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Abstract 52 

Metagenomic sequencing is increasingly being used in clinical settings for difficult to diagnose cases. 53 

The performance of viral metagenomic protocols relies to a large extent on the bioinformatic 54 

analysis. In this study, the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS) 55 

initiated a benchmark of metagenomic pipelines currently used in clinical virological laboratories. 56 

Methods 57 

Metagenomic datasets from 13 clinical samples from patients with encephalitis or viral respiratory 58 

infections characterized by PCR were selected. The datasets were analysed with 13 different 59 

pipelines currently used in virological diagnostic laboratories of participating ENNGS members. The 60 

pipelines and classification tools were: Centrifuge, DAMIAN, DIAMOND, DNASTAR, FEVIR, Genome 61 

Detective, Jovian, MetaMIC, MetaMix, One Codex, RIEMS, VirMet, and Taxonomer. Performance, 62 

characteristics, clinical use, and user-friendliness of these pipelines were analysed.   63 

Results 64 

Overall, viral pathogens with high loads were detected by all the evaluated metagenomic pipelines. 65 

In contrast, lower abundance pathogens and mixed infections were only detected by 3/13 pipelines, 66 

namely DNASTAR, FEVIR, and MetaMix. Overall sensitivity ranged from 80% (10/13) to 100% (13/13 67 

datasets). Overall positive predictive value ranged from 71-100%. The majority of the pipelines 68 

classified sequences based on nucleotide similarity (8/13), only a minority used amino acid similarity, 69 

and 6 of the 13 pipelines assembled sequences de novo. No clear differences in performance were 70 

detected that correlated with these classification approaches. Read counts of target viruses varied 71 

between the pipelines over a range of 2-3 log, indicating differences in limit of detection.   72 

Conclusion 73 
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A wide variety of viral metagenomic pipelines is currently used in the participating clinical diagnostic 74 

laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, 75 

implicating the need for standardization and validation of metagenomic analysis for clinical 76 

diagnostic use. Future studies should address the selective effects due to the choice of different 77 

reference viral databases.    78 

 79 

 80 

  81 
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Introduction 82 

Viral metagenomic next-generation sequencing (mNGS) is increasingly being used in virology 83 

laboratories for the diagnosis of patients with suspected but unexplained infectious diseases. The 84 

current main clinical application of viral metagenomics is for diagnosing encephalitis of unknown 85 

cause [1, 2], but metagenomic sequencing is considered useful in a growing number of other clinical 86 

syndromes [3-6]. Although many wet-lab challenges need to be faced as well [14], the performance 87 

of metagenomic methods is largely dependent on accurate bioinformatic analysis, and both 88 

classification algorithms and databases are crucial factors determining the overall performance of 89 

the pipelines [7] [55]. A wide range of metagenomic pipelines and taxonomic classifiers have been 90 

developed, commonly for the purpose of biodiversity studies analysing the composition of the 91 

microbiome in different cohorts. In contrast, when applying metagenomics to patient diagnostics, 92 

potential false-negative and false-positive bioinformatic classification results can have significant 93 

consequences for patient care. Most reports on bioinformatic tools for metagenomic analysis for 94 

virus diagnostics typically describe algorithms and validations of single in-house developed pipelines 95 

developed by the authors themselves [8-12]. Most reports on bioinformatic tools for metagenomic 96 

analysis for virus diagnostics typically describe algorithms and validations of single in-house 97 

developed pipelines developed by the authors themselves [13], and recently a metagenomic 98 

benchmarking trial among Swiss virology laboratories has been conducted [7]. Recently, ESCV 99 

Network on NGS (ENNGS) recommendations for the introduction of next-generation sequencing in 100 

clinical virology, part II: bioinformatic analysis and reporting were published [55], aiming to address 101 

the challenges involved. While a professional External Quality Assessment (EQA) program is 102 

currently in preparation by Quality Control for Molecular Diagnostics (QCMD), the ENNGS [14] [55] 103 

conducted the presented benchmark of bioinformatic pipelines of the participating diagnostic 104 

laboratories using viral metagenomic datasets derived from clinical samples, in order to assist 105 

laboratories with selection and optimization of tools to be implemented for clinical use. 106 
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Methods 107 

