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Abstract 

Dexmedetomidine is commonly used as part of intraoperative anesthetic management and for 

sedation and pain control after surgery in children. Dexmedetomidine infusion dose is typically 

given on a fixed weight basis with titration to achieve sedation goals while avoiding potential 

toxicities. Pharmacokinetic (PK) studies are useful for accurate prediction of the individual dose 

required to achieve sedation and analgesia goals without toxicity, but lack of PK data is a 

challenge in precision dosing for pediatric populations. In this study, population PK models were 

developed using a nonlinear mixed-effects modeling approach and used to explore the 

relationship between PK profile and clinical, demographic, and genotype covariates.  A 

simulation study was used to demonstrate the impact of important covariates on concentration 

using a fixed weight dosing scheme.  Our final study population included data from 354 patients 

age 0 to 22 years (median age 16 months). In the final two-compartment model with fixed 

allometric weight scaling we found significant effects of both age and UGT2B10 genotype. The 

population PK parameter estimates (95% confidence interval) for a standard 70 kg weight were 

clearance 22.3 (18.3 – 27.3) L/hr, central compartment volume of distribution 133 (112 - 157) L, 

intercompartmental clearance 24.1 (19.4 – 29.9) L/hr, peripheral compartment volume of 

distribution 5230 (3310 – 8260) L. Our study provides support for the feasibility of using real-

world data obtained from EHRs and remnant samples to perform population PK analysis for 

groups of patients where traditional PK studies are challenging to perform. Inclusion of 

UGT2B10 genotype in the model significantly improved the model fit, but the effects were not 

large enough to impact clinical dosing.  
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Introduction 

Dexmedetomidine is an alpha2-agonist with anxiolytic, sedative and analgesic properties 

with minimal effects on respiratory depression.1,2 The sedative and cardiopulmonary profile of 

the drug make it an attractive agent for sedation and pain control after surgery in children with 

congenital heart disease (CHD). Dexmedetomidine is now routinely used as part of the 

intraoperative anesthetic management during CHD surgical repairs and in the postoperative 

period in the intensive care unit (ICU).3,4 Dexmedetomidine is commonly dosed as a continuous 

infusion on a fixed weight basis (e.g., starting at 0.3mcg/kg/hr), with titration of the rate in order 

to achieve sedation goals while avoiding potential toxicities which include hypotension and 

bradycardia. Accurate prediction of an individual’s dexmedetomidine requirement (precision 

dosing) could help achieve sedation and analgesia goals without toxicity.  

 Population pharmacokinetic (PK) models can be useful when drug concentration 

measurements per subject are limited – as is often the case for pediatric populations – if the 

number of study subjects is sufficiently large. In addition to allowing estimation of population 

and individual parameters by “borrowing” information across subjects, these models also 

quantify variability between subjects. Importantly, population PK models can identify covariates 

that affect each individual’s PK profile, facilitating personalized dosing. Several population PK 

studies of dexmedetomidine in pediatric populations have been reported,5–17 often using a small 

number of individuals and frequent sample collection [median sample size 29, range 18-199 for 

pediatric ICU populations].7,9–12,14,15 Strategies to address small sample size include pooled 

pediatric analyses,17 creating “universal” models for both children and adults,6,8 and Bayesian 

analyses with informative priors;16 however, even these models only include information from at 

most around 130 children.  

The small sample size limits the ability to identify significant covariates that impact inter-

individual variability. For example, dexmedetomidine is metabolized into inactive metabolites by 
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glucuronidation (by UGT1A4 and UGT2B10) and hydroxylation (primarily by CYP2A6).2,18 

Small studies of the impact of genetic variation or expression levels of these enzymes have failed 

to demonstrate pharmacogenetic associations.19,20 A newly developed weighted genetic risk 

score to predict CYP2A6 activity raises the possibility of better capturing the impact of variants 

across this gene for pharmacogenetic analysis.21 Study of a large cohort may allow the 

identification of genetic biomarkers affecting dexmedetomidine PK, facilitating precision dosing 

based on genotype. 

Motivated by the challenges of obtaining a larger study population and collecting 

frequent drug concentration measurements from children, we combined data from electronic 

health records (EHRs) and remnant samples collected during usual clinical care to perform a 

population PK analysis. A few previous studies have used similar methodology, including two 

pediatric fentanyl population PK studies.22,23 To our knowledge, ours is the first study to employ 

this method to perform dexmedetomidine PK analysis for a pediatric population. 

