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Abstract

Early detection of dental caries has been one of the most predominant topics studied over the last few
decades. Conventional examination through visual-tactile inspection and radiography can be inaccurate
and destructive to teeth structure. The development of Optical Coherence Tomography (OCT) has
given dentistry an alternative diagnostic technique, which has been proven by numerous studies, that it
has better sensitivity, specificity, and non-invasive characteristics. The growing popularity of Artificial
Intelligence (AI) also contributes to a more efficient and effective way of image-based detection and
decision-making. Previous studies, which have attempted to employ AI for caries assessment, did not
incorporate high-quality data. Hence, they were unable to produce valid and reliable results. This
study highlights the importance of high-quality data and aims to bypass this issue, by implementing an
improved methodology to the automated detection and diagnosis of dental caries depending on AI. A two-
phase study was carried out to explore different methods for caries detection. Initially OCT was verified,
by surveying experienced clinicians, to be a better imaging technique compared to radiography. Then,
our study showed that Convolutional Neural Networks (CNNs) in the scope of AI surpassed the accuracy
of human clinicians. The data was preprocessed and labelled with the ground truth corresponding to
Micro-CT with rigorous definition. Statistical analysis performed was mainly based on weighted Kappa
coefficient. The results suggested that OCT (κ = .699, SD = .090) showed a higher accuracy than
radiography (κ = .407, SD = .049) and CNNs (κ = .860, SD = .049) were rated higher than clinicians
(κ = .679;SD = .113), both within a .05 significance. The best result was carried out by ResNet-152,
concluding diagnostic accuracy to be 95.21% and sensitivity 98.85%. The improved methodology of this
study hopes to pave the way for future studies in AI application in Dentistry.
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Introduction

Dental caries is a widespread disease that people of all ages experience; it affects almost 80 percent of
children and 90 percent of adults (Bader et al., 2001). Lesions begin from the demineralization of tooth
surfaces that eventually evolve into larger cavities and pulpitis. Therefore, an effective modality for the
early detection of dental caries is an essential topic in dental research (Zandoná and Zero, 2006). Over
the past several decades, the most common approach for identifying caries lesions has been through visual
and tactile examinations with the help of radiography and dental explorers (Haak et al., 2002). Inspection
with radiographic imaging suggests locations of suspicious lesions, followed by tactile examination helping
clinicians access carious lesions directly and more accurately. Unfortunately, there are several drawbacks to
this methodology. Firstly, X-ray imaging provides 2D graphs for 3D tooth structures; this means it makes
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tracing subtle lesions virtually impossible, especially on overlapping structures, including lesions on occlusal,
buccal, and lingual surfaces. Thus, intraoral radiography has a poor diagnostic rate of 21% for enamel lesions
and 44% for dentin lesions (Molander et al., 1993). Secondly, tactile examination is experiential and relies on
intuition, meaning that there is no quantifiable standard. Furthermore, several studies have indicated that
tactile examination may cause irreversible damage to enamel structures (Ekstrand et al., 1987). Finally, the
United Nations Scientific Committee on the Effects of Atomic Radiation (2017) also suggests that excessive
radiation exposure on infants, children and adolescents should be avoided, as it can pose more risk than
adulthood exposure (e.g. radiogenic tumor induction, cognitive defects, neuroendocrine abnormalities).

Thus far, there have been an array of advanced imaging devices developed for intraoral caries diagnosis,
one of which is the Optical Coherence Tomography (OCT). The OCT is a diagnostic tool that relies on
an optical interference mechanism (Fercher et al., 2003). There are several advantages that OCT has over
traditional radiography. Firstly, data collected from a single OCT procedure consist of multiple scans, in
sections, that can be constructed to create a 3D model without interference from adjacent structures, e.g. the
alveolar bone surrounding a tooth. Secondly, the high-contrast resolution of OCT scans allows different tissue
densities to be distinguished; hence, the possibility of tracing the caries progression is raised. Lastly, since
OCT uses low-coherence broadband light instead of tactile movements and X-rays, the risks of tissue damage
and radiation exposure are alleviated. Studies have increasingly shown their preference for OCT scans for
intraoral caries diagnosis, due to its non-invasive nature and higher sensitivity, compared to radiographs and
visual-tactile inspection (Luong et al., 2020; Schneider et al., 2020).

