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What is the key question? 82 

How do real-world activity monitoring outputs correlate with in-laboratory measures of 83 

cardiopulmonary function or respiratory symptoms? 84 

 85 

What is the bottom line? 86 

Actigraphy provided distinct information about functionality and daily physical activity that was 87 

not captured by in-laboratory lung function, exercise testing, or standardized respiratory 88 

questionnaires. 89 

 90 

Why read on? 91 

Although in-laboratory functional assessments are helpful in evaluating functional capacity, 92 

actigraphy may be more informative of the real-world functional status, and may serve as an 93 

additional objective patient-centered outcome in observational and interventional studies aiming 94 

to assess functionality. 95 

  96 
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ABSTRACT 97 

Background-Actigraphy can clarify useful patient-centered outcomes for quantification of 98 

physical activity in the “real-world” setting. 99 

Methods-To characterize the relationship of actigraphy outputs with “in-laboratory” measures of 100 

cardiopulmonary function and respiratory symptoms in pre-COPD, we obtained actigraphy data 101 

for 8 hours/day for 5 consecutive days a week before in-laboratory administration of respiratory 102 

questionnaires, PFT, and CPET to a subgroup of subjects participating in the larger study of the 103 

health effects of exposure to secondhand tobacco smoke who had air trapping but no spirometric 104 

obstruction (pre-COPD). Using machine learning approaches, we identified the most relevant 105 

actigraphy predictors and examined their associations with symptoms, lung function, and 106 

exercise outcomes. 107 

Results-Sixty-one subjects (age=66±7years; BMI=24±3kg/m2; FEV1/FVC=0.75±0.05; 108 

FEV1=103±17%predicted) completed the nested study. In the hierarchical cluster analysis, the 109 

activity, distance, and energy domains of actigraphy, including moderate to vigorous physical 110 

activity, were closely correlated with each other, but were only loosely associated with 111 

spirometric and peak exercise measures of oxygen consumption, ventilation, oxygen-pulse, and 112 

anaerobic threshold (VO2AT), and were divergent from symptom measures. Conversely, the 113 

sedentary domain clustered with respiratory symptoms, air trapping, airflow indices, and 114 

ventilatory efficiency. In Regression modeling, sedentary domain was inversely associated with 115 

baseline lung volumes and tidal breathing at peak exercise, while the activity domains were 116 

associated with VO2AT. Respiratory symptoms and PFT data were not associated with actigraphy 117 

outcomes. 118 
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Discussion-Outpatient actigraphy can provide information for “real-world” patient-centered 119 

outcomes that are not captured by standardized respiratory questionnaires, lung function, or 120 

exercise testing. Actigraphy activity and sedentary domains inform of distinct outcomes. 121 

  122 
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INTRODUCTION 123 

The ability to assess and quantify the physical activity levels of patients can offer 124 

valuable insights into their general health and day-to-day functioning that may not be captured 125 

by traditional objective measurements of disease status, such as interview- or questionnaire-126 

based evaluations or physiological or laboratory testing.1-3 Wearable activity monitors that 127 

measure “real-world” physical activity levels may thus serve as objective and reliable tools to 128 

assess health status and disease activity.4-7 The current-generation wearable activity monitors, 129 

including pedometers and accelerometers, are transforming the field of biomedical research by 130 

their capacity to approximate free-living conditions and measure real-world physical activity in a 131 

continuous and longitudinal, yet objective manner.8 However, the correlation between physical 132 

activity measurements obtained by actigraphy and the physical activity outcomes measured by 133 

physiologic and questionnaire-based tools has not been clearly identified. 134 

In this study, we aimed to understand the relationship between physical activity measures 135 

obtained from a wearable activity monitor and those obtained from standardized respiratory 136 

questionnaires and “in-laboratory” lung function and exercise testing. We hypothesized that 137 

“real-world” actigraphy provides distinct outcomes that are not completely captured by 138 

standardized symptom questionnaires or traditional “in-laboratory” functional assessments. To 139 

assess this hypothesis, we examined the association of outpatient actigraphy measures with 140 

patient-reported respiratory physical activity and symptoms as well as lung function and exercise 141 

test results in a never-smoker cohort subgroup of a study on the health effects of exposure to 142 

secondhand tobacco smoke (SHS); the participants were at risk for COPD due to their prolonged 143 

occupational exposure to SHS but showed preserved spirometry.  144 

 145 
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METHODS 146 

Study overview 147 

This observational study was nested in a larger study examining the cardiopulmonary 148 

health effects of SHS exposure in a cohort of nonsmoking individuals with a range of 149 

occupational SHS exposure, as previously described.9 Briefly, between July 2007 and March 150 

2020, we recruited US airline flight crewmembers with a history of occupational exposure to 151 

SHS, along with nonsmoker controls without such occupational exposure, who were 152 

participating in a larger study of the cardiopulmonary health effects of prolonged exposure to 153 

SHS (ClinicalTrials.gov Identifier: NCT02797275). The participants underwent respiratory 154 

symptom questionnaire assessments, full pulmonary function testing (PFT), and maximum-effort 155 

cardiopulmonary exercise testing (CPET). For the actigraphy nested study, beginning February 156 

2014, participants were asked to wear an activity monitor eight hours a day for five consecutive 157 

days during the week before they came in for in-laboratory evaluation and maintain a daily diary. 158 

The actigraphy data were then obtained and analyzed along with the respiratory questionnaire, 159 

PFT, and CPET data to examine its association with reported physical activity, symptoms, and 160 

in-laboratory measures of physical activity. The University of California San Francisco (UCSF) 161 

