3
Table 3 - Schistosomiasis infection prevalences	8
Table 4 - Output parameters of the bayesian bivariate random effects model for each diagnostic test	45
Table 5 - Sensitivities and specificities from the bayesian bivariate random effects model for each diagnostic test	.46
Table 6 – Number of studies and number of participants for each test comparison	47


Table 1 - Diagnostic tests

Test Abbreviation	Test Name
Duplicate KK	Duplicate Kato-Katz smears
Quadruple KK	Quadriplicate Kato-Katz smears
Sextuple KK	Sextuplicate Kato-Katz smears
Triplicate KK	Triplicate Kato-Katz smears
Urine Microscopy	Urine Microscopy and microscopy
CCA1	Circulating cathodic antigen urine cassette assay v1 (commercially available, cf. Adriko 2014)
CCA2	Circulating cathodic antigen urine cassette assay v2 (in experimental production)
CAA	Circulating anodic antigen urine cassette assay
FLOTAC	FLOTAC
SmCTF-RDT	Schistosoma mansoni cercarial transformation fluid rapid diagnostic test
Sm DNA PCR	Schistosoma mansoni DNA detection by PCR
SWAP Elisa	Soluble adult Worm Antigen Preparation (SWAP)-specific IgG ELISA
IgM Elisa	IgM antibodies against a fraction of Schistosoma mansoni adult worm antigen (AWA)
IgG Elisa	IgG antibodies against a fraction of Schistosoma mansoni adult worm antigen (AWA)
Anti IgG RDT Sh	Anti-human IgG antibody rapid diagnostic test
Proteinuria	Proteinuria reagent strips
Haematuria	Haematuria reagent strips
Leukocyturia	Leukocyturia reagent strips
AWE-SEA Elisa	S. mansoni adult worm extract (AWE) and S. mansoni soluble egg antigen (SEA) ELISA
LAMP	loop-mediated isothermal amplification (LAMP)
IHA	Indirect hemagglutination assay (IHA)
Colorimetric Test	Macroscopic haematuria by Colorimetric Test
rSP13-ELISA	recombinant proteins SjSP-13-based ELISA kit
Helmintex	Isolation of eggs from fecal samples by using paramagnetic particles in a magnetic field
DDIA	Dipstick Dye Immunoassay
RT-PCR	Real-Time Polymerase Chain Reaction


Table 2 - Theoretical sensitivity of diagnostic tests

Theoretical analytic sensitivity	[Insert text]	[Insert text]
Kato-Katz	24 eggs per gram of stool (EPG)	Enk MJ 2008, de Vlas SJ 1992
FLOTAC basic technique	1 EPG	Cringoli G 2010
FLOTAC dual technique	2 EPG	Cringoli G 2010
FLOTAC double technique	2 EPG	Cringoli G 2010
FLOTAC pellet	2 EPG	Cringoli G 2010

Applicability Concerns **Risk of Bias** Reference Standard Reference Standard Patient Selection Flow and Timing Patient Selection Index Test Index Test Abdel-Wahab 1992 Đ Đ Đ Đ Đ Đ Đ Abdel-Wahab 2000 ? Đ Ŧ Đ Œ. Adriko 2014 Đ (Ŧ Ŧ Ŧ ÷ Al-Shehri 2018 ? Đ Al-Sherbiny 1999 Đ (+ (+ (Ŧ + (+ Anosike 2001 ? Ŧ Đ Œ (+ Anyan 2020 ? Đ Œ Œ Đ æ (+ Aryeetey 2000 Đ ? Đ Œ Ŧ Œ Assaré 2018 Ð Đ Đ Đ Æ Œ æ Ayele 2008 ? Đ æ Œ æ Œ Barakat 1983 ? Ŧ Đ Đ Ŧ Ŧ Bassiouny 2014 ? Đ Ŧ Ŧ Ŧ Bezerra 2020 Œ Ŧ Đ Đ Ŧ Birrie 1995 (HPA) Œ Œ Đ Ŧ Birrie 1995 (LPA) Œ Đ Đ Đ Ŧ Œ Birrie 1995 (MPA) Œ Ŧ Ŧ Đ Ŧ Æ Bocanegra 2015 ? Đ Ð Đ Ŧ Ŧ Bogoch 2012 ? Ŧ Ŧ Đ Ŧ Bosompem 1996 Œ Đ ? Đ Bosompem 2004 Ŧ ? æ Ŧ Bouilhac 1981 ? Đ ? ? Chernet 2017 ? Đ Đ Ŧ Colley 2013 cameroon Đ Đ Đ Đ Đ Ŧ Đ Colley 2013 Côte d'ivoire Ŧ Đ Đ Ŧ + Cooppan 1987 Đ ? Đ Đ Œ Œ (+ Coulibaly 2013 Đ Đ Đ (+ Coulibaly 2016 Đ ? Đ Đ (Ŧ Dawson 2013 Đ ? Đ Đ Đ De Clercq 1995 Đ Đ ? Đ Đ Æ Đ De Oliveira 2005 ? Đ Đ Ŧ Ŧ Elbasheir 2020 Đ Đ Ŧ El-Morshedy 1996 ? Œ Ŧ Đ El-Sayed 1995 Đ Ŧ Đ Eltiro 1992 Đ Đ Ð Đ Eltoum 1992 Đ ? Œ

Figure 3 - Risk of bias and applicability concerns summary: review authors' judgements about each domain for each included study

			Prevalence		Prevalence	
Study	country	Population	(ref. test	[95% CI]	(Index test)	(95% CI
					Haem.: 0.4313	
Abdel-Wahab 1992	Egypt		0.336		Protein.: 0.1493	
					Leuko.: 0,1564	
Abdel-Wahab 2000	Egypt		0.137		Haem.: 0.3	
	571				Protein.: 0.035	
Adriko 2014	Uganda		0.250		0.626	
					KK: 0.441	KK: [0.38;0.502]
Al-Shehri 2018	Uganda		0.567	[0.508;0.0.63]	SEA-EL: 0.751	SEA-EL:
	ganaa				PCR: 0.674	[0.698;0.804]
						PCR: [0.616;0.731]
Al-Sherbiny 1999	Nigeria		0.158			
Anosike 2001	Nigeria		0.499		0.295	
					S. haem. :	[0.41;0.56]
<u>Anyan 2020</u>	Ghana				0.485	[0.39;0.54]
					S. mans: 0.466	
Aryeetey 2000	Ghana				Haem.:	
Assaré 2018	Côte d'Ivoire		0.066	[0.047;0.084]	0.33	[0.295;0.366]
Ayele 2008			0.48		0.432	
Barakat 1983	Egypt		0,3787		0,3984	
Bassiouny 2014	Yemen		0.181		0.161	
Bezerra 2020	Brazil		0.4882		0.4488	
Birrie 1995 (HPA)	Ethiopia		0.305		0.36	
Birrie 1995 (LPA)	Ethiopia		0.032		0.045	
Birrie 1995 (MPA)	Ethiopia		0.21		0.308	
Bocanegra 2015	Central Angola		0.6118		0.657	
Bogoch 2012	Northern Ghana		0.068			
Bosompem 1996	Ghana		0.476		Haem.: 0.397	
					Protein.: 0.236	
Bosompem 2004	Ghana		0.603		Haem.: 0.27	
					Protein.: 0.305	
Bouilhac 1981			0.3506		0.3052	
Chernet 2017	Las Palmas de Gran Canaria,	sub saharan	0.4148			
	Spain	immigrants				
Colley 2013	Cameroon		0.384		0.622	
cameroon						
Colley 2013 Côte	Côte d'Ivoire		0.479		0.455	

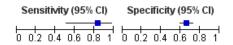
Table 3 - Schistosomiasis infection prevalences

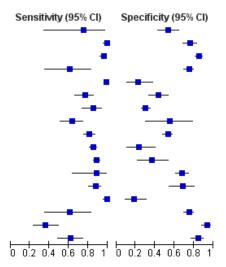
<u>d'ivoire</u>					
<u>Cooppan 1987</u>	South Africa	0.809		Haem.: 0.697 Protein.: 0,774	
Coulibaly 2013	South Côte d'Ivoire	0.212	[0.144;0.299]	0.669	[0.576;0.752]
Coulibaly 2016	Côte d'Ivoire	0.933	[0.892;0.973]	0.953	[0.919;0.987]
Dawson 2013	Uganda	<3y: 0.3 >3y: 0.6	[0.18;0.47] [0.45;0.65]	(CCA) 0.5 0.78	[0.32;0.62] [0.6;0.9]
De Clercq 1995	Mali	0,576		0,6372	
De Oliveira 2005	Brazil	0.3649			
<u>Elbasheir 2020</u>	Sudan	0.358		0.438	
El-Morshedy 1996	Egypt	0.57		0.455	
El-Sayed 1995	Egypt	0.033		0.29	
Eltiro 1992	Ethiopia	0.8350		0.9300	
Eltoum 1992	Sudan	0.42		0.62	
Espirito-Santo 2015		0.008		ELISA-IgG: 0.116 ELISA-IgM: 0.214 COPT: 0.54 ITF-IgM: 0.158 qPCR-feces: 0.98 qPCR-serum: 0.15	
Fatiregun 2005	Nigeria	0.122		0.166	
Fereira 2017	Brazil	 0.08		0.273	
French 2007	Tanzania	0.1314			
Fuss 2018	Tanzania	0.852	[0.812;0.892]	PCR: 0.929 CCA: 0.949	PCR: [0.9;0.958] CCA: [0.924;0.974]
<u>Gabr 2000</u>	Egypt	0.089	[0.081;0.097]	Haem.: 0.219 Protein.: 0.0455	
<u>Gandasegui 2015</u>	Spain				
Gandasegui 2018	Angola	0.506		microhaem.: 0.483 LAMP: 0.738	
<u>Glintz 2010</u>	South Côte d'Ivoire	0.643		0.536	
Gundersen 1996	Malawi	0.1962		Haem.: 0.8 Protein.: 0.7923 Leuk.: 0.7577	
Hammad 1997	Egypt				
Hammam 2000a	Egypt	0.048	[0.041;0.055]	Haem.: 0.238 Protein.: 0.119	

