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Abstract: 37 
Background: 38 
The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, 39 
inform regional and national policies, and estimate the effectiveness of interventions. It 40 
describes the average number of new infections caused by a single infectious person through 41 
time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, 42 
and/or deaths. These estimates are temporarily biased when clinical testing or reporting 43 
strategies change. 44 
Objectives: 45 
We show that the dynamics of SARS-CoV-2 RNA in wastewater can be used to estimate Re in 46 
near real-time, independent of clinical data and without the associated biases.  47 
Methods:  48 
We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, CH, and 49 
San Jose (CA), USA. We combined this data with information on the temporal dynamics of 50 
shedding (the shedding load distribution) to estimate a time series proportional to the daily 51 
COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. 52 
Results: 53 
The method to estimate Re from wastewater works robustly on data from two different countries 54 
and two wastewater matrices. The resulting estimates are as similar to the Re estimates from 55 
case report data as Re estimates based on observed cases, hospitalizations, and deaths are 56 
among each other. We further provide details on the effect of sampling frequency and the 57 
shedding load distribution on the ability to infer Re.  58 
Discussion: 59 
To our knowledge, this is the first time Re has been estimated from wastewater. This method 60 
provides a low cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the 61 
ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other 62 
pathogens. 63 
 64 
Introduction: 65 
A critical quantity to monitor an ongoing epidemic is the effective reproductive number Re 1–4. 66 
Re describes the time-varying average number of new infections caused by a single infectious 67 
person throughout the course of their infection. Typically, Re is estimated from case report data 68 
(hereafter referred to as Rcc), including the numbers of new clinical cases, hospitalizations, and 69 
deaths 1,3–5. Here, we show that viral RNA concentrations measured in wastewater provide an 70 
independent data set to estimate Re (hereafter referred to as Rww). This complements existing 71 
Rcc estimates to provide a more complete picture of transmission dynamics. 72 
 73 
Re estimates for SARS-CoV-2 are used to inform regional and national policies 6,7. The Re 74 
changes through time and reflects changes in the immune status of the population, policy, 75 
climate, and/or individual behaviors 1,2. It can thus be used to estimate the effectiveness of non-76 
pharmaceutical interventions in disease control 5,8–11. However, Rcc estimates have some 77 
notable drawbacks. Most importantly, they depend on robust and accurate clinical case 78 
surveillance and reporting. Temporal changes in testing capacity, hospitalization criteria, or the 79 
definition of COVID-19-related deaths can bias the Rcc estimates 1,12. These estimates are also 80 
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inferred with a delay: Rcc is estimable once the infections occurring on that day tested positive 81 
and were reported as clinical cases 1,2. This delay differs through time and space, yet is 82 
necessary to accurately infer Rcc, thus complicating the simultaneous computation across 83 
geographic regions. Wastewater data may provide an advantage over clinical case data in all 84 
these aspects. 85 
 86 
SARS-CoV-2 RNA measurements in wastewater can be used to understand COVID-19 87 
epidemiology because infected individuals shed the virus into the sewer system throughout their 88 
infection. During the COVID-19 pandemic, SARS-CoV-2 RNA has been repeatedly detected in 89 