The rapid growth of Artificial Intelligence (AI), especially Convolutional Neural Network (CNN) in the
scope of deep machine learning, reveals an exceptionally suitable method for analyzing and classifying images
(Goodfellow et al., 2016). A recent study has also pointed out that these novel algorithms can bring a cost-
effective solution to disease detection (Schwendicke et al., 2020). Therefore, it has become increasingly
popular in medical analysis. For example, it was implemented in the classification of diabetic retinopathy,
as well as, in the detection of cancerous tumor cells (Litjens et al., 2017). These applications have helped
CNNs develop a reputation for high recognition rates, accuracy, and efficiency.

As an increasing amount of innovative AI research has been published, a popular saying, “garbage in,
garbage out,” has emerged alerting researchers to pay attention to the quality of data and the reliability
of methodology (Rockall, 2020). Recent studies that have attempted to apply CNN algorithms to caries
detection have faced limitations. The limitations include labelling carious or non-carious teeth based solely
on radiography, as seen in studies done by Lee et al. (2018) and Srivastava et al. (2017), while radiography
has been proved with a poor diagnostic rate. Salehi et al. (2019), on the other hand, performed experiments
using OCT images without clarifying and addressing how lesions were defined and labeled. Additionally, all
above-mentioned studies solely emphasized the detection of caries without considering the “depths” of the
lesions. When in fact, effective clinical management is dependent on the awareness of lesion depth (Bader
et al., 2001). Lesions limited to the enamel layer require no treatment or merely plaque control; In contrast,
operative treatments are required when demoralization and cavities develop in the middle or inner third of
the dentin (Ekstrand et al., 2001). Hence, it is vital that further differentiation between lesion seriousness
needs to be addressed (Frencken et al., 2012).

Overall, past studies which have attempted to apply CNN algorithms to the detection of caries have
lacked validity and reliability on methodology. The impracticable classification also limited the potential for
clinical decision-making. The objective of this study is to suggest a practical approach to develop a more
reliable methodology that produces a more detailed classification of lesions. The aims of our paper are:
(a) to establish a valid and reliable method for classifying carious lesions;
(b) to provide quantitative research on diagnostic rates of radiography and OCT; and
(c) to compare the diagnostic outcomes between experienced clinicians and our CNN models.
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Materials and Method

Imaging Techniques

A self-developed swept-source OCT (SS-OCT) was used in this study. The system operated at a center
wavelength of 1310 nm with an average power of 40 mW, a scan rate of 50kHz, and a frame rate of 160 fps.
Each frame contained 200 scanning lines, and the resolution of each 2D image was 250 × 1024 px. Further
detailed illustration, settings, and mechanisms are shown in Appendix A.

The periapical films of the teeth samples were acquired with ScanX Intraoral Phosphor Plates (Air
Techniques Inc., USA) and PY-70M Intraoral Imaging Systems (POYE Inc., Taiwan), operating with 70
kV p tube potential, 10 mA tube current, and 0.7 x 0.7 mm focus point. The films were processed with
ScanX-Duo D1000F Digital Radiography System, exported in .tiff format with the resolution of 652×801 px.

Micro-CT is a device used for assessing dental caries by analyzing the mineral contents of teeth through
non-destructive characteristics (Swain and Xue, 2009). The device is currently considered one of the best
for assessment, even though it still relies on clinician judgement and verification. Therefore, Micro-CT was
chosen to be the judgment basis in this study, as it can reach a deeper depth than OCT scans and present
high-resolution data. The Micro-CT used in this study was High-Resolution U-CT (Milabs, Netherlands),
operating with 50 kV tube voltage, 0.48 mA tube current, and 10 µm resolution.

Convolutional Neural Network (CNN)

CNN is well-known for its powerful capability for image processing. Instead of conventional architectures that
connect all the perceptrons costing tremendous computational time and power, CNN adopts a more efficient
method by recognizing hierarchical patterns. Detailed CNN basics can be further observed in Appendix B.

