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A n accurate estimate of the number of in-
fected individuals in any disease is crucial.
Current estimates are mainly based on the

fraction of positive samples or the total number of
positive samples. However, both methods are bi-
ased and sensitive to the sampling depth. We here
propose an alternativemethod to use the attributes
of each sample to estimate the change in the total
number of positive patients in the total population.
We present a Bayesian estimator assuming a com-
bination of condition and time-dependent proba-
bility of being positive, and mixed implicit-explicit
solution for the probability of a person with con-
ditions i at time t of being positive. We use this
estimate to predict the total probability of being
positive at a given day t.
We show that these estimate results are smooth
and not sensitive to the properties of the samples.
Moreover, these results are a better predictor of fu-
ture mortality.

1 Introduction

A central tool in the management of epidemics is a
precise estimate of the total number of infected indi-
viduals. Multiple methods have been proposed for such
estimates [1]. The Centers for Disease Control and Pre-
vention (CDC) estimates the daily “percent positive”
by dividing the number of positive tests by the total
number (positive and negative) of tests for every given
day. In some countries, the definition differs from the
CDC. They do not compare between the amounts of
daily positive tests to the total daily tests. Instead, by
using the ID of the subjects, they delete people who

have repeated positive tests. They then calculate the
number of new positives out of the total number of
daily tests or out of new individuals checked that day
(positive and negative).

Both the number of daily sample tests and the com-
position of the population sampled vary daily. The num-
bers of newly infected individuals reported by the CDC
and similar countries do not incorporate the number
of tests. As further shown, the total number of positive
samples is clearly correlated with the total number of
tests (Fig. 1 F). Moreover, even the fraction of positive
tests is a problematic measure, since variations in the
composition of the tested population directly lead to a
change in the fraction of positive samples. Assuming
that individuals with a higher probability of having dis-
ease related symptoms also have a higher probability
of being tested, increasing the number of tests would
lead to sampling individuals with less symptoms, as
can be seen in the Israeli data (as further detailed in
Fig. 1 A-E). This leads to a reduction in the fraction
of positives as a function of the sample size. Thus,
current estimates are biased by the sampling depth.
Here, we propose instead to use the properties of the
tested individuals to estimate the fraction of positives
while minimizing the effect of the changing amount
and sampled populations in tests.

2 Related work

Estimates of the total number of infected individuals
have been extensively studied [2–4]. Such estimates
can be divided into three main tasks:
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1. Estimates of unobserved infected individuals.
Estimates of the total number of infected individ-
uals, based on the observed number of infected
individuals [5, 6]. Such methods include, among
others, estimate of the failures in infection tracing
[7], back estimating infections from mortality [8,
9], and using dynamic statistical techniques [10].

2. Prediction of future dynamics. Short or long
term prediction of the future number of infected
individuals, using epidemic models, fit the ob-
served infection data to different models, often
ODE based, to predict future dynamics [11–13].
An interesting model in the current context com-
bines the outer knowledge about COVID-19 with
the statistical model of Bayesian analysis trying
to find the most likely parameters given the SIR
model [14]. A problem with epidemic models is
that their results are sensitive to the model param-
eters, which are often unknown. Future dynam-
ics were also predicted using statistical inference
models and time series analysis methods. Such
methods address the varying test number problem
[15]. They use several statistic parameters, such as
the mean, variance, auto correlation, and assum-
ing that these parameters are constant over time
[2]. Other statistical methods used are Bayesian
inference, Markov Chain Monte Carlo (MCMC)
sampling method, etc [16] for a similar goal.

3. Estimates of the probability of being infected
given properties, using machine learning. Ma-
chine learning [17, 18] tools actually use the in-
formation of the tested individual and relate it to
the probability of having a positive test. However,
such tools are not used to estimate the number
of infected individuals. Instead, they are used
to predict whether a tested individual with given
properties is positive.