wastewater and sewage sludge globally 13–19, and measured RNA concentrations or loads 90 
correlate with clinical case data 13–15,17. Detection of SARS-CoV-2 RNA in the wastewater 91 
implies there is at least one actively shedding infected person in the catchment served by the 92 
sewer system. Compared to clinical testing, substantially fewer wastewater samples are 93 
required to track changes in infection incidence at the community level. Wastewater data has 94 
also been integrated into compartmental models of infectious disease transmission, allowing 95 
estimation of epidemiological parameters including incidence and the basic reproductive 96 
number R0 (which corresponds to the Re in a fully susceptible population at the start of an 97 
outbreak) 20,21. These model results are frequently validated against clinical case data, and the 98 
good correspondence between both supports the use of SARS-CoV-2 RNA measurements in 99 
wastewater to inform disease transmission dynamics. In addition, there are indications that the 100 
wastewater may track transmission dynamics more truthfully than cases, especially when test 101 
positivity is high 22.    102 
 103 
Models relating SARS-CoV-2 RNA in wastewater to incidence or transmission rates are driven 104 
by assumptions of virus excretion rates into the sewer system. Excretion (via feces, saliva, 105 
and/or sputum) varies by individual and through time after infection. Generally, this can be 106 
described using a shedding load profile, which captures both the temporal dynamics of 107 
shedding (in the shedding load distribution; SLD), and the total amount of virus shed by an 108 
infected individual. Clinical studies in various settings have measured shedding from symptom 109 
onset onwards. Notable examples include Wölfel et al., who measured virus concentrations in 110 
the stool of hospitalized patients 21,23 and Han et al., who included symptomatic and 111 
asymptomatic children 24. Benefield et al. combined such studies into a systematic review of 112 
SARS-CoV-2 viral loads 25. However, little is known about shedding prior to symptom onset. 113 
Given uncertainty and variation in estimates of SLDs, modeling approaches to relate 114 
wastewater to transmission have varied. For example, Kaplan et al. used an infectivity profile 115 
(based on virus concentrations in the upper and lower respiratory tract from Li et al.) rather than 116 
information on gastrointestinal shedding to estimate the basic reproductive number R0 from 117 
wastewater data 20,26. More work is needed to determine both the SLD and the amount of virus 118 
shed during an infection to relate SARS-CoV-2 RNA measurements in wastewater to 119 
epidemiology.  120 
 121 
We measure SARS-CoV-2 RNA in sewage sludge or wastewater from two distinct monitoring 122 
programs (Zurich, Switzerland and San Jose, CA, USA), use the measured RNA to estimate 123 
Rww, and compare the estimates to Rcc obtained from clinical case data. We further determine 124 
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the SLD that optimizes the fit between Rww and Rcc and compare it to previously reported SLDs. 125 
We find that Rww is a useful metric to monitor the transmission dynamics of SARS-CoV-2, 126 
independent from clinical case data. To our knowledge, this is the first time Re has been 127 
estimated from pathogen concentrations in wastewater.  128 
 129 
Methods: 130 
SARS-CoV-2 RNA quantification in wastewater and primary sludge  131 
Overall approach.  132 
Longitudinal samples of raw wastewater influent from Zurich (Switzerland) and  primary sludge 133 
from San Jose (California, USA) were collected over several weeks from late 2020 through early 134 
2021. Samples were concentrated, viral RNA was extracted, and SARS-CoV-2 RNA markers as 135 
well as pepper mild mottle virus (PMMoV) RNA were quantified in each extract. PMMoV is a 136 