Datasets 108 

To exclude differences in wet-lab procedures, the same raw, untrimmed metagenomic datasets 109 

were provided, so that the participants had standardized datasets for bioinformatic analysis.  110 

In total, 13 clinical metagenomic datasets from samples well-characterized by RT-PCR [15-18] were 111 

selected from patients with encephalitis or respiratory complaints, including: cerebrospinal fluid 112 

(CSF, n=4), brain biopsies (n=3), nasopharyngeal swabs (n=3), nasal washings (n=1), bronchoalveolar 113 

lavage (n=1), and a plasma sample (n=1). RT-PCR panel results and Cq-values are included in the 114 

result section. The pathogens in the 13 datasets are depicted in Table 2.    115 

For samples processed at the Great Ormond Street Hospital, London (GOSH), mRNA from the three 116 

brain biopsy samples was sequenced on an Illumina NextSeq500 instrument using an 81 bp paired-117 

run after library preparation using Illumina’s TruSeq Stranded mRNA LT sample preparation kit (p/n 118 

RS-122-2101) according to the manufacturer’s instructions [19]. The other samples were spiked with 119 

Equine Arteritis Virus (EAV) and Phocid Herpes Virus (PhHV) internal controls preceding total nucleic 120 

acid extraction using the MagNAPure 96 DNA and Viral NA Small Volume Kit (Roche Diagnostics, 121 

Almere, the Netherlands) and sequenced on Illumina NextSeq500 (respiratory samples) or 122 

NovaSeq6000 (CSF samples, plasma) instruments using 150 bp paired-end runs after library 123 

preparation using New England BioLabs’ NEBNext Ultra Directional RNA Library preparation kit for 124 

Illumina with in-house adaptations in order to enable simultaneous detection of both DNA and RNA 125 

viruses, at the Leiden University Medical Center (LUMC) [4, 20]. Three of the CSF samples were 126 

sequenced after enrichment using capture probes targeting vertebrate viruses [21]. Human reads 127 

from the output FASTQ files were removed after mapping them to human reference genome 128 

GRCh38 [22] with Bowtie2 version 2.3.4 [23] before the datasets were uploaded to various data 129 

sharing platforms (see below).  130 
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 131 

Data sharing 132 

The FASTQ datasets were and remain publicly available for user-friendly downloading at 133 

https://veb.lumc.nl/CliniMG (hosted by the dept. MM, LUMC, Leiden), and part of the datasets were 134 

additionally accessible via a COMPARE Data Hub at http://www.ebi.ac.uk/ena/pathogens (hosted by 135 

the European Bioinformatics Institute, EMBL-EBI) [24].   136 

 137 

Bioinformatic pipelines 138 

The datasets were analysed in a blinded fashion by the participants, with the (viral) metagenomic 139 

pipelines and classification tools (Figure 1 and Table 1) used at their diagnostic laboratories: 140 

Centrifuge [25], DAMIAN [26, 27], DIAMOND [28], DNASTAR [29], FEVIR [30], Genome Detective 141 

[31], Jovian [32], MetaMIC [33], MetaMix [34, 35], One Codex [36], RIEMS [37, 38], Taxonomer [39], 142 

and VirMet [40]. DAMIAN was run by two participants in combination with a different database 143 

(pipeline A and B), and one participant run both Centrifuge and GenomeDetective. Details of the 144 

algorithms are described in Table 1. 145 

 146 

Performance characteristics  147 

Both qualitative and quantitative performance of the pipelines were analysed with real-time PCR 148 

results as gold standard. The following parameters available for all pipelines were considered: 149 

pathogen detection, taxonomic classification level and target read count. Additionally, horizontal 150 

genome coverage (if available), computational time, user-friendliness and output formats were 151 

considered. Since EAV and PhHV were added as internal controls and not reported by the 152 
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participants (due to default reporting criteria, or absence in the database)they were not included in 153 

the comparative analysis.   154 
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Results 155 

