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Abstract 
 
Relationships between viral load, severity of illness, and transmissibility of virus, are 
fundamental to understanding pathogenesis and devising better therapeutic and prevention 
strategies for COVID-19. Here we present within-host modelling of viral load dynamics 
observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements 
from 605 subjects, collected from 17 different studies. We developed a mechanistic model 
to describe viral load dynamics and host response, and contrast this with simpler mixed-
effects regression analysis of peak viral load and its subsequent decline. We observed wide 
variation in URT viral load between individuals, over 5 orders of magnitude, at any given 
point in time since symptom onset. This variation was not explained by age, sex, or severity 
of illness, and these variables were not associated with the modelled early or late phases of 
immune-mediated control of viral load. We explored the application of the mechanistic 
model to identify measured immune responses associated with control of viral load. 
Neutralizing antibody correlated strongly with modelled immune-mediated control of viral 
load amongst subjects who produced neutralizing antibody. Our models can be used to 
identify host and viral factors which control URT viral load dynamics, informing future 
treatment and transmission blocking interventions. 
 
Introduction 
 
COVID-19 exhibits a wide range of severity, from asymptomatic infection to severe disease 
leading to hospitalisation and death. Age and sex have emerged as important risk factors for 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2021. ; https://doi.org/10.1101/2021.05.01.21256182doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.01.21256182
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

poor outcome (1,2). Viral load in the respiratory tract has been reported as an additional 
determinant of severity of illness (3,4) and also a determinant of likelihood of transmission 
(5). However, viral load varies over the course of illness due to dynamic interaction with the 
host immune response, and measurements at single points in time provide limited insight 
into this dynamic process. Within-host models of viral load can help to distinguish the 
sequence of events by tracking both viral dynamics and host response over time, accounting 
for the effect of multiple factors simultaneously (4,6,7). 
 
Studies measuring viral load over time in COVID-19 are beginning to establish viral dynamics 
and explore correlates of protection in the host response, although findings to-date are 
somewhat contradictory and these relationships are still not well characterised (8). Viral 
load in the upper respiratory tract (URT) peaks early in infection, usually before or within a 
few days of symptom onset (8–12). Some studies suggest that viral load in the lower 
respiratory tract (LRT) may peak later, in the second week after symptoms (9), but this is 
much harder to measure in a serial manner. Viral load at a given time after diagnosis or 
detection tends to be similar between asymptomatic and symptomatic cases (13), but 
evidence tends towards a longer duration of viral shedding in more severe cases and older 
individuals (14,15). Despite detection of viral material in samples from some individuals 
several weeks after onset of symptoms, infectious virus is not usually present beyond 8-14 
days (16–19). 
 
The host response during COVID-19 has many features typical of an anti-viral immune 
response, including the generation of antibodies and T cell populations (20). Antibodies are 
chiefly considered to contribute to viral clearance through pathogen neutralisation, though 
other effector functions may be of significance to COVID-19 (21). A diverse array of T cell 
populations are active during COVID-19, including cytotoxic and helper populations. While 
these cells contribute to viral clearance, emerging data indicates that T cells may also 
contribute to immunopathology in severe cases of COVID-19 (22). Additionally, COVID-19 is 
associated with lymphopenia in peripheral blood (23), possibly reflecting migration of cells 
to the site(s) of viral infection. In addition to these adaptive immune processes, innate 
immune processes are considered to play a major part in the pro-inflammatory state that 
scales with COVID-19 severity (24).  
 
Within-host models are being developed to characterise viral kinetics in relation to host 
responses and disease outcomes and to guide therapeutic development. For example, 
Néant et al. (25) found an association between higher viral load late in infection and 
mortality. Goyal et al. (26) inferred different stages of host response from observing three 
stages of viral decline: a rapid drop following peak viral load, a period of slower decline, 
then rapid elimination of the virus. Benefield et al. estimated that viral load peaks prior to 
symptoms, suggesting substantial pre-symptomatic transmission (27). Other within host 
models have been used to explore the potential effects of antivirals, immunotherapies, and 
prophylactic treatment (28,29). More detailed models have simulated viral load in different 
tissues and detailed components of the innate and cellular immune response (30,31).  

 
Many modelling studies to date have been calibrated to limited longitudinal data on viral 
load and particularly on host responses, which reduces parameter identifiability and the 
ability to infer pathways of pathogenesis and protection. Here, we first used linear 
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regression models to assess the associations of age, sex, and severity of disease with viral 
load. Then we developed a model of viral dynamics, in which we pragmatically represented 
the complex host response to the virus in two phases: an early phase which restricts the 
initial rate of viral replication, and a later phase which acts to clear virus. Fitting this model 
to longitudinal viral load measurements from previously published studies allowed us to 
make individualised estimates of key metrics such as peak viral load and rate of decline in 
viral load after the peak, which could also be related to age, sex, and severity. This model 
represents the first step towards a well-validated, flexible, and open-source framework 
which can be utilised to better interpret immune responses in COVID-19 in the context of 
viral load, and to understand how different treatments given at different stages of illness 
might influence viral load, transmission potential, host response, and outcome. We illustrate 
this with an example immune response dataset.  
 
 
Results 
 
Our literature search revealed 53 studies reporting longitudinal viral load measurements. 
We successfully obtained individual-level viral load measurements from 19 studies (either 
from the supplementary materials of the publication or preprint, or by emailing the 
corresponding authors). The analysis presented here utilises data from 17 of these studies 
(summarised in Table 1). Studies that were identified but did not provide data are shown in 
Supplementary Table 1. We excluded two studies that contained little or no longitudinal 
data for URT samples (32,33). In all studies, a description of disease severity for each patient 
was available, although the level of detail varied between studies. In six studies viral loads 
were fully quantified from concurrent standard curves, whilst in the remaining 11 studies 
cycle-threshold (Ct) values were reported. To combine data from different studies we 
generated an "average" standard curve, using data from 7 previously reported standard 
curves to convert Ct values to viral load per ml (Supplementary Figure 1). Details on antiviral 
or immunomodulatory treatments were available for some studies (Supplementary Table 2). 
 