plant virus that is found in wastewater at high concentrations and in fairly constant loads, and 137 
serves to detect anomalies in the collected sample or problems during concentration and 138 
extraction 27.  139 
 140 
Sample collection and processing 141 
Zurich approach. From 03 September 2020 to 19 January 2021, 24-hour flow-proportional 142 
composite samples of raw influent (after fine screening) were collected from the Werdhölzli 143 
wastewater treatment plant (Zurich, Switzerland). Samples were collected twice per week 144 
(Thursdays, Sundays) until October 29; afterwards, samples were collected almost daily. 145 
Samples were collected in 500 mL polystyrene or polypropylene plastic bottles, shipped on ice, 146 
and stored at 4°C for up to 8 days before processing. Samples were processed following the 147 
protocol of Fernandez-Cassi et al. 2021 22. Briefly, aliquots (50 mL) were stirred at room 148 
temperature for 30 minutes and then clarified by sequential filtration through 2 µm glass fiber 149 
pre-filters (Merck) and 0.22 μm SteriCup filters (Merck). The filtrates were concentrated by 150 
centrifugation (3000xg for 30 minutes) using Centrifugal Filter Units (10kDa Centricon Plus-70, 151 
Millipore, USA), followed by concentrate collection from the inverted filter during 3 min at 152 
1000xg.   153 
 154 
RNA was extracted from concentrates (140-280 μL) using the QiaAmp Viral RNA MiniKit 155 
(Qiagen, USA) according to manufacturer’s instructions, using 80 μL of eluate. Until 25 October, 156 
samples were processed in duplicate (biological replicates). Samples were extracted once, and 157 
a negative extraction control using molecular grade water was run in parallel for every batch of 158 
extracted samples. 159 
 160 
San Jose approach. From 15 November 2020 to 19 March 2021, 125 settled solids samples 161 
(approximately 50 mL) were collected and processed daily from the primary settling tank at the 162 
San Jose wastewater treatment plant (San Jose, CA, USA) using methods adapted from 163 
Graham et al. and described in published protocols 15,28–30. Briefly, 24-hour composite samples 164 
were collected in clean plastic containers, immediately stored at 4°C, and transported to the lab 165 
for initial processing within 6 hours of collection. The solids were dewatered by centrifugation at 166 
24000xg for 30 minutes at 4°C. The supernatant was aspirated and discarded. A 0.5 - 1 g 167 
aliquot of the dewatered solids was dried at 110°C for 19-24 hours to determine its dry weight. 168 
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Dewatered solids were resuspended in Bovine Coronavirus (BCoV)-spiked DNA/RNA Shield 169 
(Zymo Research, Irvine, California, USA), to a concentration of 75 mg/mL. This concentration of 170 
solids represented a concentration at which the PCR inhibition of the SARS-CoV-2 assays was 171 
minimized based on experiments with solutions containing varying concentrations of solids (see 172 
Supplemental Methods)31. BCoV was spiked as an external process control. To homogenize 173 
samples, 5-10 5/32” Stainless Steel Grinding Balls (OPS Diagnostics) were added to each 174 
sample before shaking with a Geno/Grinder 2010 (Spex SamplePrep). Samples were 175 
subsequently briefly centrifuged to remove air bubbles introduced during the homogenization 176 
process, and then vortexed to re-mix the sample. Samples were either further processed 177 
immediately, or stored at 4°C for processing within 7 days. 178 
 179 
RNA was extracted from 300 µL of homogenized sample using the Chemagic™ Viral DNA/RNA 180 
300 Kit H96 for the Perkin Elmer Chemagic 360 into 60 µL of eluent followed by PCR Inhibitor 181 
Removal with the Zymo OneStep-96 PCR Inhibitor Removal Kit 29. Each sample was extracted 182 
ten times. In addition, extraction negative and extraction positive controls, consisting of 183 