Metagenomic pipeline characteristics 156 

In total 13 different metagenomic pipelines and classification tools were in use in the 13 157 

participating diagnostic laboratories. Clinical use, classification and output characteristics of the 158 

pipelines and tools utilized are shown in Figure 1 and Table 1. The majority of the pipelines were 159 

developed or adapted at a local site, while four pipelines were commercially available and web-160 

based: DNASTAR (Madison, WI, USA), Genome Detective (Emweb bv, Herent, Belgium), One Codex 161 

(San Francisco, USA), and Taxonomer (Utah, USA). DAMIAN and Centrifuge are publicly available as 162 

an open source software. Both classification tools and reference databases differed among 163 

participants (and were fixed for end-users of the commercially available pipelines); (adapted 164 

versions of) NCBI’s nucleotide and RefSeq databases were most commonly used to generate 165 

reference databases. Six of the 13 pipelines assembled sequence reads de novo, whereas the others 166 

classified unassembled reads. The majority of the pipelines classified reads based on nucleotide 167 

similarity (8/13), and a minority used amino acid similarity (2/13), or a combination of both (3/13 168 

pipelines). Parameters used by the participants for defining a positive result were the number of 169 

virus reads, horizontal genome coverage (some of the participants), and a cut-off based on 170 

posterior-probability scores of the species presence (MetaMix) and ROC-curves. Output formats 171 

varied, the majority had a user-friendly output format: excel, PDF or interactive webpage. Examples 172 

of these user-friendly output formats are shown in Supplementary Figure S1.  173 

 174 

Detection of PCR targeted viral pathogens; sensitivity 175 

The qualitative and quantitative results of the pipeline benchmarking for viruses detected by RT-PCR 176 

are shown in Table 2 and Figure 2. Overall, higher abundance viral pathogens (Cq-value < 28) were 177 

detected by all metagenomic pipelines evaluated. In contrast, viral pathogens with RT-PCR Cq-value 178 
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of 28 and higher including mixed virus infections were only detected by 3/13 pipelines, namely 179 

DNASTAR, FEVIR, and MetaMix. Although participants analysed the same FASTQ files, read counts of 180 

the target viruses varied from one to several orders of magnitude across pipelines. Also, read counts 181 

(all datasets combined) achieved by participants did not correlate well with the viral load as 182 

measured by RT-PCR (R=-0.07, P-value 0.5), however it must be noted that wet lab procedures 183 

varied per set of samples, including protocols with and without viral enrichment, which had 184 

potential impact on the viral read counts and thus on correlation with Cq-values. Overall sensitivity 185 

of the pipelines at sample level was 77% (10/13) - 100% (13/13 samples, mixed infections counted as 186 

one) (Table 2 and Supplementary Table 2). At viral mNGS hit level, overall sensitivity was 80% 187 

(12/15) - 100% (15/15 viral hits) (Supplementary Table 4). One of the participants reported 188 

normalized reads including the genome length, using the following formula: RPKM = (number of 189 

reads mapped to virus genome Y * 106) / (total number of reads * length of genome in kp). This 190 

formula was also used to normalize the reads of all study pipelines shown in Figure 2. 191 

 192 

Taxonomic level of classification 193 

The taxonomic levels of classification and typing of pathogenic viruses by the metagenomic pipelines 194 

with the settings used and reported by the participants are shown in Figure 3 and Supplementary 195 