Hammam 2000b	Egypt	0.052	[0.047;0.057]	Haem.: 0.179 Protein.: 0.008	
Kassim 1989	Nigeria	0,1302		Haem.: 0,1193 Protein.: 0,2104	
<u>Kiliku 1991</u>	Kenya	0.5939		Haem.: 0.4061 Protein.: 0.6197	
King 1988a	Kenya	0.69		Haem.: 0.54 Protein.: 0.56	
King 1988b	Kenya	0.65		0,3709	
Kitange 1993	Tanzania	0.3281		Haem.: 0.3834 Protein.: 0.1225	
Knopp 2015	Tanzania	0,0475		0.0408	
Knopp 2018	Zanzibar	0.0451		0.0786	
Kosinski 2011	Ghana	Girls=0.204 Boys=0.316			
Lamberton 2014	Uganda	0.9474	[0.872;0.979]	0.8816	
Legesse 2008	Ethiopia	0.364		0.652	
Lengeler 1993	Tanzania	0.223		0.331	
Lindholz 2018	Brazil	0.119		HTX: 0.406 CCA: 0.716	
Lodh 2013	Zambia	0.51		0.6	
<u>Mafe 1997</u>	Nigeria	0.574		0.48	
<u>Mafe 2000</u>	Tanzania	0.325		0.369	
Magalhaes 2020	Brazil	0.55		2KK: 0.199 6KK: 0.37 Helm.: 0.40 CCA: 0.48	
Magnussen 2001	Tanzania			0.30	
Mazigo 2018	Tanzania	0.578	[0.529;0.624]	0.874	[0.835;0.9]
Midzi 2009	Zimbabwe	0.40		0.65	
Morenikeji 2014	Nigeria	0.571		Macroheam.: 0.164 Microhaem.: 0.5 Proteinuria: 0.655	
Mott 1985 Ghana	Ghana	0,6904		Haem.: 0,5107 Protein.: 0,8359	
Mott 1985 Zambia	Zambia	0,6951		Haem.: 0,596 Protein.: 0,6959	
Mtasiwa 1996	Tanzania	0.6757		0.6708	
Murare 1987	Zimbabwe	0,6983		Haem.: 0,5948 Protein.: 0,7112	

Mwangi 2018	Kenya	0,4595		0,4465	
<u>N'Goran 1989</u>	Ivory Coast	0.3278		0.4963	
Nausch 2014	Zimbabwe	Sh>50% Sm<20% Sh=0.52 Sm=0.11	Sh=[0.420;0.633] 8, Sm=[0.054;0.193]	0.8351	
Navaratnam 2012	Uganda	0.322	[0.283;0.362]	0.4	[0.358;0.44]
Ndamukong 2001	Cameroon	0.536		Haem.: 0.498 Protein.: 0.495	
Ndhlovu 1996	Zimbabwe	0.5363		0.8715	
<u>Nduka 1995</u>	Nigeria	0.2103		0.0352	
Ndyomugyenyi 2001	Tanzania	0.476		0.522	
Ng'andu 1988	Zambia	0,4102		Haem.: 0,4199 Protein.: 0,3592	
Ngasala 2020 Mta Dam area	Tanzania	0.068	[0.046;0.099]	0.515	
Ngasala 2020 Uwandani Shehia	Tanzania	0.387	[0.312;0.468]	0.452	
Nwaorgu 1992	Nigeria	0.57			
<u>Ofori 1986</u>	Ghana	0,5424		Haem.: 0,3814 Protein.: 0,4661	
<u>Okeke 2014 (LPA)</u>	Nigeria	0.051	[0.0259;0.0761]	Micro-haem.: 0.064 Macro-haem.: 0.002 Proteinuria: 0.243	Micro-haem.: [0.0361;0.0919] Macro-haem.: [0.0041;0.0359] Proteinuria: [0.1941;0.2919]
<u>Okeke 2014 (MPA)</u>	Nigeria	0.266	[0.2022;0.3298]	Micro-haem.: 0.207 Macro-haem.: 0.043 Proteinuria: 0.179	Micro-haem.: [0.1485;0.2655] Macro-haem.: [0.0137;0.0723] Proteinuria: [0.1485;0.2655]
Onayade 1996	Nigeria	0.8857		0.5413	
Poggensee 2000 (HPA)	Tanzania	0.53		Haem.: 0.547 Protein.: 0.109 Leuk.: 0.547	
Poggensee 2000 (LPA)	Tanzania	0.04		Haem.: 0.0297 Protein.: 0.086 Leuk.: 0.55	
Polman 1995	Senegal	0.91		s-CAA: 0.94 u-CCA: 0.95	

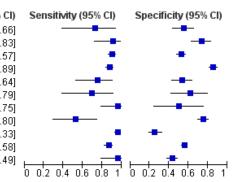
				s-CCA: 0.83	
Pugh 1980	Nigeria	0,1733		Haem.: 0,1601 Protein.: 0,2599	
Rasendramino 1998	Madagascar	0.7678		Haem.: 0.7020 Protein.: 0.6143 Leuko.: 0.4899	
Robinson 2009	Southern Sudan	0.03	[0.025;0.036]	0.075	
Rollinson 2005	Tanzania	0,5393		0,5036	
<u>Sarda 1986</u>	Tanzania	0.2523		Haem.: 0.2531 Protein.: 0.3131	
<u>Savioli 1990</u>	Tanzania	0.34		0.29	
Sellin 1982	Burkina Faso	0,463		Haem.: 0,7048 Protein.: 0,5189	
<u>Shane 2011</u>	Kenya	0.388	[0.0.344;0.433]	0.624	[0.576;0.670]
<u>Shaw 1998</u>	Senegal	0,3932		0,3746	
Sheele 2013	Kenya	0.4875		0.675	
Song 2018	Sudan	0.3893		0.7987	
<u>Sousa 2020</u>	Brazil	1KK: 0.055 2KK: 0.078 16KK: 0.143 HTX: 0.244		0.29	
Standley 2010	Kenya & Tanzania	0.686	[0.607;0.757]	tr(-): 0.713 tr(+): 0.942	tr(-): [0.639;0.788] tr(+): [0.895;0.972]
Stephenson 1984	Kenya	0.476		Haem.: 0.435 Protein.: 0.35	
Stothard 2009a	Tanzania	0.307	[0.234;0.387]	CCA: 0.04 SEA-EL: 0.48	CCA: 0.015;0.085] SEA-EL: 0.398;0.563]
Stothard 2009b	Tanzania	0.652	[0.524;0.765]	0.773	[0.653;0.867]
Tanner 1983 (Liberia)	Liberia	0.7079		Haem.: 0.5206 Protein.: 0.4419	
<u>Tanner 1983</u> (Tanzania)	Tanzania	0.2956		Haem.: 0.3303 Protein.: 0.3723	
Tchuem Tchuente 2012	Ethiopia	0.430		0.660	
Traore 1998	Nigeria	0.552		Haem.: 0.476 Protein.: 0.408	
<u>Uga 1989</u>	Kenya	0.78		0.76	
Ugbomoiko 2009a	Nigeria	1992: 0.629 2006: 0.514	[0.588;0.670] [0.488;0.540]	0.583 0.465	[0.542;0.624] [0.429;0.491]
Ugbomoiko 2009b	Nigeria	0.508	[0.46;0.555]	Microhaem.: 0.683	


					Protein.: 0.533	
					s-CAA: 0.23	s-CAA: [0.19;0.28]
Ven Liecheut 1005	Surinam			[0.23;0.34]	u-CAA: 0.03	u-CAA: [0.01;0.04]
Van Lieshout 1995	Sunnam		0.29	[0.23,0.34]	s-CCA: 0.17	s-CCA: [0.13;0.21]
					u-CCA: 0.28	u-CCA: [0.23;0.33]
Verlé 1994	Senegal		0,8693		Haem.: 0,625	
vene 1994	Seriegai		0,8093		Protein.: 0,5369	
	Lao People's					
Vonghachack 2017	Democratic		0.127		0.238	
	Republic		0.005		0.184	
	Cambodia					
Wilkins 1979	Gambia	0,5545		Haem.: 0,3498		
			0,5545		Protein.: 0,4897	
<u>Xu 2014</u>	China		0.05		0.339	
					ELISA: 0.845	
<u>Xu 2015</u>	China				IHA: 0.918	
					LAMP: 0. 945	
Zhang 2020	Zambia		0.61	[0.53;0.69]	DDIA: 0.51	DDIA: [0.43;0.59]
		0.61	0.01	[[0.55,0.69]	IHA: 0.56	IHA: [0.48;0.64]
Zumstein 1983	Tanzania		0.46		0.81	


Figure 4 - Forest plot of CCA1 cassette vs single KK, double KK, quadruple KK, sextuple KK or 16KK

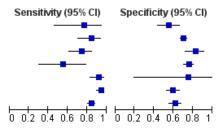
CCA1 cassette vs single KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Sousa 2020	10	69	2	136	0.83 [0.52, 0.98]	0.66 [0.59, 0.73]
CCA1 cassette vs duplicate KK						


Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	6	42	2	49	0.75 [0.35, 0.97]	0.54 [0.43, 0.64]
Al-Shehri 2018	113	34	1	110	0.99 [0.95, 1.00]	0.76 [0.69, 0.83]
Elbasheir 2020	168	46	- 7	268	0.96 [0.92, 0.98]	0.85 [0.81, 0.89]
Fereira 2017	11	71	- 7	211	0.61 [0.36, 0.83]	0.75 [0.69, 0.80]
Fuss 2018	249	34	4	10	0.98 [0.96, 1.00]	0.23 [0.11, 0.38]
Legesse 2008	60	60	18	46	0.77 [0.66, 0.86]	0.43 [0.34, 0.53]
Lindholz 2018	47	283	8	123	0.85 [0.73, 0.94]	0.30 [0.26, 0.35]
Lodh 2013	45	8	26	10	0.63 [0.51, 0.75]	0.56 [0.31, 0.78]
Navaratnam 2012	149	193	34	220	0.81 [0.75, 0.87]	0.53 [0.48, 0.58]
Polman 1995	327	29	57	9	0.85 [0.81, 0.89]	0.24 [0.11, 0.40]
Polman 1995	341	24	43	14	0.89 [0.85, 0.92]	0.37 [0.22, 0.54]
Sousa 2020	15	64	2	136	0.88 [0.64, 0.99]	0.68 [0.61, 0.74]
Standley 2010	103	17	14	37	0.88 [0.81, 0.93]	0.69 [0.54, 0.80]
Standley 2010	116	44	1	10	0.99 [0.95, 1.00]	0.19 [0.09, 0.31]
Tchuem Tchuente 2012	11	71	- 7	211	0.61 [0.36, 0.83]	0.75 [0.69, 0.80]
Van Lieshout 1995	21	10	37	136	0.36 [0.24, 0.50]	0.93 [0.88, 0.97]
Van Lieshout 1995	36	23	22	123	0.62 [0.48, 0.74]	0.84 [0.77, 0.90]