approximately 500 copies of SARS-CoV-2 genomic RNA (ATCC), were extracted using the 184 
same protocol as the homogenized samples in each batch of sample extraction.  185 
 186 
Quantification of viral targets 187 
Zurich approach. SARS-CoV-2 N gene markers N1 and N2 were quantified immediately or 188 
within one week after RNA extraction (storage at -80°C) using digital RT-PCR (RT-dPCR). RT-189 
dPCR was performed on 5 μL RNA extract as template on either the Bio-Rad QX200 Droplet 190 
Digital (01 September 2020 - 7 October 2020) with the One-Step RT-ddPCR Advanced Kit for 191 
Probes (Bio-Rad CN 1864021) or Crystal Digital PCR using the Naica System (Stilla 192 
Technologies, 8 October - 20 January 2021) with the qScript XLT 1-Step RT-PCR Kit 193 
(QuantaBio CN 95132-500). SARS-CoV-2 N1 and N2 markers for the N gene were detected 194 
using the 2019-nCoV CDC ddPCR Triplex Probe Assay (Assay ID dEXD28563542, Bio-Rad) 195 
according to manufacturer’s instructions, with proprietary primer and probe concentrations. 196 
Primer and probe sequences are specified in Table S4, and further dPCR details in Table S5.  197 
 198 
For samples processed on the Bio-Rad QX200, 20 µL reaction volumes were prepared in a pre-199 
reaction volume of 22 µL consisting of 5.5 µL of template, 5.5 µL of Supermix, 2.2 µL of 200 
Reverse Transcriptase, 1.1 µL of DTT and 1.1 µL of 20x 2019-nCoV CDC ddPCR Triplex Probe 201 
Assay. Droplets were generated using the QX100 Droplet Generator (Bio-Rad). PCR was 202 
performed on the T100 Thermal Cycler (Bio-Rad) with the following protocol: hold at 25℃ for 3 203 
minutes, reverse transcription at 50℃ for 60 minutes, enzyme activation at 95℃ for 10 minutes, 204 
40 cycles of denaturation at 95℃  for 30 seconds and annealing and extension at 55℃ for 1 205 
minute, enzyme deactivation at 98℃ for 10 minutes, and an indefinite hold at 4℃. Ramp rate 206 
was 2℃/second, and the final hold at 4℃ was at least 30 minutes to stabilize droplets. Droplets 207 
were analyzed using the QX200 Droplet Reader (Bio-Rad) and thresholding done on the 208 
QuantaSoft Analysis Pro Software (Bio-Rad, Version 1.0). 209 

For samples processed on the Crystal Digital PCR, 25 µL reactions were prepared in 27 µL pre-210 
reaction volumes for Sapphire Chips (Stilla Technologies CN C14012) consisting of 5.4 µL of 211 
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template, 13.5 µL of 2x qScript XLT One-Step RT-PCR, and 1.35 µL of 20x 2019-nCov CDC 212 
ddPCR Triplex Probe Assay. Droplet production and PCR were performed on the Naica Geode 213 
with the following protocol: reverse transcription at 48℃ for 50 minutes, denaturation at 94℃ for 214 
3 minutes, followed by 40 cycles of denaturation at 94℃ for 30 seconds, annealing and 215 
extension at 57℃ for 1 minute. Chips were read and analyzed on the Naica Prism3 using the 216 
Crystal Reader and Crystal Miner software (Stilla Technologies). 217 

For the Bio-Rad QX200 samples with more than 12000 droplets with average partitioning 218 
volume of 1 nL were deemed acceptable. For the Stilla Crystal Digital PCR 15000 droplets with 219 
average 0.8 nL were deemed acceptable. The average (standard deviation) number of droplets 220 
observed in samples from QX200 was 15000 (2100) and for the Crystal Digital PCR excluding 221 
controls was 24000 (2000). Average copies per partition (relative uncertainty) was 8.7 x 10-3 222 
(54%). Technical replicate variability was, on average, less than 20%. The variation amongst 223 
distinct RT-dPCR runs (inter-experimental variation)  was quantified as the coefficient of 224 
variation in the performance of a positive control (100 gene copies (gc)/reaction of synthetic 225 
SARS-CoV-2 RNA reference material; EURM-019, Joint Research Center) across 87 runs, and 226 
was less than 25%. Assays were only conducted in one laboratory, so reproducibility was not 227 
