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ABSTRACT 46 

Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 47 

RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, 48 

more research is needed to apply and develop systematic methods to interpret the true SARS-49 

CoV-2 signal from noise introduced in wastewater samples (e.g., from sewer conditions, sampling 50 

and extraction methods, etc.). In this study, raw wastewater was collected weekly from five 51 

sewersheds and one residential facility, and wastewater SARS-CoV-2 concentrations were 52 

compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably detected (95% 53 

positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or 54 

more per 100,000 people. To adjust for variation in sample fecal content, crAssphage, pepper 55 

mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA were evaluated as 56 

normalization biomarkers, and crAssphage displayed the least spatial and temporal variability. 57 

Both unnormalized SARS-CoV-2 RNA signal and signal normalized to crAssphage had positive 58 

and significant correlation with clinical testing data (Kendall’s Tau-b (𝜏)=0.43 and 0.38, 59 

respectively). Locational dependencies and the date associated with testing data impacted the 60 

lead time of wastewater for clinical trends, and no lead time was observed when the sample 61 

collection date (versus the result date) was used for both wastewater and clinical testing data. 62 

This study supports that trends in wastewater surveillance data reflect trends in COVID-19 63 

disease occurrence and presents approaches that could be applied to make wastewater signal 64 

more interpretable and comparable across studies. 65 

 66 

Keywords: COVID-19, wastewater-based epidemiology, pepper mild mottle virus, crAssphage, 67 

Bacteroides, human 18S rRNA  68 
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1. INTRODUCTION 69 

Increasing hospitalizations and limited diagnostic testing capacity early in the coronavirus disease 70 

2019 (COVID-19) pandemic made it clear that multiple methods to monitor circulation of severe 71 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed (Bivins et al., 2020). One 72 

such method is wastewater-based epidemiology (WBE), which has provided community-scale 73 

information on drug use, personal care products, antibiotic resistance, and pathogen circulation 74 

(Choi et al., 2018). SARS-CoV-2 is a promising candidate for WBE because its RNA is detected 75 

in stool of infected individuals (Li et al., 2021; Parasa et al., 2020), and wastewater surveillance 76 

has been shown to provide early detection of population-level increases in occurrence compared 77 

to clinical data in some locations (Ahmed et al., 2021; D’Aoust et al., 2021a; Gerrity et al., 2021; 78 

Hata and Honda, 2020; Medema et al., 2020; Nemudryi et al., 2020; Peccia et al., 2020; Randazzo 79 

et al., 2020b, 2020a). 80 

 81 

Together, wastewater and clinical testing might provide more reliable information about disease 82 

burden in communities than either method alone. Clinical testing of individuals is resource-83 

intensive and has well-known biases (e.g., selection bias based on symptom severity, symptom 84 

recognition, occupation, etc.) (Catalogue of Bias Collaboration et al., 2017; Griffith et al., 2020; 85 

Sims and Kasprzyk-Hordern, 2020), which have compounded negative impacts in communities 86 

with higher proportions of low-income residents and of Black, Indigenous, and People of Color, 87 

including in the San Francisco Bay Area (Chamie et al., 2020; Misa et al., 2020). In contrast, WBE 88 

may provide a less biased assessment of COVID-19 occurrence (Murakami et al., 2020; Sims 89 

and Kasprzyk-Hordern, 2020). For COVID-19 WBE to be useful for public health decision-making, 90 

a better understanding is needed of the variability of SARS-CoV-2 in wastewater and how it 91 

relates to the true incidence or prevalence of COVID-19 in the contributing population (McClary-92 

Gutierrez et al., 2021). Sources of target signal variability in wastewater include inconsistencies 93 

in sample collection and laboratory processing (Ahmed et al., 2020d; Feng et al., 2021), nucleic 94 
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acid degradation based on travel time and conditions in the sewer (Hart and Halden, 2020a), and 95 

signal dilution due to rainfall and diurnal flow changes (Zahedi et al., 2021). Researchers have 96 

addressed some of these sources of variability through normalization to biomarkers, increased 97 

sampling frequency, processing biological replicates, and smoothing/forecasting (D’Aoust et al., 98 

2021b; Feng et al., 2021; Graham et al., 2020; McLellan et al., 2021; Nemudryi et al., 2020; 99 

Stadler et al., 2020).  100 

 101 

Normalization of target signal to flow, population, and/or an endogenous biomarker has the 102 

potential to reduce variability and scale values for comparisons across samples and locations. 103 

Across WBE studies, researchers have normalized wastewater concentrations to flow rate and 104 

population to calculate a per capita load (Chen et al., 2014; Choi et al., 2018; Zuccato et al., 2005; 105 

Zuccato Ettore et al., 2008) or to a chemical parameter (e.g., caffeine) (Been et al., 2014; Choi et 106 

al., 2018; D’Aoust et al., 2021b; Polo et al., 2020). More recently, four biological markers have 107 

emerged as promising candidates to normalize SARS-CoV-2 RNA signal for fecal content. Pepper 108 

mild mottle virus (PMMoV), a nonenveloped RNA plant virus, is commonly used for COVID-19 109 

WBE (D’Aoust et al., 2021b; Feng et al., 2021; Whitney et al., 2021; Wu et al., 2020) but 110 

concentrations in sewage vary with season and local diet (Symonds et al., 2019). Another 111 

normalization biomarker is the cross-assembly phage (crAssphage), a non-enveloped, DNA virus 112 

that ubiquitously infects the human gut commensal bacteria Bacteroides (Edwards et al., 2019; 113 

Green et al., 2020; Stachler et al., 2017; Wilder et al., 2021). In addition, Bacteroides HF183 16S 114 

rRNA gene is widely used for detecting fecal contamination in environmental waters (Green et al., 115 

2020; Shanks et al., 2008), and recent studies (D’Aoust et al., 2021b; Kapoor et al., 2015; 116 

Pitkänen et al., 2013) have targeted HF183 rRNA (versus the rRNA gene) to increase the 117 

sensitivity of the assay (D’Aoust et al., 2021b; Feng et al., 2021). Lastly, the human 18S ribosomal 118 

subunit RNA (18S rRNA) assay has been proposed as a normalization biomarker because it 119 

targets human cells that are shed in feces (D’Aoust et al., 2021b; Whitney et al., 2021). While 120 
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each of these normalization biomarkers has been assessed independently, they have not all been 121 

compared within the same study.  122 

 123 

In addition to normalizing the target signal, smoothing procedures can assist in discerning 124 

temporal trends in SARS-CoV-2 occurrence. While seven-day moving averages have been widely 125 

used for assessing clinical data trends in real-time (“Track Testing Trends,” n.d.), wastewater 126 

sampling is often performed only 1-3 times per week. Therefore, smoothing techniques are 127 

needed that can be applied to data with lower sampling frequency that minimize loss of temporal 128 

resolution, such as locally weighted scatterplot smoothing (Lowess) (Gibas et al., 2021; Gonzalez 129 

et al., 2020; Nemudryi et al., 2020; Vallejo et al., 2020). However, no standard value for the 130 

bandwidth parameter exists (analogous to the selection of a seven-day window for moving 131 

averages of clinical data), and the default parameter value differs between two common 132 

languages used for data analysis (R (“Source code for spatialEco package,” n.d.): 0.75 and 133 

Python (“Source code for statsmodels module,” n.d.): 0.67). Furthermore, the bandwidth selection 134 

process generally has not been specified in studies incorporating Lowess (Gibas et al., 2021; 135 

Gonzalez et al., 2020; Nemudryi et al., 2020; Vallejo et al., 2020; Wu et al., 2020).  136 