In total, 2172 URT samples from 605 patients were used for analysis. Subject-level data on 
age and sex were available for 576 subjects and missing for 29 subjects. The majority (492 
out of 576; 85%) of subjects were under 60, compared to 84 (15%) aged 60 or over; 321 
(55%) patients were female. Disease severity was categorised using the WHO scale (34), 
where 501 (83%) patients (contributing 1698 (78%) samples) experienced mild COVID-19 
illness, 65 (11%) patients (contributing 359 (17%) samples) had moderate severity illness, 
and 39 (6%) patients (contributing 115 (5%) samples) had severe illness. Supplementary 
Figure 2 shows the viral load data for all patients, presented separately for each study. The 
vast majority (2163, or 99.6%) of samples were taken after the onset of symptoms, although 
samples were collected from a minority (8 patients across all 17 studies) prior to symptom 
onset e.g. if they were identified as a close contact of another patient. The median timing of 
swabs was 12 days after symptom onset (interquartile range: 6-19; range: 2 days before 
symptom onset to 54 days afterwards). Pooling the data from all studies, we found that the 
median viral load peaked one day after symptom onset (Figure 1a), although less data was 
available on the day of symptom onset compared to subsequent days (Figure 1c). 421 
patients had more than one URT swab recorded: for 60.1% of these patients, the first 
sample had the highest recorded viral load. Viral load estimates at corresponding times 
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after onset of symptoms did not differ systematically between studies in which viral load 
was calculated by the authors of the original study or inferred from our averaged standard 
curve (Figure 1b), although less data was contributed by studies which used concurrent 
standard curve quantification (Figure 1d). 
 
The timing of the first sample obtained relative to onset of symptoms varied with severity of 
illness. Subjects with moderate or severe disease had first samples collected later in their 
illness than those with mild disease (Supplementary Figure 3a). Accordingly, first viral load 
and maximum viral load measurements for subjects with moderate or severe disease in 
these studies were lower than in those with mild disease (Supplementary Figures 3b and 
3c). 
 
 
Fitting a regression model to the viral load data 
 
We fitted two types of models to the viral load data from the first 15 days from onset of 
symptoms (see Methods), using only subjects with at least three samples during this time 
period (models fitted to 870 samples from 155 patients from 16 studies). The first was a 
linear regression model, fitted to log-transformed viral loads. This model included patient- 
and study-specific random effects, which captured variation from the average behaviour 
observed across 16 datasets. There was variation in the peak and slope of the viral loads 
across different studies (Figure 2, Supplementary Table 3). The variation in the (log-
transformed) peak viral load varied over several orders of magnitude. Some of this variation 
was explained by study-specific differences: the standard deviation of the between-study 
variation in the peak viral load was 0.84 i.e. nearly one order of magnitude (Supplementary 
Table 3). This could be due to a number of factors, such as the method of sample collection, 
quantification method or characteristics of included patients. Furthermore, viral loads in 
several studies were estimated using an averaged standard curve, which introduces some 
uncertainty into the magnitude of the viral load. However, the inclusion of study-specific 
random effects allows such data to be appraised alongside data from other studies. 
 
Within this regression framework, we incorporated information on age, disease severity and 
sex (Methods) to see if the goodness of fit could be improved. We added fixed effects for 
these three variables, both separately and in combination. We separately examined age as a 
continuous variable or a dichotomous variable (stipulating whether patients were 60 years 
of age or over). The goodness of fit to the data did not vary appreciably: here we report 
results for age as a dichotomous variable. As we had relatively few (29) samples from 
patients with severe disease in the subset of the data considered here, we pooled patients 
with moderate disease and severe disease together. The inclusion of the fixed effects for 
age, sex, or severity did not improve the model fit (Table 2). In other words, the wide 
variation between individuals observed in the viral load dynamics could not be explained by 
the inclusion of these variables (Figure 3). 
 
We used simulation-based methods (Methods) to estimate the power of our analysis to 
detect different effect sizes for severity, age and sex on peak viral load (Supplementary 
Figure 4). For severity and sex, our analysis has 80% power to detect a difference of around 
1.1 in the log10 viral load (about a 12-fold difference in viral load), whereas power was lower 
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for detecting the effect of age. Importantly the detectable differences are considerably 
smaller than the inter-individual variation in viral load at any given time point 
(Supplementary Table 3), indicating that these are not the major determinants of viral load. 
 
 
Fitting a mechanistic model to the viral load data 
 
In addition to modelling viral load decline using regression models, we also developed a 
mechanistic model which we fitted to the dataset. We elected to keep the model relatively 
simple due to lack of identifiability between more complex model structures. We 
represented the multi-faceted immune response to the infection via two components. First, 
the exponential growth of viral load in the initial phase of infection is brought under control 
by an early immune response. Subsequent to this, the infection is gradually cleared by a late 
immune response. The early immune response is stimulated by a high load of infected cells 
and starts to block viral replication and the invasion of susceptible cells. The late response 
requires a maturation phase before it becomes effective and is therefore, more 
representative of the adaptive immune response. However, we do not attempt to fully 
distinguish between innate and adaptive responses in this model, as the interplay between 
them is complex. 
 
To guide the model fitting (see Methods), we made the assumption that both the peak viral 
load and the activation of the early immune response should roughly be concurrent with the 
onset of symptoms. The vast majority of subjects in the dataset were only under 
observation after the onset of symptoms, which means we are unable to infer the rate of 
exponential growth during the initial phase of the infection. For each subject, we fitted two 
parameters in the mechanistic model, holding all other parameters fixed (see Methods). 
One of these free parameters governs the density of infected cells required to activate the 
early response, while the other determines the rate at which the late response clears 
infected cells and, therefore, the rate at which the viral load declines. As we did for the 
regression modelling, we used a nested random effect structure, with study- and patient-
specific random offsets for both of these parameters (Methods). In addition, we 
incorporated data points that fell below the limit of detection in each study by accounting 
for censoring in the likelihood (Methods). 
 