3 Adaptive Bayesian Condition
Dependent Estimate -
ADVANCE

To address the varying test population composition,
the profile of each test should be taken into account.
A naïve solution to this problem is to divide the daily
sample tests to sub-groups with similar profiles. Let us
denote the number of total tests on specific day t with
a specific profile i (a profile is a set of properties - e.g.,
age, gender and whether the individual has fever) as
Ni,t and the parallel number of positive tests as Ki,t.
The fraction of positive tests at day t and a given profile
i is the ratio of Ki,t and Ni,t . If the sample size was
large compared with the possible feature combinations,
it would be possible to estimate the total probability

of being positive, as:

P (Pos|t) =
∑
i

p(i, t) · Ki,t

Ni,t
, (1)

where p(i, t) is the relative frequency of profile i at day
t in the total population. In reality, the sample size is
limited, and the amount of samples in each sub-group
is small, and p(i, t) is not known. We here propose to
merge the different groups into a coherent context. We
follow here an example using the Israeli SARS-CoV-2
test data.
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Figure 1: A-E Relation between the number of daily tests
and the number of tests being positive for a propriety,
based on the Israeli SARS-CoV-2 data between the dates
11.3.2020 and 1.4.2021. In all the properties, except
for headache, the fraction of the population positive for
the syndrome decreases with the sample size. Subplot F
represents the relation between the number of daily tests
(x axis) and the number of positive tests (y axis). The
daily number of positive tests is highly correlated with
the number of daily total tests.

We merged two datasets. One is the Israeli SARS-
CoV-2 data between the dates 11.3.2020 and 1.4.2021.
The data was taken from data.gov and is the official
data of the Israel Ministry of Health. This data consists
of the individual’s features at the Covid-19 test, in-
cluding: cough, fever, sore throat, shortness of breath,
headache, gender, reason for check and age group
(60 or above). We used that to estimate Ni,t and Ki,t

in Israel [19]. The other is the data of deaths from
Covid-19 in Israel per day. It consists of the number of
deaths per day in Israel between the dates 11.3.2020
to 9.4.2021. This data was collected from the Israel
Ministry of Health Covid dashboard. We used it to
validate our models [20].

4 Methods and Results

Using the notation above of the number of positive
tests on day t with specific set of features i as Ki,t,
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and the parallel number of tests as Ni,t, we further
denote I as the set of all proprieties combinations, T
as the set of all days, and Kt =

∑
iKi,t, Nt =

∑
iNi,t

as the total number of positive and overall samples at
day t, respectively. By using the current estimates of
either the total daily number of positive testsKt or the
same value divided by the total daily number of tests
P (positive|t) = Kt

Nt
, one obtains two different patterns

of the epidemics (Figure 2 for the Israeli SARS-CoV-2
data). When using non-normalized values (Kt), the
patterns are highly sensitive to the number of sam-
ples, while in the normalized values (Kt

Nt
), the opposite

happens with limited differences in the total positive
fraction.
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Figure 2: current estimates: X axis - days of tests be-
tween 11.3.2020 and 1.4.2021. Y axis - proxies for num-
ber of infected. The blue line represents the the fraction
of positive tests Kt

Nt
. The red line represents the number of

positive tests Kt. The upper plot is the raw data (which
has a strong week-end effect). The lower plot is a moving
average of 7 days until the current date, except for the
first 7 days which do not have 7 previous days.

To reduce the bias in Figure 2, we use a limited set
of assumptions:

• The probability of being positive on a certain day
with a specific set of features can be approximated
by a product of two factors, one that only depends
on the date, referred to as p0(t), and the other that
depends on the proprieties of the tested individu-
als and possibly on the date, but is changing very
slowly, referred to as qi(t). In the initial analysis,
we assume qi(t) = qi, and then relax this assump-
tion. The probability of being positive on a given

day with a given profile is:

POS(i, t) = P (positive|i, t) = 1− e−p0(t)qi (2)

• p0(t) is a smooth function.

p0(t) ∼ N ( p0(t− 1), σ2) (3)

In the following models we chose σ to be 0.01, but
show that the results are not sensitive to the value
of σ.

• We consider each sample at day t with profile i as
an independent measure with success probability
POS(i, t) (This may be imprecise if some people
tend to domore repeated tests than others, but this
does not seem to be a problem in the Israeli data).
The resulting distribution of results is binomial
with POS(i, t) as a success probability, with Nt

measurements (Eq. 4):

pi(Ki,t, Ni,t|POS(i, t)) =(
Ni,t

Ki,t

)
(POS(i, t))Ki,t · (1− POS(i, t))Ni,t−Ki,t

(4)
We then estimate p0(t) and qi [21], by maximizing

the log likelihood of:

L =
∏
t∈T

∏
i∈I

pi(Ki,t, Ni,t|POS(i, t)) · Pr(POS(i, t))