CCA1 cassette vs quadruple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% 0
Adriko 2014	8	40	3	49	0.73 [0.39, 0.94]	0.55 [0.44, 0.6
Chernet 2017	21	22	2	62	0.91 [0.72, 0.99]	0.74 [0.63, 0.8
Colley 2013 cameroon	247	208	27	231	0.90 [0.86, 0.93]	0.53 [0.48, 0.5
Colley 2013 Côte d'ivoire	278	42	38	249	0.88 [0.84, 0.91]	0.86 [0.81, 0.8
Coulibaly 2013	18	43	6	49	0.75 [0.53, 0.90]	0.53 [0.43, 0.6
Dawson 2013	9	11	4	18	0.69 [0.39, 0.91]	0.62 [0.42, 0.7
Dawson 2013	23	8	1	8	0.96 [0.79, 1.00]	0.50 [0.25, 0.7
Fereira 2017	11	71	10	216	0.52 [0.30, 0.74]	0.75 [0.70, 0.8
Mazigo 2018	233	132	9	45	0.96 [0.93, 0.98]	0.25 [0.19, 0.3
Shane 2011	231	664	35	833	0.87 [0.82, 0.91]	0.56 [0.53, 0.5
Vonghachack 2017	23	200	1	153	0.96 [0.79, 1.00]	0.43 [0.38, 0.4



CCA1 cassette vs sextuple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	10	38	3	47	0.77 [0.46, 0.95]	0.55 [0.44, 0.66]
Assaré 2018	38	187	- 7	449	0.84 [0.71, 0.94]	0.71 [0.67, 0.74]
Bezerra 2020	46	11	16	54	0.74 [0.62, 0.84]	0.83 [0.72, 0.91]
Fereira 2017	10	72	8	224	0.56 [0.31, 0.78]	0.76 [0.70, 0.80]
Lamberton 2014	66	1	6	3	0.92 [0.83, 0.97]	0.75 [0.19, 0.99]
Shane 2011	176	88	11	129	0.94 [0.90, 0.97]	0.59 [0.53, 0.66]
Tchuem Tchuente 2012	322	94	59	150	0.85 [0.80, 0.88]	0.61 [0.55, 0.68]

CCA1 cassette vs 16KK

Study	TΡ	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Sousa 2020	25	54	6	132	0.81 [0.63, 0.93]	0.71 [0.64, 0.77]

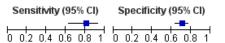
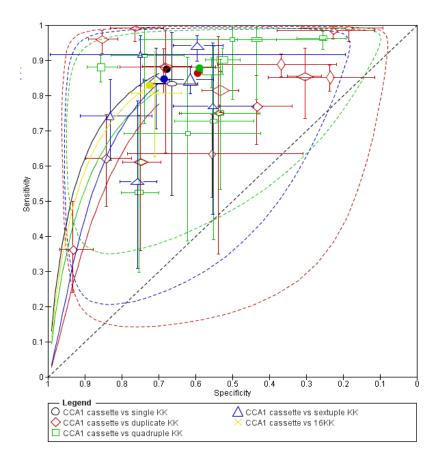



Figure 5 - Summary ROC Plot of CCA1 cassette vs single KK, double KK, quadruple KK, sextuple KK or 16KK

Figure 6 - Forest plot of CCA1 cassette vs single, duplicate KK, quadruple KK, sextuple KK and 16KK

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	6	42	2	49	0.75 [0.35, 0.97]	0.54 [0.43, 0.64]		
Adriko 2014	8	40	3	49	0.73 [0.39, 0.94]	0.55 [0.44, 0.66]		
Adriko 2014	10	38	3	47	0.77 [0.46, 0.95]	0.55 [0.44, 0.66]		
Al-Shehri 2018	113	34	1	110	0.99 [0.95, 1.00]	0.76 [0.69, 0.83]	-	
Assaré 2018	38	187	7	449	0.84 [0.71, 0.94]	0.71 [0.67, 0.74]		
Bezerra 2020	46	11	16	54	0.74 [0.62, 0.84]	0.83 [0.72, 0.91]		
Chernet 2017	21	22	2	62	0.91 [0.72, 0.99]	0.74 [0.63, 0.83]		
Colley 2013 cameroon	247	208	27	231	0.90 [0.86, 0.93]	0.53 [0.48, 0.57]		
Colley 2013 Côte d'ivoire	278	42	38	249	0.88 [0.84, 0.91]	0.86 [0.81, 0.89]	-	+
Coulibaly 2013	18	43	6	49	0.75 [0.53, 0.90]	0.53 [0.43, 0.64]	_	
Dawson 2013	23	8	1	8	0.96 [0.79, 1.00]	0.50 [0.25, 0.75]		_
Dawson 2013	9	11	4	18	0.69 [0.39, 0.91]	0.62 [0.42, 0.79]		
Elbasheir 2020	168	46	268	7	0.39 [0.34, 0.43]	0.13 [0.05, 0.25]	+	
Fereira 2017	11	71	7	211	0.61 [0.36, 0.83]	0.75 [0.69, 0.80]		-
Fereira 2017	11	71	10	216	0.52 [0.30, 0.74]	0.75 [0.70, 0.80]	_	-
Fereira 2017	10	72	8	224	0.56 [0.31, 0.78]	0.76 [0.70, 0.80]		-
Fuss 2018	249	34	4	10	0.98 [0.96, 1.00]	0.23 [0.11, 0.38]		
Lamberton 2014	66	1	3	6	0.96 [0.88, 0.99]	0.86 [0.42, 1.00]		_
Legesse 2008	60	60	18	46	0.77 [0.66, 0.86]	0.43 [0.34, 0.53]		
Lindholz 2018	47	283	8	123	0.85 [0.73, 0.94]	0.30 [0.26, 0.35]		 +
Lodh 2013	45	8	26	10	0.63 [0.51, 0.75]	0.56 [0.31, 0.78]		
Mazigo 2018	233	132	9	45	0.96 [0.93, 0.98]	0.25 [0.19, 0.33]	•	+ -
Navaratnam 2012	149	193	34	220	0.81 [0.75, 0.87]	0.53 [0.48, 0.58]	+	-
Polman 1995	327	29	57	9	0.85 [0.81, 0.89]	0.24 [0.11, 0.40]	•	
Polman 1995	341	24	43	14	0.89 [0.85, 0.92]	0.37 [0.22, 0.54]	•	
Shane 2011	231	664	35	833	0.87 [0.82, 0.91]	0.56 [0.53, 0.58]	-	•
Shane 2011	176	88	11	129	0.94 [0.90, 0.97]	0.59 [0.53, 0.66]		-
Sousa 2020	10	69	2	136	0.83 [0.52, 0.98]	0.66 [0.59, 0.73]		-
Sousa 2020	15	64	2	136	0.88 [0.64, 0.99]	0.68 [0.61, 0.74]		-
Sousa 2020	25	54	6	132	0.81 [0.63, 0.93]	0.71 [0.64, 0.77]		-
Standley 2010	116	44	1	10	0.99 [0.95, 1.00]	0.19 [0.09, 0.31]	-	
Standley 2010	103	17	14	37	0.88 [0.81, 0.93]	0.69 [0.54, 0.80]	-	
Tchuem Tchuente 2012	322	94	59	150	0.85 [0.80, 0.88]	0.61 [0.55, 0.68]	•	-
Tchuem Tchuente 2012	11	71	7	211	0.61 [0.36, 0.83]	0.75 [0.69, 0.80]		-
Van Lieshout 1995	36	23	22	123	0.62 [0.48, 0.74]	0.84 [0.77, 0.90]		-
Van Lieshout 1995	21	10	37	136	0.36 [0.24, 0.50]	0.93 [0.88, 0.97]		-
Vonghachack 2017	23	200	1	153	0.96 [0.79, 1.00]	0.43 [0.38, 0.49]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 7 - Summary ROC Plot of CCA1 cassette vs single, duplicate KK, quadruple KK, sextuple KK and 16KK

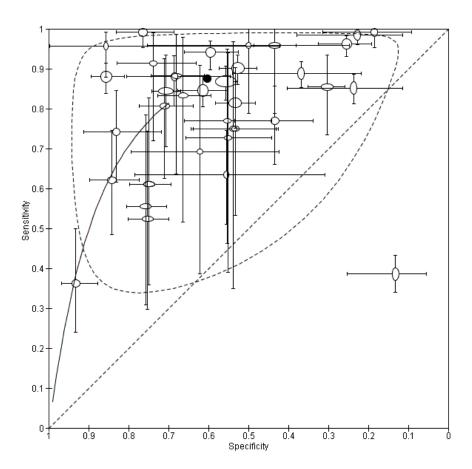


Figure 8 - Forest plot of CCA1 cassette vs Urine Microscopy, Helmintex or RT-PCR

CCA1 vs Urine Microscopy

Study Al-Sherbiny 1999 Ayele 2008 Midzi 2009 Stothard 2009a	52 51 84 4		FN 15 47 23 42	TN 213 69 70 102	Sensitivity (95% Cl) 0.78 [0.66, 0.87] 0.52 [0.42, 0.62] 0.79 [0.70, 0.86] 0.09 [0.02, 0.21]	Specificity (95% Cl) 0.70 [0.65, 0.75] 0.64 [0.54, 0.73] 0.44 [0.36, 0.52] 0.98 [0.93, 1.00]		ecificity (95% CI)
CCA1 vs Helmintex	FP	FN	TN	Sen	sitivity (95% Cl) Spe	cificity (95% CI)	Sensitivity (95% CI) Sp	ecificity (95% CI)
Sousa 2020 30			115			0.71 [0.64, 0.78]		
CCA1 vs RT-PCR								
Study Magalhaes 2020	TP 70	FP 24	FN 38	TN 8 64	Sensitivity (95% CI) 0.65 (0.55, 0.74)	Specificity (95% Cl) 0.73 (0.62, 0.82)		ecificity (95% CI)

Figure 9 - Summary ROC Plot of CCA1 cassette vs Urine Microscopy, Helmintex or RT-PCR

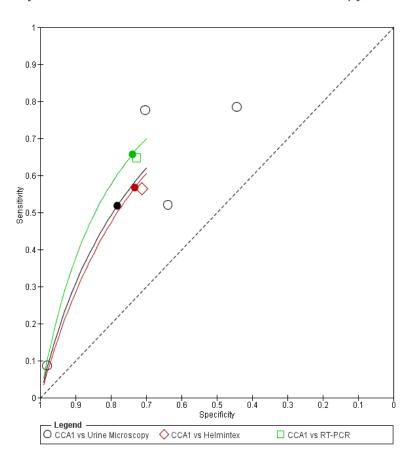


Figure 10 - Forest plot of CCA2 cassette vs duplicate KK or quadruple KK

CCA2 cassette vs double KK

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	5	4	3	88	0.63 [0.24, 0.91]	0.96 [0.89, 0.99]		· · · · · · · · · · · · · · · · · · ·
CCA2 cassett	e vs	quad	irupi	le KK			0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	5	4	6	85	0.45 [0.17, 0.77]	0.96 [0.89, 0.99]		