Table 3. The classification level is dependent on the database used, algorithm settings (classification 196 

of reads to the lowest common ancestor, LCA, in case of multiple hits), and the participant’s default 197 

reporting levels based on either in-house validation data or clinical relevancy. Species level 198 

classification was the most common level reported. Serotype and strain level were identified by 199 

tools that were combined with NCBI’s nt database without the LCA setting. DAMIAN was the only 200 

tool to report classification at the isolate level.  201 
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For the Adenovirus sample (#13), virus types reported were not consistent between different 202 

pipelines: human Adenovirus type 31 (DIAMOND, Jovian, DNASTAR, VirMet), type 12 (DAMIAN), type 203 

31 or 61 (metaMIC), indicating that type classification was not always correct. Type 12 and 31 are 204 

both from subgroup A Adenoviruses, whereas type 61 is a type 31 recombinant virus.  205 

 206 

Additional virus hits and positive predictive value 207 

Additional viruses, either not tested for by RT-PCR or RT-PCR negative were reported by 11 out of 13 208 

pipelines, and in one or more samples (Supplementary Table 4). The following additional viruses 209 

were reported by multiple pipelines and absent in the negative run control (dataset not available for 210 

the participants): human retrovirus RD114 (2-2102 reads, up to 28% genome coverage), feline 211 

leukemia virus (2-1406 reads), torque-teno virus (TTV) (18-66 reads, up to 7% genome coverage), 212 

polyomaviruses (5-41 reads, up to 37% genome coverage), Bovine viral diarrhea virus (BVDV) (6-220 213 

reads, likely FBS contaminants), human metapneumovirus (HMPV) (15-21 reads, 9% genome 214 

coverage), human rhinovirus (HRV) (2-4 reads, up to 5% genome coverage), human 215 

parainfluenzavirus-4 (PIV-4) (2-6 reads) and Dengue virus (18-370 reads). RT-PCR data were available 216 

for some of the additional viruses detected (Supplementary Table 4). When considering viral mNGS 217 

hits with negative RT-PCR results: CoV-NL63 (1 read), PIV-4 (2-6 reads), HRV-C (2-4 reads), CoV-OC43 218 

(5 reads), INF-B (2 reads), the positive predictive value ranged from 71-100% (Figure 4). It must be 219 

noted that for these mNGS hits, no distinction could be made between assignments of sequences 220 

genuinely present e.g. by index hopping (which was suspected given the low number of reads), false 221 

negative by PCR due to primers/probes mismatches, and false positive assignments. When 222 

considering the mNGS findings without available RT-PCR results, retrovirus RD114, leukemia viruses, 223 

TTV, and polyomaviruses sequences may actually be present given their association with the host 224 

(integrated or commensal).   225 
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 226 

Reporting criteria 227 

Reporting criteria used by the participants are shown in Table 1: a threshold for number of reads, for 228 

genome coverage (number of nucleotides and proportion of the genome, or a certain number of 229 

genome regions covered), based on reference or in-house validation studies. A BLAST analysis of 230 

matching sequences was commonly used by the study participants to exclude false positive (or to 231 

confirm true positive) hits. Some participants indicated that for clinical samples outside of the 232 

current benchmark, they required a confirmatory PCR before reporting while others indicated that 233 

this was not needed based on experiences from their validation studies.  234 

  235 
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Discussion 236 

This study aimed to benchmark the combination of bioinformatic tools and databases currently in 237 

use in diagnostic virology laboratories from the ESCV ENNGS network. The data presented here 238 

support bioinformatic selection and optimization of software for the implementation of viral 239 

metagenomic sequencing for pathogen detection in clinical samples. To our knowledge, this is the 240 

first large-scale international benchmarking study using datasets from clinical samples and pipelines 241 

currently applied in a large series of clinical diagnostic laboratories. 242 

The study showed that the pipelines of all the participating laboratories succeeded in detecting viral 243 

pathogens with relative high viral loads (Cq-values <28), whereas lower abundant pathogens and 244 

mixed infections were only detected by some of the pipelines, namely DNASTAR, FEVIR, and 245 