 137 

Systematic approaches are also needed to estimate the minimum number of clinical COVID-19 138 

cases for which SARS-CoV-2 RNA is reliably detected in wastewater (WBE case detection limit). 139 

The WBE case detection limit is dependent on the methods used to extract genetic material as 140 

well as the extent of local clinical testing and may require sewershed-specific assessment. 141 

However, a systematic approach to estimate this value across studies can aid interpretation of 142 

nondetects and elucidate the number of COVID-19 cases per capita above which COVID-19 WBE 143 

will be a reliable public health surveillance strategy. In a recent study (Wu et al., 2021), a WBE 144 

case detection limit was estimated using a dataset with 1,687 samples, which was large enough 145 

to include repeated wastewater measurements at low case numbers. With fewer data points, 146 
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researchers have estimated this value observationally by reporting the number of cases they were 147 

able to detect or quantify (Hata and Honda, 2020; Medema et al., 2020). 148 

 149 

The goal of this research was to develop and assess approaches for COVID-19 WBE data 150 

validation and interpretation. Specific objectives were to: (i) evaluate normalization biomarkers 151 

(crAssphage, pepper mild mottle virus, Bacteroides rRNA, and human 18S rRNA) for adjusting 152 

SARS-CoV-2 RNA signal to account for variable wastewater fecal content; (ii) assess SARS-153 

CoV-2 wastewater testing as a complement to clinical testing for public health surveillance by 154 

determining the correlation between these two methods; (iii) determine whether wastewater 155 

trends lead clinical trends and could provide early warning of COVID-19 outbreaks; (iv) evaluate 156 

a systematic method for trendline smoothing; (v) develop a systematic method for estimating a 157 

WBE case detection limit; and (vi) apply these methods to interpret spatial and temporal trends 158 

in COVID-19 occurrence based on wastewater and clinical testing data. We analyzed a sample 159 

set from six locations in the San Francisco Bay Area containing 5 months of weekly raw 160 

wastewater samples paired with geocoded clinical data.  161 

 162 

2. MATERIALS AND METHODS 163 

Six locations in the San Francisco Bay area were sampled (referred to throughout as locations A, 164 

S, N, K, Q, and E). Raw wastewater was collected weekly and archived from April to September 165 

2020, and biological replicates were processed for some locations as indicated in Table 1. SARS-166 

CoV-2 and normalization biomarkers (crAssphage, PMMoV, Bacteroides rRNA, and 18S rRNA) 167 

were measured in wastewater samples via RT-qPCR. Associated physicochemical data were 168 

collected by wastewater utilities, and associated geocoded clinical COVID-19 data were collected 169 

by public health departments (Table 1).  170 

 171 

 172 
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2.1 Wastewater sample collection and physicochemical data  173 

24-hour time-weighted composite samples of raw wastewater were collected using Teledyne 174 

ISCO autosamplers. Some samples were collected and processed in biological replicate (i.e., 175 

wastewater subsamples were aliquoted from the same composite sample but independently 176 

extracted). After collection, all samples were transported to the lab on ice, stored at either -20°C 177 

or -80°C, and then thawed at 4°C for 36-48 hours before extractions. Wastewater data was not 178 

individually identifiable; therefore, no IRB was needed. More information on location-specific data 179 

collection and wastewater sampling, transport, storage, and biological replicates is provided in 180 

Table 1 and the Supplementary Information (SI) Section A.  181 

 182 

One rainfall event occurred (May 12-19) during which sampling locations experienced 0.8 to 1.8 183 

inches of precipitation (NOAA Climate Data Online database). Although none of the sampled 184 

locations was a combined sewer system, rainfall could still increase flow rates through infiltration 185 

and inflow. Daily wastewater flow rate values during this period varied <4% (Locations K & E, 186 

Table S1), which is negligible when compared to the variation displayed by normalization 187 

biomarkers over time (15%-244%; Figure 1). Mean flow rates were provided by the wastewater 188 

utility for locations A, N, and S and were calculated from daily flow rates for locations K, E, and Q 189 

(Table 1 and SI Section A). 190 

 191 

2.2 Clinical testing and population data 192 

Geospatial vector data of the sewersheds (locations S, K, A, and N) were used to determine the 193 

COVID-19 clinical testing data that mapped to each wastewater catchment area (Table 1). For all 194 

locations, daily new case data correspond to the date that results were reported (result date) for 195 

each COVID-19 test. For location K, additional data were available that correspond to the sample 196 

collection date and the episode date, defined as the earliest of: (i) the date of first symptoms; (ii) 197 

the sample collection date; or (iii) the date the sample was received by the testing lab. Clinical 198 
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testing data were provided by the corresponding county or open data portal (Table 1). Data were 199 

masked by public health departments to maintain confidentiality of the contributing population 200 

(below 11 new cases per day) and were provided as 7-day (A, S, K) or 14-day (N) moving 201 

averages. Masked values were substituted at 5.5 new cases per day for further analysis and 202 

plotting. For San Quentin Prison (location Q), unmasked COVID-19 clinical data were obtained 203 

from the California Department of Corrections and Rehabilitation open data portal (“CDCR 204 

Population COVID-19 Tracking,” n.d.), and instances of zero cases were substituted at 0.5 cases 205 

for comparison to masked data in statistical data analysis (Figure 5). For clinical data obtained 206 

for this study, no IRB was needed because data were either provided masked or were publicly 207 

available. More information about masking and population data is provided in Table 1 and SI 208 

Section E. 209 

 210 

2.3 Wastewater sample processing via the 4S method  211 

Wastewater samples were concentrated and extracted following the 4S method (Whitney, 2020; 212 

Whitney et al., 2021), with a minor modification: the elution buffer was not pre-warmed; instead, 213 

it was added to the column, and the column was heated at 50°C for 10 minutes before 214 

centrifugation to collect the eluate. Both RNA and DNA were captured (Figure S1). Each 215 

extraction batch contained a negative extraction control, and each sample or control was spiked 216 

with a surrogate virus control (Bovilis coronavirus; Merck Animal Health, BCoV) and a free RNA 217 

control (synthetic oligomer construct, SOC). Because it is not possible to independently quantify 218 

the surrogate spike without the influence of extraction efficiency (Kantor et al., 2021), extraction 219 

controls were used to assess consistency of extractions rather than recovery. Outlier analysis 220 

(alpha=0.05) was conducted for BCoV and SOC Cq values using Grubbs test. No outliers were 221 

detected, and all samples tested were considered to have passed this quality control screen. 222 

Wastewater sample processing is further described in SI Section B. 223 

 224 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256418doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 9 

2.4 RT-qPCR plate setup, controls, and data processing 225 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed on 226 

wastewater extract targeting eight sequences: (i) SARS-CoV-2 CDC nucleocapsid gene (N1) 227 

assay duplexed with (ii) VetMAX™ Xeno™ Internal Positive Control (Xeno) assay, (iii) 228 

crAssphage CPQ_056 (crAssphage) assay, (iv) pepper mild mottle virus coat protein gene 229 

(PMMoV) assay, (v) Bacteroides 16S ribosomal RNA HF183/BacR287 (Bacteroides rRNA) assay, 230 

(vi) bovine coronavirus transmembrane protein gene (BCoV) assay, (vii) Synthetic Oligomer 231 

Construct T33-21 free-RNA (SOC) assay, and (viii) human 18S ribosomal subunit RNA (18S 232 

rRNA) assay (Greenwald, 2021). Reaction conditions (Table S2), thermocycling conditions 233 

(Table S3), and primers, amplicon sequences, and probes (Table S4) are included in the SI. 234 

Reactions consisted of 20 μL total volume, including 5 μL of RNA extract, TaqMan Fast Virus 1-235 