Figure 11 - Summary ROC Plot of CCA2 cassette vs duplicate KK or quadruple KK

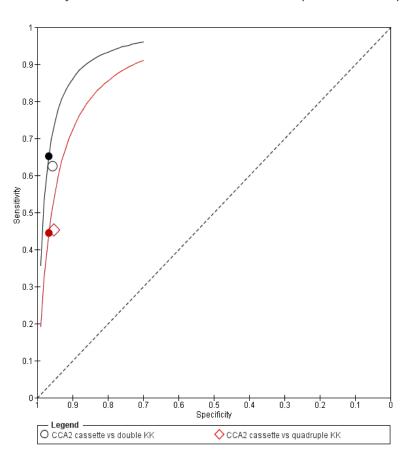


Figure 12 - Forest plot of CCA2 cassette vs duplicate KK and quadruple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adriko 2014	5	4	3	88	0.63 [0.24, 0.91]	0.96 [0.89, 0.99]		-
Adriko 2014	5	4	6	85	0.45 [0.17, 0.77]	0.96 [0.89, 0.99]		

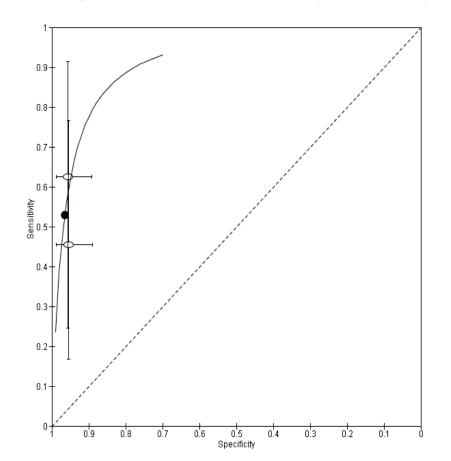


Figure 13 - Summary ROC Plot of CCA2 cassette vs duplicate KK and quadruple KK

Figure 14 - Forest plot of CAA cassette vs duplicate KK or quadruple KK

CAA vs duplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Polman 1995	344	24	40	14	0.90 [0.86, 0.92]	0.37 [0.22, 0.54]	•	
Van Lieshout 1995	6	1	52	145	0.10 [0.04, 0.21]	0.99 [0.96, 1.00]	-	•
Van Lieshout 1995	27	20	31	126	0.47 [0.33, 0.60]	0.86 [0.80, 0.91]		
CAA vs quadruple KK	[0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Vonghachack 2017	23	123	1	230	0.96 [0.79, 1.00]	0.65 [0.60, 0.70]		

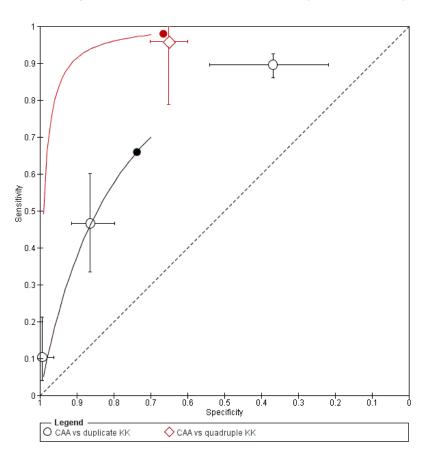


Figure 16 - Forest plot of CAA cassette vs duplicate KK and quadruple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Polman 1995	344	24	40	14	0.90 [0.86, 0.92]	0.37 [0.22, 0.54]	•	
Van Lieshout 1995	6	1	52	145	0.10 [0.04, 0.21]	0.99 [0.96, 1.00]	-	•
Van Lieshout 1995	27	20	31	126	0.47 [0.33, 0.60]	0.86 [0.80, 0.91]		-
Vonghachack 2017	23	123	1	230	0.96 [0.79, 1.00]			

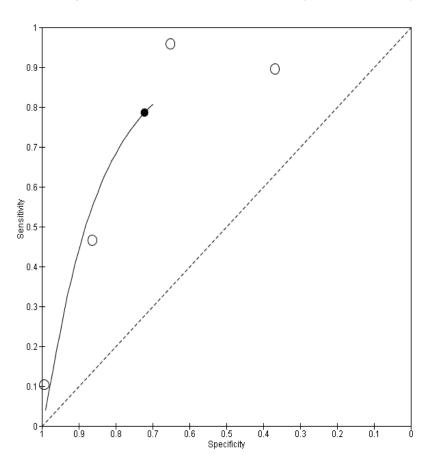


Figure 18 - Forest plot of CAA cassette vs Urine Microscopy

Study	ΓP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Al-Sherbiny 1999	11	18	56	285	0.16 [0.08, 0.27]	0.94 [0.91, 0.96]		•
De Clercq 1995 1	99	82	55	105	0.78 [0.73, 0.83]	0.56 [0.49, 0.63]	-	
El-Morshedy 1996 11	17	0	30	110	0.80 [0.72, 0.86]	1.00 [0.97, 1.00]	-	•
Ndhlovu 1996	93	63	3	20	0.97 [0.91, 0.99]	0.24 [0.15, 0.35]		

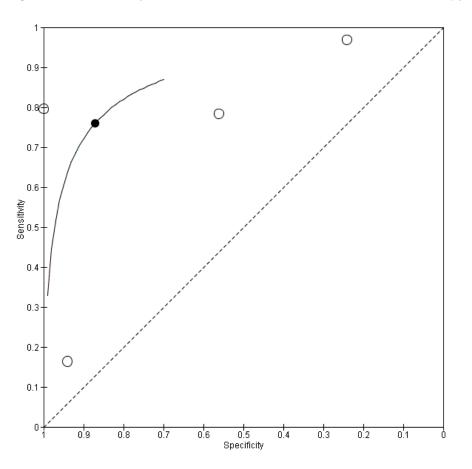


Figure 19 - Summary ROC Plot of CAA cassette vs Urine Microscopy

Figure 20 - Forest plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK

FLOTAC (fresh) vs triplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Glintz 2010	51	9	21	31	0.71 [0.59, 0.81]	0.78 [0.62, 0.89]		
FLOTAC (10 d	lays)	vs t	riplic	ate	кк			
Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Glintz 2010	69	12	3	28	0.96 [0.88, 0.99]	0.70 [0.53, 0.83]		
FLOTAC (30 d	lays)	vs t	riplic	ate:	кк			
Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Glintz 2010	71	14	1	26	0.99 [0.93, 1.00]	0.65 [0.48, 0.79]		

Figure 21 - Summary ROC Plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK

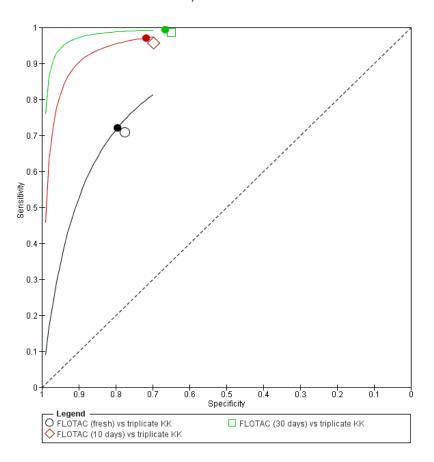
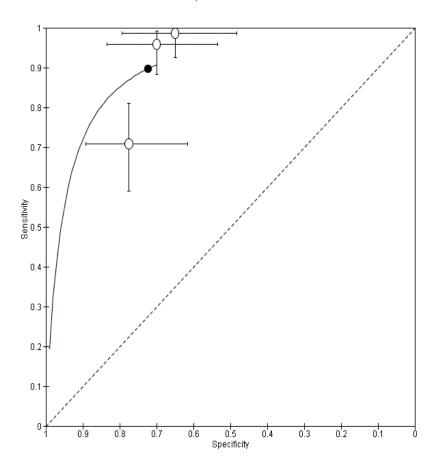



Figure 22 - Forest plot of FLOTAC (fresh), FLOTAC (10 days) or FLOTAC (30 days) vs triplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Glintz 2010	71	14	1	26	0.99 [0.93, 1.00]	0.65 [0.48, 0.79]	-	
Glintz 2010	69	12	3	28	0.96 [0.88, 0.99]	0.70 [0.53, 0.83]		
Glintz 2010	51	9	21	31	0.71 [0.59, 0.81]	0.78 [0.62, 0.89]		
							0 0.2 0.4 0.6 0.8 1	

Figure 23 - Summary ROC Plot of FLOTAC (fresh), FLOTAC (10 days) and FLOTAC (30 days) vs triplicate KK

Figure 24 - Forest plot of SmCTF-RDT vs quadruple KK or Urine Microscopy

SmCTF-RDT vs quadruple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Coulibaly 2013	18	62	6	32	0.75 [0.53, 0.90]	0.34 [0.25, 0.45]		
Dawson 2013	21	14	3	2	0.88 [0.68, 0.97]	0.13 [0.02, 0.38]		-
Dawson 2013	- 7	17	6	12	0.54 [0.25, 0.81]	0.41 [0.24, 0.61]		
Nausch 2014	53	23	0	15	1.00 [0.93, 1.00]	0.39 [0.24, 0.57]		
SmCTF-RDT vs 2	urin	e filtı	ratio	ns			0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Coulibaly 2013	4	74	2	37	0.67 [0.22, 0.96]	0.33 [0.25, 0.43]		

Figure 25 - Summary ROC Plot of SmCTF-RDT vs quadruple KK or Urine Microscopy

Figure 26 - Forest plot of Sm DNA PCR vs duplicate KK

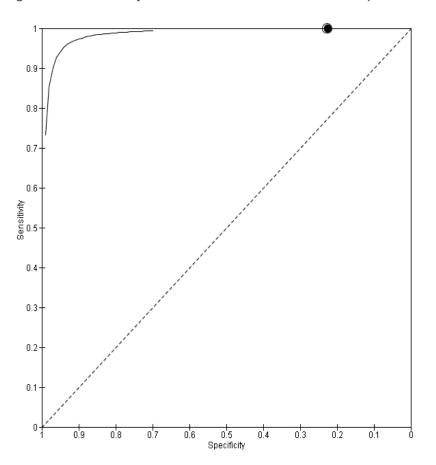


Figure 27 - Summary ROC Plot of Sm DNA PCR vs duplicate KK

Figure 28 - Forest plot of SWAP ELISA vs Sextuple KK, IgM ELISA or IgG ELISA vs triplicate KK