Institutional Review Board (IRB) and the San Francisco VA Medical Center Committee on 162 

Research and Development approved the study protocols. Full details of the methods are 163 

available in the Supplemental Appendix.  164 

Study Population 165 

US airline crewmembers, including flight attendants and pilots, were eligible to 166 

participate if they had worked for ≥5 years in an aircraft. A reference group of “sea-level” 167 

participants who lived in San Francisco Bay area and had never been employed as flight 168 
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crewmembers was also recruited. Participants were eligible if they were nonsmokers defined by 169 

never-smoking or, in ever smokers, no smoking for ≥20 years and a cumulative smoking history 170 

of <20 pack-years. Eligible participants were excluded if they had a known history of 171 

cardiopulmonary disease or recreational drug use, including marijuana consumption. All 172 

participants enrolled in the larger cohort were invited to participate in this nested study. For the 173 

nested actigraphy study, recruitment began in February 5, 2014 and continued through March 17, 174 

2020. 175 

Physical Activity Monitoring using Actigraphy 176 

Physical activity was monitored using a triaxial accelerometer-based activity monitor 177 

(ActiGraph GT3X; Actigraph Corporations, Pensacola, FL). Technical details of the device can 178 

be found in the Supplemental Appendix. The ActiGraph monitor was initialized to 179 

continuously collect data over a period of 5 days. It was then mailed to participants along with a 180 

daily diary to keep a log of the time the monitor was worn and the activities the participants 181 

performed during that time. All participants received the ActiGraph monitors at least 7 days prior 182 

to the in-laboratory visit, during which respiratory symptom questionnaire, PFT, and CPET data 183 

were collected. Participants were instructed to wear the ActiGraph monitor on the waist upon 184 

awakening using a wrist band provided and to keep it on continuously for at least 8 hours for 5 185 

consecutive days beginning the start of the first day of their work week. The 5-day monitoring 186 

period was chosen to allow for adequate weekday data collection10 while avoiding recording of 187 

non-routine rest or activity periods that typically occur during weekends. All participants were 188 

carefully instructed on correctly positioning the device. 189 

Actigraphy Data Description and Processing 190 
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Actigraphy data were processed using the ActiLife software program (Version 6.11.9; 191 

ActiGraph LLC) and saved in raw format as GT3X files. The ActiLife software generates a total 192 

of 52 variables in the distance, time (activity and sedentary), and energy domains. The list of 193 

variables and their definitions are shown in Table S1. The actigraphy data were matched against 194 

the diary to ascertain appropriate usage of the monitor, and the data were considered to be 195 

acceptable if the participants wore the monitor for a minimum of 3 days and for more than 5 196 

hours (300 min) per day. The data was summarized into 5-day average values (weekly “mean” 197 

values) and the highest values of “maximum” values (maximum per epoch) across all 5 days 198 

(weekly “highest” values). The total amount of the time that the monitor was worn was included 199 

in the regression models as total time worn. 200 

Actigraphy Data Variable Selection 201 

Actigraphy generates a large number of variables, some of which are highly correlated. 202 

Given the low number of participants in our study, we decided to reduce the number of 203 

actigraphy variables to increase the robustness of the analysis. To achieve this, we pursued two 204 

approaches of variable selection: (1) machine learning approach, and (2) literature-guided 205 

approach (Figure 1). 206 

In the machine learning approach, we built two models, random forest and lasso 207 

regression. Using random forest modeling, we generated a list of top-ranked actigraphy variables 208 

that were predictive of various questionnaire, PFT, and CPET outcomes by ranking variables 209 

based on minimizing prediction error at the splitting of the decision tree nodes. For lasso 210 

regression, we used a similar strategy to generate a list of important variables by utilizing the l1-211 

norm penalized terms to force unimportant variables to become zero. To rank the variables in 212 

lasso regression, we then compared the magnitude of variable coefficients in various models. 213 
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Finally, we summarized the actigraphy variables by including the top 10 variables from each 214 

model. 215 

In the literature-guided approach, we reviewed the available literature on actigraphy and 216 

selected 9 variables to represent distance, energy, and the activity and sedentary time domains as 217 

described below (Table S2). The final set of variables was selected based on a combination of 218 

the machine learning and literature-guided approaches to provide meaningful variables of highest 219 

predictive value for our proposed analysis. 220 

Pulmonary Function and Cardiopulmonary Exercise Testing  221 

Details of our PFT and CPET procedures are presented in the Supplemental Appendix 222 

and have been previously described.9,11,12 223 

Respiratory Questionnaires 224 

Patient-reported respiratory symptoms, physical activity, and quality of life assessments 225 

were conducted using the COPD Assessment Test (CAT),13 modified Medical Research Council 226 

(mMRC) Dyspnea Scale,14 the Short Form 12-Item Health Survey (SF-12),15 International 227 

Physical Activity Questionnaire (IPAQ),16 and Airway Questionnaire 20 (AQ20).17 228 