Step Master Mix (ThermoFisher Scientific), primers, probes, and nuclease-free water. Reactions 236 

were completed on a QuantStudio 3 Real-Time qPCR system (ThermoFisher Scientific), where 237 

Cq values were determined through automatic thresholding on QuantStudio 3 Design and 238 

Analysis Software (v1.5.1). Every plate included samples, no-template controls (NTCs), and 239 

standards, each quantified in technical triplicate (qPCR replicates). Individual standard curves 240 

(efficiencies ranging from 83.2% to 97.8% and R2 ranging from 0.974 to 0.999 for the N1 standard 241 

(Twist Bioscience)) were used as a quality control measure (Table S5) and later combined into 242 

master standard curves (Table S6) to calculate quantities (Ahmed et al., 2020c, 2021). A subset 243 

of samples were run with no reverse transcription (no-RT) controls for Bacteroides rRNA and 18S 244 

rRNA, and RNA was found to be multiple orders of magnitude greater than DNA in the samples 245 

tested (Table S7). Further details on RT-qPCR materials and no-RT controls are provided in the 246 

SI Section C. 247 

 248 

Raw Cq values that did not amplify or that amplified below the limit of detection were substituted 249 

with the Cq value corresponding to half the limit of detection (for N1) or half the lowest point of 250 
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the master standard curve (for all other assays) (Table S6), and then outliers were assessed 251 

using a two-sided Grubbs test (alpha=0.05). The N1 qPCR limit of detection (LoD) was calculated 252 

by analyzing all RNA standard curves from the study as well as four additional extended triplicate 253 

standard curves. The N1 LoD was set at 5 gene copies per reaction, at which point 67% of 254 

technical replicates were positive (Table S8). Further details on the data processing pipeline are 255 

provided in SI Section D. 256 

 257 

2.5 Assessing PCR inhibition via serial dilution and an internal amplification control 258 

To our knowledge, there is no standard methodology for assessing PCR inhibition in raw 259 

wastewater samples. We combined two approaches to assess PCR inhibition in raw wastewater 260 

samples: a non-competitive internal amplification control (Ahmed et al., 2020b; Nolan et al., 2006; 261 

Schrader et al., 2012; Staley et al., 2012) and serial dilution (Graham et al., 2020). The internal 262 

amplification control can easily be included in every sample, but cannot detect assay-specific 263 

inhibition (Schrader et al., 2012). Serial dilution consumes more resources and risks diluting the 264 

target signal below the detection limit, but it more accurately tests the target itself and allows 265 

selection of a dilution value that best reduces the impacts of inhibition. Thus, we used the 266 

VetMAX™ Xeno™ Internal Positive Control (ThermoFisher Scientific) as a screening tool to select 267 

samples for further testing with serial dilution.  268 

 269 

For all samples, Xeno RNA was spiked into the reaction mix (Table S2), and NTCs were used as 270 

an inhibition-free baseline to compare each sample on that plate. Ten samples showed >2 Cq 271 

deviation from the baseline and were selected for further inhibition testing (Staley et al., 2012). A 272 

dilution series (1x, 2x, 5x, 10x) was performed on these samples, and the duplexed N1 and Xeno 273 

assay was repeated. A dilution was chosen by comparing SARS-CoV-2 N1 signal in each dilution 274 

to theoretical expectations (based on theoretical doubling per PCR cycle). If diluting the sample 275 

led to a 1 Cq difference between actual and expected change in Cq, then the sample at the base 276 
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dilution was deemed inhibited (Graham et al., 2020). Following the serial dilution test, only three 277 

samples required dilution (Table S9), and subsequent qPCR results in this study are reported 278 

using this chosen dilution. Results from the internal amplification control were inconsistent with 279 

inhibition assessed via serial dilution, and we do not recommend the use of Xeno for testing N1 280 

inhibition in future studies.  281 

 282 

2.6 Data analysis 283 

All data analysis was performed in Python (v3.6.9) using key modules Pandas (v1.1.5), NumPy 284 

(v1.19.5), SciPy (v1.4.1), and Plotnine (v0.6.0). 285 

 286 

2.6.1 Normalization biomarker analyses 287 

For N1 normalization to biomarkers, N1 (gene copies per liter, gc/L) was divided by the 288 

normalization biomarker concentration (gc/L). To calculate flow-scaled biomarker load 289 

(gc/person/day), target concentration (gc/L) was multiplied by mean flow for the sampling location 290 

(MGD) and a unit conversion factor (liter per million gallons) and then divided by population. Daily 291 

flow rate data were not available for S, N, and A (locations upstream of a treatment facility) (Table 292 

S1), so mean dry weather flow rates (and population) were used to scale data when comparing 293 

across locations. We expect that the mean flow rate likely approximates the daily flow rate 294 

throughout the study period, but this may not hold true in different locations and seasons.  295 

 296 

For comparisons of biomarker concentrations and variation (Figure 1), a Kruskall-Wallis test 297 

(SciPy v1.4.1) was performed, followed by pairwise Dunn’s tests (scikit-posthocs v0.6.6) to 298 

determine statistical differences. Rank correlations between wastewater and case data (Figure 299 

2) were calculated as Kendall’s Tau-b coefficients (𝜏; SciPy v1.4.1), a method adapted for left-300 

censored data (i.e., datasets with data below a lower limit of detection) (Wood et al., 2011) 301 

because 22% of the data are below the N1 LoD. Correlations were classified as low (𝜏 < 0.3), 302 
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moderate (0.3 < 𝜏 < 0.5), or high (𝜏 > 0.5). Coefficients of variation (CV) were calculated as the 303 

arithmetic standard deviation divided by the mean, while geometric coefficient of variation (gCV) 304 

was calculated as the geometric standard deviation minus one. 305 

 306 

2.6.2 Assessment of WBE case detection limit  307 

The WBE case detection limit was estimated as follows. The paired wastewater and case data 308 

for all sewersheds were combined and sorted from highest to lowest case counts. For each case 309 

count, all technical replicates in the wastewater data at and above that point were tallied to 310 

determine the cumulative percentage of replicates that amplified in RT-qPCR. Equation 1 was 311 

used to fit a logistic function (Kyurkchiev and Markov, 2016) to the dataset (SciPy v1.4.1), where 312 

y is the fraction of amplified technical replicates, x is the log10(moving average of new cases per 313 

person per day), k sets the growth rate of y, and γ sets the inflection point. Zero new cases per 314 

capita cannot be represented in a logistic growth model, but in this study, case values of zero 315 

were only available for location Q, and these values were substituted as 0.5 cases before the 316 

analysis. The COVID-19 per capita case rate that corresponded to 95% cumulative amplification 317 

of technical replicates was reported as the estimated WBE case detection limit, and the analysis 318 

was repeated with samples where daily per capita cases were provided as masked values. 319 

 320 

𝑦 = !
!"#("#	∗(	&"'))

 (Equation 1) 321 

 322 

2.6.3 Wastewater trendline smoothing  323 

For wastewater data, any smoothed trendline displayed in a figure was determined using a fitted 324 

local regression (Lowess; statsmodels v0.10.2) with bandwidth parameter (α, the fraction of the 325 

dataset used for smoothing), set as previously shown (Jacoby, 2000) (Figures 3 and S2-S5). 326 

Lowess trends of SARS-CoV-2 N1 signal were also visualized as heatmaps to aid in discerning 327 
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peaks (Figures S6 and S7). Full dataset and associated code are available through GitHub 328 

(https://zenodo.org/record/4730990#.YIxkrqlKgUo). 329 

 330 

3. RESULTS  331 

Raw wastewater was collected weekly from April to September 2020 at six locations (Table 1). 332 

The resulting dataset includes 91 samples (155 including biological replicates), analyzed for 333 