Throughout this study, using CNN algorithms for the detection and classification of caries were our
main technique of interest. To gauge its effectiveness, the results were compared to experienced clinician
detection and classification of caries. This allows us to determine the feasibility of using CNNs as assistance
in differential diagnoses. A high recognition rate, accuracy, and efficiency were hypothesized. The CNN
models adopted in our study were: AlexNet (Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman,
2014), ResNet-152 (He et al., 2016), Xception (Chollet, 2016), and ResNeXt-101 (Xie et al., 2017), which
are the classic and best models for image recognition over the recent years. The CNN model architectures
adopted in our study remained the same as their original published versions. Additionally, the PyTorch
framework (Paszke et al., 2019), based on Python programming language, was used in this study as the
implementation of deep learning models.

Data Collection

The study was approved by the Institutional Review Board of National Yang-Ming University (YM109025E).
Sixty-three teeth with different levels of caries lesion were collected. Fractured teeth, previously restored
teeth, and teeth with obvious cavities that can be visually differentiated, were not included. The teeth were
immersed in 5% sodium hypochlorite (NaOCl) for a week for disinfection and then stored in distilled water.
For each tooth, we took one micro-CT scan as the reference, one periapical film and one scan of OCT for
our research. The periapical films were clipped into a unified size (591 × 421 px); on the other hand, the
OCT data was converted via our self-developed software to 200 sections .bmp images, with a unified size
(420× 209 px).

All the experimental data required classification. The micro-CT data and periapical films were coded
according to a simplified version, shown in Table 1, of the widely-used criterion for radiographic examination
formulated by Ekstrand et al. (1997) (see Appendix C). Our self-developed criterion used for classifying
the OCT images is also described in Table 1, which was based on the criterion developed by Shimada et al.
(2010) (see Appendix D). The implementation of rigorous labelling assured the codes of all experimental
data to be mutually exclusive and independent. Supplemental pictures are shown in Fig. 1.
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Table 1: Criteria of carious status classification in radiography and OCT

Code Criteria

Radiography: Periapical film and Micro-CT

0 No radiolucency visible
1 Radiolucency visible in the enamel, but not involved in the dentine
2 Radiolucency visible in the outer, middle, and pulpal 1

3 of the dentine

OCT

0 No caries. Obtained OCT signal was the same level and shape as that of normal enamel
and loss of enamel surface did not occur.

1 Superficial demineralization of enamel or enamel breakdown due to the caries. OCT
signal intensity was enhanced within the enamel thickness, whereas continuity of enamel
surface may be disconnected at the occlusal fissure or not.

2 Dentine caries. An intensified OCT signal was obtained beyond the EDJ, with or without
loss of enamel surface (cavitation).

Figure 1: Images of three different image data. (a) is the micro-CT data of a sample tooth in coronal view.
(b)(c)(d)(e) correspond to four different segment as illustrated in (a). (f) is the periapical film of the tooth.
(g)(h)(i)(j) are the OCT counterparts to (b)(c)(d)(e) of (a). Carious lesions are indicated at the points of red
arrows, where discontinuous enamel surface and intensified OCT signals. With the corresponding criteria,
(b)(c)(g)(h) are coded as 〈2〉 for dentine caries with an intensified OCT signal beyond the EDJ. (d)(f)(i) are
coded as 〈1〉 because of the superficial demineralization and enamel breakdown. And (e)(j) are coded as 〈0〉,
represent intact tooth sections without any caries.

Procedures

A two-phase study was conducted to explore different methods of carious examination. The first section
aimed to verify the accuracy and effectiveness of OCT scans. To prove the hypothesis that the diagnostic
capabilities of OCT images were better than periapical films. In the second section, the study shifted our
objective to the comparison of interpreters, clinicians and CNN algorithms, to see if CNN algorithms were
comparable with clinicians or even better in diagnosis. A supplemental flowchart is depicted in Appendix E.
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Phase 1: Comparison of Diagnostic Capability of OCT versus Radiography

We took periapical films and OCT data of the sample teeth and asked five well-educated clinicians to
examine the images. The clinicians were asked to make judgments of carious status individually for each
tooth based on both types of data, following the criteria shown in Table 1. Afterward, their answers were
scored and evaluated with the corresponding ground truth obtained by Micro-CT. The weighted Kappa
coefficient was then calculated. Since this measurement took the possibility of the accidental match and the
correlation in lesion extent into account, it is more reliable and convincing than pure accuracy (Ben-David,
2008; Chmura Kraemer et al., 2002).