SWAP ELISA vs Sextuple KK Study TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) TΡ FP FN Shane 2011 0.92 [0.87, 0.95] 0.57 [0.51, 0.63] 172 126 15 169 0 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8 1 IgM ELISA vs triplicate KK Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) De Oliveira 2005 85 0.98 [0.89, 1.00] 0.98 [0.92, 1.00] 1 49 2 6 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 IgG ELISA vs triplicate KK Study TP FP FN Sensitivity (95% CI) Specificity (95% CI) TN Sensitivity (95% Cl) Specificity (95% Cl) Barakat 1983 177 25 15 290 0.92 [0.87, 0.96] 0.92 [0.89, 0.95] 0.96 [0.86, 1.00] 0.99 [0.94, 1.00] De Oliveira 2005 48 1 2 86 163 23 Eltiro 1992 4 10 0.98 [0.94, 0.99] 0.30 [0.16, 0.49] 87 Xu 2015 6 16 0.84 [0.76, 0.91] 0.14 [0.00, 0.58] 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 29 - Summary ROC Plot of SWAP ELISA vs Sextuple KK, IgM ELISA or IgG ELISA vs triplicate KK

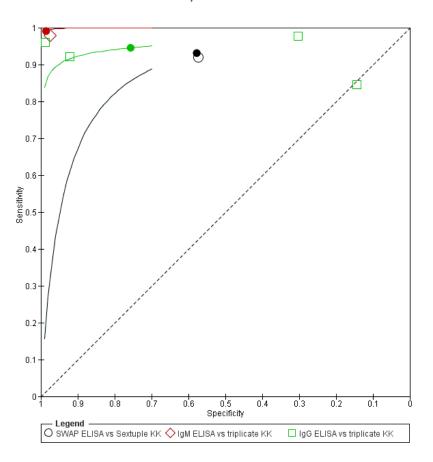


Figure 30 - Forest plot of Anti IGg RDT-Sh vs Urine Microscopy

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Sheele 2013	38	70	44	8	0.46 [0.35, 0.58]	0.10 [0.05, 0.19]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

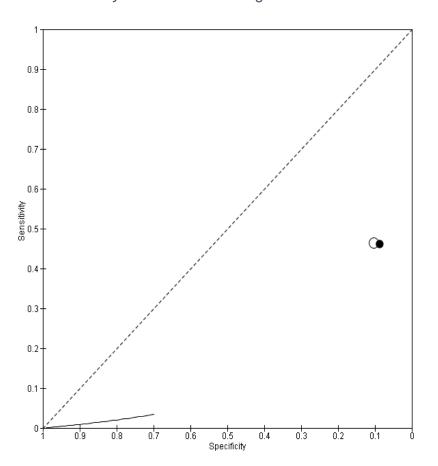


Figure 31 - Summary ROC Plot of Anti IGg RDT-Sh vs Urine Microscopy

Figure 32 - Forest plot of Proteinuria (R strip) vs Urine Microscopy

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Abdel-Wahab 1992	32	31	110	249	0.23 [0.16, 0.30]	0.89 [0.85, 0.92]	-	•
Abdel-Wahab 2000	97	81	602	4338	0.14 [0.11, 0.17]	0.98 [0.98, 0.99]	•	•
Aryeetey 2000	610	842	1003	107	0.38 [0.35, 0.40]	0.11 [0.09, 0.13]	•	•
Bogoch 2012	8	53	11	208	0.42 [0.20, 0.67]	0.80 [0.74, 0.84]		+
Bosompem 1996	44	10	65	110	0.40 [0.31, 0.50]	0.92 [0.85, 0.96]	-	-
Bosompem 2004	26	17	59	39	0.31 [0.21, 0.42]	0.70 [0.56, 0.81]	-	
Cooppan 1987	616	112	145	68	0.81 [0.78, 0.84]	0.38 [0.31, 0.45]	•	
Gabr 2000	185	293	889	10540	0.17 [0.15, 0.20]	0.97 [0.97, 0.98]	•	•
Gundersen 1996	43	163	8	46	0.84 [0.71, 0.93]	0.22 [0.17, 0.28]		+
Hammad 1997	662	3081	410	7817	0.62 [0.59, 0.65]	0.72 [0.71, 0.73]	•	•
Hammam 2000a	297	1174	369	10487	0.45 [0.41, 0.48]	0.90 [0.89, 0.90]	+	
Hammam 2000b	155	605	433	8362	0.26 [0.23, 0.30]	0.93 [0.93, 0.94]	•	•
Kassim 1989	96	98	24	704	0.80 [0.72, 0.87]	0.88 [0.85, 0.90]		•
Kiliku 1991	197	67	56	106	0.78 [0.72, 0.83]	0.61 [0.54, 0.69]	+	
King 1988a	1343	118	478	670	0.74 [0.72, 0.76]	0.85 [0.82, 0.87]		•
Kitange 1993	27	4	56	166	0.33 [0.23, 0.44]	0.98 [0.94, 0.99]		•
Mott 1985 Ghana	334	99	38	47	0.90 [0.86, 0.93]	0.32 [0.25, 0.40]	-	
Mott 1985 Zambia	428	25	75	123	0.85 [0.82, 0.88]	0.83 [0.76, 0.89]	•	-
Murare 1987	140	25	22	45	0.86 [0.80, 0.91]	0.64 [0.52, 0.75]	+	
Ndamukong 2001	155	17	31	144	0.83 [0.77, 0.88]	0.89 [0.84, 0.94]	-	-
Ng'andu 1988	90	58	79	185	0.53 [0.45, 0.61]	0.76 [0.70, 0.81]	-	+
Nwaorgu 1992	537	85	43	352	0.93 [0.90, 0.95]	0.81 [0.77, 0.84]		•
Ofori 1986	42	13	22	41	0.66 [0.53, 0.77]	0.76 [0.62, 0.87]		
Okeke 2014 (LPA)	8	9	7	272	0.53 [0.27, 0.79]	0.97 [0.94, 0.99]		•
Okeke 2014 (MPA)	15	18	34	117	0.31 [0.18, 0.45]	0.87 [0.80, 0.92]		-
Onayade 1996	53	1	40	11	0.57 [0.46, 0.67]	0.92 [0.62, 1.00]		
Poggensee 2000 (HPA)	8	6	59	55	0.12 [0.05, 0.22]	0.90 [0.80, 0.96]	+	-
Poggensee 2000 (LPA)	1	14	6	154	0.14 [0.00, 0.58]	0.92 [0.86, 0.95]	-	-
Pugh 1980	508	887	422	3550	0.55 [0.51, 0.58]	0.80 [0.79, 0.81]		
Rasendramino 1998	316	20	104	107	0.75 [0.71, 0.79]	0.84 [0.77, 0.90]	+	+
Sarda 1986	234	173	94	799	0.71 [0.66, 0.76]	0.82 [0.80, 0.85]	+	
Sellin 1982	376	227	162	397	0.70 [0.66, 0.74]	0.64 [0.60, 0.67]	-	•
Stephenson 1984	113	11	58	177	0.66 [0.58, 0.73]	0.94 [0.90, 0.97]	-	•
Tanner 1983 (Liberia)	108	10	81	68	0.57 [0.50, 0.64]	0.87 [0.78, 0.94]	-	-
Tanner 1983 (Tanzania)	136	68	26	318	0.84 [0.77, 0.89]	0.82 [0.78, 0.86]	-	· · · · · ·
Traore 1998	340	84	235	382	0.59 [0.55, 0.63]	0.82 [0.78, 0.85]	-	• •
Ugbomoiko 2009a	602	9	147	699	0.80 [0.77, 0.83]	0.99 [0.98, 0.99]	•	
Ugbomoiko 2009a	207	12	149	202	0.58 [0.53, 0.63]	0.94 [0.90, 0.97]	-	•
Ugbomoiko 2009b	121	45	106	175	0.53 [0.47, 0.60]	0.80 [0.74, 0.85]	-	+
Verlé 1994	168	21	138	25	0.55 [0.49, 0.61]	0.54 [0.39, 0.69]	-	
Wilkins 1979	701	251	377	615	0.65 [0.62, 0.68]	0.71 [0.68, 0.74]		
					-	-	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

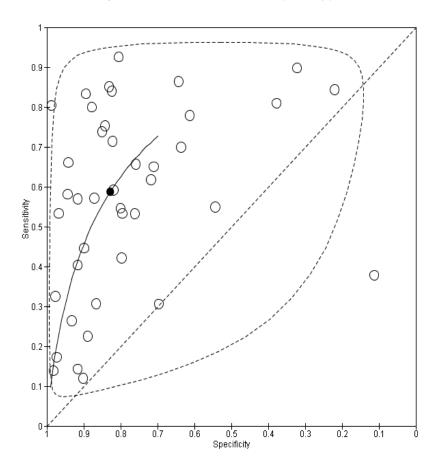


Figure 33 - Summary ROC Plot of Proteinuria (R strip) vs Urine Microscopy

Figure 34 - Forest plot of Haematuria (R strip) vs Urine Microscop

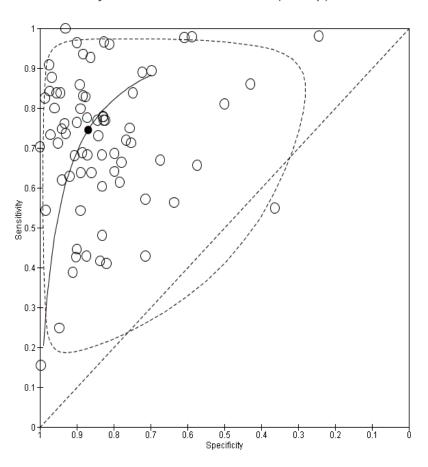


Figure 36 - Forest plot of AWE-SEA ELISA vs quadruple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Chernet 2017	22	32	1	52	0.96 [0.78, 1.00]	0.62 [0.51, 0.72]		
Vonghachack 2017	23	107	1	246	0.96 [0.79, 1.00]	0.70 [0.65, 0.74]		

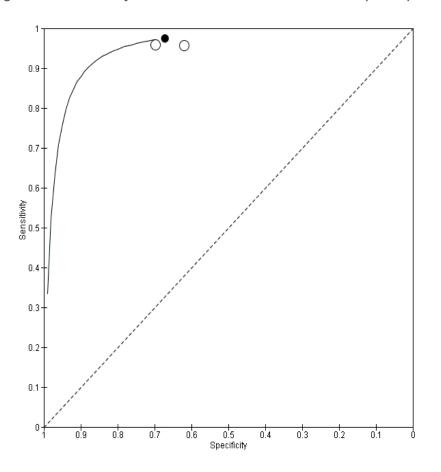


Figure 37 - Summary ROC Plot of AWE-SEA ELISA vs quadruple KK

Figure 38 - Forest plot of LAMP vs triplicate KK or Urine Microscopy

LAMP vs triplicate KK

Study	TP	FP	FN	T	I S	ensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mwangi 2018	171	0	5	20	7	0.97 [0.93, 0.99]	1.00 [0.98, 1.00]	•	
Xu 2015	105	0	5	1)	0.95 [0.90, 0.99]	Not estimable		
								0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
LAMP vs Urine I	Nicro	sco	ŊУ						
Study		TP	FP	FN	ΤN	Sensitivity (95% Cl)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gandasegui 201	15	18	8	7	61	0.72 [0.51, 0.88]] 0.88 [0.78, 0.95]		
Gandasegui 201	18	75	52	12	33	0.86 [0.77, 0.93] 0.39 [0.28, 0.50]		

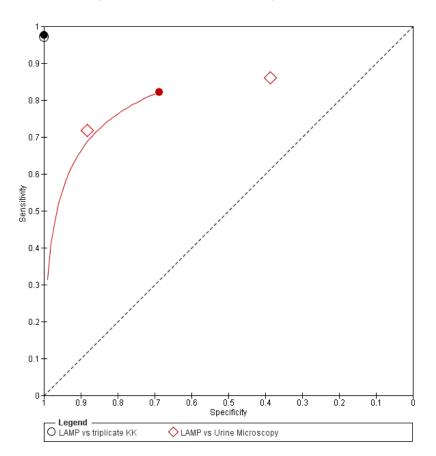


Figure 39 - Summary ROC Plot of LAMP vs triplicate KK or Urine Microscopy

Figure 40 - Forest plot of IHA vs triplicate KK or Urine Microscopy.