assessed. Example fluorescence plots are provided in the Supporting Information (Figures S11, 228 
S12). 229 
 230 
Samples were diluted 10-fold in a single step using molecular grade water before quantification 231 
in replicate wells. In addition, every thermal cycler run included one positive control and one no 232 
template control (NTC) consisting of RNAse/DNAse-free water. Thermal cycle runs and 233 
associated samples were deemed acceptable if the NTCs in the run contained 2 or fewer 234 
positive droplets, and there was detectable SARS-CoV-2 RNA in the positive controls. All RT-235 
dPCR runs fulfilled these criteria, with an average (standard deviation) concentration of the 236 
positive controls of 101 (25) gc/reaction, in line with the target concentration. If the sample 237 
concentration was below the limit of quantification (LOQ), an undiluted sample was quantified. 238 
The limit of detection (LOD) and limit of quantification (LOQ) of the N1 and N2 markers were 239 
determined by processing 10 replicates of synthetic SARS-CoV-2 RNA reference material at 240 
target concentrations of 5, 8, 10, 25, 30, and 50 gc/reaction. The LOD was defined as the lowest 241 
sample concentration distinguishable from the no template control in at least 8 out of 10 242 
replicates (3 or more positive droplets). At this concentration, there would be a >95% likelihood 243 
of detecting the target in at least one of the two technical replicates 32. Using this criterion, LOD 244 
was determined to be 8 gc/reaction (equivalent to 2560 gc/L wastewater)32. LOQ was 245 
determined to be 25 gc/reaction (equivalent to 8000 gc/L wastewater), which was the lowest 246 
concentration with coefficient of variation less than 25% 32. When sample concentrations were 247 
below the LOQ, samples were processed without dilution. Only one sample (September 20, 248 
replicate B) remained below LOQ in both dilute and undilute samples (22.5 gc/reaction). This 249 
sample was included in the analysis anyway.  250 
 251 
To test PCR inhibition, the RT-dPCR was repeated using mastermix with a spiked internal 252 
positive control consisting of 800 gc/reaction of synthetic SARS-CoV-2 RNA reference material 253 
(EURM-019, Joint Research Center) so inhibition testing could be performed on the same assay 254 
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used for quantification.33 Samples were added to the mastermix with a spiked internal control at 255 
the same dilution used for quantification of the N1 and N2 markers. If either the observed N1 or 256 
N2 concentration in the samples analyzed in mastermix with synthetic SARS-CoV-2 RNA was 257 
80% or less than the sum of the concentration of SARS-CoV–2 RNA in the samples (unspiked) 258 
plus the concentration in the sample-free, spiked internal positive control, then the samples 259 
were considered inhibited. Inhibited samples were diluted 1:10, retested for SARS-CoV-2 as 260 
well as inhibition using the same spiked internal positive control. Dilution sufficiently reduced 261 
inhibition for all affected samples. 262 

PMMoV was quantified by RT-qPCR using RNA UltraSense™ One-Step Quantitative RT-PCR 263 
System (Applied Biosystems CN 11732927) on a LightCycler® 480 instrument (Roche Life 264 
Science, Switzerland) using previously reported primers and probes (Microsynth AG, 265 
Switzerland, Table S4)34,35. RNA extract aliquots that were separately stored at -80°C for less 266 
than three months were used as template. Samples were prepared in 25 µL reaction volumes 267 
consisting of 5 µL of template, 5 µL of 5x Ultrasense Mix, 4 µL of Bovine Serum Albumin 268 
(Sigma-Aldrich CN 05470-1G) at 2 mg/mL concentration, 1.25 µL of Reverse Transcriptase, and 269 
1 µL of each primer at final concentrations of 400 nM and 0.25 µL of probe at a final 270 
concentration of 250 nM. The RT-qPCR was run with the following program: reverse 271 