This approach allowed us to characterise the average time-course of an infection at the 
population-level i.e. after removing study- and patient-level offsets (Figure 4, 
Supplementary Table 4), as well as showing the dynamics for the study specific fits to the 
data. There was no significant relationship between the subject-specific random effects for 
either of the model parameters and maximum disease severity (Supplementary Figure 5), 
consistent with the outcome of the preceding regression modelling (Table 2). Similarly, 
there was no significant relationship between the subject-specific random effects and 
subject age or sex (not shown). Supplementary Figure 6 shows the 95% credible intervals for 
the study-specific random effects, showing the between-study variation in both the peak 
viral load (panel a) and the rate at which the infection is cleared in the URT (panel b). 
Supplementary Figure 7 shows modelled viral loads for each of the 155 subjects used to fit 
the mechanistic model. 
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Relating viral load dynamics to SARS-CoV-2-specific immune responses 
 
To demonstrate the potential to link viral load dynamics to SARS-CoV-2-specific adaptive 
immune responses in individual subjects, we made use of detailed data on neutralising 
antibody and T-cell responses from the study by Tan et al. (7). We compared this 
immunological data with the patient-specific late immune response parameter fitted in our 
mechanistic model in these 12 patients, to attempt to gain insight into within-host 
mechanisms that might control viral load (Figure 5). Specifically, we assessed the total 
interferon-γ (IFN-γ) T-cell response to SARS-CoV-2 peptides measured in an ELISPOT assay, 
and results from a surrogate virus antibody neutralization assay. Simple logistic curves were 
fitted to the data from each subject’s measured immune responses, and the area under 
each curve (AUC) was used as a measure of the magnitude of each subject’s immune 
responses (Figure 5b and 5c). Overall, no significant correlation was observed between the 
modelled late immune response and the total interferon-γ (IFN-γ) T-cell response (r=0.39, p 
value = 0.208, see Figure 5d) or the neutralizing antibody response (r=0.07, p value = 0.831, 
see Figure 5e). However, we noted two subjects (subjects 1 and 12) displayed quite distinct 
immune responses to the others, characterized by absent neutralizing antibody, and initially 
high but subsequently declining total interferon-γ (IFN-γ) T-cell responses, possibly 
indicating a qualitatively different response to SARS-CoV-2. When these two subjects were 
removed from the analysis, a much stronger correlation was observed between the 
modelled late immune response and surrogate virus antibody neutralization (r=0.79, p value 
= 0.006).  
 
Discussion 
 
Understanding the causes and consequences of variation in pathogen load is fundamental 
to infectious disease research (35). Increasing pathogen load can drive both pathogenesis 
and transmission of infection (36). High viral load in COVID-19 has been associated with 
severity of illness in some studies (3,4), but not others (see e.g. Ref. (37)), and has been 
associated with risk of transmission (5). Pathogen load is dynamic, it varies over time, and is 
often considered to be the stimulus for the host response, as well as a target of the host 
response. Therefore, any attempt to establish the determinants of pathogen load and 
relationships between pathogen load, severity, and transmissibility, should account for 
these dynamics.  
 
We collated longitudinal URT viral load data from 2172 samples taken from 605 subjects 
with SARS-CoV-2 infection in 17 studies, to investigate the association of viral load dynamics 
with age, sex, and severity of illness. We used the WHO clinical progression scale to 
standardise varied descriptions of disease severity reported in different studies. We used 
two distinct modelling approaches to characterise viral load dynamics, accounting for 
systematic differences in viral load estimation between studies. We found no evidence to 
support the hypotheses that URT viral load dynamics are substantially influenced by age or 
sex, or that URT viral load dynamics influence severity of illness. We also found no 
association between severity and the latent variables describing early and late immune 
responses to URT virus in our mechanistic model. Nevertheless, we identified considerable 
inter-individual variation in URT viral load dynamics. Understanding the biological basis for 
this variation could help to identify new approaches to reduce transmission of SARS-CoV-2. 
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The lack of association between URT viral load dynamics and severity of illness is particularly 
interesting. On one hand, this is not necessarily surprising since severe COVID-19 is 
predominantly a consequence of LRT and systemic disease processes, and some studies 
have indicated that viral load in LRT samples is more strongly associated with severity of 
illness (9). On the other hand, this would imply that distinct processes govern URT and LRT 
viral load dynamics, or that the extension of infection from URT to LRT and other systemic 
locations is controlled by different mechanisms to those controlling local viral load. 
Although it is difficult to obtain serial LRT viral load measurements, evaluating distinct 
mechanisms controlling local and spatial viral dynamics could be important to understand 
the pathogenesis of COVID-19 and other respiratory infections.  
 
Our study provides one of the most comprehensive assessments of URT viral load dynamics, 
but despite collating data from a large number of studies we had a relatively low proportion 
of patients with very severe illness and very few from those with fatal infection, potentially 
reducing our ability to distinguish different viral dynamics in these groups. We also had very 
little data on URT viral loads before the onset of symptoms, which limits our ability to model 
variation in the rate of increase in viral load early in infection. We lacked data on the 
interval from exposure to symptoms, forcing us to fix this parameter in our mechanistic 
model. This means we were unable to properly explore the role that the initial viral dose 
plays in the dynamics. Furthermore, we did not have sufficient data on ethnicity, or other 
host characteristics beside age and sex, for which it may have been instructive to examine 
associations with viral load dynamics. We extracted data on antiviral treatment in different 
studies where possible (Supplementary Table 2), but there were too few subjects receiving 
each treatment to allow meaningful analysis.  
 
We used two modelling approaches to analyse the data. Mixed-effects regression modelling 
sought to determine if any of the wide variation observed in patients’ URT viral loads could 
be explained by age, sex, or disease severity. The inclusion of these variables, separately and 
in combination, did not improve the model fit. However, our power analysis suggests that 
we cannot confidently exclude smaller differences in viral load (e.g. an increase or decrease 
in peak viral load of less than ten-fold) due to these variables. We believe our power 
analysis provides useful insight into the capacity of such models to detect differences in viral 
load dynamics in different subpopulations. 
 