 While EHR-sourced data provide a great opportunity to perform PK studies with larger 

sample size, these data require more preprocessing compared to a designed clinical trial and may 

be subject to additional challenges such as missing or erroneous values and sparse sampling.24 

To address some of these challenges, we previously developed a system to construct PK analysis 

datasets using raw data extracted from EHRs.25 This is one of the first studies that employed this 

system using the R package EHR.26 

The major goals of this study were to develop a dexmedetomidine population PK model 

for children with data obtained from EHRs and remnant samples and quantify genetic effects that 

were selected a priori based on previous studies and known metabolic pathways. 
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Methods 

Study Design 

This study was approved by the Vanderbilt University Medical Center (VUMC) Institutional 

Review Board and has been previously described.22 In brief, pediatric patients undergoing 

surgery for CHD are offered enrollment in this observational study. Parents provide written 

consent for their child’s participation, and informed assent is obtained when appropriate. Drug 

selection and dosing are determined by the primary clinical team. Remnant samples from clinical 

testing are obtained for drug concentration measurements, which are not disclosed to the clinical 

teams. Enrollment with remnant specimen collection began in July 2012 and is ongoing. Data 

analyzed for this study were collected prior to October 2017. All study participants were 

admitted to the pediatric cardiac ICU after surgery. Enrolled participants were excluded from the 

analysis if their surgery was cancelled, if there was missing genotype data, if extracorporeal 

membrane oxygenation (ECMO) treatment was required, or if they did not survive to hospital 

discharge. For those with multiple surgeries, data from the one procedure with the highest 

number of measured serum drug concentrations were used, excluding all others. Drug 

concentrations were excluded if inadequate internal standard concentrations were detected and 

insufficient volume remained to repeat analysis, or if they were obtained before any documented 

dexmedetomidine dosing.     

 

Data Collection 

Demographic data (including race, per self-report) and medical history were documented at the 

time of study enrollment.  Surgical and clinical data were extracted from the EHR prospectively 

by the study team.  Dexmedetomidine dosing, including scheduled boluses, as-needed 

intermittent boluses, and continuous infusions after the postoperative admission to the ICU were 
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determined from the EHR and the Vanderbilt Enterprise Data Warehouse. The Enterprise Data 

Warehouse contains an electronic copy of both nurse administration and pharmacy operational 

data, enabling the computation of administered drug amounts over specific time periods. Study 

data were collected and managed using REDCap electronic data capture tools, a secure, web-

based application hosted at Vanderbilt University.27  

 

Drug Concentration Measurement 

For the purposes of drug concentration analysis, all remnant plasma specimens ≥100 μL from 

blood obtained for clinical testing of electrolyte or basic metabolic panels in study subjects were 

obtained from the Vanderbilt Clinical Chemistry Laboratory. After retrieval, remnant specimens 

were stored at -20ºC until sample processing for drug concentration analysis. Specimen 

processing and mass spectrometry analysis have been previously described in detail.22 Briefly, 

acetonitrile precipitation was followed by tandem mass spectrometry using a 16-drug assay. 

Dexmedetomidine assay accuracy is 89 – 112%, and the lower and upper limits of quantitation 

are 0.005 and 5 ng/mL, respectively.   

 

Genotyping and CYP2A6 Activity Score Prediction 

All study participants provide a peripheral blood sample for genetic analysis, and study 

participants have been genotyped using either the Axiom™ Precision Medicine Research Array 

or the Precision Medicine Diversity Array. As part of genotype data quality control, variants 

were removed if genotype call rate was <98%, and data for individuals were removed if their 

genotype call rate was <98%, the genetically estimated sex differed from parental-reported sex, 

or for relatedness (2nd degree or closer). Genotype data were imputed to the 1000 Genomes 
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phase 3 reference panel. For this study, we extracted data for specific variants in UGT2B10 

(rs2942857; rs112561475; rs61750900), UGT1A4 (rs2011425; rs3892221; rs6755571) and 

CYP2A6 (rs56113850; rs2316204; rs113288603; rs28399442; rs1801272; rs28399433) from the 

study database. For the UGT genes, an additive model counting the number of variant alleles for 

each individual was calculated. For CYP2A6, enzyme activity was predicted using a polygenic 

score.21  

 

Data Processing 

Data processing was facilitated using a modularized system for postmarketing population 