(5)
We further assume a uniform beta prior on qi; and a
prior for p0(t) as in equation 3, and Pr(POS(i, t)) is a
prior on POS(i, t). We compute ∀t; p0(t) and ∀i; qi that
maximize the log likelihood. To avoid a large variance
in combinations of i and t with very small sample, we
also use a beta prior on the binomial distribution. We
tested that the coefficients of the prior are of minimal
effect [22]. Specifically, we use the Laplace correc-
tion with beta function coefficient of α = 1, β = 1∀i.
Leading to:

LL = Log(L) =
∑
i

∑
t

[log(

(
Ni,t + α+ β

Ki,t + α

)
)

+(Ki,t+α)·log(1−e−p0(t)·qi)+(Ni,t+β−Ki,t)·log(e−p0(t)qi)

+
∑
t

[log(
1

σ ·
√
2π

)]−
∑
t

((p0(t)− p0(t− 1))2

2σ2
(6)

One can now derive LL according to p0(t) and qi, and
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obtain for the p0(t) derivative:

∑
i

(
(Ki,t + α) · e−p0(t)qi · qi

1− e−p0(t)qi
+(Ni,t+β−Ki,t)·(−qi))

−−p0(t+ 1) + 2p0(t)− p0(t− 1)

σ2
= 0;∀lastday > t > 1∑

i

(Ki,t + α) · e−p0(t)qi · qi
1− e−p0(t)qi

+(Ni,t + β −Ki,t)·(−qi) = 0; t = 1

∑
i

(
(Ki,t + α) · e−p0(t)qi · qi

1− e−p0(t)qi
+(Ni,t+β−Ki,t) ·(−qi))

− p0(t)− p0(t− 1)

σ2
= 0; t = lastday (7)

In the p0(t) derivative, we treated each day as if it
was the last day, and only computed the back regular-
ization term. Solving with both forward and backward
derivative led to numerical instabilities. In the qi deriva-
tive, we approximate 1− e−p0(t)qi = p0(t)qi , to obtain
an explicit solution:∑

tKi,t + α∑
t p0(t) · (Ni,t + α+ β)

= qi;∀i (8)

We solve for qi, assuming known p0(t), where Ki,t

and Ni,t are observed. We then implicitly solve the
p0(t) derivatives numerically. The p0(t) values were
found using the scipy Levenberg–Marquardt algorithm
[23] as implemented in scipy.root. We initiate the
solution by defining the fraction of samples belonging
on a given day to a profile i:

p(i|t) = Ni,t

Nt
(9)

and then initiate the solution for p0(t) using the frac-
tion of positives the same day divided by the average
fraction of positives:

Guessed p0(t) =

∑
iKi,t · p(i|t)/Ni,t∑

i qip(i|t)
. (10)

Following the numerical solution of p0(t), we estimate
the total fraction of infected individuals to be:

P (positive|t) =
∑
i

POS(i, t) · P (i) (11)

while P (i) is the total probability of having a specific
set of features, i, among the total tests in all sampled
days, calculated by:

P (i) =

∑
tNi,t∑
i,tNi,t

(12)

Note that we here assume that while the fraction of
samples belonging to a given profile in any given day
can be biased, the average over the entire period are
representative of the entire population. We have ap-
plied the ADVANCE framework on the Israeli data. The
results are demonstrated in Figure 3.

Figure 3: Global vs current estimates: Probability
of being positive every day (y axis) during the period
11.3.2020 to 1.4.2021 (x axis) .The purple graph rep-
resents the ADVANCE estimate, while the red and blue
graphs represent the current methods, as in Fig.2.

Two interesting results emerge. First, the obtained
estimate is smooth, and not sensitive to the effects of
sampling. Second, the result is halfway between the
two extreme estimates of the fraction and number of
positives. As such, it is less affected by the biases of the
two methods. We will further show that this interme-
diate estimate is more predictive of future death rates
than the two existing methods.
POS(i, t) does not deviate drastically from the frac-

tion of positive tests Ki,t/Ni,t (Figure 4), where the
size of the scatter points represents the number of tests
done. The ADVANCE estimate correlates Kt/Nt with
correlation of 0.87 and also correlates Kt with correla-
tion of 0.84. There is a small bias that stems from days
with a small number of tests, according to the dots size
in Fig. 4. Another interesting result in Fig. 4 is that
COVID-19 becomes more common as time passes, as
the colors of the points transform from blue in the low
values to red in the high values. The colors in Fig.4
change from blue in the first dates to red in the late
ones according to the colors of the spectrum.