In order to utilise as much data as possible, we have included semi-quantitative data 
(presented as Ct values) alongside fully quantitative viral load data. We have converted the 
former using an averaged standard curve. Modelling the data with study-specific random 
effects provides a way to analyse all the data collected, without requiring study-specific 
standard curve data. Adding data from more studies in future, will allow us to examine 
whether the conclusions of our analyses are influenced by this approach.  
 
It is interesting to compare our mechanistic model to others that have been fitted to viral 
load data. Goyal et al. (26) developed a more complex model, which was able to capture a 
changing rate of decline in viral load observed in the patient data available to them. 
However, one should note that in our model we are fitting to a narrower timeframe (no 
more than 15 days after symptom onset, due to lack of viable infective virus after this time), 
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so it may be that the changing rate at which viral load declines is not so noticeable during 
this phase of the infection. Another difference between the two approaches is that we use 
the time of symptom onset to centre the dynamics (i.e. set time equal to zero), whereas 
Goyal et al. used the time of the first swab. When considering data from lots of different 
subjects, using symptom onset for temporal alignment helps adjust for the wide variation in 
the time of sample collection, particularly as we observed a relationship between disease 
severity and the time of the first sample collection in the studies considered here 
(Supplementary Figure 3). Among the within-host models already published, one finds wide 
variation in model complexity. Some models, such as the one presented here, have erred on 
the side of parsimony, whilst others have sought to capture very intricate within-host 
processes (see e.g. Ref. (31)). An interesting avenue for further work would be to use 
goodness-of-fit criteria, such as the one used here for the regression modelling, to explore 
the extent to which more complicated models explain more of the variation present in the 
data. 
 
We have demonstrated the potential to relate modelled viral load dynamics, and the 
immunological determinants of the model, to measured immunological data for individual 
subjects. It is not surprising that circulating SARS-CoV-2-specific T-cell responses are poor 
correlates of the late immune response controlling viral load, because these cells would 
need to migrate from the circulation to other locations like the respiratory tract to control 
virus. It is reassuring that when we considered individuals who did mount a neutralizing 
antibody response, we saw that antibody neutralization did correlate well with the late 
immune response parameter of our model, consistent with the evolving evidence that 
neutralizing antibody does indeed play an important role. However, it is now well 
established that some individuals do not mount a detectable serum antibody response to 
SARS-CoV-2, nevertheless they have protective immunity against re-infection (38), and 
applying this modelling approach to much larger numbers of subjects might help to identify 
alternative or additional protective mechanisms. Due to the dynamic interplay between viral 
load and the immune response, more biological insight can be gained from mechanistic 
modelling, compared to using summary statistics or regression modelling. 
 
Overall, our analyses indicate considerable variation between individuals in the dynamics of 
URT viral load, but no association between this variation and severity of illness, or with 
important biological determinants of severity. This has important implications for 
investigation of the mechanisms driving both pathogenesis and transmissibility of SARS-CoV-
2 infection. We present our mechanistic model as a resource for researchers to relate URT 
viral load dynamics to biological traits, in order to further unravel the mechanistic 
determinants, and identify possible targets for interventions to reduce URT viral load and 
prevent transmission.   
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Materials and Methods 
 
Data 
To collect data on viral load dynamics, we searched PubMed and medRxiv for studies that 
recorded longitudinal viral load data from individuals with symptomatic COVID-19 
infections. Searches were carried out between May 20th 2020 and February 11th 2021. In 
particular, we searched for studies which reported the timing of symptom onset for each 
patient, which we used to temporally align samples from different patients. We identified 
53 studies, data from 5 of which could be extracted from the publication or preprint. We 
contacted the authors of 48 studies by email to request access to patient-level data, and we 
received data from 14 of these studies. 2 of the 19 studies were dropped from this analysis, 
as they contained little or no longitudinal data for URT samples. Studies for which data was 
obtained are summarised in Table 1: all remaining studies identified by our literature search 
are summarised in Supplementary Table 1. We extracted as much information as possible 
on the severity of illness experienced by the patients and extracted demographic 
information on the patients where available. Two authors independently studied the 
severity information and matched the descriptions to the WHO clinical progression scale 
(34). Some articles contained detailed information on the course of disease for each patient, 
but this was not available in all the studies. We considered scores of 1-3 to represent mild 
disease, 4-6 to represent moderate disease and scores above 6 to represent severe disease. 
This is slightly different to the patient state descriptors of the WHO scale, because the 
majority of studies did not provide sufficient detail about the method of oxygen delivery to 
allow us to distinguish between scores of 5 and 6. In some studies, the severity of symptoms 
was recorded at multiple timepoints, over the course of the infection. Here, we use the 
term ‘severity’ to describe the maximum severity of disease experienced by each patient.   
 
Although some studies with a long follow-up period demonstrate that some patients can 
remain PCR-positive for virus for well over a month (39,40), several studies (16,17) have 
demonstrated that very few people are infectious, based on URT swabs, beyond 10 or 14 
days after symptom onset. Data collected after this period is likely to reflect RNA debris that 
remains in the URT. Therefore, our models of viral load are fitted to data points within the 
first 15 days of symptoms. This means that we have fewer data points to fit to (Table 1), but 
we believe that the meaningful dynamics, in terms of how the host controls the infection, 
are found in this time period.  
 