transcription at 55℃ for 60 minutes, denaturation at 95℃ for 10 minutes, followed by 45 cycles 272 
of denaturation at 95℃ for 15 seconds, annealing and extension at 60℃ for 1 minute. PMMoV 273 
quantification was performed in six separate RT-qPCR runs by comparison to synthetic DNA 274 
standards (gBlock, IDT Technologies) run in duplicate at tenfold dilutions between 5x102 (the 275 
lowest concentration measured) and 5x107 per 5 µL reaction. All thermal cycler runs were 276 
pooled for analysis. The pooled standard curve had an amplification efficiency of 97.4% and a 277 
goodness-of-fit (R2) of 0.997.   278 
 279 
San Jose approach. RNA extracts were used as template in RT-dPCR assays for SARS-CoV-2 280 
N, S, and ORF1a RNA gene targets in a triplex assay, and PMMoV and BCoV in a duplex 281 
assay. All primers and probes are listed in Table S4. The SARS-CoV-2 assays were designed 282 
using Primer3Plus (https://primer3plus.com/) based on the genome of the severe acute 283 
respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1 (Accession Number MN908947.3).  284 
The assay was designed to target product size range of 60-200 bp at concentration of dNTPs of 285 
0.8 mM and concentration of divalent cations of 3.8 mM, based on the following optimum 286 
(range) conditions: primer size: 20bp (15bp, 36bp); primer melting temperature 60℃ (50℃, 287 
65℃); primer GC content: 50% (40%, 60%); hydrolysis probe size 20bp (15bp, 27bp); hydrolysis 288 
probe melting temperature 63℃ (62℃, 70℃); hydrolysis probe GC content: 50% (30%, 80%). 289 
The location (length) of the amplicons for N is 28287-28457 (171 bp), S is 23591-23665 (75 bp), 290 
and ORF1a is 12885-13063 (179 bp). Cross-reactivity was determined in silico using NCBI 291 
Blast. The assays were optimized by varying annealing temperature, and benchmarked against 292 
a respiratory virus verification panel using extracted RNA. Limit of the Blank was determined 293 
using negative nasal swab samples. 294 
 295 
RT-dPCR was performed as previously described for the Bio-Rad QX200 analysis conducted in 296 
Zurich using the One-Step RT-ddPCR Advanced Kit for Probes (Bio-Rad 1863021) with primers 297 
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(900 nM) and probes (250 nM) targeting N, S, and ORF1a RNA. Droplets were generated using 298 
the AutoDG Automated Droplet Generator (Bio-Rad). PCR was performed using Mastercycler 299 
Pro with the following protocol: reverse transcription at 50℃ for 60 minutes, enzyme activation 300 
at 95℃ for 5 minutes, 40 cycles of denaturation at 95℃ for 30 seconds and annealing and 301 
extension at either 59℃ (for SARS-CoV-2 assay) or 56℃ (for PMMoV/BCoV duplex assay) for 302 
30 seconds, enzyme deactivation at 98℃ for 10 minutes then an indefinite hold at 4℃. The 303 
ramp rate for temperature changes were set to 2℃/second and the final hold at 4℃ was 304 
performed for a minimum of 30 minutes to allow the droplets to stabilize.  305 
 306 
Droplets were analyzed using the QX200 Droplet Reader (Bio-Rad), with thresholding done 307 
using QuantaSoft™ Analysis Pro Software (Bio-Rad, Version 1.0.596). The average (standard 308 
deviation) number of droplets in ten merged wells determined from a random subset of ten 309 
samples was 176000 (14500). Average (relative uncertainty) of the number of copies per 310 
partition in the same subset was 3.2x10-3 (52%). As the samples were extracted ten times and 311 
each extract analyzed in one well, technical replicate variability incorporates variation from both 312 
RNA extraction and RT-dPCR. Sample errors estimated from the merged wells were <10%, in 313 
line with coefficient of variation estimates of <8% for all three targets (S, N, ORF1a) in an 314 
experiment of replicate (n = 97) positive controls at target concentrations of 400 gc/reaction. 315 
Assays were conducted in only one lab, so reproducibility was not assessed. Example 316 