5 Online solution

The ADVANCE global is only applicable backward, and
is based on a system of equations with an equation
and a variable per day. Moreover, it assumes that qi
is static over time. This assumption may be not accu-
rate, over long periods. Thus, the utility of the model
above is limited for very long periods. We propose an
online version of the same model, with the following
assumptions:
• qi is not static over time. We believe qi changes

slowly within time. We calculate each qi(t)
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Figure 4: Evaluation: The x axis represents the proba-
bility estimated from the bayesian inference, POS(i, t).
The y axis represents the probability calculated directly
from the data, Ki,t/Ni,t. The colors of the points repre-
sent the passing days from blue to red, (i.e. probabilities
from March are blue and the color of the points that rep-
resent the probabilities of later tests changes from blue
to red, while the color of the last tests is red). The size of
the points represents the number of tests on the day the
point represents.The bigger the point is the more tests
committed to calculate the probability.

according to its 28 previous days, using Eq.8. The
first 28 days do not have 28 previous days, there-
fore their qi(t) is constant and equals to the qi
values of the 29th day.

• We find the first 28 p0(t)s by solving the equation
system represented in 7 and 8 for only 28 days. In
the following days, we find for each consecutive
day, p0(t) by solving 7 and 8 assuming p0(t) is
known for all days but the last, and only solving
the best approximation for the equation root for
the last day.

• We update equation 7 in order to deal with the
"weekend effect". The number of tests decreases
on the weekend. As a result, assuming that p0(t)
is normally distributed around the average of the
previous week (and not the day before):

p0(t) ∼ N (MP7, σ2) (13)

where MP7 is the average of the 7 previous p0(t)s.

Formally, we update equation 7 to be:

∂LL

∂p0(t)
=

∑
i

(
(Ki,t + α) · e−p0(t)qi · qi

1− e−p0(t)qi
+(Ni,t+β−Ki,t) ·(−qi))

− p0(t)−MP7

σ2
= 0 (14)

The results of this model are represented in pink
in Figure 5, with quite similar results to the global
solution.
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Figure 5: Comparison between global (purple) and on-
line (pink) solutions. The hyper parameters of both mod-
els are: alpha, beta equals 1 and sigma equals 0.01. The
special hyper parameters for the online model are:number
of days to estimate qi(t)= 28 and number of days for the
p0(t) regularization = 7. The models are quite similar.
As the time passes they get closer to each other.

6 Model Validation

To test the quality of the different estimators, we com-
pared their correlation with future death counts. We
used again the Israeli data, and computed the delayed
correlation between death events and predicted infec-
tivity. We compared ADVANCE, the fraction of positives
and the total number of positives. We used two dif-
ferent values of σ for ADVANCE, and used delays of
between 0 and 30 days. We analyzed both the global
and the online versions. The global model gives by far
the best Spearman Correlation (Figure 7) with the num-
ber of death events, with an optimal delay of Twenty
days. The online model has a similar correlation as the
raw number of positive tests, while the positive test
fraction has the lowest correlation.
We further compared our results with the seven day

smoothed fraction or count of positive tests. Even when
smoothing the data with windows of 2-9 days, and
using the best smoothing factor for each model and
testing for delayed correlations, the same results are
obtained and our model provides a better correlation
than any other model (Table 1). To test the quality of
the different estimators, we compared their correlation
with future death counts. We used again the Israeli
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data, and computed the delayed correlation between
death events and predicted infectivity. We compared
ADVANCE, the fraction of positives and the total num-
ber of positives. We used two different values of σ for
ADVANCE, and used delays of between 0 and 30 days.
We analyzed both the global and the online versions.
The global model gives by far the best Spearman Corre-
lation (Figure 7) with the number of death events, with
an optimal delay of Twenty days. The online model
has a similar correlation as the raw number of positive
tests, while the positive test fraction has the lowest
correlation.
We further compared our results with the seven day

smoothed fraction or count of positive tests. Even when
smoothing the data with windows of 2-9 days, and
using the best smoothing factor for each model and
testing for delayed correlations, the same results are
obtained and our model provides a better correlation
than any other model (Table 1).