SARS-CoV-2 and four potential normalization biomarkers (crAssphage, PMMoV, Bacteroides 334 

rRNA, and human 18S rRNA) and paired with geocoded clinical testing data. This dataset was 335 

generated from the San Francisco Bay Area in separate sanitary sewer systems during a period 336 

with minimal rainfall (see Methods), which naturally controlled for variability in wastewater strength 337 

due to precipitation. Thus, we expected the concentrations of the measured normalization 338 

biomarkers to be relatively stable. Additionally, geocoded clinical testing data included a range of 339 

per capita COVID-19 case rates that varied by location.  340 

 341 

3.1 CrAssphage and PMMoV were the most consistent biomarkers  342 

A subset of samples from all locations were used in experiments (Figure 1) comparing 343 

crAssphage (98 unique samples, 153 biological replicates), PMMoV (93 unique samples, 95 344 

biological replicates), Bacteroides rRNA (97 unique samples, 99 biological replicates) and 18S 345 

rRNA (40 unique samples, 41 biological replicates) as biomarkers for normalization to fecal 346 

content. All normalization biomarkers were detected at high concentrations (Table S10) in all 347 

samples tested, except for 18S rRNA, which was inconsistently quantifiable (Figure S8). Flow 348 

rates and chemical wastewater parameters (TSS, BOD, COD, cBOD) were not consistently 349 

measured by utilities (Table S1); thus, robust comparisons of physicochemical biomarkers could 350 

not be made. In the absence of daily flow rate data, we used mean flow rate to scale wastewater 351 

biomarker concentrations by per capita wastewater flow for each sewershed to account for 352 

differences across sewersheds (Figure 1). Mean per capita flow rates were similar for all locations 353 
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except Q (a facility; Table 1), generally resulting in little change after flow-scaling. For this reason, 354 

flow-scaling was applied to compare biomarkers, but unnormalized SARS-CoV-2 N1 355 

concentrations are used as a baseline in later analyses.  356 

 357 

An ideal normalization biomarker would have minimal spatial variation in per capita shedding rates 358 

and minimal temporal differences in wastewater loads when flow rates are stable, as they were 359 

in this study. Two methods were used to evaluate biomarker variability (Figure 1): (i) comparing 360 

per capita biomarker loads (gene copies/person/day) to assess differences in observed shedding 361 

by location; and (ii) evaluating the temporal variation of loads for each location. Consistent with 362 

recent studies (Ahmed et al., 2020d; D’Aoust et al., 2021b), crAssphage and PMMoV were the 363 

least variable biomarkers across locations and over time (mean gCVcrAssphage=59% and mean 364 

gCVPMMoV=56%, not statistically different (p>0.05)). In contrast, Bacteroides rRNA displayed more 365 

variability both spatially (Figure 1) and temporally (mean gCV=130%), and 18S rRNA varied 366 

dramatically (mean gCV=500%) (Figure S8).  367 

  368 

CrAssphage, PMMoV, and Bacteroides rRNA were quantifiable in all samples tested, but 18S 369 

rRNA was below the LoD for 24% of samples. Furthermore, 18S rRNA was the only biomarker 370 

that amplified in the extraction negative controls (75%) at similar levels as the samples (p>0.05; 371 

Figure S9), which suggests that this target could be a common laboratory contaminant. Based 372 

on our findings that 18S rRNA was frequently detected in negative controls, inconsistently 373 

detected in sewage, and had high spatial and temporal variation in per capita shedding, we 374 

conclude that human 18S rRNA is not suitable as a normalization biomarker to adjust for fecal 375 

content.  376 

 377 

We suspected that lower biomarker concentrations (Figure 1), frequently undetected 18S rRNA 378 

(Figure S9), and high variability in N1 signal in location E samples reflected RNA degradation 379 
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because: (i) location E is the largest sewershed in the study (i.e., longer residence time allowing 380 

for signal degradation); and (ii) some samples from this site thawed during transportation back to 381 

the lab (resulting in an additional freeze-thaw cycle, which could degrade RNA (Ahmed et al., 382 

2020c; Coryell et al., 2020)). Data from sewershed E was not used for subsequent analyses 383 

because of the uncertainty surrounding the integrity of these samples.  384 

 385 

3.2 SARS-CoV-2 N1 and clinical testing data were correlated and some normalization 386 

biomarkers maintained this relationship 387 

The SARS-CoV-2 N1 concentration in wastewater was moderately correlated to daily per capita 388 

clinical cases when aggregated across all locations (𝜏=0.43, p<0.0001; Figure 2). However, there 389 

are several limitations to assessing correlation between clinical testing data and wastewater data. 390 

First, clinical testing data do not necessarily represent true incidence because of biases 391 

associated with testing. Even if clinical and wastewater testing data correspond to the same date, 392 

fecal shedding could peak before symptom onset, which would impact the correlation unless the 393 

correct time offset is applied to reflect this discrepancy (Hoffmann and Alsing, 2021). Additionally, 394 

for this analysis, clinical and wastewater testing data would ideally both correspond to the sample 395 

collection date (as opposed to the result date) to remove lag introduced by test result turnaround 396 

time (see section 3.3 for more information). However, often only one date was available for clinical 397 

testing. For example, in this analysis, the only date associated with the daily per capita cases 398 

from most locations (all but K) was the date that the testing results were provided (result date), 399 

while the date associated with the SARS-CoV-2 N1 wastewater signal was the sample collection 400 

date.  401 

 402 

Despite these potential limitations, correlation to daily per capita COVID-19 cases was used as a 403 

metric to assess the effect of normalization to biomarkers (crAssphage, PMMoV, and Bacteroides 404 

rRNA). Moderate, significant correlations were observed with COVID-19 daily per capita cases 405 
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when SARS-CoV-2 N1 was unnormalized and normalized by crAssphage or Bacteroides 406 

(𝜏unnormalized=0.43, 𝜏crAssphage=0.38 and 𝜏Bacteroides=0.35, p<0.0001; Figure 2); however, normalization 407 

did not strengthen the correlation compared to unnormalized signal. Conversely, PMMoV 408 

normalization produced only a weak correlation of 0.18 (p < 0.05) (Figure 2). Analysis was 409 

performed with and without samples that were below the limit of detection and produced similar 410 

results (Table S11). Of the normalization biomarkers tested, crAssphage had the lowest variability 411 

and also maintained significant and moderate correlation with clinical testing data, so we included 412 

it in subsequent analyses alongside unnormalized concentrations.  413 

 414 

The correlation analysis was repeated with data separated by location to determine whether 415 

locational dependencies affect the relationship between wastewater and clinical testing data as 416 

well as the performance of normalization strategies. Locations with at least 75% of data above 417 

the N1 qPCR LoD (Locations K, N, and S; Table S12) were included in this analysis. Only location 418 

K had significant correlations with clinical testing data, both with and without crAssphage 419 

normalization (𝜏unnormalized=0.5 and 𝜏crAssphage=0.43, p<0.05; Figure S10). This finding suggests 420 

locational dependencies (e.g., differences in extent of clinical testing, sewer system residence 421 

times, etc.) affect the correlation with clinical testing data. Additionally, the location-specific 422 

analysis was repeated including only samples with detectable SARS-CoV-2 N1 signal, and the 423 

results were no longer statistically significant (Figure S10). This finding is likely influenced by both 424 

the limited sample size and values below the N1 qPCR LoD that affect rank correlations.  425 

 426 

In addition to the limitations in clinical testing data mentioned at the beginning of this section, 427 

there are several explanations for why wastewater signal at locations S, N and K did not 428 

significantly correlate with clinical testing data after removing values below the LoD: (i) the daily 429 

per capita cases in the population were at or below the WBE case detection limit of the wastewater 430 

data; (ii) the daily per capita cases that were masked by public health departments for patient 431 
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privacy imparied the rank correlation analysis by left-censoring the clinical testing data; (iii) the 432 

wastewater signal did not vary enough over the time of sampling to establish rank. The possibility 433 

that the wastewater signal leads the clinical testing data was subsequently tested for locations K, 434 