Viral load Quantification 
In all studies real-time polymerase chain reaction (PCR) assays were used to quantify URT 
virus either as Ct values, or as viral copies /mL (𝑉). As discussed in Ref. (41), calculation of 
viral copies per ml from Ct values requires the use of a ‘standard curve’, which is calibrated 
to the experimental set-up in a particular laboratory using reference samples. In general, 
these curves have the form: 

(1) 
Here 𝑎 and 𝑏 are positive numbers that fully specify the viral load for a given Ct value. This 
relationship indicates that there is a linear relationship between log-transformed viral loads 
and the raw Ct values, with higher Ct values representing lower viral loads. The units of 𝑉 
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vary between studies (e.g. viral copies per ml, per swab, or per 1000 cells), all studies 
collected here that have quantified viral load have used viral copies per unit of volume. We 
collected as many different standard curves as possible, from the studies included in this 
analysis (42,43) and from other papers in the COVID-19 literature (33,44–46), to understand 
the variation observed. From these, we determined an ‘averaged’ standard curve 
(Supplementary Figure 1), using the mean observed values for parameters 𝑎 and 𝑏, which 
we used to estimate the viral loads for studies for which only Ct values were available. This 
enabled us to pool data from all 17 studies.  
 
Models 
We sought to explain variation in viral load (either its peak value or its rate of decline over 
time) among patients, due to (e.g.) age, sex, and severity of disease. We did this using two 
types of models, a linear mixed effects regression approach and a mechanistic model, which 
took the form of a system of first-order differential equations. Both models were fitted to 
viral load data from within 15 days of symptom onset, using only subjects with least three 
samples taken during this time period (models fitted to 870 samples from 155 patients from 
16 studies). Therefore, as indicated in Table 1, no data from study 13 was used to fit the 
models. 
 
Linear regression models 
Bayesian regression models were fitted using RStan (47), with some of the analysis carried 
out using the rethinking package (48). Linear models were fitted to log-transformed viral 
loads, with random effects for each patient and study applied to the parameters 
determining the peak viral load, which we assumed coincides with the onset of symptoms, 
and rate of its decline over time. Samples for which no virus was detected were treated as 
being below limit of detection (LOD), rather than truly virus negative. We show the general 
form of the regression model here, where 𝐿 is the likelihood of each data point, to illustrate 
the random-effect structure and the censoring of the data: 

(2) 
This model is relatively simple: the log-transformed viral loads are captured by a linear 
model, with the intercept describing the viral load at the time of symptom onset, and the 
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slope capturing the rate at which the viral load subsequently declines. The log-transformed 
viral load for a given patient is normally distributed around a modelled trajectory, which is 
described by 𝜇, with a standard deviation given by 𝜎. For data points where no virus was 
detected, the likelihood takes a different form. We calculate the likelihood as the probability 
of the viral load being below the LOD, writing 𝑁  as the cumulative distribution function 
of the normal distribution. We allow for the fact that the LOD is study-specific (indicated in 
Figure 2). All remaining terms in Equation 2 define the prior distributions for the 
parameters. Both the slope and the intercept have a parameter that captures the average 
behaviour across all patients in all studies (𝑎  and 𝑏  respectively). Random effects capture 
patient- and study-specific deviations from the average behaviour. Both the patient- and 
study-specific random effects are normally distributed with zero mean: here we write 𝑁  to 
indicate the bivariate normal distribution. We allow correlation between the random effects 
on the intercept and slope at each level, as indicated by the presence of parameters 𝜌  
and 𝜌 . For these parameters, we use the LKJ distribution (49) as a prior.  
 
Within this framework, fixed effects could then be added to the model, to assess whether 
(e.g.) severity of disease, or the sex of patient affected the typical viral load trajectory 
observed. To do this, we simply add terms to 𝜇 in Equation 1. Here we illustrate this for sex, 
making female the reference category: 

(3) 
Here variable ‘Male’ is equal to 1 if the patient is male (0 otherwise), and we have also 
added zero-mean priors for the new parameters. As mentioned above, severity was 
expressed on the WHO scale, which takes values from 1-10. As 1 is asymptomatic, severity 
in our dataset is limited from 2 (mild symptoms, not hospitalised) to 10 (dead). As the 
dataset contains relatively few samples from patients with severe disease (score 7 to 10 on 
the WHO scale), we chose to make two groups from these categories: Mild (2 or 3) and 
Moderate or Severe (4-10). When severity is included in the model, 𝜇 becomes:  

 (4) 
Here variable ‘ModSev’ is equal to 1 for patients with moderate or severe disease (0 
otherwise). In most studies, patient age is given in years, as an integer value. Some studies 
expressed age of patients in decades e.g. 10-20 years of age. For these studies, we used the 
midpoint of the age range given for each patient. We grouped age into two groups: <60 
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years of age and ≥60 years of age. In the regression modelling, we added a fixed effect for 
age, making the youngest age group the default. Here, 𝜇 takes the form: 

(5) 
Here variable ‘Age’ is equal to 1 for patients aged 60 or over (equal to 0 otherwise). We also 
looked at including subject age as a continuous variable, but the goodness of fit did not 
change appreciably. We added the 3 terms (age, severity, sex) to the regression models 
both separately and in combination. We assessed the goodness of fit using the Watanabe 
Akaike Information Criterion (WAIC) (49), with the best-fitting model having the lowest 
WAIC value. As the WAIC for each candidate model is estimated from a finite sample, its 
standard error was calculated using the rethinking package (48) to appreciate the 
uncertainty in its value. These standard errors are useful when appraising the differences in 
WAIC between candidate models. The relative goodness of fit of a given model can also be 
appraised by calculating its Akaike weight among the set of all considered models. This can 
be interpreted as the probability that this model, out of the set of models considered, would 
provide the best fit to new (i.e. out of sample) data (49). 
 