PK studies with real-world data from EHRs as described in Choi et al.25 This system has been 

implemented in the R software28 package EHR26 which provides a standardized, scalable 

pipeline to prepare and integrate demographic data, drug dosing and concentration, and clinical 

laboratory measurements into a standard data format compatible with most population PK 

analysis software. Additionally, it incorporates interactive checks for data quality to reconcile 

missing, duplicate, and other erroneous concentration or dosing information. The data output 

from the EHR package pipeline was further cleaned by removing: (i) concentration 

measurements more than 150 hrs (approximately 50 times dexmedetomidine half-life) after the 

end of the final bolus or infusion dose, (ii) concentration measurements below the lower limit of 

quantification (LLOQ) of 0.005 ng/mL if they are after the final bolus or infusion dose, except 

for the first such measurement, (iii)  concentration measurements above the upper limit of 

quantification (ULOQ) of 5 ng/mL, (iv) subjects whose only concentration measurements are 

below the LLOQ after applying criteria (i)-(iii), and (v) subjects with missing dose information 

indicated by increases in concentration without an accompanying dose. 
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Serum creatinine concentration was a time-varying covariate, which was typically 

measured at the same time as dexmedetomidine concentration. If serum creatinine measurement 

was not available when dexmedetomidine concentration was measured, we selected the serum 

creatinine concentration measured closest to the dexmedetomidine concentration data within 7 

days. For each subject, weight varied little within the timeframe of available concentration data, 

so most weight data were the same as the baseline demographic measurements.  When additional 

weight measurements were available, typically during infusion, weight measurements obtained at 

the same time as the concentration data point were used.  Measures of albumin concentration 

were available for only 35% of subjects and were available within a 7-day window for only 48 

subjects, precluding use of albumin concentration as covariate. 

 

Population PK Analysis 

We performed population PK analysis of dexmedetomidine using nonlinear mixed-

effects models implemented by Monolix version 2020R129 and estimated the parameters with the 

stochastic approximation expectation/maximization (SAEM) method. Observed concentrations 

below the LLOQ were considered to be censored between 0 and 0.005 ng/mL and were handled 

in the modeling using the appropriate likelihood for interval censoring.30 First, we chose the base 

model by comparing one- and two-compartment PK models without covariates, assuming a 

combined additive and proportional residual error model and lognormal distribution for the PK 

parameter random effects. Then, the combined residual error model was compared to models 

with only additive or proportional error for the selected compartmental model. Next, weight 

effects were incorporated as a covariate for all main PK parameters, and the models using fixed 

versus estimated allometric scaling parameters were compared. 
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Covariate model building for clearance was performed starting from the weight only 

model and both graphical and statistical methods were used in model selection.  All covariates 

were chosen a priori based on previous research and biological plausibility, which include three 

candidate genotype markers (UGT1A4, UGT2B10, and CYP2A6), and the following covariates: 

age, sex, Society of Thoracic Surgery–European Association for Cardio-Thoracic Surgery 

(STAT) Congenital Heart Surgery Mortality score,31 cardiac bypass time, length of ICU stay, and 

serum creatinine. For UGT1A4 and UGT2B10, dichotomous models (coding individuals as 

having a loss-of-function variant or not) and additive models (counting the number of variants) 

were considered. In addition, based on Badée et al.,32 we explored the hypothesis that effects of 

UGT1A4 and UGT2B10 change with age by including an interaction effect between age and 

genotype. No additional covariates other than weight were considered for modeling other PK 

parameters. 

Statistical model selection was performed using likelihood ratio tests based on the 

objective function value (OFV). Plots of empirical Bayes estimates (EBEs) versus covariates 

were examined to detect potential misspecification of the covariate model.  Because the SAEM 

estimation method includes stochastic variability and can sometimes fail to converge in a setting 

with sparse sampling,33 we performed 5 runs with different random seeds for each model and 

selected the median -2LL for model comparison.  

 

Simulations of Concentration 

To demonstrate the effect of covariates on predicting dexmedetomidine concentration, we 

estimated predicted concentration-time profiles using PK parameter estimates from the final 

covariate model. Confidence bounds were produced using quantiles from 200 simulated subjects 

with residual error (proportional component standard deviation = 0.3 ng/mL, additive component 
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standard deviation = 1.5 × 10−8 ng/mL) for the following combination of covariates and dosing 

groups: (1) the 5th, median, or 95th percentile of weight and age; (2) with or without UGT2B10 

genotype variants; (3) fixed-weight dose based infusion rates of 0.3 or 0.6 mcg/kg/hr for a 12 

hour infusion.  