The participants in this study were five resident doctors in the Dental Department of Taipei Veterans
General Hospital. Before participating, they were informed that our study was interested in determining
whether OCT or Radiography is better at caries detection; they were, however, not told what types of results
were expected. The unit of comparison was a ”tooth” to ensure some homogeneity between the two different
data types.

Given the inherent disadvantages of radiographs compared to multi-sectional OCT data, if the clinicians
asked for more images for confirmation, we provide additional shifted images with the commonly-used tube-
shift technique (Seiler et al., 2018). Additionally, if there were any discrepancies between clinicians’ diagnoses
of radiographs, a discussion was allowed, and a correction based on the mutual agreement was noted. To
avoid any possible misunderstanding, the answer given under such circumstances was recorded independently
and denoted as ”CR” (Consensus on Radiography). This methodology was designed to encourage the best
radiography diagnosis. However, clinicians were not allowed to discuss their diagnosis when using the OCT
scans and were not given any supplemental data. Hence, if the results still show that OCT has superiority
over radiography, it may indicate that OCT is the more effective method of caries detection.

Phase 2: Comparison of Diagnostic Ability of clinicians versus CNNs

The OCT data was once again given to five clinicians and processed using the five above-mentioned CNN
models to see if there was a significant difference in their ability to detect caries.

Since the CNNs required a large database, the unit of the sample was changed from ”tooth” to ”image”.
Therefore, a total of 748 cross-sectional 2D images were extracted from 63 OCT tooth data, which were then
labeled into three distinct groups according to Table 1: 470 images with 〈0〉, 174 images with 〈1〉, and 104
images with the code 〈2〉. Images were divided into 599 (80%) training data and 149 (20%) testing data with
opposite intentions. Training data was responsible for optimizing the parameters in the CNN models, while
testing data evaluated the models. After the CNNs finished their training session, the test data was sent to
both trained CNN models and clinicians for diagnoses. The obtained results were statistically analyzed and
compared.

Similarly to phase 1 of the study, we offered clinicians the best possible accommodations. If there were
any discrepancies amongst clinician diagnosis, discussion and correction based on the mutual agreement
were permitted. The answers given under such circumstances were once again recorded independently and
denoted as ”CC” (Consensus of Clinicians). Hence, if the results still favored CNNs over clinicians, it may
indicate that CNNs are more effective in caries detection compared to clinicians.

Finally, we further evaluated the performances of the result from the best CNN model. Considering
that related researches were conducted in binary classification, we reformulated our best result into the
corresponding form. The purpose was to assess the clinical feasibility of the outcome. The statistical
measurement consisted of accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV), all of which were considered essential indexes in medical screening.

Results

The diagnostic capabilities of OCT and periapical radiography, from phase 1 of the study, were compared
in Table 2. Each individual weighted Kappa coefficient was computed, followed by the calculation of mean
value, standard deviation, variance, together they summarize the average performance and data distribution.
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The mean of the previously defined “CR” periapical radiography result was also calculated, allowing for
comparisons to be drawn. Then the p-value was calculated, based on the Mann-Whitney U test between the
Radiography and OCT groups, to examine the significance of differences between the clinicians and CNNs
groups.

Table 2: Diagnostic capability* of periapical radiography and OCT

Individual† 1 2 3 4 5 Mean

Radiography 0.391 0.357 0.411 0.488 0.388 0.407

OCT 0.613 0.776 0.591 0.740 0.772 0.699

CR‡ - - - - - 0.583

Comparison Mean(µ) Std(σ) Var(τ) p-value

Radiography 0.407 0.049 0.002
0.012

OCT 0.699 0.090 0.008

CR 0.583 - - -

* The measurement of the results was the weighted Kappa coefficient(κ).
† Number 1 to 5 stood for results from five different clinicians.
‡ ”CR” represented ”Consensus on Radiography” of clinicians. The purpose was to optimize perfor-

mance of the radiography group.