N, and S (i.e., correlations were examined for zero-, one-, and two-week offsets); however, 435 

location K was the only location with significant correlation between wastewater and clinical 436 

testing data for any lead time tested (Figure S10).  437 

 438 

3.3 Impact of the date associated with clinical testing data on lead time in wastewater 439 

surveillance at location K 440 

The time for laboratories to process samples and return results (testing turnaround time) affects 441 

the potential for wastewater surveillance to provide lead time over clinical surveillance. In general, 442 

clinical testing data correspond to either the date the sample was collected or the date the results 443 

were returned. The ideal date to use for informing public health decisions would be the result date, 444 

to include differences between clinical and wastewater testing turnaround time in the analysis. 445 

Alternatively, sample collection dates should be compared to understand the timing of the 446 

underlying biological mechanisms that result in a positive wastewater signal (onset and duration 447 

of fecal shedding) and positive clinical test (onset and duration of nasopharyngeal shedding). 448 

Onset and duration of symptoms may influence the timing of the clinical test (sample collection 449 

date), depending on whether testing is routine or only available to symptomatic individuals. 450 

Hence, the ideal date to use for comparison of wastewater and clinical testing data differs 451 

depending on the goals of the comparison. The clinical testing data for location K included sample 452 

collection date, result date, and episode date (the earliest date associated with the case), allowing 453 

us to assess the correlation between case data and wastewater data with and without clinical 454 

testing turnaround time. Episode date was frequently the same as the sample collection date, 455 

unless a patient reported symptoms prior to test date (Figure S11). It should be noted that 456 

wastewater testing data correspond to the sample collection date because all samples were 457 
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processed retroactively in this study. Routine wastewater testing turnaround time can be 1-3 days 458 

but could vary depending on sample transport and laboratory methods (“Covid-WEB,” n.d.).  459 

 460 

To test the influence of the date associated with clinical testing, we repeated correlation analysis 461 

for location K (Figure S11). The wastewater testing data (sample collection date) correlated with 462 

the clinical testing data by episode date (𝜏episode,unnormalized=0.56, 𝜏episode,crAssphage=0.54, p<0.01) and 463 

sample collection date (𝜏collection,unnormalized=0.59, 𝜏collection,crAssphage=0.62, p<0.01) without a lead or 464 

lag. When the result date was used for clinical testing data, the strongest correlation with 465 

wastewater data was associated with a two-week lead time (unnormalized N1 concentration) or 466 

one-week lead time (N1 normalized to crAssphage; Figures S10 and S11). When values below 467 

the N1 qPCR LoD were removed, wastewater data were no longer significantly correlated with 468 

episode date-associated clinical data, but the strongest correlations for the other date 469 

associations remained significant. This analysis is limited because of the small dataset, but the 470 

methodology presented here can be used to assess the lead time provided by wastewater 471 

surveillance with larger data sets and with wastewater data processed contemporaneously with 472 

decision-making.  473 

 474 

3.4 The Lowess bandwidth parameter affected wastewater data trend interpretation 475 

Variation in wastewater SARS-CoV-2 N1 signal from sources other than variation in true incidence 476 

or prevalence (e.g., noise introduced during sample collection, processing, etc.) can obscure 477 

temporal trends. Smoothing techniques can be used to visually distinguish temporal trends from 478 

noise. Similar to the choice of the number of days included for each average calculation for moving 479 

averages (window), Lowess requires selection of the fraction of the whole time series that is used 480 

for each local regression calculation (bandwidth). We employed a method to set the bandwidth 481 

parameter systematically based on residuals (Jacoby, 2000) independently for each location. The 482 

bandwidth was increased stepwise, beginning with inclusion of one point in each local regression 483 
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calculation and ending with inclusion of all points (α=1). For each bandwidth value, the residuals 484 

were calculated and plotted by date, and a Lowess trendline with α=1 was fit to these residual 485 

plots to monitor residual trends as the bandwidth varied. Finally, the maximum bandwidth value 486 

was selected for which the residuals visually maintained horizontal Lowess trendlines (see 487 

Figures 3 and S2-S5).  488 

 489 

As an example, for unnormalized and crAssphage-normalized SARS-CoV-2 N1, bandwidth 490 

parameters of 0.39 and 0.33 were respectively chosen for location N (Figure 3 A). This process 491 

was repeated for all locations, and bandwidths in the range of 0.25-0.6 were selected based on 492 

the optimization procedure (see Figures 3 and S2-S5). To assess the impact of bandwidth on 493 

SARS-CoV-2 N1 signal interpretation, Lowess was performed for all locations sampled and for all 494 

possible bandwidths (see Figures 3 B and S2-S5). The bandwidth parameter influenced the 495 

overall temporal trends of wastewater data for some locations (N and A; Figures 3 and S5). For 496 

example, at location A (Figure S5), a bandwidth of 1 resulted in a gradual increase in SARS-CoV-497 

2 N1 signal during sampling, while a bandwidth of 0.73 resulted in a peak around July. However, 498 

for location K (Figure S2), all bandwidths resulted in trends that would have similar 499 

interpretations. These results illustrate that choice of bandwidth could have implications for 500 

interpreting WBE data and informing COVID-19 response strategies, and systematic methods 501 

should be used to select the appropriate bandwidth.  502 

 503 

3.5 Wastewater and clinical data had similar overall trends regardless of normalization, 504 

with notable exceptions 505 

To assess the impact of crAssphage normalization on SARS-CoV-2 N1 temporal trends, we 506 

compared unnormalized and crAssphage-normalized Lowess trendlines (Figure 4). We found 507 

that crAssphage-normalized trends were similar to unnormalized trends for three of the locations 508 

(K, N, and A) but had differences in overall trend for locations Q (Figure 5) and S (Figure S12). 509 
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Discrepancies are concerning because they could have implications for pandemic response. We 510 

note that the trend in location K, for which biological replicates were processed routinely, was the 511 

least impacted by bandwidth or normalization (Figures S2 and S12). Larger datasets with more 512 

frequent sampling and processing of biological replicates, would give single points less influence 513 

over the trend. 514 

 515 

Relative spatio-temporal trends in clinical and wastewater testing results were compared across 516 

sampling sites (Figures 4, S6, and S7). In general, clinical and wastewater data at all locations 517 

paralleled one another, with San Quentin prison (Q) showing the highest COVID-19 burden 518 

across locations. Due to a COVID-19 outbreak, location Q had a maximum that was 53 times 519 

(SARS-CoV-2 N1 4.89 x 103 gene copies/mL), 17 times (crAssphage-normalized SARS-CoV-2 520 

N1 ratio 2.9x 10-3), and 203 times (~85 new cases per 1000 people on 6/29) higher than the 521 

highest value at the sewershed scale. There were a few discrepancies between clinical and 522 

wastewater trends (heatmap visualizations in Figures S6 and S7 highlight discrepancies in 523 

peaks). For example, at location N, there may have been clinical undertesting, based on the peak 524 

in wastewater data in August (Figures 4 and S6) and higher SARS-CoV-2 signal in wastewater 525 

at location N (relative to other locations) than represented by the clinical data (Figures 4 and S7).  526 