In addition, we performed simulations to find the dosing levels that would yield similar 

concentrations for subjects of the same age and weight with and without variants. First, 

concentration-time profiles were simulated using identical dosing rate, weight, and age for a 

subject with and without variants.  Then the dosing rate for the subject with variants was 

adjusted in increments of 0.01 mcg/kg/hr until the concentration achieved at the end of the 12-

hour infusion most closely matched the concentration of the subject without variants. The R 

package mrgsolve34 was used to perform all simulations. 

 

Results 

Study Population and Specimens 

We collected 4,369 residual plasma specimens sent to the clinical core laboratory for provider-

ordered metabolic panel testing from 620 subjects.  After removing 165 subjects due to in-

hospital mortality or ECMO treatment and 44 subjects due to missing dosing or covariate 

information the output of the EHR package pipeline contained 411 subjects with 2,172 

specimens. The further cleaning steps described above removed 11 subjects and 43 more subjects 

without genotype information were also removed. The final study population (n=354, with 1,400 

specimens and 2,386 dosing events) is described in Table 1.  Around half of the subjects were 

male (n=183, 52%) and the median age was 16 months (interquartile range [IQR] 5 – 62). The 

race of most study subjects was White (n=293, 83%) or Black (n=40, 11%) with the remainder in 

the other or unknown categories. Median weight was 9.4 kg (IQR 6.0 – 18.2) and median serum 
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creatinine was 0.49 mg/dL (IQR 0.44 – 0.56). Most participants had STAT score 1 or 2 (44% 

and 31%, respectively), denoting low risk for mortality associated with congenital heart surgery 

procedures. Median cardiac bypass time was 100 minutes and median length of ICU 

hospitalization was 4 days. 

 There were 262 subjects (74%) with no variants of UGT1A4, 87 (25%) with 1 variant and 

5 (1%) with 2 variants. For UGT2B10, 186 subjects (53%) had no variants, 117 (33%) had 1 

variant and 51 (14%) had 2 or 3 variants. The CYP2A6 predicted activity score was available for 

350 of the 354 subjects in the final study population; for those subjects the median CYP2A6 

score was 2.04 (IQR 2.00 – 2.21). The median number of dosing events per subject was 5 (IQR 3 

– 8). The number of sampled specimens per subject varied from a minimum of 1 to a maximum 

of 18 with a median of 3 specimens (IQR 2 – 5).  

 

Population PK Model 

 The results for the base and covariate models are presented in Table 2.  A two-

compartment model with additive and proportional error was chosen as the base model. From the 

base model, the parameters as well as their 95% asymptotic confidence intervals (CIs) were 

estimated without covariates. The main PK parameters are total clearance (CL, L/hr), volume of 

distribution for the central compartment (V1, L), inter-compartmental clearance (Q, L/hr) and 

volume of distribution for the peripheral compartment (V2, L).  The PK parameters varied 

substantially among individual participants; the coefficients of variation (CV) for CL, V1, Q, and 

V2 were 200%, 161%, 146%, and 675%, respectively.  

Inclusion of weight as covariate for all PK parameters with fixed allometric scaling 

parameters substantially improved the model fit (OFV decreased by 406 from the base model, 

Table 2). The model with fixed allometric scaling parameters was selected over the model with 
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estimated allometric parameters as the latter did not improve the model fit. Additionally, 

including age improved the model fit from the weight only model (difference in OFV of 9.05, 

Table 2). Predicted CL from the age and weight model for seven age groups across a range of 

plausible weights is shown in Figure 2A (overlap between lines indicates weights that are 

plausible for multiple ages). No further improvement was seen by adding other covariates to the 

weight and age model, except for genetic markers. 

Models that included weight and either UGT1A4 or UGT2B10 individually were a 

significant improvement over the weight only model, while including the predicted CYP2A6 

activity did not improve the model fit. Inclusion of weight and both genes yielded little 

improvement over each dominant gene model. Addition of age to the gene models improved 

model fit compared to the models without age. In contrast, the age by gene interaction model 

failed to converge for the majority of runs. Thus, the final two covariate models included weight, 

age, and UGT1A4 or UGT2B10 with a dichotomous gene model (i.e., any variant vs. no 

variants).  The main part of the model is presented as follows: 

CLi = 1   (WTi
 /70)   exp(5   AGEi +    I[UGT*i>0])  exp(i

CL) 

V1i = 2   (WTi
 /70)  exp(i

V1) 