fluorescence plots are provided in the associated reference by Topol et al.30. All liquid transfers 317 
were performed using the Agilent Bravo (Agilent Technologies). 318 
 319 
Undiluted extract was used for the SARS-CoV-2 assay template and a 1:100 dilution of the 320 
extract (2 µL into 198 µL molecular grade water) was used for the PMMoV and BCoV assay 321 
template. The 1:100 dilution is required since PMMoV is in high concentrations, and it is 322 
important to be able to quantify the target and not saturate the number of positive partitions.  323 
 324 
Each sample was run in 10 replicate wells, extraction negative controls were run in 7 wells, and 325 
extraction positive controls in 1 well. In addition, PCR positive controls for SARS-CoV-2 RNA 326 
were run in 1 well, and NTC were run in 7 wells. Results from replicate wells were merged for 327 
analysis. Negative controls were required to have less than 2 droplets across all wells, PCR 328 
positive controls were required to have ~200 positive droplets, and PCR positive extraction 329 
controls were required to have ~ 50 positive droplets. If controls did not meet these acceptability 330 
criteria, then the samples included on that plate were re-processed. Therefore, none of the 331 
samples included in this study had controls that failed these acceptability criteria.  332 
 333 
Data analysis and exclusion criteria 334 
Zurich approach. Concentrations of RNA targets were multiplied by the daily flow rate to 335 
estimate the total number of genome copies (gc) shed by people within the catchment per day 336 
(referred to as loads and reported as gc/day). Samples with PMMoV loads outside the mean 337 
plus or minus three times the standard deviation were considered as inconsistent with respect to 338 
virus recovery and were excluded from further analysis. Inhibited samples were also removed 339 
from further analysis.  340 
 341 
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San Jose approach. Concentrations of RNA targets were converted to concentrations per dry 342 
weight of solids in units of gc/g dry weight. PMMoV was also used to monitor virus recovery in 343 
the San Jose samples, using the same criteria as for the Zurich samples. BCoV was used to 344 
assess virus recovery, and samples were removed from further analysis if the amount 345 
recovered was less than 10% of the amount added. 346 
  347 
Deconvolution by the Shedding Load Distribution  348 
To relate the viral RNA loads or concentrations measured in wastewater to the number of new 349 
infections per day, we used information on the profile of SARS-CoV-2 RNA shedding into the 350 
wastewater by an infected individual in days after infection or symptom onset. In general, this 351 
profile contains information about both the magnitude and timing of viral RNA shedding: (i) the 352 
SLD ∑ 𝑤!!  (a unitless distribution which sums to 1) describes the temporal dynamics of 353 
shedding, and (ii) a normalization factor N describes the total amount of virus shed by an 354 
infected individual during the course of infection (in units of gc/infection). After shedding, 355 
downstream processes further affect the total amount of viral RNA sampled per infected 356 
individual. We assume this does not affect the temporal dynamics, and can be summarised into 357 
a second normalization factor M. In general, M will depend on the sewer system, the sampling 358 
point within the wastewater treatment plant, choice of sample matrix and processing pipeline. 359 
The units of M differ depending on the way viral concentrations were measured: in this study M 360 
is unitless for Zurich, and day/g-dry weight for San Jose.  361 
With these definitions, the measurement Ci of viral RNA in the wastewater on day i is related to 362 
the past incidence of infections Ij on day j:  363 

𝐶" = 	𝑁 ⋅ 𝑀*𝑤"#!𝐼!
!