We use simulation-based estimation of statistical power to assess our capacity to detect a 
difference in viral load dynamics due to one of the three factors (sex, age, severity of 
disease) assessed here. We generated synthetic datasets of the same size as the one 
considered here, with study- and patient-specific random effects of the same magnitude 
(Supplementary Table 3). For simplicity, we generated datasets with an equal number of 
samples per subject, and the sampling times were randomly generated from a uniform 
distribution. When generating the data, we assumed that the peak viral load was influenced 
by one of the three aforementioned factors. We then ran the regression analysis, to see if 
the modelled effect could be detected. To reduce computation time, we here used 
frequentist regression via the lme4 package in R (50), with a p value < 0.05 for the included 
fixed effect indicating a significant finding. Generating 1000 synthetic datasets, the 
statistical power can be estimated as the percentage of datasets for which the regression 
analysis found a significant effect. Supplementary Figure 4 shows how the statistical power 
varies with the magnitude of the modelled effect, which is here expressed as a fold 
difference in the peak viral load. The results of the power analysis suggest that we were not 
well powered to measure relatively small differences in peak viral load (under 10-fold 
difference). The power to measure sex-specific differences in peak viral load was slightly 
higher than the power to measure severity- or age-specific differences, as we have a better 
balance between samples from male and female samples than we do between samples in 
under 60s and over 60s, or samples from subjects from mild disease versus samples from 
subjects with moderate or severe disease. 
 
Mechanistic model 
We also developed a mechanistic model to describe the viral dynamics. We started 
modelling the infection 5 days before the onset of symptoms. At this time, an initial dose of 
virus 𝑉  is introduced. These virions start invading susceptible cells at rate 𝛽. Infected cells 
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then produce more virus at rate 𝑝, which can then invade subsequent susceptible cells. 
Meanwhile, free virions are cleared at rate 𝛾. In this way, the viral population grows 
exponentially. In the model, this growth is brought under control by an early phase of the 
immune response, and then the infection is gradually cleared by a later phase of the 
immune response. We do not seek to specify the immunological mechanisms contributing 
to these phases of the immune response. In each infection, the exponential growth slows as 
the population of infected cells approaches a certain value (𝐼 ). This reflects a 
combination of two within-host mechanisms: the depletion of susceptible cells in the URT 
and the effect of an early phase immune response which is triggered at a high level of 
infection. Since these mechanisms may be linked, i.e. the immune response may modify the 
susceptibility of target cells, we do not attempt to distinguish between them, or to explicitly 
model the population of susceptible cells.  
 
After the exponential growth is brought under control, the infection is cleared by the late 
immune response. In this model, this is triggered by a certain density of infected cells but 
requires a maturation stage before it becomes effective at clearing infected cells. We write 
the system of equations as: 

(6) 
The late immune response, represented here by variables (𝐴 , 𝐴 , 𝐴 ), is stimulated by the 
presence of infected cells. A Hill function is used to make the adaptive response 
dimensionless, and to rescale its value (daily input into compartment A1 scales between 0 
and 1). Parameter 𝐼  (here fixed to a value of 1000 cells) determines the magnitude of the 
density of infected cells required to stimulate this response. It requires time to mature 
(governed by rate parameter 𝑘 , which we fix at 0.33day-1), meaning that only stage 𝐴  is 
able to clear infected cells. Once mature, the late response does not wane in this model, as 
we are only interested in its ability to clear an infection, not how long it persists after the 
infection has been resolved. In this way the late response recapitulates features of adaptive 
cell-mediated and humoral immunity, without needing to specify their relative 
contributions.  Parameter 𝑘  represents the maximum rate at which the late response can 
clear the infection, and 𝐴  governs the magnitude of the adaptive response required 
effectively clear infected cells. We note that the magnitude of the late immune response 
has been set to be of order 1 for convenience, and this determines the magnitude of 𝐴 .  
 
For the vast majority of patients for whom we have data, only samples taken after the onset 
of symptoms are recorded. This means that we are unable to estimate the duration of the 
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incubation period, the initial dose of virus that causes the infection, or the rate at which the 
virus reproduces before being acted upon by the immune response. We elect to model a 
five-day incubation period and fix the rate of exponential growth to be the same for all 
patients, setting 𝛽 = 0.8 ml day-1virion-1, 𝛾 = 13day-1, 𝑝 = 80day-1, with these values 
informed by parameter values chosen in published models (25,26,28). This is a 
simplification: it is unclear whether, in reality, the time from infection to symptom onset 
varies by age, sex or disease severity. For each patient the infection starts at Day -5 (in the 
dataset, Day 0 is the day of symptom onset, not the day of infection onset) with initial 
conditions given by (𝐼 = 0, 𝑉 = 𝑉 , 𝐴 = 0, 𝐴 = 0, 𝐴 = 0) i.e. the infection starts with an 
initial viral dose, no infected cells, and no prior exposure to the virus (late immune response 
completely inactive).  
 
The initial viral dose, 𝑉 , for each patient is chosen with the idea in mind that the viral load 
should peak at or close to the time of symptom onset. Ideally, 𝑉 ,  should be fitted 
simultaneously with the free parameters for each patient, but this has proved challenging to 
date, especially given that peak viral load should coincide approximately with symptom 
onset but may also not be observed. Briefly, 𝑉 ,  is chosen by considering the linear 
subsystem of equations that govern the growth of the virus prior to the activation of the 
immune response to the infection. As this system of equations is linear, it can be solved 
exactly (we use a matrix exponential). We require that 𝑉  be chosen so that, just prior to the 
onset of symptoms, an uncontrolled infection would reach the maximum viral load observed 
for patient i in the dataset. This ensures that the peak viral load modelled for each patient is 
controlled by the early-stage immune response, as it is too soon for the adaptive response 
to be effective at clearing infected cells. 
 