Qi = 3  (WTi
 /70)  exp(i

Q) 

V2i = 4  (WTi
 /70)  exp(i

V2), 

where Cli, V1i, Qi, and V2i are the individual-specific PK parameters corresponding to CL, V1, Q, 

and V2, WTi is subject weight in kilograms (kg), AGEi is subject age in months, and I[UGT*i>0] 

is an indicator variable that equals 1 if the subject has any variants and 0 otherwise for UGT1A4 

or UGT2B10.  The i
CL, i

V1, i
Q, and i

V2 are random effects explaining inter-individual 

variability for the respective parameters which follow a normal distribution with mean zero and 

variance of 2
CL, 2

V1, 
2

Q, and 2
V2, respectively. The θs in the equations denote model 
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parameters as typically used in statistical models. Diagnostic plots for the UGT2B10 model are 

shown in Figure 1. 

The estimates of CL, V1, Q and V2 in terms of a standard population with weight of 70 kg 

are shown in Table 2: for the UGT1A4 model, CL (1) = 19.4 L/hr, V1 (2) = 135 L, Q (3) = 

28.1 L/hr, and V2  (5) = 9400 L, and for the UGT2B10 model, CL (1) = 22.3 L/hr, V1 (2) = 133 

L, Q () = 24.1 L/hr, and V2 () = 5230 L.  For the final covariate model with UGT1A4, we 

estimate CL, V1, Q and V2 as 4.4 L/hr, 18.0 L, 6.2 L/hr, and 1262.2 L for a child with no gene 

variants, at the median weight of 9.4 kg and median age of 15.7 months; for the UGT2B10 

model, the estimates for a subject with the same covariate values are CL = 5.1 L/hr, V1 =17.8 L, 

Q = 5.3 L/hr and V2 = 702.3 L. After inclusion of covariates, the CV for CL was substantially 

reduced from 200% estimated in the base model, to 121% and 124% in the final models for 

UGT1A4 and UGT2B10, respectively.  

 

Genetic Effects on Clearance and Concentration 

For the UGT2B10 model, the estimated genotype effect was -0.15 (95% CI: -0.27 to -

0.03), indicating a 14% decrease [exp(-0.15) = 0.86] in CL on average for those with any 

UGT2B10 variants holding age and weight constant. Figure 2B shows predicted CL by genotype 

for ages 6, 12, 24, 48, 72, 90, and 120 months across a range of plausible weights for each age 

where the overlap between lines indicates weights that could occur for multiple ages. The 14% 

decrease in CL associated with UGT2B10 variants is the same for all ages, but this proportional 

decrease translates to larger absolute differences for older subjects. For the UGT1A4 model the 

estimated genotype effect was -0.076 (95% CI: -0.26 to 0.11]), which was not significant at the α 

= 0.05 level. Predicted CL by genotype for the UGT1A4 model is included in the Supplemental 

Text. 
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 Simulation-based comparisons of concentration-time profile for subjects with and 

without UGT2B10 variants are shown in Figure 3. As expected, subjects with UGT2B10 variants 

have higher predicted concentration than those without variants, however the difference between 

genotypes is much smaller than the residual variability within subjects represented by the colored 

shaded regions. For a dosing rate of either 0.3 or 0.6 mcg/kg/hr, steady-state concentration is 

achieved at around 6 hours and is similar for subjects with 5th, median, or 95th percentile of 

weight and age. For 0.3 mcg/kg/hr dosing rate, the predicted concentration steady-state levels are 

below the target range of 0.4 to 0.8 ng/mL for subjects with and without variants. In contrast, the 

0.6 mcg/kg/hr rate yields predicted steady-state concentration levels within the target range for 

both genotype groups.  Figure 4 shows simulated doses needed to achieve same concentration 

for patients of same age and weight with and without variants.  

 

Discussion 

Using remnant specimen samples along with dosing information, clinical and 

demographic information sourced from an EHR system we were able to develop a 

dexmedetomidine population PK model for a large, pediatric cohort of 354 patients and to 

identify patient characteristics including genetic factors that alter the PK profile. Our study is one 

of the largest pediatric dexmedetomidine population PK studies reported.  

We were able to confirm a structural model and covariate relationships which are in line 

with those previously reported for dexmedetomidine PK. Specifically, our model confirmed the 

inclusion of both weight and age effects on CL. We estimated CL of 23.0 L/hr for subjects with a 

standard weight of 70 kg and the median age of 15.7 months without variants from the UGT2B10 

model. Our estimated CL is somewhat smaller than those reported in other pediatric PK studies. 