Data Analysis 229 

Distributions of patients’ actigraphy, respiratory symptom, lung function, and exercise 230 

data were visualized and inspected (Figure S1). Because most variables were not normally 231 

distributed, Spearman’s rank correlation was used throughout the analysis. We then examined 232 

the association of actigraphy distance, energy, and activity and sedentary time domains with 233 

respiratory questionnaire, PFT, and CPET outputs after adjustment for age, sex, height, weight, 234 
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and time worn using hierarchical clustering with the Spearman correlation coefficient as the 235 

distance metric. 236 

Even after selection of a focused set of actigraphy variables, the initial exploratory 237 

analyses showed two potential statistical challenges, namely, high dimensionality and high 238 

collinearity, for the application of these variables to ordinary linear regression modeling. To 239 

address these challenges, we employed partial principal component regression, which combined 240 

principal component analysis with adjustment for covariates to reduce the number of dimensions 241 

and transformed the original variables into orthogonal principal component (PC) axes. Next, we 242 

performed ordinary linear regression using the top six PC axes as the new predictive actigraphy 243 

variables within the model. We later computed the Pearson correlation coefficients between the 244 

original actigraphy variables versus the transformed PC axes to help interpret the representation 245 

of each PC axis. We used P-values of 0.05 as the cutoff for statistical significance and considered 246 

Spearman and Pearson correlation coefficients ±0.5 as indicating strong correlation (either 247 

positive or negative).  248 

 249 

RESULTS 250 

Participant Characteristics 251 

Overall, 64 volunteers participated in the nested study and wore the actigraphy monitor 252 

during the week before participating in the in-laboratory assessments with respiratory 253 

questionnaires, PFT, and CPET. Three of the 64 subjects wore the actigraphy monitor for <3 254 

consecutive days or <300 consecutive min/day and thus were excluded from the analysis. The 255 

characteristics of the 61 participants included in the analysis are shown in Table 1. The 256 
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participants were aged 65.7±10.7 years, predominantly female (57 [93%]), and never-smokers. 257 

All participants had a history of occupational exposure to SHS through their airline employment 258 

as flight crew for a median (interquartile range, [IQR]) period of 15.6 (6.0-25.0) years. All 259 

participants showed preserved spirometry, with forced expiratory volume in 1 s (FEV1) and 260 

FEV1/forced vital capacity (FVC) percent predicted values of 103±17 and 98±6, respectively. All 261 

of them showed mild air trapping, as defined by residual volume (RV)/total lung capacity (TLC) 262 

> 0.35 (0.38±0.06), and an overall reduced average diffusing capacity adjusted for hemoglobin 263 

of 67%±28% predicted. The percent predicted values for the measures of VO2, VE, and oxygen-264 

pulse at the peak of exercise (VO2Peak, VEPeak, and O2-PulsePeak) were 103.8±18.1, 61.1±14.3, 265 

and 109.4±20.7, respectively, and VO2 at anaerobic threshold (VO2AT) was 63.8%±16.7% of 266 

VO2Peak. Table 1 also shows the selected actigraphy data in the distance, energy, and activity and 267 

sedentary time domains. Overall, the participants wore the actigraphy monitor for a median 268 

(IQR) period of 5 (4-5) days and 38.9 (33.0-39.9) h (2,334 [1,980-2,396] min). 269 

Combined Approach for Selection of Appropriate Actigraphy Variables 270 

In the machine learning approach, random forest and lasso regression analyses were 271 

performed to identify the most relevant actigraphy variables that are predictive of the respiratory 272 

questionnaire, PFT, and CPET outcomes. The top-ranked variables for each machine learning 273 

approach, which are shown in Figure S2 A and B, were a mix of actigraphy domains, including 274 

the sedentary time domain. The ten top ranked variables from each approach were then matched 275 

against a list of most highly cited actigraphy variables in the literature, and a final set of 276 

actigraphy variables, which included variables from all domains, were then generated for further 277 

analysis (Figure 1). The final set of variables obtained by this combined approach is shown in 278 

Table 2. 279 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.01.21256454doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.01.21256454


 

Page 15 of 43 

The correlations among all and the final selection of actigraphy variables are shown in 280 

Figure S1 and Figure 2, respectively. Variables from the distance, energy, and activity time 281 

domains were highly and directly correlated with each other, with the strongest correlation 282 

observed between the energy and activity time domains and the weakest between these domains 283 

and the distance domain. However, sedentary time domain variables were poorly and inversely 284 

correlated with the variables from the distance, energy, and activity time domains (Figure 2). 285 

Within the sedentary time domain, the total amount of time spent in the sedentary condition 286 

(Sedentary Time) was closely and directly associated with the number of times participants 287 

broke their sedentary condition (No. of Sedentary Breaks; r=0.65; P<0.001). 288 

Hierarchical Clustering Identified Two Clusters of Actigraphy Domains That Distinctly Group 289 

with Respiratory Questionnaire, PFT, and CPET Outcomes 290 

Hierarchical clustering analysis categorized actigraphy domains into two distinct clusters 291 

(Figure S3 and Figure 3). Measures of the distance, energy, and activity time domains, 292 

including moderate-to-vigorous physical activity (MVPA), maximum number of steps taken per 293 

epoch (Max. Step Count), and average hourly energy expenditure (Avg. Kcal/hour), clustered 294 

together and were best correlated with the rate of increase in O2-Pulse, tidal breathing, systolic 295 

blood pressure over workload (O2-PulseSlope, SBPSlope, and VTSlope,), and SF-12 and its “physical” 296 

component score, and to a lesser extent with air trapping (RV and RV/TLC), airflow obstruction 297 

(FEV1/FVC), ventilatory efficiency at peak exercise (VE/VCO2Peak), and other respiratory 298 

questionnaires (AQ-20 and CAT) scores. Conversely, measures of the sedentary domain, 299 

including Sedentary Time and No. of Sedentary Breaks, clustered together with spirometric 300 

indices (FEV1, FVC), TLC, and peak exercise measures of oxygen consumption (VO2Peak), 301 

ventilation (VEPeak), tidal volume (VTPeak), and oxygen-pulse (O2-PulsePeak). 302 
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Principal Component Analysis of a Focused Dataset of Actigraphy Variables Reproduced 303 