MetaMix. These results are in line with other reports [7]. With regard to mixed infections, the less 246 

abundant viruses were generally missed, possibly due to the low number of reads, or reporting 247 

considerations. For the missed CoV-HKU1 virus, potential primer cross-reactivity with CoV-NL63 248 

viruses was excluded by in silico analysis. The databases used in the pipelines were mostly custom-249 

made, based on either NCBI’s RefSeq [41] or nt database [42]. All of the participants used different 250 

classification tools, though no selection of laboratories using different tools was made in advance. 251 

Given the inclusion of different types of pipelines including commercially available ones with fixed 252 

databases, it was not feasible to compare the different tools with one standardised database at the 253 

local sites. Two of the three pipelines that reached 100% sensitivity included NCBI’s nt database but 254 

this was also seen using a pipeline with NCBI’s RefSeq database. Pipelines with NCBI’s nt database 255 

scored both low and maximum precision. The design did allow for comparison of the complete 256 

pipeline in use for clinical diagnostics, from QC to reporting algorithms including posterior 257 

probability scores. No clear differences were observed in terms of performance based on nucleotide-258 

based classification versus amino acid-based classification and de novo assembly-based algorithms 259 

versus read based classification: whereas amino-acid based classification may be more sensitive for 260 
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detecting variants, two of the three pipelines with 100% sensitivity used nucleotide-based 261 

classification (DNASTAR, FEVIR). High precision was reached by pipelines that used de novo assembly 262 

but this was not essential: 3/8 pipelines with 100% precision did not use de novo assembly 263 

(Centrifuge, Taxonomer, One Codex).   264 

Reported read counts and genome coverage varied between pipelines up to several orders of 265 

magnitude (for read counts), explaining in part the differences observed in limits of detection for 266 

samples with very low viral load. Possibly, differences in reporting of unique versus non-uniquely 267 

mapped sequence reads may be related to this difference. Sensitivity and positive predictive value 268 

were measured, conveniently avoiding the proportion of true negative findings given the immense 269 

but unknown number of negative mNGS hits without RT-PCR data needed for specificity calculations. 270 

This aspect remains a limitation intrinsically linked to mNGS validations with clinical datasets, though 271 

datasets from negative matrix samples and/or negative controls would have been contributable for 272 

specificity calculations and correction for contaminants by the participants respectively. Positive 273 

predictive value calculations were hampered by the intrinsic inability to distinguish between 274 

sequences actually present in the dataset that might be undetected by RT-PCR because, for instance, 275 

primer mismatches, index hopping or contaminant sequences introduced during library 276 

preparation.This may partially be overcome by defining mNGS consensus results as alternative 277 

golden standard, however in diagnostic settings e.g. index hopping reads should not be labelled 278 

positive despite being actually present in the dataset. A study design using synthetic datasets this 279 

may enable a more accurate estimation of the specificity and PPV in silico however these estimates 280 

would deviate significantly from the ones in real-life conditions, where has to be dealt with 281 

interfering factors such as the ‘kitome’, present in every single dataset. The current comparison 282 

aimed at the entire bioinformatic workflow including thresholds for reporting and corrections for 283 

interfering real-life factors.    284 
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It is important to note that participants likely have optimized their interpretation algorithm including 285 

cut-offs for their specific workflow from library preparation to sequencing. A different wet lab 286 

procedure (sequencer with or without index hopping, preparation with or without probe 287 

enrichment) will require new validation and indexing of the determined cut-off values and 288 

probability values. Because this was a dry lab comparison exercise, the participants could not follow 289 

their routine wet lab workflow and confirmatory PCR steps, which may have affected the reporting 290 

of results. Therefore no conclusions can be drawn on the limit of detection of the full metagenomic 291 

workflows used in each specific laboratory.  292 

Genome coverage and depth was not always taken into account by the participating laboratories, 293 

however can be an effective parameter to distinguish between (PCR-)contaminants, often indicated 294 

by high depth at a small (PCR amplicon) region of the genome, and true positives [21, 55]. In five of 295 

participating laboratories a cut-off of one single read was chosen for defining a positive mNGS result. 296 