The results show that clinicians scored a higher Kappa value with OCT (M = .699, SD = .090) compared
to radiography (M = .407, SD = .049) with a statistically significant difference at the .05 level (p = .008).
However, the variance of OCT (τ = .008) was slightly bigger than that of radiography (τ = 0.002). While,
the ”CR” answer showed a lower Kappa value (κ = .583) than that of OCT (κ = .699).

Given the affirmation that OCT had better diagnostic capability compared to periapical radiography,
CNN algorithms were prompted to read OCT images in order to compare their diagnostic with clinicians in
phase 2. The same statistical analysis was used in phase 2, as in the previous phase, and was tabulated in
Table 3.

As shown in Table 3, CNNs (M = .860, SD = .049) outperformed clinicians (M = .679, SD = .113) on
average when comparing the Kappa value. The variance of CNNs (τ = .002) was also much smaller than
that of clinicians (τ = .013). The difference between the two groups was statistically significant at the .05
level (p = .012). However, the mean values in the ”CC” group (M = .748) were still lower than those in
CNNs (M = .860). A visual comparison box plot can also be found in Fig. 2, illustrating the Kappa value
in each group.

The best experimental model, ResNet-152, was further evaluated, as shown in Table 3. The model
differentiated caries lesions on OCT images with an accuracy of 95.21%. More specifically, the sensitivity
was 98.85%, the specificity was 89.83%, and the PPV and NPV were 93.48% and 98.15%, respectively.
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Table 3: Diagnostic ability* of clinicians and CNNs based on OCT

Individual 1 2 3 4 5 Mean(µ)

Clinicians† 0.633 0.715 0.505 0.783 0.760 0.679

CNNs‡ 0.891 0.852 0.855 0.915 0.786 0.860

CC§ - - - - - 0.668

Comparison Mean(µ) Std(σ) Var(τ) p-value

Clinicians 0.679 0.113 0.013
0.012

CNNs 0.860 0.049 0.002

CC 0.748 - - -

(Best) Accuracy(%) Sensitivity (%) Specificity(%) PPV (%) NPV (%)

ResNet-152 95.21 98.85 89.83 93.48 98.15

* The measurement of the results was the weighted Kappa coefficient (κ).
† Number 1 to 5 stood for results from five different clinicians.
‡ Number 1 to 5 stood for five CNN models in the following order: AlexNet, VGG-16, ResNet-152,

Xception, and ResNext-101.
§ ”CC” represented ”Consensus of Clinicians”. The purpose was to maximize the performance of

the clinicians group.

Figure 2: Comparison of diagnostic capability of Radiograph versus OCT and diagnostic ability of clinician
and CNN. Note that the calculation in different sections was based on different objects – teeth or images.

Discussion

The majority of clinicians currently still rely on tactile examination and radiography to make dental caries
diagnostics. However, this approach has proved to have low accuracy rates and is highly dependent on
the doctor’s training background, work experience and concentration during examination. The advanced
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imaging tool, OCT, working in tandem with the rise of AI, has provided a potentially better solution for
caries detection. Increasing studies have attempted to use AI, OCT, or a combination of both to enhance
caries detection. However, most of them lacked a valid and reliable methodology, and failed to achieve
high-quality classification.

In order to develop a better detection technique, a reliable methodology based on high-quality data
needs first to be developed. In our two-phase study, the well-defined criteria of caries classification and
a reliable judgment basis, the Micro-CT, was implemented as the reference for scoring. The results indi-
cated that clinicians could recognize carious patterns via OCT images more accurately than via periapical
radiographs. Even the accuracy from clinicians in identifying radiographs is enhanced after discussion, it
is still not comparable to that of OCT scans, let alone this is unrealistic in chairside to have a group of
experienced clinicians discuss a single scan. However, the slightly higher variance in the OCT group revealed
more uncertainty regarding OCT than radiography interpretation; this could be due to experience with ra-
diographs. Furthermore, CNNs yielded excellent repeatability of results among OCT and Micro-CT more so
than clinicians, which indicates that CNNs can detect and classify carious lesions more precisely and more
consistently. The findings overall suggest that OCT is more effective than radiography in caries detection,
and CNNs performed higher accuracy and consistency than clinicians on these tasks.