Contrasting Actigraphy Domains Represented by Two Principal Components 304 

To address the high dimensionality and collinearity of actigraphy variables, we 305 

performed principal component analysis (Table 3) and regression of the final set of variables 306 

(Table 4). The first six principal components (PC) explained 87.8% of the variation in the 307 

dataset and were chosen for further analysis. The most contributing PC (PC1) showed high 308 

positive values for the following parameters: measures of energy expenditure (Avg. 309 

Kcal/hour=0.92, Highest MET=0.94, and Mean MET=0.96), maximum number of steps taken 310 

per epoch (Max. Step Count=0.56), average number of steps taken per minute (Avg. 311 

Steps/min=0.91), maximum number of steps counts on actigraphy axes 1 and 3, and as a vector 312 

magnitude across all 3 axes (Vector Magnitude Max. Count=0.4), time spent in MVPA (Highest 313 

Total MVPA=0.92; Avg. MVPA/hour=0.94). Therefore, PC1 was determined to be a reflection 314 

of the measures of activity time, distance, and energy domains of actigraphy. The second PC 315 

(PC2) was highly correlated with participant sex (0.77), height (0.84), and weight (0.84). The 316 

third PC (PC3) was highly correlated with the total time spent in the sedentary condition 317 

(Highest Sedentary Time=0.66), and thus was determined to be representative of the sedentary 318 

time domain of actigraphy. PC4 was only highly correlated with subject’s age (0.77). 319 

Results of the principal component regressions of the cardiopulmonary function and 320 

questionnaires outcomes over PC1 (“activity component) and PC3 (“sedentary component”) are 321 

presented in Table 4. In the activity domains represented by PC1, a significant positive 322 

association was only observed with the volume of oxygen consumption at anaerobic threshold 323 

(VO2AT) (P=0.026). In the actigraphy sedentary domain represented by PC3, significant negative 324 

associations were observed with FEV1 (P=0.042) (marginally non-significance with FVC 325 
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[P=0.075] and TLC [P=0.057]) and the total and “mental” component of SF-12 score (P=0.042 326 

and P=0.035, respectively). No other significant associations were present.  327 

 328 

DISCUSSION 329 

In this observational study, actigraphy variables were grouped into two distinct clusters 330 

of (1) distance, energy, and activity time domains and (2) sedentary time domain. Remarkably, 331 

these clusters did not show a simple inverse relationship, were rather poorly correlated, and 332 

grouped together differently with various measures of in-laboratory cardiopulmonary functional 333 

assessment and self-reported symptomatology, indicating that they are influenced by distinct 334 

physiological processes. Despite their grouping patterns, the actigraphy variables were 335 

significantly associated with only a few in-laboratory measures of cardiopulmonary function or 336 

symptoms. For example, the principal component representing activity domains was only 337 

significantly associated with the anaerobic threshold (VO2AT), and the principal component 338 

representing sedentary domain was only significantly associated with lower airflow (FEV1) and 339 

possibly smaller lung volumes (TLC and FVC), and worse symptoms and quality of life score by 340 

one questionnaire (SF-12). Overall, actigraphy provided distinct information about functionality 341 

and daily physical activity that was not captured by in-laboratory lung function, exercise testing, 342 

or standardized respiratory questionnaires. Thus, while in-laboratory functional assessments may 343 

help evaluate functional capacity, actigraphy may be more informative of the real-world 344 

functional status, and may serve as an additional objective patient-centered technique in studies 345 

aiming to assess functionality. 346 

Wearable activity monitors that measure the real-world physical activity level in 347 

individuals provide objective and reliable data for assessment of health status and disease 348 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.01.21256454doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.01.21256454


 

Page 18 of 43 

activity.4-7 The advantage of using wearable technology for functional assessment stems from its 349 

niche ability to provide invaluable data pertaining to the daily functioning and overall health of 350 

patients that is otherwise inaccessible and unobtainable through traditional clinical 351 

assessments.18,19 For example, in COPD, activity monitor outputs may have predictive value in 352 

the assessment of disease severity as measured by exercise capacity and healthcare 353 

utilization.20,21 A multicenter trial in which several activity monitors were validated against 354 

directly measured energy expenditure showed certain accelerometers, including ActiGraph 355 

GT3X used in our study, provide great correlations with most measures of exercise capacity in 356 

COPD.22 However, the utility of these activity monitors has not been sufficiently studied in those 357 

at risk for COPD but without airflow obstruction (early disease with preserved spirometry or pre-358 