When fitting to the data, we allowed the values of 𝑘  and 𝐼  to vary and we fixed all the 
other parameters. As we did for the regression modelling, we included random effects in 
the model, to account for different behaviour in different patients and across different 
studies. In the case where we have P patients taken from S studies, we write: 

(7) 
This means that 𝑘  and 𝐼  represents the population-level average value of each 
parameter. The system of equations was solved numerically in R, using the dopri function 
from the dde package (51). We write the modelled viral load trajectory at time 𝑡 for patient 
𝑖 in study 𝑗 as 𝑉 (𝑡). Samples from the posterior distribution of the fitted parameter were 
obtained using Markov Chain Monte Carlo methods, via the R package drjacoby (52). As 
with the regression modelling, the form of the likelihood for each data point depends on 
whether the sample is above the study-specific LOD or is recorded as being virus-negative. 
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We write 𝐷  to indicate the kth viral load sample, taken 𝑡  after the onset of symptoms, 
from patient 𝑖 in study 𝑗. The likelihood for each data point has the form: 

 
(8) 

The global likelihood was then obtained by multiplying together the likelihoods for each 
data point. We provided prior distributions for the parameters to be fitted. These were:  

 
(9) 
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Study  Reference No. of 

Patients 
Country Healthcare 

setting 
Recruitment 
period 

Age, years 
Median 
(IQR) 

Non-
Caucasian 
ethnicity,  
n (%) 

Male,  
n (%) 

Remdesivir 
therapy, n 
(%) 

WHO 
Severity 
score, 
Range 

Mortality,  
n (%) 

No. of 
samples
, 
n 

Method of 
sample 
collection 

No. of 
samples 
used for 
modelling  

Units† 

1 Kim JY et 
al., J 
Korean 
Med Sci, 
2020 (42) 

2 Korea Hospital  January 
2020 

35 (10–50) 2(100) 1 (50) 0 3-4 0 26 Clinical  13 3 

2 Lui G et 
al., J 
Infect, 
2020 (53) 

11 Hong Kong Multicentre, 
Hospital 

February 
2020 

58 (42–70) 
 

NK 7(64) 0 3–6/7 0 73 Research 
protocol 

34 3 

3 Scott S et 
al., clin 
infect dis, 
2020 (54) 

1 USA Community January 
2020 

26 NK 1(100) 0 2 0 12 Research 
protocol 

6 1 

4  Kim SE, 
Int J Infect 
Dis, 2020 
(55) 

3 Korea Tertiary 
Hospital 

February – 
April 2020 

30 (25–30) NK 2 (67) 0 3 0 21 Research 
protocol 

21 1 

5 Gautret P 
et al., Int J 
Antimicrob 
Agents, 
2020 (56) 

19 France Tertiary 
Hospital 

March 2020 49 (36.5–
57) 

NK 9 (47) 0 
 

3–6/7 0 126 Research 
protocol 

125 1 

6 Young B 
et al., 
JAMA, 
2020 (57) 

18 Singapore Multicentre, 
Tertiary 
Hospital 

January – 
February 
2020 

47 (31–
73*) 

16 (89) 9 (50)  0 3–6/7 0 216 Research 
protocol 

160 1 

7 The 
COVID–19 
Investigati
on team, 
Nat Med, 
2020 (58) 

12 USA Multicentre, 
Community 
and Hospital  

January 
2020 

53 (21–
68*) 

NK 8 (67) 3 (25) 2–5 0 121 Clinical  69 1 

8 Wölfel R 
et al., 
Nature, 
2020 (59) 

9 Germany Hospital January 
2020 

41 (33-49) NK 9 (100) NK 3–4 0 96 Research 
protocol  

79 3 

9 Vetter P et 
al., 
mSphere, 
2020 (60) 

5 Switzerland Hospital February 
2020 

28 (24–55) NK 5 (100) 0 2–4** 0 39 Research 
protocol 

37 3 

10 Lavezzo E 
et al., 

37 Italy  Community 
and Hospital 

February – 
March 2020 

65 (55-75) NK 22 (59) NK 2-10 3 (8) 55 Research 
protocol 

6 3 
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Nature, 
2020 (43) 

11 Xu Y et 
al., Nat 
Med, 2020 
(61) 

6 China Paediatric 
cohort, 
Tertiary 
Hospital  
 

January – 
February 
2020 

6 (4-11) NK 3 (50) 0 3  0 37 Research 
protocol  

34 1 

12 Shrestha 
N et al., 
Clin Infect 
Dis, 2020 
(62) 

230 USA Healthcare 
worker 
cohort, non–
hospitalized 

March – 
April 2020  

36 (29-51) 70 (30) 59 (26) 0 2 0 528 Clinical  46 2 

13 Fajnzylber 
J et al., 
Nat 
Commun, 
2020 (63) 

64 USA Multicentre, 
Tertiary 
Hospital 

NK 56 (42-69) 76(43) 40 (63) 16 (25) 2-10 8 (13) 93 Research 
Protocol  

0 3 

14 Yilmaz A 
et al., J 
Infec Dis, 
2020 (64) 

54 Sweden Tertiary 
Hospital 

February – 
April 2020 

To add NK 31(57) NK 2–10 3 (5) 349 Research 
Protocol 

137 2 

15 Alsharrah 
et al., J 
Med Virol, 
2020 (65) 

29 Kuwait Paediatric 
cohort, 
Tertiary 
Hospital 

February – 
April 2020 

8.8 (4.7–
12.4) 

NK 16 (55) 0 3 0 75 Clinical 9 1 

16 Tan A et 
al., Cell 
Reports, 
2020 (7) 

12 Singapore Tertiary 
Hospital 

NK 52.5 (32–
65) 

10 (83) 6(50) NK 3–10 1 (8) 82 Research 
Protocol 

53 1 

17 Salvatore 
PP et al., 
Clin Infec 
Dis, 2020 
(66) 

93 USA Community March – 
May 2020 

37 (21–53) 24 (22) 43 (46) 0 2 0 223 Research 
Protocol 

41 1 

Total - 605 - - - 42 (28-56) - 271 (45) - 2-10 15 (2) 2172 - 870 - 

 
Table 1. Summary of participant characteristics and sample collection protocols for each study, from which data was collected to model viral load dynamics.  
Only cases of symptomatic COVID-19 were included.  
Hospital = non-tertiary hospital or hospital for which the tertiary status has not been reported by the authors.  
NK = Not known.  
*Value expressed as median (Range)  
**All cases hospitalized due to public health policy at the time of the study.  
***Value expressed as mean (SD) 
† 1: Cycle threshold values; 2: Viral load calculated either by using the study’s own conversion formula for Ct value to viral load or a standard curve calibrated to other samples 
(e.g. viral load in plasma); 3: Viral load calculated from standard curve run with each sample 
 Models fitted to data from subjects for whom at least 3 samples were taken in the first 15 days after symptom onset 
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Data from all studies (n=16) 
Fixed Effects Included WAIC WAIC dSE Model weight 