 527 

3.6 The WBE case detection limit was estimated to be 2.4 COVID-19 cases per 100,000 528 

people 529 

Quantifying the minimum per capita new COVID-19 cases in a sewershed at which there is 530 

reliable detection of SARS-CoV-2 N1 in wastewater (WBE case detection limit) is important for 531 

gauging the utility of COVID-19 WBE when the true incidence is low. This WBE case detection 532 

limit depends on the detection limit of the wastewater measurement (i.e., the methods used to 533 

store, concentrate, extract, and measure SARS-CoV-2 RNA in wastewater) and the accuracy of 534 

the clinical testing data available. To estimate the WBE case detection limit in a way that is 535 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256418doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 21 

replicable across studies, the cumulative percentage of amplified technical replicates of the 536 

wastewater data for inversely-ranked daily per capita COVID-19 cases was fit to a logistic growth 537 

model (without samples associated with masked case values; see Methods). When COVID-19 538 

case rates equaled or exceeded 2.4 daily cases per 100,000 people, 95% of wastewater technical 539 

replicates amplified via RT-qPCR for N1 (Figure 6). Other researchers have used non-cumulative 540 

methods to estimate the WBE case detection limit by calculating the percent of amplified 541 

wastewater replicates for each case value (Wu et al., 2021). This method requires repeated 542 

wastewater measurements associated with each possible clinical case value or range of case 543 

values (i.e., bins). Otherwise, the percent of amplified technical replicates is limited, as was the 544 

case in this study where only one biological replicate was often associated with each case number 545 

(Figure S13 A). Ideally, all data would be unmasked when applying this method. To verify that 546 

the masked clinical data did not affect the estimated WBE case detection limit, the process was 547 

repeated with masked values, and the estimate was similar (2.2 cases in 100,000 people; Figure 548 

S13 B). These limits are within the theoretical range possible (Hart and Halden, 2020b) and similar 549 

in magnitude to previous findings of 10 in 100,000 (Hata and Honda, 2020) and 13 in 100,000 550 

(Wu et al., 2021).  551 

 552 

Based on the contributing population of each sewershed in this study, the WBE case detection 553 

limit translates to 11.6 cases for K, 11.3 cases for S, 3.3 cases for N, 2.0 cases for A, and 0.1 554 

cases for Q. Therefore, at location Q, one case should be reliably detected based on results from 555 

this analysis, which could be tested observationally because only one new case was detected by 556 

clinical testing after August 12th (Figure 5) with the test results provided on 8/26. When 557 

wastewater sampling was completed on 8/25 and 9/1, a weak positive signal was observed (one 558 

technical replicate amplified). These results support that wastewater testing can detect clinical 559 

cases in facilities with a single case; however, to capture a strong positive signal from one case 560 

at a facility, higher frequency sampling is recommended. A possible explanation for why a single 561 
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case may still go undetected, despite being above the WBE case detection limit, is that 562 

wastewater surveillance relies on the autosampler aliquots capturing the feces from each infected 563 

individual, which becomes less likely when there are fewer infected individuals and wastewater 564 

has less mixing prior to the sampling location. These results are promising for the application of 565 

WBE in facilities, where it is highly resource-intensive to conduct routine clinical surveillance 566 

testing frequently enough to detect a single case in time to enact preventative measures. More 567 

work is needed applying WBE for SARS-CoV-2 across a broader set of facilities. 568 

 569 

4. DISCUSSION 570 

 571 

4.1 Validation and potential use scenarios of SARS-CoV-2 wastewater testing  572 

During the COVID-19 pandemic, both the methodological research for SARS-CoV-2 testing in 573 

wastewater and the application of WBE have been occurring simultaneously. For COVID-19 WBE 574 

to be useful for public health decision-making, public health officials need to be confident that the 575 

resulting SARS-CoV-2 signal reflects COVID-19 trends in the contributing population. Despite 576 

limitations in clinical testing data and the potential lag in wastewater trends, assessing correlations 577 

between clinical and wastewater testing data can help validate WBE (Xagoraraki and O’Brien, 578 

2020). Moderate correlations with clinical data observed in this study (𝜏=0.43) support that trends 579 

in wastewater surveillance data reflect trends in COVID-19 disease occurrence. Wastewater data 580 

paired with clinical data can be a more robust public health surveillance strategy compared to 581 

either method alone, both for sewershed-scale and facility-scale surveillance applications. In 582 

some settings, wastewater testing may be a less resource-intensive way to implement population-583 

scale surveillance, and policymakers will need to balance allocation of resources to each 584 

approach.  585 

 586 
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A critical question for public health decision-making is how much early warning WBE can provide 587 

ahead of clinical testing, which could allow more timely public health responses to slow COVID-588 

19 outbreaks. However, lead time is difficult to measure. Biologically, the time between onset of 589 

fecal shedding and nasal shedding is unclear (Benefield et al., 2020; Walsh et al., 2020). 590 

Practically, lead time depends on testing turnaround time and frequency of sampling for both 591 

wastewater and clinical testing. For example, clinical testing capabilities can increase the lead 592 

time of wastewater data if patients are only tested after symptom onset and can decrease the 593 

lead time if asymptomatic and symptomatic individuals are regularly screened with rapid 594 

turnaround time. Ideal assessments of wastewater data lead time due to biological mechanisms 595 

would not include turnaround time, whereas assessments of the performance of clinical and 596 

wastewater laboratories for public health action and practical limitations would include turnaround 597 

time. Although other studies observed lead time for wastewater data over clinical data starting on 598 

the order of days (D’Aoust et al., 2021a; Nemudryi et al., 2020; Peccia et al., 2020, the weekly 599 

sampling in our study could explain why no lead time was determined when the sample collection 600 

date was used for both wastewater and clinical testing data (Figure S14). However, the impact 601 

of clinical testing strategy (i.e., only screening symptomatic individuals) could also be affecting 602 

this result. We could not directly compare wastewater and clinical result dates in this retroactive 603 

study, but when clinical data were associated with the result date and wastewater data were 604 

associated with sample collection date, lead time of 1-2 weeks was observed (Figure S14). Other 605 

researchers have observed lead time in wastewater data of up to three weeks (Ahmed et al., 606 

2021; Medema et al., 2020), and our results reflect a similar range in possible lead times (0-2 607 

weeks) depending on which date is associated with the clinical data.  608 

 609 

At the sewershed scale, the benefit of WBE to public health extends beyond early warning. 610 

Discrepancies between wastewater testing data and clinical testing data trends from early in the 611 

time series at location N (April-July 2020; Figure S12) could be used to infer clinical undertesting, 612 
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which is supported by lower testing capacity in this time frame (Figure S15). Although pairing 613 

COVID-19 clinical testing data with wastewater SARS-CoV-2 data can generate new insights for 614 

public health decision-making, it can be challenging in practice. Pairing wastewater SARS-CoV-615 

2 data with geocoded COVID-19 clinical testing data required collaboration between academics, 616 

wastewater treatment facility representatives, and public health officials. These collaborations 617 

may be particularly difficult at sewershed-scale, where multiple public health department 618 

jurisdictions overlap (e.g., location N). Partnerships for data sharing between agencies are critical 619 

to support ongoing wastewater-based epidemiology for SARS-CoV-2 and other pathogens. 620 

 621 

At the facility scale, monitoring raw wastewater for SARS-CoV-2 might be particularly useful for 622 

early detection of COVID-19 outbreaks. San Quentin Prison (location Q) had a COVID-19 623 

outbreak during the study period after a transfer from the California Institution for Men (Cassidy 624 

and Fagone, 2020), where, at its peak, 47% of the population had active cases. The maximum 625 

SARS-CoV-2 N1 concentration (4.89 x 103 gene copies/mL) was higher than any sewershed 626 

sampled in this study and among the highest values we found in the literature for N1 in raw 627 

wastewater (Gerrity et al., 2021; Gonzalez et al., 2020; Medema et al., 2020; Randazzo et al., 628 