COPD). Similarly, their relationships with other laboratory or clinical outcome modalities of 359 

disease assessment such as lung function and exercise performance are not clear. Our study used 360 

the literature and machine learning approaches to examine the associations of various domains of 361 

actigraphy with in-laboratory and self-reported measures of cardiopulmonary function in people 362 

at risk for COPD but with preserved spirometry. 363 

Given their practicality, low cost, and general acceptance, standardized questionnaires are 364 

frequently used for assessing self-reports of symptoms and quality of life as well as physical 365 

activity. Questionnaires can evaluate a wide range of physical activities, including stationary 366 

activities such as weight lifting, over long timeframes. However, they are subjective in nature, 367 

suffer from social desirability and recall bias,23,24 and often tend to over- or under-estimate true 368 

physical activity, energy expenditure, and sedentary behavior.3,25,26 Activity monitors could 369 

provide more objective assessments of physical activity. Physical activity scores measured by 370 

questionnaires and accelerometry show a weak-to-moderate correlation.27-29 In our study, the 371 
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outcome measures of respiratory questionnaires (especially SF-12 and its physical component) 372 

were loosely clustered together with the distance, energy, and activity domains of actigraphy, 373 

while in PCA regression, SF-12 and its mental component were negatively associated with the 374 

sedentary domain of actigraphy. These features of the clustering of the sedentary and activity 375 

domains of actigraphy indicates that actigraphy activity and sedentary domains are informative 376 

of distinct outcomes, which are only partially and incompletely captured by outcome measures of 377 

respiratory questionnaires, consistent with the findings of other studies in which the sedentary 378 

domain of actigraphy could predict metabolic outcomes and risk of mortality independent of the 379 

activity domain.30,31 380 

CPET is a relatively noninvasive in-laboratory physiological test that objectively 381 

measures the cardiopulmonary response to exercise and is used to diagnose early 382 

cardiopulmonary and metabolic diseases and monitor their response to treatment. However, 383 

CPET may be less feasible in clinical applications because of its cost and technical requirements. 384 

Activity monitors provide a less labor-intensive and yet real-world representative assessment of 385 

the physical activity state of patients. In healthy youth, a positive relationship between 386 

accelerometer-measured intensity of physical activity and cardiorespiratory fitness as measured 387 

by maximum volume of oxygen consumption (VO2MAX) has been established.32,33 Similarly, in 388 

healthy adults, the physical activity variables of the time spent in MVPA or vigorous physical 389 

activity were shown to be related to the VO2MAX.34 In the present study of older adults at risk for 390 

COPD but with preserved spirometry, the actigraphy activity domains (including MVPA) did not 391 

group together with CPET outcomes at peak exercise (e.g. VO2Peak) in cluster analysis, nor were 392 

they significantly associated with these outcomes in PCA regression. Interestingly, while they 393 

were not statistically significant in PCA regression, actigraphy activity domains were closely 394 
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associated with the rate of increase in some of the cardiovascular responses to exercise, including 395 

O2-PulseSlope and SBPSlope, suggesting a possible correlation between the activity domains of 396 

actigraphy and cardiovascular performance. Accordingly, the association of the activity domains 397 

of actigraphy with VO2AT likely represents the level of subjects’ fitness, with the more physically 398 

active individuals reaching their anaerobic threshold at a higher VO2. 399 

Limitations 400 

Our study had several limitations. First, this study had a relatively small sample of 61 401 

participants, which may have diminished the learning power of our machine learning approach 402 

for variable selection as well as the statistical power of the final regression modeling. This study 403 

was nested in a larger cohort study of the cardiopulmonary health effects of prolonged 404 

occupational exposure to SHS, the inclusion and exclusion criteria of which were more stringent 405 

and limited our ability to expand our sample size. Nevertheless, our sample size was comparable 406 

if not larger relative to other published studies that have characterized physical activity using 407 

extensive examination including CPET,35-37 and thus provides similar statistical power. 408 

Second, actigraphy data were only collected for five days. In adults, a minimum of 3 to 5 409 

days of accelerometer monitoring is usually considered appropriate to obtain reliable estimates of 410 

physical activity.10 On the other hand, a longer measurement period of more than 7 days may be 411 

desirable to obtain reliable estimates of sedentary behavior since sedentary behavior is more 412 

difficult to capture as it might vary more on a day-by-day basis than other activities performed 413 

on a higher intensity-level.38 However, we aimed to avoid the potential biases that usually occur 414 

with variations in level of activity, either increased or decreased, during the weekends by asking 415 

the participants to wear the activity monitor for 5 weekdays at the beginning of their working 416 

week and the beginning of their day to capture their usual and customary level of activity. In 417 
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fact, our findings demonstrate a greater number of significant associations for the sedentary 418 

domain, suggesting the adequacy of the timeframe within the population studied.  419 

Third, a single activity monitor placed on the waist may not have detected all physical 420 

activity since accelerometers have a key limitation in that they are insensitive to certain types of 421 

movements, especially non-ambulatory physical activities with arms and/or limbs. However, 422 

studies employing multiple accelerometers to increase the accuracy of predicting energy 423 

expenditure reported only marginal improvements that would not be justifiable by the increased 424 

burden associated with wearing multiple accelerometers.39,40  425 

Conclusion 426 

In conclusion, in this study of a population with early obstructive lung disease or pre-427 

COPD showed that (1) outpatient actigraphy provides “real-world” patient-centered outcomes 428 

that objectively inform of patients’ physical activity status, and (2) the activity and sedentary 429 

domains of actigraphy are divergent and provide distinct information likely representing the 430 

different physiologic processes highlighted by those domains. Furthermore, actigraphy measures 431 

are not entirely explained by measures of standardized respiratory questionnaires, lung function, 432 

or exercise testing, and thus provide added physical activity measures that are valuable as 433 

objective patient-centered outcomes in observational and interventional research studies. 434 
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FIGURE LEGENDS 543 