Although our CL estimates cannot be directly compared with other studies which used different 
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covariate models, in terms of a standard weight of 70 kg in an allometric scaling model ignoring 

other covariates, Zuppa et al.9 found a post-cardiac bypass CL of 37.3 L/hr for neonates and 

infants age 0 – 6 months and Su et al.15 estimated CL as 39.4 L/hr for children age 1 – 24 months 

after open heart surgery. The different results could be related to differences in several factors 

between studies including study design and study population. For example, our study used sparse 

and opportunistic sampling and included more heterogenous population while the other two 

studies used densely measured drug levels and were performed in a well-controlled clinical 

setting with much younger and more homogeneous population. 

In our model, we were also able to detect a statistically significant effect of UGT2B10 on 

CL. Because weight is the most important factor in determining CL for a pediatric population, 

we can explain the genotype effect in terms of the weight reduction needed to achieve an 

equivalent decrease in CL among subjects with no variants. Specifically, having any UGT2B10 

variant reduces CL by the same amount as a weight decrease of about 20% [exp(-0.15/0.75)=0.8] 

for a subject without variants. A detailed calculation is provided in Supplemental Material.  

This effect can also be interpreted visually; in Figure 2B, a vertical shift from the solid ‘no 

variants’ line to the dashed ‘any variants’ line is equivalent – in terms of predicted CL – to 

moving along the ‘no variants’ line to a 20% lower weight. As an example, a 12-month-old 

subject with weight 10 kg and UGT2B10 variants has the same CL as a 12-month-old subject 

with weight 8 kg and no variants.  

 These results imply that subjects with any UGT2B10 variant require a smaller dose than 

those without variants to achieve similar concentration. Simulating a fixed weight basis dosing 

scheme for a 12-hour infusion, this translates to a dexmedetomidine infusion rate of 5.6 mcg/hr 

versus 6.0 mcg/hr for a 12-month-old, 10kg subject with and without variants, respectively as 

illustrated in Figure 4A. The same per kg dosing rates – 0.56 mcg/kg/hr versus 0.6 mcg/kg/hr – 
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for 120-month-old, 50 kg subjects with and without variants is presented in Figure 4B. For these 

older, heavier subjects overall concentrations are higher, but the PK profile between those with 

and without variants is similar. Note that the reduction in dose for those with variants is not the 

same as the 20% reduction in CL because, in our model, the UGT2B10 genotype does not impact 

the other PK parameters in the structural model.  

Using population PK models derived from EHR data and remnant samples offers the 

possibility of more accurate prediction of individual dosing requirements in a real-life setting, 

especially in populations where large, intensive-sampling PK clinical trials are difficult to 

perform due to ethical or logistical considerations. The results from such model-informed 

precision dosing could also be integrated back into EHR-embedded decision support tools; the 

development and implementation of several of these tools has been recently described by 

Mizuno et al.35 and Vinks et al.36 

 There are several limitations related to the use of EHR and remnant samples for our 

study. Although our data were generated using as a standardized system to construct the PK 

data,25 there may be some data errors due to inherent limitations of EHR data, which is not 

primarily collected for research use.  Also, the specimens are very sparse for some subjects and 

their collection is not timed to facilitate optimal PK estimation.   

Despite these limitations, our study provides further evidence for the feasibility of using 

EHR data and remnant samples for population PK analysis. Our study findings such as weight 

effects on CL could be helpful to develop a model-based dosing that could be superior to the 

current fixed-weight dosing scheme. However, this should be tested in a future study for its 

clinical utility in the pediatric population. Because dexmedetomidine is used to achieve specific 

sedation goals, it would also be of interest to incorporate the current study results into a joint 
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pharmacokinetic-pharmacodynamic model using sedation outcomes also derived from the EHR. 