7 Sensitivity Analysis

In the current analysis, we ignored the age feature,
since in Israel this feature was not checked between
the dates 15.4.2020-17.6.2020. We tested the possibil-
ity of adding an unknown value for the age category
in the period when data was missing. This indeed in-
duced noise, but only during the problematic period of
time in samples, as represented clearly in Figure 6. We
further tested that the results are not sensitive to any
of the hyperparameters in the model. Those include: α
and β from the Beta prior, σ from the p0(t) regulariza-
tion, and the number of days used to compute model
in two ways. One is the number of previous days for
calculating the dynamic qi(t). The other is the number
of previous days for the average, which set the expecta-
tion of the normal distribution p0(t) is taken from. We
checked the impact of changing each hyper-parameter
on the model results. We tested the following com-
binations: α equals β in range of [0.8,1,1.2], sigma
in range of [0.01,0.1,1], number of previous days for
dynamic qi in range of [21,28,35] and number of pre-
vious days for p0(t) normal distribution [5,7,9] (Figure.
6).
Similarly, one can change the β function priors and

the σ of the normal distribution and the values of qi
does not change a lot. The different vectors of the qi
values stay highly correlated - Spearman correlation
of 0.98.

Table 1: Validation after smoothing.

Model estimate Window of smoothing Delay Spearman correlation coefficient
Raw fraction 8 15 0.8569
Raw number 9 13 0.9076
Global sigma = 0.01 2 20 0.9209
Global sigma = 0.1 2 21 0.8892
Online sigma=0.01 9 8 0.8530
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Figure 6: Upper plot Online Analysis - effect of
changing input. P (positive|t) (y axis) as a function of
time as in previous figures. The Green/Pink points are
with/without the age of the tested individual, according
to the online estimate. Lower plot - effect of hyper-
variable changes. Same axes as upper plot. Each color
represents another combination of the hyper-parameters
of the online model: α and β. See text for parameter
range. In both plots, one can see that the variances of
the different combinations of hyper-parameters is rather
small.

8 Discussion

We suggested two different estimation models to the
fraction of daily positives to a certain disease. We used
the models on the data of the Israeli Covid-19. On this
data, the ADVANCE estimations are much smoother
and are less effected by bias than current estimators.
Moreover, they are a better prediction of future morbid-
ity. suggested two different estimation models to the
fraction of daily positives to a certain disease. We used
the models on the data of the Israeli Covid-19. On this
data, the ADVANCE estimations are much smoother
and are less effected by bias than current estimators.
Moreover, they are a better prediction of future mor-
bidity.
The main limitation of the current model is the es-

timate of P (i). Even if one knows the property distri-
bution within the sampled population, this distribu-
tion may differ from the one in the general population.
Moreover, we have here assumed that P (i) is fixed over
time. This may not be the case if, for example, seasonal
diseases affect the frequency of people with fever in
the population. Still, even with these limitations, AD-
VANCE is a better predictor of future morbidity than
current methods.
Individuals rely on COVID-19 test results to guide
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Figure 7: Evaluation: The x axis represents the delay in
days between infection and death. The y axis represents
the correlation coefficient between the estimate of positive
tests and the number of deaths. The global version of
ADVANCE gives the best correlations in all the delays we
checked.
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Figure 8: Repetition of the results in Figure 1, but this
time not vs the number of tests, but vs the P (positive|t).
In contrast with Figure 1, here no correlations are ob-
served.

their medical treatment and decisions on whether to
self-isolate, and to vaccinate. Public health officials rely
on the results to track the state of the pandemic, and
policymakers use this information to make decisions on
reopening schools and businesses. An important factor
in these decisions is a proper estimate of the infected
population. We thus suggest ADVANCE to improve the
quality of such an estimate.
Two versions of ADVANCE were presented - a global

aposteriori version and an online version. The global
version is a better predictor of future morbidity, but it
does not supply a continuous estimate. Running the
global version every day with the new data did not
produce a smooth enough estimator of the fraction of
infected individuals. Both global and online methods
include an inherent smoothing of the fraction of in-
fected individuals through the prior on p0(t). As such
they can be directly compared to the moving averages
of current estimators.
We have here used a set of features defined by a

standard questionnaire used in Israel. Most compo-
nents, except for age, of this questionnaire were found
to be informative. However composite indices may
end up being more informative. The next stage of the
current analysis will be to develop outcome prediction
algorithms and through those develop composite fea-
tures. Another important required extension will be
to compare this method in other countries. However,
currently, we did not find similar datasets.

9 Data Availability

All code and data summaries used
in these analyses are posted on
https://github.com/oshritshtossel/ADVANCE-
Sampling-bias-minimization-in-disease-frequency-
estimate
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