 544 

Figure 1- Actigraphy variable selection. A schematic to show the process of variable selection 545 

by combining machine learning and literature guided approaches. Machine learning approach 546 

was done by implementing random forest and lasso regression. The top ranked 10 variables from 547 

each method were done used against a list of variables extracted from the available literature, and 548 

a final “focused” set of variables representing all actigraphy domains were selected. “Highest” 549 

and “Mean” for actigraphy variables represent the highest and mean of 5-day activity monitoring 550 

measurements. 551 

 552 

Figure 2- Correlation among final set of actigraphy variables. Spearman correlation 553 

coefficient in clustering heat map of the final selection of actigraphy variables. Visualization 554 

shows that almost all of actigraphy variables are highly correlated. 555 

 556 

Figure 3 – Hierarchical clustering analysis and heatmap representation of final selection of 557 

actigraphy variables with questionnaire, PFT, and CPET measures. We performed cluster 558 

analysis using Spearman correlation coefficients as the distance metric. The clustered 559 

relationships were present as the dendrograms on the top and left size of the heat map. Two 560 

distinct clusters of actigraphy variables were grouped together from the three domains (time, 561 

distance, energy). The two clusters were based on activity related (such as total energy spent in 562 

Kcals, number of steps walked, etc.) and sedentary related (such as sedentary time, break, etc.) 563 

respectively. Each row represents one subject. Grey box are missing values. 564 

 565 
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TABLES 567 

Table 1- Subject characteristics. 568 

Characteristics N=61 

Demographics  

Age (years) 65.7±7.5 

Female sex [n(%)] 57(93%) 

Height (cm) 165.5±7.5 

Weight (kg) 65.5±10.7 

BMI (kg/m2) 23.9±3.2 

SHS (years) 16.0 [6.0-25.0] 

Smoking (pack-year) 0 [0-0] 

Lung Function  

FEV1 (L) 2.50±0.52 

FEV1 (% predicted) 103±17 

FVC (L) 3.33±0.69 

FVC (% predicted) 106±16 

FEV1/FVC [%] 75±5 

FEV1/FVC (% predicted) 98±6 

TLC (L) 5.31±0.88 

TLC (% predicted) 100±11 

RV (L) 1.97±0.37 

RV (% predicted) 91±15 

RV/TLC [%] 38±6 

RV/TLC (% predicted) 92±13 

DcoSB adjusted for Hgb (% predicted) 67±28 

Exercise  

VO2Peak (L/min) 1.399±0.348 

VO2Peak (% predicted) 104±18 

WattsPeak (watts) 120.9±34.2 
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VCO2Peak (L/min) 1.7±0.4 

O2-PulsePeak (L/beat) 9.6±2.6 

VEPeak (L/min) 56.30±13.86 

VEPeak (% predicted) 61±14 

RER 33.7±8.5 

RRPeak (breaths/min) 33.7±8.5 

VTPeak (L) 1.70±0.42 

VTPeak (% predicted) 96±17 

VE/VO2Peak 38.4±6.1 

VE/VCO2Peak 32.4±4.3 

HRPeak (beats/min) 146±18 

Systolic BPPeak (mmHg) 189±19 

Diastolic BPPeak (mmHg) 85±10 

VO2 at Anaerobic Threshold (VO2AT) (L/min) 1.16±0.33 

VE/VCO2 at Anaerobic Threshold 31.8±4.1 

O2-Pulse at Anaerobic Threshold (L/beat) 9.9±2.8 

Questionnaires  

AQ20 1±2 

CAT 6.6±5.8 

SF-12 [Total] 29.5±6.1 

SF-12 (PCS) 37.1±5.2 

SF-12 (MCS) 55.8±8.8 

IPAQ Category 3: High [n (%)] 44 (72%) 

Actigraphy Domains  

Time  

Activity Domain  

Highest Total MVPA (min) 50.4±37.79 

Mean Avg. MVPA/hour (min/hr) 3.87±2.64 

Sedentary Domain  
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Highest Sedentary Time (min) 363.6±38.6 

Highest No. of Sedentary Breaks 7.6±3.4 

No. of Sedentary Breaks/Sedentary Time 0.02±0.01 

No. of Sedentary Breaks/Avg. Step Count 0.66±0.50 

Distance  

Highest Max. Step Count 24.1±3.5 

Mean Avg. Step Count (steps/min) 15.5±8.5 

Highest Vector Magnitude Max. Count 2,081±524 

Energy  

Highest Total Kcals (Kcals) 354.4±213.8 

Mean Total Kcals (Kcals) 242.4±126.1 

Mean Avg. Kcal/hour (Kcals/hour) 10.2±5.3 

Highest MET (METs) 1.39±0.32 

Mean MET (METs) 1.24±0.17 

 569 

Footnote: Demographics, lung function, exercise, questionnaire scores, and actigraphy indices in 570 

this cohort of subjects with preserved spirometry. Data is presented as mean±standard deviation 571 

or number of subjects with positive value for the variable (n) out of the total number of subjects 572 

(N) and percentage of subjects (%). “Highest” and “Mean” for actigraphy variables represent the 573 

highest and mean of 5-day activity monitoring measurements. Abbreviations- BMI: body mass 574 

index; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; TLC: total lung 575 

capacity; RV: residual volume; DcoSB: single-breath diffusing capacity of carbon monoxide; 576 

Hgb: hemoglobin; VO2Peak: maximum oxygen uptake; WattsMax: maximum work stage 577 

completed in watts; VCO2Peak: maximum carbon dioxide production; O2pulsePeak: oxygen uptake 578 

per heartbeat at maximum exercise; VEPeak: maximum minute ventilation value; RER: respiratory 579 

exchange ratio (VCO2/ VO2) at maximum exercise; RRPeak: maximum respiratory rate; VTPeak: 580 
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maximum tidal volume; AQ20: Airways Questionnaire 20; CAT: COPD Assessment Test; SF-581 