While potentially at higher risk of reporting false positive results, the PPV of these pipelines ranged 297 

from 72 up to 100%, indicating that this cut-off was dependent on the overall steps of the analysis 298 

and reporting. ROC analysis was used to find the optimal balance between sensitivity and specificity 299 

[20]. 300 

Finally, our taxonomic results are in line with data available from other groups [43]: the pipelines 301 

performed well at species level but deeper level classification was subject to less reliable 302 

classification in some cases.  303 

In conclusion, a wide variety of viral metagenomic pipelines with overall high sensitivity are currently 304 

used in the ESCV ENNGS participating clinical diagnostic laboratories. Detection of low abundance 305 

viral pathogens or mixed infections remains a challenge, implicating the need for standardization 306 

and validation of metagenomic analysis for clinical diagnostic use [44]. The algorithm for defining 307 

positive results and rejecting false positive results is critical and should be evaluated individually for 308 

every workflow, which includes genome extraction, library preparation, sequencer and bioinformatic 309 
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pipeline. Identification of deeper taxonomic levels is challenging, dependent on the individual types 310 

present in the reference database, and should be validated separately to prevent misidentification.   311 

 312 

  313 
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Table 1. Clinical use, classification and output characteristics of metagenomic pipelines analysed. 
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 Mapping of the trimmed reads to HG38 by Bowtie with “very-sensitive” option 
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Table 2. Qualitative and quantitative results: raw sequence read count categori

using datasets from 13 clinical samples, per classification tool (complete pipelin

CSF; cerebrospinal fluid, NP; nasopharyngeal, BAL; bronchoalveolar lavage, and

ies of the PCR positive viruses reported by the metagenomic pipelines

ne details can be found in table 1).
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Figure 3. (Taxonomic) level of classification and typing of the pathogenic viruses identified usin

Depicted are the number of target viruses per classification level.

RefSeq; NCBI’s RefSeq data base (or an adapted version), NT; NCBI’s nucleotide database (or a

*Taxonomic assignment method described in [25,26] 

ng the combination of tools and databases, as reported by participating diagnostic laboratories. 

an adapted version); LCA; lowest common ancestor.
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Supplementary Figure S1. User-friendly output formats of metagenomic pipelines and tools te

Genome Detective

sted, command line formats excluded.
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Species
Absolute 
Abundance

Relative 
Abundance

Assembly 
Length Contigs Orfs

Ma
Ide
(nu

Influenza C virus 5845 1.612% 12910 7 27
Alphaarterivirus equid 640 0.177% 12545 5 42
Moraxella catarrhalis 76358 21.065% 1838485 1716 5070
Rothia mucilaginosa 43973 12.131% 14728 23 72
Streptococcus pneumoniae 38291 10.563% 783428 894 2370
uncultured bacterium 36029 9.939% 60681 88 175
Moraxella bovis 28466 7.853% 571467 621 1681
Streptococcus parasanguinis 18833 5.195% 401551 509 1313
Atopobium parvulum 12025 3.317% 18548 28 84
Cardiobacterium hominis 4529 1.249% 3563 3 16
Streptococcus salivarius 2064 0.569% 14449 14 39
Acinetobacter baumannii 1512 0.417% 6643 7 46
Streptococcus mitis 558 0.154% 22252 36 62
Neisseria meningitidis 118 0.033% 4998 6 25
Klebsiella pneumoniae 56 0.015% 2910 3 25
Veillonella parvula 4 0.001% 462 1 2
Moraxella phage Mcat17 49 0.014% 1356 1 4
Streptococcus anginosus 9672 2.668% 26025 41 96
Lactobacillus gasseri 9596 2.647% 5091 6 11
Moraxella nonliquefaciens 7413 2.045% 135928 195 390
Prevotella denticola 4615 1.273% 2572 5 11
Streptococcus mutans 4589 1.266% 2559 4 6
Fusobacterium nucleatum 4207 1.161% 1941 4 6