These models are an important step toward the ultimate goal of precision dosing.   
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Table 1.  Study Cohort  

Summary of demographic, genotype, clinical, dosing, and specimen sampling characteristics 

 

 Entire cohort 

n 354 

Age (months)* 15.7 (5.3-61.8) 

Median weight (kg)* 9.41 (6.0-18.2) 

Male sex† 183 (52%) 

Race†  

White 293 (83%) 

Black 40 (11%) 

American Indian or Alaska Native 2 (1%) 

Asian 6 (2%) 

Other 5 (1%) 

Unknown 8 (2%) 

Median serum creatinine (mg/dl)* 0.49 (0.44-0.56) 

STAT score†  

1 154 (44%) 

2 108 (31%) 

3 41 (12%) 

4 46 (13%) 

5 5 (1%) 

UGT1A4 variants†  

0 262 (74%) 

1 87 (25%) 

2 5 (1%) 

UGT2B10 variants†  

0 186 (53%) 

1 117 (33%) 

2 or 3 51 (14%) 

CYP2A6 score*‡ 2.04 (2.00-2.21) 

Cardiac bypass time (min)* 100 (71-144) 

Length of ICU hospitalization (days)* 4 (2-6) 

Total dosing events 2386 

Dosing events per subject* 5 (3-8) 

Total sampled specimens 1400 

Specimens below lower limit of quantification 120 

Sampled specimens per subject* 3 (2-5) 

* Median (interquartile range); †Number (%); ‡ Among n=350 subjects with available score 
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Table 2.  Estimates of Parameters for Population Pharmacokinetic Models 
 

(A) Estimates from base model and covariate models without genetic covariates. Weight is modeled with fixed allometric scaling parameters. 

Base Model Weight Only Model Weight and Age model 

Parameters 

(Obj = -1517.34) 

Estimates (SE) 

[95% CI]† 

Parameters 

(Obj = -1923.32) 

Estimates (SE) 

[95% CI] 

Parameters 

(Obj = -1932.37) 

Estimates (SE) 

[95% CI] 

CL  CL = θ1(WT/70)0.75  CL = θ1(WT/70)0.75exp(θ5 AGE)  

 6.27 (0.52) 

[5.33, 7.37] 

θ1 22.3 (1.85) 

[19.0, 26.2] 

θ1 19.4 (1.67) 

[16.4, 22.9] 

    θ5 0.00126 (0.00061) 

[6.47e-05, 0.00246] 

V1  V1 = θ2(WT/70)  V1 = θ2(WT/70)  

 19.5 (1.37) 

[17.0, 22.4] 

θ2 123 (11.5) 

[102, 148] 

θ2 144 (12) 

[122, 169] 

Q  Q = θ3(WT/70)0.75  Q = θ3(WT/70)0.75  

 5.26 (0.442) 

[4.47, 6.2] 

θ3 26.6 (2.23) 

[22.6, 31.3] 

θ3 28.8 (2.03) 

[25.1, 33] 

V2  V2 = θ4(WT/70)  V2 = θ4(WT/70)  

 763 (126) 

[555, 1050] 

θ4 6670 (1500) 

[4360, 10200] 

θ4 10200 (1780) 

[7280, 14200] 

ωCL (%CV) 201 (12) [178, 226] ωCL (%CV) 123 (13) [100, 150] ωCL (%CV) 126 (12) [105, 151] 

ωV1 (%CV) 161 (9) [145, 179] ωV1 (%CV) 168 (22) [130, 217] ωV1 (%CV) 147 (16) [119, 182] 

ωQ (%CV) 146 (8) [132, 162] ωQ (%CV) 91 (11) [71, 115] ωQ (%CV) 81 (9) [65, 99] 

ωV2 (%CV) 672 (81) [534, 855] ωV2 (%CV) 857 (256) [494, 1595] ωV2 (%CV) 720 (192) [439, 1251] 

σadd (ng/mL) 2.22e-16 (5.65e-13) [0, 

1.11e-12] 

σadd (ng/mL) 1.9e-08 (3.73e-07) 

[0, 7.51e-07] 

σadd (ng/mL) 3.14e-10 (8.86e-09) 

[0, 1.77e-08] 

σprop (ng/mL) 0.475 (0.0117) [0.452, 

0.498] 

σprop (ng/mL) 0.475 (0.0133) 

[0.449, 0.501] 

σprop (ng/mL) 0.478 (0.0132) 

[0.452, 0.504] 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.03.21256553doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.03.21256553


 

(B) Estimates from final gene models for UGT1A4 or UGT2B10 with weight and age. 