12: 12-Item Short Form Health Survey; PCS-12: physical component summary score of SF-12; 582 

MCS-12: mental component summary score of SF-12; IPAQ: International Physical Activity 583 

Questionnaire; METs: metabolic equivalents; MVPA: moderate to vigorous physical activity; 584 

CPM: counts per minute. 585 

  586 
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Table 2- Definitions of final selection of actigraphy variables 587 

Selected Variables Definition and Accelerometer Cut Point 

Time Domains   

Activity   

 
Total MVPA 

PA that involves EE above 3.0 METs; time (in min) when CPM > 

1952 

 
Avg. MVPA/hour 

Average time spent in MVPA; total MVPA (in min)/total time 

worn (in hours) 

Sedentary   

 
Sedentary Time 

Time spent in PA that does not increase EE substantially above the 

resting level (1.0 - 1.5 METs); time (in min) when CPM < 100  

 

No. of Sedentary 

Break 

Activity count change from <100 to > 100 counts. A break only 

occurs if the change in count is sustained for more than 2 min 

Distance Domain   

 
Max. Step Count 

Maximum of the daily maximum number of steps taken per epoch 

(10 sec) 

 
Avg. Step Count 

Average number of steps taken per min; total step count/total time 

worn (in min) 

 

Vector Magnitude 

CPM 

Vector summation of CPM across all 3 axes (vertical, horizontal 

and perpendicular) 

Energy Domain   

 
Avg. Kcal/hour 

Measure of EE; a kcal is the amount of energy required to raise the 

temperature of a liter of water one degree centigrade at sea level; 
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total kcal/total time worn (in hours) 

 
MET 

Measure of EE; MET is the ratio of a person’s working metabolic 

rate compared to their resting metabolic rate; A person sitting 

quietly would be considered 1 MET (1 MET is equivalent to a 

caloric consumption of 1kcal/kg/hour); sedentary behavior 1.0-1.5 

METs, light- intensity PA 1.6-2.9 METs, moderate-intensity PA 

≥3.0 to <6.0 METs, vigorous-intensity ≥6.0 to <9.0 METs and very 

vigorous PA is ≥9.0 METs 

 588 

Footnote: Definitions and literature citations for actigraphy variables selected using the 589 

literature-guided approach. Abbreviations- MVPA: moderate to vigorous physical activity; MET: 590 

metabolic equivalent; CPM: counts per minute; PA: physical activity; EE: energy expenditure. 591 

 592 

  593 
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Table 3- Results of the principal component analysis.  594 

 595 

 Principal Component 

Variable 1 2 3 4 5 6 

Highest Total MVPA 0.92 -0.07 0.01 -0.08 0.06 -0.07 

Mean Avg. MVPA/hour 0.94 -0.07 -0.02 -0.05 0.02 0 

Highest Sedentary Time 
 -0.54 0.22 0.66 -0.26 0.14 -0.09 

Highest No. of Sedentary 
Breaks 
 

-0.38 0.34 0.67 -0.20 0.20 0.15 

Highest Max. Step Counts 
 0.56 -0.33 0.38 -0.08 -0.39 -0.10 

Mean Avg. Step Count 
 

0.91 -0.15 -0.10 0.01 0.05 -0.09 

Highest Vector Magnitude 
Max. Counts 
 

0.40 -0.09 0.26 0.15 -0.7 0.45 

Highest Total Kcals 
 0.91 0.25 0.09 -0.11 0.13 0.02 

Mean Total Kcals 
 0.92 0.27 -0.02 -0.04 0.10 0.08 

Mean Avg. Kcal/hour 
 

0.92 0.29 -0.01 -0.03 0.10 0.08 

Highest MET 
 0.94 0.11 0.10 -0.15 0.11 -0.03 

Mean MET 0.96 0.15 0.03 -0.11 0.09 0.05 

Age (years) 0.15 -0.19 0.23 0.77 0.43 0.18 

Sex 0.02 0.77 -0.11 0.30 -0.25 0.22 

Height (cm) -0.16 0.84 -0.10 -0.01 -0.17 -0.25 

Weight (kg) -0.04 0.4 0.03 0.21 0.01 0.28 

Total Time Worn (min) 0.41 -0.17 0.45 0.40 -0.13 -0.49 

 596 
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Footnote: This table shows the value of Pearson’s correlation coefficient for each variable in our 597 

focused dataset. Bold type indicates values <0.5. Abbreviations- MET: metabolic equivalents; 598 

MVPA: moderate to vigorous physical activity; CPM: counts per minute. 599 

 600 
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Table 4- Results of principal component regression analysis. 