Sample Name
cs068_contiglen40
0

Read Pairs 11723458

Read Pairs (PF) 11702298

Single Reads 0

Single Reads (PF) 21160

Average Fragment Size 262
Fragment Size Standard 
Deviation 83

Reads aligning to host (est. perc.) 0.5

A

DAMIAN

aximum 
dentity 
nucl)

Maximum 
Identity (prot)

99.483 -1
100 -1
100 100
100 98.352
100 100
100 88.462

99.281 99.167
100 100

99.695 100
98.667 78.392

100 42.857
-1 88.06

99.632 97.059
98.887 79.882

-1 52.83
97.186 -1
98.304 -1

100 52.727
100 -1
100 100

99.368 -1
100 -1
100 -1

Contig_ID Length Abundance
Abundance/Lengt
h Assignment

315326 2340 999 0.426923077 Influenza C virus

315411 2039 981 0.481118195
Influenza C virus 
(C/Catalonia/1266/2009)

315312 2412 914 0.37893864 Influenza C virus (C/Miyagi/25/2004)

316527 938 872 0.929637527 Influenza C virus (C/India/P119564/2011)

315525 1763 838 0.475326149 Influenza C virus

315342 2259 778 0.344400177 Influenza C virus (C/Miyagi/25/2004)

316101 1159 463 0.399482312 Influenza C virus (C/Victoria/2/2012)Domains

Contig_ID Orf_ID Accession Name Description Viral Root

315326 1329636 PF00604 Flu_PB2 Influenza RNA-dependent RNA 
polymerase subunit PB2

Orthomyxoviridae

315411 1330160 PF00509 Hemagglutin
in

Haemagglutinin Orthomyxoviridae

315411 1330160 PF02710 Hema_HEF
G

Hemagglutinin domain of 
haemagglutinin-esterase-fusion 
glycoprotein

ssRNA viruses

315411 1330160 PF08720 Hema_stalk Influenza C hemagglutinin stalk Influenza C virus (C/Ann 
Arbor/1/50)

315411 1330160 PF03996 Hema_ester
ase

Hemagglutinin esterase ssRNA viruses

315312 1329545 PF00602 Flu_PB1 Influenza RNA-dependent RNA 
polymerase subunit PB1

Orthomyxoviridae

315312 1329545 PF02404 SCF Stem cell factor

315312 1329542 PF10523 BEN BEN domain dsDNA viruses, no RNA stage
316527 1334337 PF03506 Flu_C_NS1 Influenza C non-structural protein 

(NS1)
Influenza C virus (C/Ann 
Arbor/1/50)

316527 1334337 PF03555 Flu_C_NS2 Influenza C non-structural protein 
(NS2)

Influenza C virus (C/Ann 
Arbor/1/50)

316527 1334337 PF09014 Sushi_2 Beta-2-glycoprotein-1 fifth domain

316527 1334335 PF09172 DUF1943 Domain of unknown function 
(DUF1943)

315525 1330771 PF00506 Flu_NP Influenza virus nucleoprotein Orthomyxoviridae

315525 1330771 PF10211 Ax_dynein_l
ight

Axonemal dynein light chain

315342 1329737 PF05010 TACC Transforming acidic coiled-coil-
containing protein (TACC)

315342 1329737 PF00603 Flu_PA Influenza RNA-dependent RNA 
polymerase subunit PA

Orthomyxoviridae

315342 1329739 PF09416 UPF1_Zn_bi
nd

RNA helicase (UPF2 interacting 
domain)

316101 1333102 PF03021 CM2 Influenza C virus M2 protein Influenza C virus (C/Ann 
Arbor/1/50)

316101 1333102 PF03026 CM1 Influenza C virus M1 protein Influenza C virus (C/Ann 
Arbor/1/50)

B
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Metamix/Bluebee Command line (CLC Genomics Workbench) PDF coverage plot

RIEMS
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Jovian

PDF coverage plot (command line)
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