2020b; Wu et al., 2020; Wurtzer et al., 2020), despite regular clinical testing (Figure S15). Prison 629 

conditions cause incarcerated people to be particularly susceptible to respiratory disease 630 

outbreaks, and maintaining safety in prisons requires deliberate planning and coordination by 631 

correctional institutions (e.g., coordination with local public health systems to develop pandemic 632 

response plans, coordination of transfers between institutions, etc.) (Montoya-Barthelemy et al., 633 

2020). Furthermore, the health of incarcerated people is linked to the health of the community, 634 

and incorporating correctional institutions into community safety plans will help ensure better 635 

protection against COVID-19 for everyone (Montoya-Barthelemy et al., 2020). Once protective 636 

measures are implemented, WBE may be useful to monitor prisons and other high-risk facilities 637 
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(e.g., skilled nursing facilities, homeless shelters, etc.), especially where clinical testing is not 638 

available or routine. 639 

 640 

4.2 Approaches for translatable WBE 641 

 642 

4.2.1 Normalization of wastewater targets to adjust for fecal content  643 

Results from this study suggest that PMMoV, Bacteroides rRNA, and 18S rRNA were less 644 

promising normalization biomarkers than crAssphage. While PMMoV was present in high and 645 

stable concentrations, the diet-dependency (Symonds et al., 2019) and large range in 646 

concentrations in the literature (six orders of magnitude; Table S10) remain concerns for its use 647 

over longer time scales and across larger geographic regions. Normalization to PMMoV resulted 648 

in the weakest significant correlation to clinical testing data of the biomarkers tested (𝜏=0.18, 649 

p<0.05), in contrast to other studies that found normalization to PMMoV improved correlation with 650 

clinical data (D’Aoust et al., 2021b; Wu et al., 2020). Bacteroides rRNA loads varied more spatially 651 

and temporally than crAssphage or PMMoV in this study (Figure 1), but Bacteroides-normalized 652 

SARS-CoV-2 N1 had a moderate correlation with clinical testing data (𝜏=0.35). While 653 

measurement of Bacteroides rRNA gene in wastewater has been commonly applied for fecal 654 

source tracking and Bacteroides rRNA has been targeted to increase assay sensitivity (D’Aoust 655 

et al., 2021b; Feng et al., 2021), to our knowledge, no prior raw wastewater values have been 656 

reported in the literature for Bacteroides rRNA (Table S10). Similarly, no values were found in the 657 

literature for 18S rRNA concentrations in raw wastewater (Table S10). In this study, 18S rRNA 658 

signal displayed a wide range in concentrations and consistently amplified in negative extraction 659 

controls. Furthermore, 18S rRNA was less stable in wastewater than SARS-CoV-2 RNA and 660 

nonenveloped viruses (e.g., crAssphage and PMMoV), which is consistent with previous studies 661 

(Whitney et al., 2021; Wurtzer et al., 2020). Therefore, we do not recommend 18S rRNA use as 662 

a normalization biomarker. In comparison to all of the biomarkers tested, crAssphage had low 663 
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spatial variability (i.e., the fewest locations with statistically different loads; Figure 1) and temporal 664 

variability (gCV=59%; Figure 1). Additionally, normalized SARS-CoV-2 N1 correlated with daily 665 

per capita COVID-19 cases (𝜏=0.38). Although crAssphage concentrations in the literature had a 666 

wide range (six orders of magnitude; Table S10), they were consistent across locations in this 667 

study. Based on this dataset, crAssphage remains a promising endogenous normalization 668 

biomarker for broader WBE applications.  669 

 670 

Although a standardized approach would facilitate comparisons across studies, the ideal 671 

normalization strategy may be situationally dependent. For example, in this study, for some 672 

locations, crAssphage-normalization did not have a major impact on general spatio-temporal 673 

trends and did not improve correlations to clinical data compared to unnormalized signal, likely 674 

due to the lack of precipitation or changes in flow throughout the study period. Several factors 675 

should be considered when deciding whether to normalize to a biomarker or report unnormalized 676 

concentrations. First, adding another assay introduces additional analytical variation that could 677 

outweigh the benefits of biomarker normalization in some settings (Feng et al., 2021). An 678 

additional consideration is ensuring methods compatibility with the WBE target and normalization 679 

biomarker. Ideally, normalization to an endogenous biomarker would account for losses in target 680 

signal during residence time in sewers, sample storage, and laboratory processing, but the ideal 681 

biomarker for fecal content may not be the best surrogate for the target of interest. For example, 682 

crAssphage is not expected to be a good surrogate for SARS-CoV-2 stability, partitioning, and 683 

extraction (Ye et al., 2016), and as a DNA virus, crAssphage may be incompatible with some 684 

extraction methods used for SARS-CoV-2 RNA. Other controls (e.g., endogenous biomarkers, 685 

recovery controls) and modeling may be applied to improve measurement accuracy and translate 686 

results across labs and methods, although there are challenges associated with these corrections 687 

(Kantor et al., 2021). Degradation modeling with target-specific decay constants (Ahmed et al., 688 
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2020a) and sewershed-specific parameters could assist in correcting for degradation or 689 

determining sample integrity, but no comprehensive approach for this correction exists.  690 

 691 

4.2.3 A systematic approach for data smoothing (Lowess) 692 

In general, public health decisions are based on temporal trends in disease burden, not individual 693 

data points, but trends in wastewater and clinical data can be difficult to visually distinguish, 694 

especially when available resources constrain sampling frequencies. Applying Lowess to 695 

wastewater data, we found that the value of one parameter could influence the trend visualization 696 

such that the same dataset could lead to different public health responses (Figures 3 and S5). 697 

Based on our analysis, the bandwidth parameter for Lowess should be determined for each 698 

sewershed sampled. Lowess with a systematically chosen bandwidth could be used to smooth 699 

trendlines and minimize the loss of temporal resolution. The method presented here could be 700 

applied in retrospective analysis or in real-time analysis completed as part of wastewater public 701 

health surveillance programs. For real-time applications, the bandwidth parameter could be 702 

selected using a subset of data, and the residuals plot could be frequently checked to ensure no 703 

new residual patterns emerge over time that could obscure the smoothed trend.  704 

  705 

4.2.4 A systematic approach to estimate a WBE case detection limit 706 

In addition to data smoothing, we developed an approach for identifying a WBE case detection 707 

limit that can be applied systematically to studies using PCR-based methods. We applied this 708 

analysis to SARS-CoV-2 N1 signal in wastewater and found that the daily new clinical cases at 709 

which wastewater surveillance could reliably detect clinically diagnosed COVID-19 cases in the 710 

contributing population was estimated at 2.4 cases per 100,000 people. There are multiple 711 

limitations to this analysis because wastewater detection depends on factors other than incidence, 712 

such as sampling methods (e.g., frequency of sampling aliquots), which can influence the 713 

probability of capturing shed viral particles from an infected individual. Additionally, the estimate 714 
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may vary based on site-specific clinical testing availability, wastewater sampling methods (e.g., 715 

composite sampling, freezing before processing) and laboratory processing (e.g., 4S extraction 716 

method, RT-qPCR). The estimation method for a WBE case detection limit presented here could 717 

benefit both COVID-19 WBE and other disease WBE by providing a systematic method to 718 

compare the case detection limits across studies.  719 

 720 

5. CONCLUSION 721 

● Wastewater N1 concentrations had a moderate correlation with geocoded clinical testing 722 

data (𝜏unnormalized=0.43). Normalization of SARS-CoV-2 N1 signal in wastewater to any 723 

biomarker did not improve the correlation with clinical testing data, likely because of the 724 

low variation in daily flow rates.  725 

● Of the normalization biomarkers tested, crAssphage was the most promising due to low 726 

spatial and temporal variability and because crAssphage-normalized N1 had the strongest 727 

correlation with clinical testing data (𝜏crAssphage=0.38, 𝜏Bacteroides=0.35, 𝜏PMMoV=0.18).  728 