IHA vs triplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Xu 2015	84	0	9	0	0.90 [0.82, 0.95]	Not estimable	-	
Xu 2015	96	5	9	0	0.91 [0.84, 0.96]	0.00 [0.00, 0.52]		
IHA vs Urin	e Mi	cros	cop	y			0 0.2 0.1 0.0 0.0 1	0 0.2 0.1 0.0 0.0 1
Study		ΤР	FP	FN	TN Sensitivity (95%)	CI) Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Zhang 202	0	66	16	23	41 0.74 [0.64, 0.8	33] 0.72 [0.58, 0.83]		

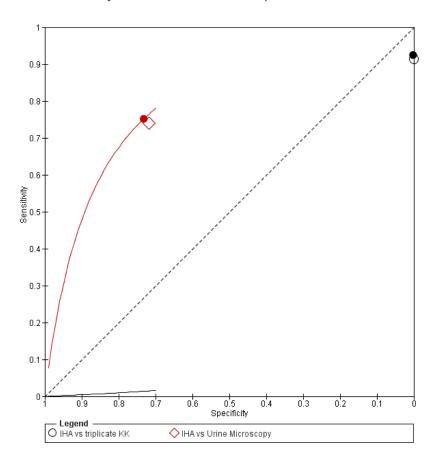


Figure 41 - Summary ROC Plot of IHA vs triplicate KK or Urine Microscopy

Figure 42 - Forest plot of Colorimetric test vs Urine Microscopy

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bocanegra 2015	415	124	376	364	0.52 [0.49, 0.56]	0.75 [0.70, 0.78]		

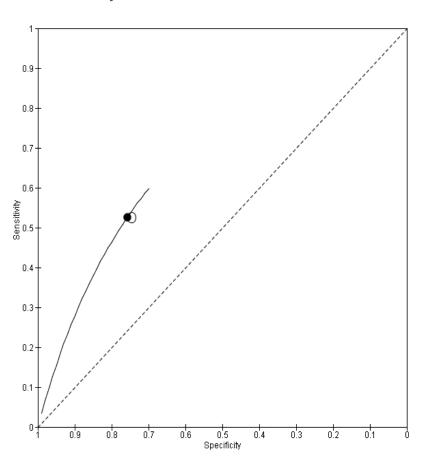
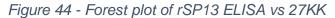



Figure 43 - Summary ROC Plot of Colorimetric test vs Urine Microscopy

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Xu 2014	71	394	3	903	0.96 [0.89, 0.99]	0.70 [0.67, 0.72]		

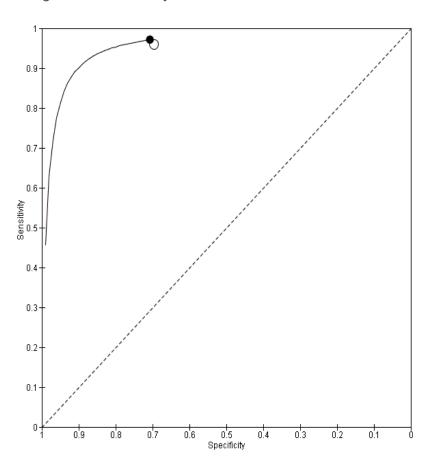


Figure 45 - Summary ROC Plot of rSP13 ELISA vs 27KK

Figure 46 - Forest plot of IgG SEA-ELISA vs Urine Microscopy

IgG SEA-ELISA vs CCA1

Study Al-Shehri 2018 IgG SEA-ELISA vs	142		5		Sensitivity (95% Cl) 0.97 [0.92, 0.99]		Sensitivity (95% Cl)	Specificity (95% Cl)
Study		FP		TN	Sensitivity (95% CI)	,	Sensitivity (95% CI)	Specificity (95% CI)
Bouilhac 1981 Song 2018	42 55	64	3	27	0.78 [0.64, 0.88] 0.95 [0.86, 0.99]	0.95 [0.89, 0.98] 0.30 [0.21, 0.40]		
Stothard 2009a Uga 1989	41 36	31 2	5 3	73 9	0.89 [0.76, 0.96] 0.92 [0.79, 0.98]	0.70 [0.60, 0.79] 0.82 [0.48, 0.98]		

Figure 47 - Summary ROC Plot of IgG SEA-ELISA vs Urine Microscopy

Figure 48 - Forest plot of Leukocyturia (reagent strip) vs Urine Microscopy

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Abdel-Wahab 1992	46	20	96	260	0.32 [0.25, 0.41]	0.93 [0.89, 0.96]	-	-
Gundersen 1996	37	160	14	49	0.73 [0.58, 0.84]	0.23 [0.18, 0.30]		-
Poggensee 2000 (HPA)	38	32	29	29	0.57 [0.44, 0.69]	0.48 [0.35, 0.61]		
Poggensee 2000 (LPA)	4	92	3	76	0.57 [0.18, 0.90]	0.45 [0.38, 0.53]		
Rasendramino 1998	238	30	182	97	0.57 [0.52, 0.61]	0.76 [0.68, 0.83]		

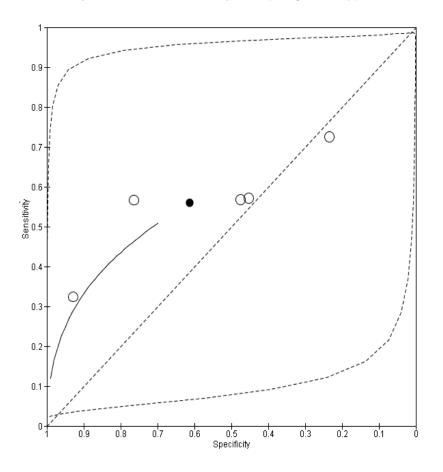


Figure 49 - Summary ROC Plot of Leukocyturia (reagent strip) vs Urine Microscopy

Figure 50 - Forest plot of COPT vs duplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)
Espirito-Santo 2015	4	25	1	542	0.80 [0.28, 0.99]	0.96 [0.94, 0.97]		

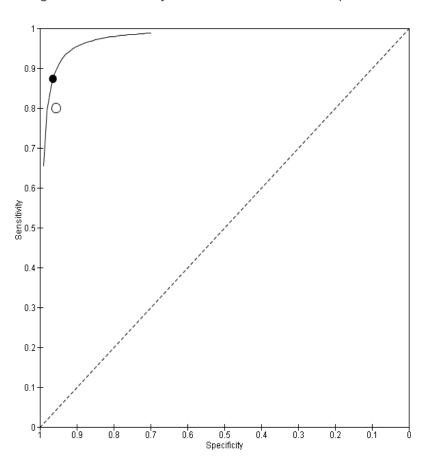


Figure 51 - Summary ROC Plot of COPT vs duplicate KK

PCR vs KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% CI)
Anyan 2020	45	8	0	38	1.00 [0.92, 1.00]	0.83 [0.69, 0.92]		
Anyan 2020	21	58	0	84	1.00 [0.84, 1.00]	0.59 [0.51, 0.67]		
Fuss 2018	245	31	8	13	0.97 [0.94, 0.99]	0.30 [0.17, 0.45]		
PCR vs CCA1							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	-	ſP	FP	FN	TN Sensitivity (95%)	CI) Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Al-Shehri 2018	} 1	25	49	22	62 0.85 [0.78, 0.9	0] 0.56 [0.46, 0.65]		

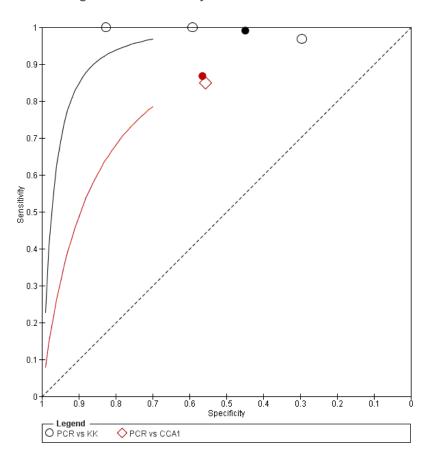


Figure 53 - Summary ROC Plot of PCR vs KK

Figure 54 - Forest plot of Helmintex vs duplicate KK or RT-PCR

Helmintex vs duplicate KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)		
Lindholz 2018	54	133	1	273	0.98 [0.90, 1.00]	0.67 [0.62, 0.72]				
Helmintex vs RT-PCR										
Study	T	P FF	P FN	I TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)		
Magalhaes 2020	7	16	3 33	3 66	0.68 [0.58, 0.77]	0.92 [0.83, 0.97]				

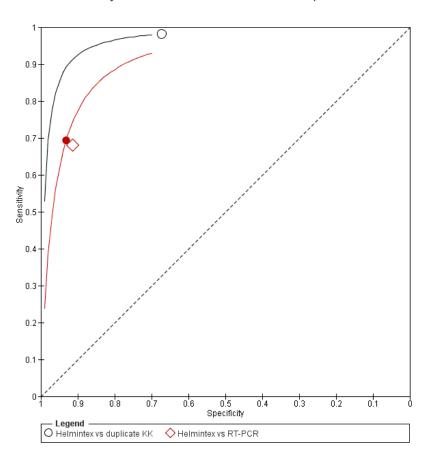


Figure 55 - Summary ROC Plot of Helmintex vs duplicate KK or RT-PCR

Figure 56 - Forest plot of DDIA vs Urine Microscopy

Study	TP FF	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Zhang 2020	53 22	36	35	0.60 [0.49, 0.70]	0.61 [0.48, 0.74]		