UGT1A4 Gene Model UGT2B10 Gene Model 

Parameters 

(Obj = -1936.425) 

Estimates (SE) 

[95% CI] 

Parameters 

(Obj = -1935.175) 

Estimates (SE) 

[95% CI] 

CL = θ1(WT/70)0.75 exp(θ5 AGE + θ6 I[UGT1A4>0])  CL = θ1(WT/70)0.75 exp(θ5 AGE + θ6 I[UGT2B10>0])  

θ1 19.4 (1.92) [16.0, 23.6] θ1 22.3 (2.3) [18.3, 27.3] 

θ5 0.00175 (0.000562) 

[0.000651, 0.00285] 

θ5 0.00185 (0.000409) 

[0.00105, 0.00265] 

θ6 -0.0765 (0.0938) 

[-0.26, 0.107] 

θ6 -0.151 (0.062) 

[-0.272, -0.0295] 

V1=θ2(WT/70)  V1=θ2(WT/70)  

θ2 135 (12.6) [112, 161] θ2 133 (11.4) [112, 157] 

Q=θ3(WT/70)0.75  Q=θ3(WT/70)0.75  

θ3 28.1 (2.18) [24.1, 32.7] θ3 24.1 (2.68) [19.4, 29.9] 

V2=θ4(WT/70)  V2=θ4(WT/70)  

θ4 9400 (1850) [6460, 13700] θ4 5230 (1270) [3310, 8260] 

ωCL (%CV) 121 (13) [98, 149] ωCL (%CV) 124 (13) [100, 153] 

ωV1 (%CV) 161 (21) [125, 209] ωV1 (%CV) 149 (14) [124, 180] 

ωQ (%CV) 87 (10) [69, 108] ωQ (%CV) 110 (17) [81, 148] 

ωV2 (%CV) 867 (238) [520, 1531] ωV2 (%CV) 861 (304) [451, 1808] 

σadd (ng/mL) 1.8e-07 (4.12e-06) 

[0, 8.25e-06] 

σadd (ng/mL) 

 

1.46e-08 (2.64e-07) 

[0, 5.32e-07] 

σprop (ng/mL) 0.476 (0.0135) 

[0.45, 0.503] 

σprop (ng/mL) 0.479 (0.0138) 

[0.452, 0.506] 

Abbreviations: † 95% Asymptotic confidence intervals (CIs); SE, standard error; Obj, objective function value; CL, total clearance (L/hr); Q, 

intercompartmental clearance (L/hr); V1, volume of distribution for the central compartment (L); V2, volume of distribution for the peripheral 

compartment (L); CV, coefficient of variation; WT, body weight in kg; AGE, age in months; ωCL, ωV1, ωQ, ωV2, the standard deviation for i
CL

 

,i
V1, i

Q, and i
V2, respectively; For the standard deviation of random effects, ω, coefficient of variation was calculated as CV% = 

100 × √(𝑒𝑥𝑝(ω2) − 1); prop and  add are the proportional and additive terms, respectively, in the residual error model
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Figure 1: Population PK model diagnostic plots for UGT2B10 model.  

(A) Observed dexmedetomidine concentrations vs. population (left) and individual (right) 

predicted concentrations 

 

(B) Individual weighted residuals vs. predicted concentrations (left) and time (right) 
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(C) Visual predictive check, where 10th, 50th and 90th percentile of observed values (solid lines) 

and theoretical values (dashed lines) along with 90% prediction interval for theoretical 

percentiles (shaded region) are presented. 
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Figure 2: Predicted clearance by weight for selected ages. Plausible weight ranges for each 

age group are: 6 months (5 - 12 kg), 12 months (6 - 13 kg), 24 months (8 - 16 kg), 48 months (12 

- 22 kg), 72 months (15 - 28 kg), 90 months (18 - 35 kg), 120 months (23 - 50 kg). Overlapping 

lines between different age categories represent weights that are plausible for multiple ages. 

(A) Weight and age model 

 

(B) UGT2B10 gene model 
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Figure 3: Predicted concentration by UGT2B10 genotype for combinations of 5th, median, 

and 95th percentile of weight and age and fixed dosing of 0.3 or 0.6 mcg/kg/hr for a 12-hour 

infusion. The colored regions with blue (no variants) and orange (any variants) are the 90% 

confidence regions estimated based on 200 simulations. Gray bands represent target 

concentration range of 0.4 to 0.8 ng/mL.  
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Figure 4: Simulated dose needed to achieve similar concentration profiles. A lower dosing 

rate of 0.56 mcg/kg/hr is needed for subjects with UGT2B10 variants compared to a dosing rate 

of 0.6 mcg/kg/hr for those without UGT2B10 variants. Gray bands represent target concentration 

range of 0.4 to 0.8 ng/mL. 

(A) 10 kg 12-month child 

 

(B) 50 kg 120-month child 
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