Our results were generally in line with previous studies (Srivastava et al., 2017; Lee et al., 2018; Salehi
et al., 2019), however, are more well-rounded and address aspects that were overlooked in previous studies.
Our study focused on the establishment of a detailed classification method that is more valid and reliable.

The validity of data is a central issue within the scope of deep machine learning. Without strict exam-
ination, the results at most correspond with existing labels but often have little application to real-world
situations. If the labels are wrong, then even if the results completely matched with the labels, the results
would have no value. Compared to previous studies, our data was compared to a more reliable device, the
Micro-CT, which allowed for better diagnosis and also reached deeper depths of teeth. Additionally, all the
definitions of classification were clearly delivered and evaluated through content analysis, hence, proves that
this study has a higher criterion-related validity.

Secondly, while there is a general agreement that the seriousness of carious lesions plays a critical role
in diagnosis and should be involved when considering the appropriate treatment plan, precise classification
in previous studies were barely emphasized. In this study, we separated lesions of different degrees of
demineralization and activity, particularly enamel and dentin lesions, to enhance treatment decision-making
processes.

Moreover, while the architectural innovations of CNN have grown rapidly in recent years, related studies
only adopted a singular model. This study adopted five different models, from the classical to the most
innovative ones. AlexNet was first used in 2012 as a breakthrough in CNN, followed by VGGNet, which
inherited the concept of AlexNet and deepened the model for better outcomes. However, it was not until
ResNet that successfully solved the problem of gradient degradation by residual learning. ResNet, which
allowed for a more profound model architecture to emerge, demonstrated extraordinary accuracy on image
recognition. Soon afterwards, Xception and ResNext were developed mainly to enhance model performance
with minimal efficiency sacrifice. Among all, the best model for our specific task was ResNet-152. According
to our results, the high sensitivity (98.85%) and NPV (98.15%) were the most critical indicators in clinical
trials, as they ensure a low false-negative rate and imply that few caries lesions would be missed. We highly
recommend ResNet to future OCT readings and related applications. Overall, this study aimed to address
the weakness overlooked by previous studies to verify their results and provide much more enhanced results.

Although this study has yielded significant results, the potential limitations should be noted; the most
prominent limitation in this study was the manual verification process. The labels had to be manually
marked by researchers, even using Micro-CT as a correspondence truth, where human errors are inevitable.
A possible solution to alleviate this error in future research is through the use of image registration technique,
which is commonly used in brain mapping but rarely validated in dental radiography. This would also allow
the depths, extents, and boundaries of caries lesions to be automated corresponded. Large amounts of direct
labels would be provided without manual labour, allowing for more detailed and precise detection study
results. While this study has its limitations, it can still serve as a basis for further studies in related topics.
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Conclusion

A clinically applicable automatic diagnostic methodology on caries detection was posed in this study. To
the best of our knowledge, this study is the first to use Micro-CT as a solid reference, develop a three-
tier classification and adopt five different CNN models. The results indicate that CNNs, with appropriate
imaging techniques, have a large potential and practicality especially when implemented in clinics to provide
patients with more adequate diagnoses.

With the rigorously defined experiments accompanied by comprehensive statistical analysis, the validity
and compatibility of our results are more integrative and reliable. Our extensive methodology and experimen-
tal results are of great interest for further scientific research and clinical application, respectively. Hopefully,
in the future, more AI-based clinical studies can include strict and reliable methodology.
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Appendices

A Mechanism of Our SS-OCT

The mechanism of our swept-source OCT (SS-OCT) system is illustrated in Appendix Fig. 3. A beam of
light initially generated from the swept-source laser is separated into two parts right after going into the
coupler and circulator. While one of them enters the sample arm, the other goes into the reference arm, both
of which are then reflected. After reflection, the separated light beams merge back together. Optical path
differences are created due to the different characteristics of the surfaces, resulting in distinctive interference
patterns.