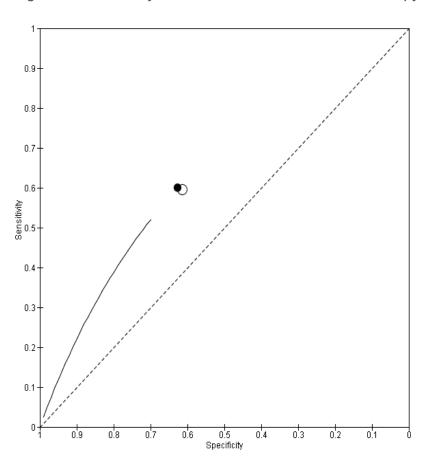


Figure 57 - Summary ROC Plot of DDIA vs Urine Microscopy

Figure 58 - Forest plot of RT-PCR vs duplicate or sextuple KK

RT-PCR vs sextuple KK

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Magalhaes 2020	61	42	3	92	0.95 [0.87, 0.99]	0.69 [0.60, 0.76]		
RT-PCR vs duplicat	te KM	(0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Magalhaes 2020	41	73	0	92	1.00 [0.91, 1.00]	0.56 [0.48, 0.63]		

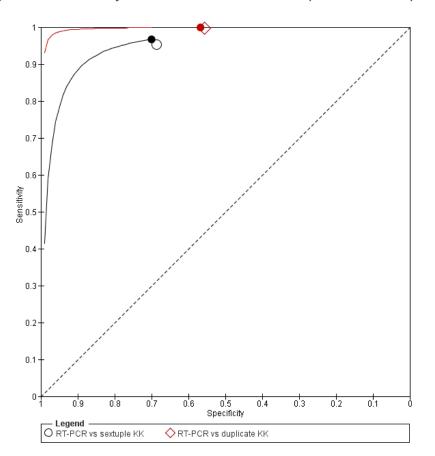


Figure 59 - Summary ROC Plot of RT-PCR vs duplicate or sextuple KK

Tests	Number of	Log OR	sensitivity	specificity	mu_A	mu_B	log_LRP	log_LRN	THETA	ALPHA	BETA	var_uTheta	var_uAlpha
Anti Gg RDT-Sh vs Urine	1	-2.238353753	0.4750171	0.1924764	-0.140684572	-2.097669181	-0.3234917	0.64861297	1.096590043	-2.503288878	-7.89282E-05	15.2984012	34.17554201
CAA vs quadruple KK	1	4.081914373	0.8886117	0.6082348	3.459103391	0.622810982	0.5048489	-1.267904	1.590849786	4.554447066	0.001643751	9.13593147	50.23527747
CCA1 cassette vs 16KK	1	2.277921806	0.7243738	0.6486684	1.408791181	0.869130625	0.441738	-0.5475509	0.304658913	2.538670821	-0.001132837	10.43499892	45.79873619
CCA1 cassette vs Helmintex	1	1.144999291	0.5432535	0.6527018	0.241858977	0.903140313	0.2769149	-0.220352	-0.368729918	1.276607066	-0.003124266	8.807907682	58.02299557
CCA1 cassette vs RT-PCR	1	1.510160949	0.6010372	0.6588832	0.582857738	0.927303211	0.3501912	-0.3056633	-0.193593254	1.688365171	0.002246661	9.248954961	45.67658588
CCA1 cassette vs single KK	1	2.410319734	0.7562486	0.6151916	1.740500544	0.66981919	0.4146614	-0.6321272	0.603030518	2.688162377	0.005605331	12.29940568	43.7234469
CCA2 cassette vs double KK	1	3.579696688	0.5911522	0.8780587	0.556026416	3.023670272	1.0533053	-0.5013372	- 1.385015473	4.019668951	-0.005882899	9.896652799	91.75244201
CCA2 cassette vs quadruple KK	1	2.835131804	0.4659715	0.8804041	-0.200022172	3.035153976	0.9091536	-0.3221285	- 1.803383666	3.161558287	-0.003675857	8.83534338	48.81253504
Colorimetric vs Urin e	1	1.114506685	0.5160936	0.6732351	0.093675448	1.020831237	0.2841151	-0.199909	-0.51683996	1.241492915	0.002570233	11.00327534	28.83788873
COPT vs double KK	1	4.684197395	0.7350894	0.8799962	1.722634157	2.961563238	1. 1601835	-0.8741376	-0.692838549	5.237115007	-0.003188704	11.55127901	35.25290579
DDIA vs Urine Microscopy	1	0.832918533	0.5646498	0.5801309	0.360361299	0.472557234	0.1865608	-0.1751711	-0.054933704	0.924455334	0.005711664	11.01099038	37.42106684
FLOTAC (10 days) vs tripl. KK	1	3.956488745	0.8833156	0.6429088	3.115065647	0.841423098	0.5629556	- 1.1553256	1.279522736	4.418929496	0.003135842	8.793739077	77.55297861
FLOTAC (30 days) vstripl. KK	1	5.1183735	0.9340129	0.6085309	4.491480802	0.626892699	0.5423365	- 1.6805448	2.180595587	5.735354236	0.006605618	23.92579793	34.06264541
FLOTAC (fresh) vs tripl. KK	1	2.069096406	0.645669	0.7001996	0.845756646	1.22333976	0.4786947	-0.4199024	-0.20705359	2.304510381	-0.005045775	22.8378949	55.01044458
Helmintex vs duplicate KK	1	4.966669158	0.9267815	0.6214142	4.275200664	0.691468495	0.5581501	- 1.5988469	2.030660572	5.585635014	0.017680034	50.26637626	104.1799437
Helmintex vs RT-PCR	1	3.076539947	0.6276163	0.828896	0.732019432	2.344520515	0.8465765	-0.4895478	0.89676142	3.426762536	-4.53434E-05	7.960891447	44.24188899
lgG SEA-ELISA vs CCA1	1	3.35359387	0.8933107	0.5189698	3.256272617	0.097321253	0.3831583	-1.073289	1.775539488	3.773871015	0.012308375	14.70559182	78.41583449
lgM ELISA vstriplicate KK	1	7.990514363	0.9243813	0.9163419	4.184079621	3.806434742	1.6592818	- 1.8109545	0.23253815	8.909854197	0.007319975	8.478645014	69.07985353
IHA vs Urine Microscopy	1	1.884830673	0.6676742	0.6528987	0.990365833	0.89446484	0.4029809	-0.4155907	0.050780171	2.111774436	-0.001155486	12.00889	49.46432443
PCR vs CCA1	1	1.919897314	0.7629655	0.5407684	1.685754838	0.234142476	0.3126359	-0.5211649	0.810104444	2. 140885 138	0.000741132	44.60249556	36.57474857
rSP 13 ELISA vs 27KK	1	3.943575945	0.884508	0.6371709	3.152329447	0.791246499	0.5491801	- 1. 1634932	1.327352898	4.413632275	0.003591243	10.03873393	182.1842238
RT-PCR vs duplicate KK	1	6.546136636	0.9559431	0.5394982	6.317480556	0.22865608	0.4838526	-2.3590984	3.349038793	7.260459093	-0.074610713	24.7633092	73.02232543
RT-PCR vs sextuple KK	1	3.785370985	0.8775339	0.6319832	3.023213782	0.762157203	0.5378216	-1.1061441	1.271149447	4.231521465	0.007034594	16.9097052	44.68611481
Sm DNA PCR vs duplicate KK	1	5.241628644	0.9562232	0.316136	6.351655796	-1.110027153	0.2505175	-2.0258929	4.147505126	5.733151352	-0.072946097	20.59009821	74.15785496
SmCTF-RDT vs Urine Microscopy	1	0.11470094	0.6235238	0.3840932	0.786019136	-0.671318196	-0.0070731	-0.0568871	0.809484363	0.137599874	-0.001485713	8.845959917	68.7892742
SWAP ELISA vs Sextuple KK	1	2.61203226	0.8299689	0.5505388	2.329658158	0.282374102	0.3763119	-0.7580793	1.143434957	2.913645393	-0.002148619	7.915396352	48.61764404
AWE-SEA ELISA vs quadruple KK	2	4.091599261	0.9374428	0.6417	3.422479644	0.669119618	0.4764909	- 1.3004681	1.343887412	4.201267874	-0.110731479	1.388150596	5.477175464
IHA vs triplicate KK	2	-3.228545197	0.8147975	0.0715095	2.210904333	-5.439449531	-0.0987133	1.30342604	4.286906639	-3.420883084	0.054610068	18.50366249	78.4576282
LAMP vs triplicate KK	2	10.67157716	0.9428532	0.9823006	3.369503455	7.302073701	3.1600768	- 1.4745303	-1.3799609	11.35540113	0.285471633	2. 2541825 14	12.40880817
LAMP vs Urine Microscopy	2	2.188715096	0.7706132	0.6350087	1.441093152	0.747621943	0.4686938	-0.4818531	0.672448231	2.576028079	0.498269793	3.528684097	5.156377422
CAA vs duplicate KK	3	1.626764586	0.6069626	0.6662477	0.636846714	0.989917872	0.3763122	-0.3301827	-0.185889641	1.688234852	-0.001285362	11.61046969	2.583906466
PCR vs KK	3	4.257666073	0.9578831	0.4692175	4.428693212	-0.171027139	0.2974146	- 1.55 16663	2.222432082	3.987248003	-0.206417825	1.104114851	19.56748266
CAA vs Urine Microscopy	4	3.007484247	0.709309	0.7857417	1.115949705	1.891534542	0.7875625	-0.5185713	-0.107744497	2.973950369	0.361903006	6.27772282	8.59945339
CCA1 vs Urine Microscopy	4	1.334801114	0.5142618	0.7412583	0.066047327	1.268753786	0.3630413	-0.2166555	-0.588875297	1.32609464	0.039484482	4. 3367322 12	1. 108586969
lgG ELISA vstriplicate KK	4	3.852538933	0.930226	0.6843219	2.763101276	1.089437657	0.6695003	-1.0036361	2.073498862	5.490040716	1.049764738	1.245446694	10.09659939
SEA-ELISA vs Urine Micro.	4	3.299073392	0.8893851	0.7129045	2.224698876	1.074374517	0.581938	-0.8508314	1.105677904	3.856205423	0.575019333	1.805449225	1.39023474
SmCTF-RDT vs quadrupi e KK	4	1.779560015	0.8560304	0.3548606	2.419805098	-0.640245083	0.1084787	-0.6643744	1.316609766	0.426412266	-0.963480779	0.967801763	6.199561722
Leukocyturi a vs Urine	5	0.692161985	0.5569908	0.5995012	0.240191846	0.451970139	0.1769323	-0.1236698	-0.005458151	0.665003379	0.614551157	1.318909875	0.949381175
CCA1 cassette vs sextuple KK	7	2.431379665	0.8348166	0.6786077	1.669654331	0.761725334	0.4216463	-0.6342885	0.28745217	2.373255986	-0.293777726	0.414154448	0.760280051
CCA1 cassette vs quadruple KK	11	2.299895257	0.870482	0.5863121	1.944011816	0.35588344	0.328874	-0.6699578	0.803674578	2.330029656	-0.003548522	0.582753863	0.813372952
CCA1 cassette vs duplicate KK	17	2.199690706	0.8547191	0.590921	1.824340057	0.375350649	0.3256972	-0.6296163	0.597533855	2.055340811	-0.249527461	0.896271582	2.0372956
Proteinuria vs Urine	41	1.92224248	0.5865564	0.8256068	0.352611315	1.569631165	0.5322758	-0.3025435	-0.535764931	1.837329787	0. 157712356	1.078063695	1.708611274
Haematuria vs Urine	72	2.957768287	0. 7437497	0.86777	1.069391788	1.888376499	0. 7529811	-0.5315613	-0.333182353	2.924218646	0. 104913408	0.717026672	1.757249332
					Grou	ped test compa	risons						
CCA2 cassette vs KK (all)	2	3.058332939	0.5175037	0.8759044	0.098805607	2.959527332	0.9514956	-0.3767216	- 1.60215144	3.43571232	-0.004905905	8.222717338	72.97423906
FLOTAC (all) vs triplicate KK	3	2.807043743	0. 7936918	0.647058	1.948108598	0.858935145	0.5041381	-0.7149455	0.610232926	3.131237233	0.010433914	13.39812001	47.28436633
CAA vsKK (all)	4	2.218558705	0. 7265028	0.6807271	1.287010346	0.931548359	0.4243936	-0.5391142	0.055141348	2.230624646	-0.212391379	5. 109337752	2.127542323
CCA1 vs KK (all)	37	2.353420113	0.8721674	0.6013747	1.938457628	0.414962485	0.342787	-0.6792903	0.707545633	2.291879766	-0.099422966	0.63936168	1.240019211