 PC1 (activity component)  PC3 (sedentary component) 
Model 
Error 

Outcomes Estimate Lower CI Upper CI P-value  Estimate Lower CI 
Upper 
CI 

P-value RMSE 

Lung function  

FEV1 (L) 0.005 -0.032 0.042 0.808  -0.094 -0.183 -0.006 0.042 0.39 

FVC (L) -0.002 -0.050 0.046 0.924  -0.107 -0.222 0.009 0.075 0.51 

FEV1/FVC [%] 0.002 -0.002 0.007 0.284  -0.004 -0.014 0.006 0.458 0.05 

RV (L) -0.005 -0.037 0.028 0.781  -0.045 -0.131 0.04 0.305 0.32 

TLC (L) -0.016 -0.077 0.044 0.597  -0.143 -0.288 0.001 0.057 0.32 

RV/TLC [%] -0.001 -0.006 0.004 0.796  0.003 -0.010 0.017 0.617 0.05 

Exercise  

VO2Peak (L/min) 0.002 -0.020 0.025 0.838  0.016 -0.039 0.070 0.575 0.23 

O2pulsePeak (L/beat) 0.179 -0.021 0.379 0.088  0.131 -0.327 0.590 0.578 1.52 

VEPeak (L/min) 0.133 -1.217 1.482 0.848  0.231 -3.144 3.607 0.894 11.25 

RRPeak (breaths/min) -0.611 -1.390 0.167 0.130  1.741 -0.171 3.654 0.081 7.92 

VTPeak (L) 0.006 -0.022 0.035 0.660  -0.062 -0.131 0.008 0.087 0.29 

VE/VCO2Peak -0.147 -0.625 0.331 0.551  0.314 -0.882 1.509 0.610 3.99 

WattsPeak (watts) 1.067 -0.939 3.072 0.302  -0.104 -5.029 4.821 0.967 20.40 

Systolic BPPeak (mmHg) 0.112 -1.639 1.863 0.901  -0.376 -4.696 3.945 0.865 17.51 

Diastolic BPPeak (mmHg) 0.515 -0.488 1.518 0.320  0.042 -2.434 2.518 0.974 10.04 
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VO2 at Anaerobic Threshold 
(L/min) 

0.032 0.005 0.059 0.026  0.005 -0.065 0.076 0.885 0.25 

VCO2Slope (L/min) -0.005 -0.017 0.007 0.405  -0.002 -0.031 0.028 0.917 0.12 

O2-PulseSlope (L/beat) 0.071 -0.016 0.158 0.118  0.127 -0.090 0.344 0.259 0.73 

VESlope (L/min) -0.516 -1.163 0.132 0.127  0.185 -1.435 1.805 0.824 5.40 

RRSlope (breaths/min) -0.183 -0.714 0.349 0.503  0.128 -1.177 1.1434 0.848 5.41 
VTSlope (L) -0.016 -0.046 0.015 0.315  -0.025 -0.099 0.049 0.507 0.31 

Systolic BPSlope (mmHg) 8.095 -9.451 25.641 0.370  18.368 -24.726 61.462 0.408 178.45 

Diastolic BPSlope (mmHg) 0.205 -0.768 1.177 0.682  -0.936 -3.325 1.453 0.446 9.89 

Questionnaires 
 

AQ20 -0.150 -0.336 0.036 0.120  0.261 -0.193 0.715 0.266 1.86 

CAT -0.332 -0.980 0.316 0.322  -0.101 -1.697 1.496 0.902 5.31 

SF-12 [Total] -0.319 -0.880 0.241 0.270  -1.471 -2.840 -0.103 0.041 5.60 

SF-12 (PCS) -0.026 -0.513 0.462 0.918  -0.451 -1.641 0.738 0.461 4.87 

SF-12 (MCS) -0.791 -1.568 -0.014 0.052  -2.102 -3.999 -0.204 0.035 7.76 
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FIGURES 

Figure 1- Actigraphy variable selection. A schematic to show the process of variable selection by combining machine learning and 

literature guided approaches. Machine learning approach was done by implementing random forest and lasso regression. The top 

ranked 10 variables from each method were done used against a list of variables extracted from the available literature, and a final 

“focused” set of variables representing all actigraphy domains were selected. “Highest” and “Mean” for actigraphy variables represent 

the highest and mean of 5-day activity monitoring measurements. 
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)

Machine Learning Variables:
Mean Total Kcals
Mean Avg. Kcal/hour
Highest No. of Sedentary Breaks
Highest Total Kcals
Highest Avg. Kcal/hour
Highest % in Sedentary Time
Highest Axis.2 Max. Counts
Highest No. of Sedentary Breaks
Highest Axis.1 Max. Counts
Mean Axis.1 Max. Counts
Mean Axis.3 Max. Counts
Mean Axis.2 Max. Counts
Highest Vector Magnitude Max. Counts
Mean Max. Step Counts
Mean Time in Light PA
Highest Sedentary Time

Machine learning selection
Random forest & Lasso regression

Literature search

Literature Variables: 
Total MVPA
Avg. MVPA/hour
Sedentary Time
Sedentary break
Max. Step Count
Steps/min Count
Vector Magnitude CPM
Avg. kcal/hour
MET

104 Actigraphy variables

Final Variables:
Highest total MVPA
Mean avg. MVPA/hour
Highest sedentary time
Highest no. of sedentary breaks
Highest max. step counts
Mean avg. step count
Highest vector magnitude max. counts
Highest total kcals
Mean total kcals
Mean avg. kcal/hour
Highest MET
Mean MET
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Figure 2- Correlation among final set of actigraphy variables. Spearman correlation coefficient in clustering heat map of the final 

selection of actigraphy variables. Visualization shows that almost all of actigraphy variables are highly correlated. 
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Figure 3- Hierarchical clustering analysis and heatmap representation of final selection of actigraphy variables with 

questionnaire, PFT, and CPET measures. We performed cluster analysis using Spearman correlation coefficients as the distance 

metric. The clustered relationships were present as the dendrograms on the top and left size of the heat map. Two distinct clusters of 

actigraphy variables were grouped together from the three domains (time, distance, energy). The two clusters were based on activity 

related (such as total energy spent in Kcals, number of steps walked, etc.) and sedentary related (such as sedentary time, break, etc.) 

respectively. Each row represents one subject. Grey box are missing values. 
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