● 18S rRNA was not suitable as a normalization biomarker due to its variability in sample 729 

concentrations, high degradation rate, and ubiquity as a laboratory contaminant. 730 

● There was evidence of clinical undertesting at location N, which supports that wastewater 731 

testing could provide insights about COVID-19 trends in the population when clinical 732 

testing capabilities are limited. 733 

● The COVID-19 outbreak at San Quentin prison (location Q) corresponded to a measured 734 

N1 concentration that was higher than any sewershed tested (4.89 x 103 gene copies/mL). 735 

● The wastewater-based epidemiology case detection limit using the 4S RNA extraction 736 

method on frozen samples was estimated to be 2.4 COVID-19 cases in 100,000 people. 737 

● Lead time in wastewater over clinical testing varied from 0 to 3 weeks depending on the 738 

location, biomarker normalization, and testing turnaround time. 739 

● Systematic approaches for determining a WBE case detection limit, biomarker 740 
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normalization, and trendline smoothing were presented that can be applied across future 741 

WBE studies. 742 

 743 

 744 

 745 

 746 

 747 

 748 
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 750 
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 755 
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FIGURES AND TABLES 767 

 768 
Table 1: Descriptions of wastewater sampling locations including associated wastewater utility, 769 
clinical testing data sources, population, and flow rates. “d” represents the number of unique dates 770 
on which samples were collected. “n” represents the total number of wastewater samples 771 
collected, including biological replicates.  772 

Wastewater 
catchment 
area 

Wastewater 
treatment 
facility 

COVID-19 
clinical data 
source 

Population Mean 
flow rate 
(MGD) 

Mean per 
capita flow 
(L/person/day) 

d n 

Location K 
Influent to the 
wastewater 
treatment 
facility 

Central 
Contra Costa 
Sanitary 
District 

Contra Costa 
County  
Public Health 
Department 

483,600 33  261 13 39 

Location S 
Upstream of 
wastewater 
treatment 
facility 

East Bay 
Municipal 
Utility District 

Alameda County 
Public Health 
Department 

469,344 35 
 

282 20 22 

Location A 
Upstream of 
wastewater 
treatment 
facility 
 

East Bay 
Municipal 
Utility District 

Alameda County 
Public Health 
Department 

82,818 6 274 11 17 

Location N 
Upstream of 
wastewater 
treatment 
facility 
 

East Bay 
Municipal 
Utility District 

Contra Costa 
County and 
Alameda County 
Public Health 
Departments 

139,037 10 272 18 18 

Location Q* 
Wastewater 
collection point 
for San Quentin 
Prison 

Central Marin 
Sanitation 
Agency  

California 
Department of 
Corrections and 
Rehabilitation 
open data portal  

Ranges from  
3,587 (June) 
to 2,930 
(September) 
 

0.41 481 10 11 

Location E 
Influent to the 
wastewater 
treatment 
facility 

San Jose - 
Santa Clara 
Regional 
Wastewater 
Facility 
(SJSC-RWF) 

Not applicable 1,500,000 103 278 19 48 

*For location Q, the population and clinical data are from people incarcerated only and do not include 773 
staff.   774 
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Figure 1: Spatial and temporal 775 
variation in crAssphage, PMMoV, 776 
and Bacteroides wastewater loads. 777 
Only one biological replicate per date 778 
per location is shown. 18S rRNA results 779 
were not included in the figure for 780 
consistency of scale due to the wide 781 
range in sample values and are 782 
included in the SI (Figure S8). The 783 
temporal variation within each location 784 
was assessed as the geometric 785 
coefficient of variation, displayed as a 786 
percentage above each box. The 787 
significance of differences between 788 
locations was assessed using a 789 
Kruskal-Wallis test with a Bonferroni 790 
correction followed by Dunn’s test, 791 
where * indicates p < 0.001 for 792 
bracketed relationships and § (above 793 
location E) indicates p < 0.001 for every 794 
pairwise location comparison to E, 795 
except p > 0.001 when compared to 796 
location K (for crAssphage and 797 
Bacteroides) and location N (for 798 
crAssphage).  799 
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Figure 2: Rank 809 
correlations of both 810 
unnormalized and 811 
normalized wastewater 812 
SARS-CoV-2 813 
concentrations with 814 
clinical testing data. N1 815 
concentration, and N1 816 
normalized proposed 817 
biomarkers are plotted 818 
against a seven-day moving 819 
average of new cases per 820 
capita per day for sample 821 
locations K, S, N, A, and Q. 822 
Shapes signify whether 823 
wastewater samples were 824 
below the qPCR limit of 825 
detection (LoD) for the N1 826 
assay, associated with 827 
masked clinical case values, 828 
or both. Significance of rank 829 
correlation values in facet 830 
titles is indicated by *=<0.05, 831 
***=<0.0001 832 
 833 
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 850 
Figure 3: Example of Lowess bandwidth parameter selection process (Location N)  851 
(A) Residual plots for Lowess bandwidth parameter (α; column labels) determination for location 852 
N where the bandwidth parameter increases from inclusion of 1 data point (far left) to inclusion 853 
of all data points (far right) in each local regression for unnormalized N1 (top) and crAssphage-854 
normalized N1 (bottom). The value of α that minimized the residual was selected (red boxes). 855 
(B) Visualization of how bandwidth parameter affected the Lowess trendline for location N. 856 
Black dashed line indicates the resulting Lowess trendline when α=0.39.  857 

A

B
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 858 
Figure 4: Comparison of wastewater SARS-CoV-2 N1 to geocoded COVID-19 clinical 859 
testing results from May to September 2020. Wastewater SARS-CoV-2 N1 signal is 860 
compared as unnormalized (top) and crAssphage-normalized (middle), where lines are the most 861 
optimal Lowess trendlines. COVID-19 clinical testing results are the daily per capita COVID-19 862 
cases, where lines are the fourteen-day moving average (location N) or seven-day moving 863 
averages (all other locations) (bottom). Heatmap visualization of the unnormalized N1 trendlines 864 
is included in the SI (Figures S6 and S7) and visualization of sewersheds by location can be 865 
found in Figure S12. 866 
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Figure 5: Comparison of wastewater 867 
and clinical data at location Q from 868 
June to September 2020, where 869 
symbols indicate how many technical 870 
replicates amplified during qPCR. 871 
Wastewater data : (top) unnormalized 872 
and (middle) crAssphage-normalized 873 
SARS-CoV-2 N1 signal in wastewater, 874 
where the horizontal dashed line 875 
indicates the limit of detection, and 876 
trendlines are the most optimal Lowess 877 
trendline (Figure S4). Clinical data 878 
(bottom): daily per capita COVID-19 879 
cases, where the horizontal dashed line 880 
indicates 1 case in 1000 people. Vertical 881 
dashed lines indicate August 26th, the 882 
only date after August 12th when a new 883 
COVID-19 case was detected at 884 
location Q through clinical surveillance. 885 
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 900 
Figure 6: Estimated minimum number of COVID-19 clinical cases needed for reliable 901 
detection of SARS-CoV-2 RNA in wastewater. The cumulative percentage of amplified 902 
wastewater technical replicates was calculated by ranking the moving averages of daily per 903 
capita cases (x-axis) from highest to lowest and calculating the fraction of qPCR replicates that 904 
amplified cumulatively (y-axis) for each value of x. The dashed line represents the daily new 905 
cases per capita value above which 95% of wastewater technical replicates amplified (2.4 cases 906 
in 100,000 people).  907 
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