Table 4 - Output parameters of the bayesian bivariate random effects model for each diagnostic test

Table 5 - Sensitivities and specificities from the bayesian bivariate random effects model for each diagnostic test

	Number		Sensitivity	,	Specificity			
Tests	of	60	LL 2.5% eCl	UL 97.5%	C m	LL 2.5% eCl	UL 97.5% eCl	
	studies	Se	LL 2.5% eCI	eCl	Sp	LL 2.5% eCI	0L 97.5% eCi	
Anti IGg RDT-Sh vs Urine	1	0.4750171	0.0049109	0.993815455	0.1924764	0.001032063	0.972541853	
CAA vs quadruple KK	1	0.8886117	0.0734737	0.999774085	0.6082348	0.010394884	0.996604095	
CCA1 cassette vs 16KK	1	0.7243738	0.0159298	0.998315315	0.6486684	0.011873868	0.997336831	
CCA1 cassette vs Helmintex	1	0.5432535	0.0060719	0.995681455	0.6527018	0.01029001	0.997782925	
CCA1 cassette vs RT-PCR	1	0.6010372	0.0089075	0.996671064	0.6588832	0.010627548	0.99735831	
CCA1 cassette vs single KK	1	0.7562486	0.0200934	0.998821622	0.6151916	0.010061895	0.997084593	
CCA2 cassette vs double KK	1	0.5911522	0.0071908	0.99698671	0.8780587	0.051948794	0.99948796	
CCA2 cassette vs quadruple KK	1	0.4659715	0.004732	0.993631655	0.8804041	0.07237841	0.999506175	
Colorimetric vs Urine	1	0.5160936	0.0059616	0.994874188	0.6732351	0.012315758	0.99771679	
COPT vs double KK	1	0.7350894	0.0183996	0.999168593	0.8799962	0.071662891	0.999419096	
DDIA vs Urine Microscopy	1	0.5646498	0.0062138	0.996332453	0.5801309	0.007168676	0.997244909	
FLOTAC (10 days) vs tripl. KK	1	0.8833156	0.0678575	0.999504214	0.6429088	0.012737015	0.997002063	
FLOTAC (30 days) vs tripl. KK	1	0.9340129	0.1654421	0.999859688	0.6085309	0.011458981	0.996324903	
FLOTAC (fresh) vs tripl. KK	1	0.645669	0.0104418	0.997094993	0.7001996	0.015566698	0.998048114	
Helmintex vs duplicate KK	1	0.9267815	0.1566279	0.999850753	0.6214142	0.010191859	0.996552959	
Helmintex vs RT-PCR	1	0.6276163	0.0096701	0.996927567	0.828896	0.031694518	0.999196901	
IgG SEA-ELISA vs CCA1	1	0.8933107		0.999561351		0.005307201	0.994896931	
IgM ELISA vs triplicate KK	1	0.9243813		0.999836095		0.125765352	0.999715443	
IHA vs Urine Microscopy	1	0.6676742		0.997553444		0.011296826	0.997251355	
PCR vs CCA1	1	0.7629655		0.998669822		0.006448133	0.995846675	
rSP13 ELISA vs 27KK	- 1	0.884508		0.999537488		0.010320459		
RT-PCR vs duplicate KK	1	0.9559431		0.999946861		0.003054185	0.997756114	
RT-PCR vs sextuple KK	- 1	0.8775339		0.999513105		0.010406706	0.996953866	
Sm DNA PCR vs duplicate KK	1	0.9562232		0.999947103		0.001208631	0.996315402	
SmCTF-RDT vs Urine Microscopy	1	0.6235238		0.997516474		0.003031678	0.990146401	
SWAP ELISA vs Sextuple KK	1	0.8299689				0.006669649		
AWE-SEA ELISA vs quadruple KK	2	0.9374428		0.998324929		0.185606389	0.943594863	
IHA vs triplicate KK	2	0.8147975		0.999352904	0.0715095	5.5441E-05		
LAMP vs triplicate KK	2	0.9428532		0.997337756		0.879388278	0.999949756	
LAMP vs Urine Microscopy	2	0.7706132		0.979544766		0.040074085	0.989892082	
CAA vs duplicate KK	3	0.6069626		0.994050292		0.029325523	0.995140491	
PCR vs KK	3	0.9578831		0.999806283		0.023323323		
CAA vs Urine Microscopy	4	0.709309				0.142936487	0.997654471	
CCA1 vs Urine Microscopy	4	0.5142618		0.900281862		0.279021452	0.973293967	
IgG ELISA vs triplicate KK		0.930226				0.076773596		
	4						0.990898564	
SEA-ELISA vs Urine Micro.	4	0.8893851		0.971267703		0.272602542	0.959936037	
SmCTF-RDT vs quadruple KK	4	0.8560304		0.998556357			0.630656592	
Leukocyturia vs Urine	5	0.5569908	0.3447937			0.245456227	0.883532101	
CCA1 cassette vs sextuple KK	7	0.8348166		0.920219224		0.548966403	0.793295985	
CCA1 cassette vs quadruple KK	11	0.870482		0.930458304		0.446411666	0.717986875	
CCA1 cassette vs duplicate KK	17	0.8547191		0.931016547		0.447902542	0.721719083	
Proteinuria vs Urine	41	0.5865564		0.670114249		0.759632106	0.880166945	
Haematuria vs Urine	72	0.7437497		0.788788909	0.86777	0.834639646	0.896729776	
			test compa					
CCA2 cassette vs KK (all)	2	0.5175037		0.995304665		0.049243157	0.999494388	
FLOTAC (all) vs triplicate KK	3	0.7936918		0.998856805		0.009599002	0.997441116	
CAA vs KK (all)	4	0.7265028				0.175192484		
CCA1 vs KK (all)	37	0.8721674	0.8186703	0.915510917	0.6013747	0.508044351	0.689495314	

Table 6 – Number of studies and number of participants for each test comparison

Test	Studies	Participants
1 CCA1 cassette vs single KK	1	217
2 CCA1 cassette vs duplicate KK	14	4884
3 CCA1 cassette vs quadruple KK	10	4592
4 CCA1 cassette vs sextuple KK	7	2325
5 CCA1 cassette vs 16KK	1	217
6 CCA2 cassette vs double KK	1	100
7 CCA2 cassette vs quadruple KK	1	100
8 CAA vs duplicate KK	2	830
9 CAA vs quadruple KK	1	377
10 FLOTAC (fresh) vs triplicate KK	1	112
11 FLOTAC (10 days) vs triplicate KK	1	112
12 FLOTAC (30 days) vs triplicate KK	1	112
13 SmCTF-RDT vs quadruple KK	3	291
14 SmCTF-RDT vs Urine Microscopy	1	117
15 Sm DNA PCR vs duplicate KK	1	89
16 SWAP ELISA vs Sextuple KK	1	482
17 IgM ELISA vs triplicate KK	1	137
18 IgG ELISA vs triplicate KK	4	954
19 rSP13 ELISA vs 27KK	1	1371
20 AWE-SEA ELISA vs quadruple KK	2	484
21 IgG SEA-ELISA vs CCA1	1	258
22 IgG SEA-ELISA vs Urine Microscopy	4	503
23 Anti IGg RDT-Sh vs Urine Microscopy	1	160
24 Haematuria (R strip) vs Urine Microscopy	71	156279
25 Proteinuria (R strip) vs Urine Microscopy	40	79466
26 Leukocyturia vs Urine Microscopy	5	1532
27 LAMP vs triplicate KK	2	493
28 LAMP vs Urine Microscopy	2	266
29 IHA vs triplicate KK	1	203
30 IHA vs Urine Microscopy	1	146
31 Colorimetric test vs Urine Microscopy	1	1279
32 COPT vs double KK	1	572
33 PCR vs KK	2	551
34 PCR vs CCA1	1	258

35 Helmintex vs duplicate KK	1	461
36 Helmintex vs RT-PCR	1	176
37 DDIA vs Urine Microscopy	1	146
38 CCA1 vs Urine Microscopy	4	991
39 CCA1 vs Helmintex	1	214
40 CCA1 vs RT-PCR	1	196
41 CAA vs Urine Microscopy	4	1247
42 RT-PCR vs sextuple KK	1	198
43 RT-PCR vs duplicate KK	1	206
44 CCA1 vs KK	25	12235
45 CCA2 vs KK	1	200
46 CAA vs KK	3	1207
47 FLOTAC vs KK	1	336