in ensemble 
None 2222.5 - - 0.62 
Severity 2223.5 1.0 1.1 0.38 
 

Data from studies (n=14) with demographic information 
Fixed Effects Included WAIC WAIC dSE Model weight 

in ensemble 
None 1796.6 - - 0.33 
Age 1797.4 0.8 1.2 0.22 
Severity 1798.8 2.2 1.0 0.11 
Sex 1798.9 2.2 0.9 0.11 
Severity + Sex 1799.7 3.0 1.4 0.07 
Age + Sex 1799.7 3.1 1.1 0.07 
Age + Sex + Severity 1800.7 4.0 1.9 0.04 
Age + Severity 1800.7 4.0 1.7 0.04 

 
Table 2: Assessing the goodness of fit of the regression models. Three fixed effects 
(severity, age, sex) were added to linear regression models of viral load over time, 
separately or in combinations (see Methods), to determine the extent to which they 
explained variation present in the data. All studies included in this analysis described the 
severity of disease for each patient. However, patient-level demographic information was 
only provided in 15 of the 17 studies. Hence, a separate analysis was carried out for these 
studies. In each analysis, the best-fitting model is the one with the lowest WAIC value, as 
indicated in bold. The value of ∆WAIC indicates the difference in goodness of fit between 
each model and the one that provided the best fit to the data, whilst dSE denotes the 
standard error of the difference in WAIC between each model and the best-fitting one. In 
each analysis, we provide the Akaike weight of each model in the ensemble of candidate 
models that were analysed (Methods).  
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Figure 1: Declining viral loads after symptom onset. a) Data from all 17 studies used in our 
analysis (circles). For illustrative purposes, viral samples that were negative for virus are set 
to 1 viral copy per ml. The median viral load is calculated for each day (purple line), as well 
as the interquartile range (purple shaded region). From Day 20 onwards, over half the 
samples recorded on each of these days were below the limit of detection. b) Here we show 
the quantified PCR data (yellow) separately from the data for which viral loads were 
estimated (blue) using an averaged standard curve (Methods). In the lower panels (c,d), we 
display the number of data points available on each day for this analysis.  
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Figure 2: Viral load data and mixed-effects regression model. Data from all 16 studies used 
in the regression modelling (numbered as in Table 1), showing samples taken within the first 
15 days of symptom onset. We fitted a regression model to the data, with study-specific 
random-effects for the peak viral load and rate of decline (slope). The solid lines show the 
posterior mean behaviour for each study, with the shaded areas showing the 95% credible 
intervals. The dashed line, which is the same in each panel, is the average trajectory across 
the 16 studies. The 95% credible interval for the averaged trajectory is shown by the grey 
shaded region. Population-level parameters for this model are shown in Supplementary 
Table 3. 
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Figure 3: Inclusion of fixed effects in the regression models. All regression models included 
study- and patient-specific random effects for the peak and slope (i.e. rate of decline) of the 
viral load. We then added fixed effects, both separately and in combination, to see if the 
model fit could be improved (Table 2). These fixed effects were: age, sex, and severity of 
disease. Here we show results for the three models containing one fixed effect (left: 
severity; middle: age; right: sex). The inclusion of severity, age, or sex did not improve the 
goodness of fit (Table 2). In the modelling here, age was included as a binary variable (under 
or over 60 years of age). 
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Figure 4: Averaged trajectories obtained from the fitted mechanistic model. In this plot we 
show the average trajectory predicted for each study (coloured lines), generated using the 
median value used for the initial viral load at t=0 in each case. We also show the average 
trajectory across all the studies, indicated by the black line. The dark grey shaded area 
indicates the 95% credible interval for this average trajectory. The light grey area accounts 
for the variation observed around the average trajectory (generated using samples from σ, 
as defined in in Equation 8, and calculating the 95% prediction interval for the population-
level dynamics). The fit to data from Study 3 is not shown, as this study only contained one 
patient, which means one cannot distinguish between study- and patient-specific random 
effects. The opaque black circles are the data points from the 16 studies used to fit the 
model. For illustrative purposes, viral samples that were negative for virus are set to 1 viral 
copy per ml (i.e. 0 on the log-scale). The results from the mechanistic model presented here 
were obtained using 1500 samples from the posterior distribution, with the median 
trajectories plotted. 
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Figure 5: Paired viral load and immune response dynamics. These panels show data from 
12 patients, reported by Tan et al. (7). Panel (a): viral load measurements (points) and 
modelled viral load trajectories from the mechanistic model (black lines show the posterior 
means, shaded areas are the 95% credible intervals). The coloured symbols indicate the 
severity score recorded for each subject (on the WHO severity scale). Panel (b): measured 
total T cell response (blue symbols), rescaled by the largest observed measurement. A 
logistic curve was fitted through the points for each patient, to facilitate the area under the 
curve (AUC, blue shaded area) calculation. To calculate both AUCs (antibody & T cell) we 
used only the first 15 days after symptom onset, as this was the time period used to fit our 
models. Panel (c): neutralising antibody response (purple dots). A logistic curve was fitted 
through the points for each patient, to facilitate the area under the curve (AUC, purple 
shaded area) calculation. Panel (d): relationship between the calculated AUCs of the T cell 
responses and modelled patient-specific immune responses (p value = 0.208). Panel (e): 
relationship between the calculated AUCs of the antibody responses and modelled patient-
specific immune responses. Two patients failed to mount an antibody response which 
neutralised virus. The correlation between the patient-specific response and the AUC is 
much stronger when these patients are not included (p value = 0.006, compared to p value = 
0.831 when all 12 subjects are considered). We note that for subjects 4 and 8 (open circles 
in panels d and e), fewer than 3 viral load measurements were available, meaning  their 
fitted parameters may shrink to the study mean.  
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