Figure 3: Setup of our SS-OCT scanning device

B Introduction of Convolutional Neural Network

The basic structure was first carried out by LeCun et al. (1998) as shown in Appendix Fig. 4, which consists
of an input and output layer with several convolution and pooling layers in between.

Figure 4: Illustration of a CNN model architecture
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(a) convolution
A convolution procedure is illustrated in Appendix Fig. 5. In the context of image processing, images

(denoted A) are modeled as real matrices by its pixel value. Convolution serves as a binary operation
among matrices of different shapes. For A ∈ Rn1×m1 and K ∈ Rn2×m2 , A ∗K would yield another matrix
B ∈ R(n1−n2+1)×(m1−m2+1),

Bi,j :=
∑

1≤∆i≤n2
1≤∆j≤m2

Ai+∆i−1,j+∆j−1 ·K∆i,∆j ,

Figure 5: Basic structure and function of a convolution layer

where K is usually much smaller than A and referred to as the kernel. Convolutions with small kernels are
usually for purposes of local feature extraction such as detecting edges, impulses or noise in images. Usually
one needs to design an appropriate kernel, but the presence of convolution layers is to find the appropriate
kernel via parameter optimization. We can view the convolution as a bi-linear operator

∗ : Rn1×m1 ⊕ Rn2×m2 → R(n1−n2+1)×(m1−m2+1).

Sometimes, there can be multiple channels for both images and kernels. This motivates one to have the
multi-channel convolution by linearly extending the original one. For A ∈ RC1×n1×m1 and K ∈ RC2×n2×m2

where C1, C2 are the numbers of channels for A,K respectively. The resulting B = A ∗K would be simply

Bc2 :=
∑

1≤c1≤C1

Ac1 ∗Kc2 , for 1 ≤ c2 ≤ C2

(b) pooling
The pooling technique decreases computational resources without losing much information. The most

common methods are max-pooling and average-pooling as shown in figure 6. In a max-pooling layer of stride
s and width w, a image A ∈ Rn×m is mapped to B1,

B1i,j := max
1≤∆i,∆j≤w

Asi+∆i−1,sj+∆j−1

On the other hand, for an average-pooling case, we have B2,

B2i,j :=
1

w2

∑
1≤∆i,∆j≤w

Asi+∆i−1,sj+∆j−1.
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Figure 6: Demonstration of max-pooling and average-pooling techniques

Interleaving convolution and pooling layers, concatenated by a fully connected layer at the end, would
yield a complete CNN model which mimics an image processing pipeline. A CNN model takes in an image
then output a probabilistic vector. Finally, it uses the well-known back-propagation algorithm to optimize
its parameters in each layers until the model generalize well to data.

The CNN models adopted in our study were: AlexNet, VGG-16, ResNet-152, Xception, and ResNeXt-
101. All are thought of as the best models in different periods. More specific architecture details should be
found in the original papers (as in the references).

C Caries Classification in Radiographic Examination (Ekstrand
et al., 1997)

Code Criteria

0 No radiolucency visible
1 Radiolucency visible in the enamel
2 Radiolucency visible in the dentine but restircted to the outer 1

3 of the dentine
3 Radiolucency extending to the middle 1

3 of the dentine
4 Radiolucency in the pulpal 1

3 of the dentine

D Caries Classification of OCT Examination (Shimada et al., 2010)

Code Criteria

0 No caries. Obtained OCT signal was the same level and shape as that of normal
enamel and loss of enamel surface (cavitation) did not occur.

1 Superficial demineralization of enamel. OCT signal intensity was enhanced within
the enamel thickness but loss of enamel surface (cavitation) did not occur.

2 Enamel breakdown due to the caries. Continuity of enamel surface is disconnected
at the occlusal fissure, where OCT signal was intensified but limited to the enamel
thickness.

3 Dentine caries. An intensified OCT signal was obtained beyond the EDJ, with or
without loss of enamel surface (cavitation).
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E Overall Procedure of This Study

The workflow of this study is depicted in Appendix Fig. 7. The main objects of comparison are painted:
the beige sets and the green sets represent the objects in the first and second parts, respectively, while the
blue box (Micro-CT) is recognized as the reference of the ground truth.

Figure 7: Illustration of the procedure in this study.
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