	,	364 

i.e. the observed wastewater measurements are a convolution of the daily infection incidence 365 
with the SLD.  366 
 367 
To obtain the infection incidence, we first filled gaps in the wastewater data through linear 368 
interpolation, and smoothed it using local polynomial regression (LOESS) with 1st order 369 
polynomials and tricubic weights that take into account 21 days of data around each point. To 370 
deconvolve the resulting time series we used an Expectation-Maximisation algorithm 2, which 371 
iteratively determines the time series I(t) that maximizes the likelihood of the smoothed 372 
wastewater measurements 𝐶̅(𝑡)(either in units of gc/day or gc/g-dry weight), given assumptions 373 
on N, M, and ∑ 𝑤!! . 374 
 375 
For the main analysis, we deconvolved by a SLD which was a combination of the incubation 376 
period (the time from infection to symptom onset) and the gastrointestinal SLD from Benefield et 377 
al. for the time from symptom onset to shedding 25. Figure 3 from Benefield et al. 25 was digitized 378 
manually, and yielded a gamma distribution with mean 6.7 days and standard deviation 7.0 379 
days 22. For the incubation period, we used the distribution of Linton et al.: a gamma distribution 380 
with mean 5.3 days and standard deviation 3.2 days 36. For additional comparisons (Fig. S5, 381 
S6), we exchanged the Benefield distribution for the SLD upon symptom onset reported by Han 382 
et al., gamma distributed with mean 4.7 days, standard deviation 1.7 days 24, or the symptom 383 
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onset to death delay distribution from Linton et al., gamma distributed with mean 15 days, 384 
standard deviation 6.9 days 36.  385 
 386 
Since the normalization factors N and M are difficult to measure, and only influence Rww point 387 
estimates when off by several orders of magnitude (Fig. S6), we made a simplifying assumption. 388 
We assumed the lowest measured RNA load (Zurich) or concentration (San Jose) represents 389 
the viral load or concentration from a single infection (N*M). For the Zurich wastewater data, this 390 
was 1*1012 gc per infection, and for the San Jose sewage sludge measurements this was 391 
2663.7 gc/g-dry weight per infection/day.  392 
 393 
Effective Reproductive Number Estimates 394 
The effective reproductive number was estimated from SARS-CoV-2 RNA loads in wastewater 395 
or concentrations in sewage sludge using the pipeline developed in Huisman et al. 2. In brief, we 396 
first transformed SARS-CoV-2 RNA measurements into a time series of infection incidence as 397 
described in the Deconvolution section above. Second, we used the R package EpiEstim to 398 
estimate the effective reproductive number Re from this infection incidence 4,37. The pipeline 399 
further accounts for noise in the observation process, by bootstrapping the observations prior to 400 
smoothing and deconvolution. Specifically, we block-bootstrap the log-transformed residuals 401 
between the linear interpolated original observations and the smoothed value 2.  402 
 403 
To estimate Rcc for Zurich, we obtained the cases reported for the catchment from the Health 404 
Department of Canton Zurich. We then used the pipeline from Huisman et al. 2, where we 405 
deconvolved by a distribution specifying the delay from infection to case confirmation. This was 406 
parameterized as the sum of a gamma distributed incubation period with mean 5.3 days, 407 
standard deviation 3.2 days 36; and a gamma distributed delay from symptom onset to case 408 
confirmation with mean 2.8 days, standard deviation 3.0 days (estimated from line list data for 409 
canton Zurich, Sep. 2020-Jan. 2021). The reported Rcc values for confirmed cases, 410 
hospitalizations, and deaths at the cantonal level were taken from https://github.com/covid-19-411 
Re/dailyRe-Data (based on Huisman et al.2). For the Swiss data, “case confirmation” refers to 412 
the earliest recorded date of either a positive test or case reporting. 413 
 414 
To estimate Rcc in San Jose, we downloaded daily COVID-19 case incidence data for Santa 415 
Clara County from the California Health and Human Services Open Data portal 416 
(https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state). The 417 
wastewater from Santa Clara County (population of 1.7 million) is nearly all treated at the San 418 
Jose wastewater treatment plant (catchment population of 1.5 million). We estimated Rcc using 419 
the pipeline from Huisman et al. 2, with the incubation period as before 36; and a gamma 420 
distributed symptom onset to case reporting delay distribution with a mean of 4.51 days and 421 
standard deviation of 3.16 days (estimated from line list data for Santa Clara County in 422 
December; based on personal correspondence with the California Department of Public Health 423 
COVID-19 modelling team). During the study period, the mean of this distribution changed from 424 
5.24 to 3.31 days, and the standard deviation from 3.55 to 2.32 days. Negative numbers of 425 
cases reported (Dec. 30) were set to 0 for the main analysis (Fig. 2), and to 1000 to test the 426 
impact of misreporting (Fig. S2).  427 
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 428 
To estimate Re for the testing-adjusted cases, we extracted the daily number of positive tests / 429 
total number of tests, multiplied by the mean number of tests during the time period (14960.3). 430 
This time series was then used to estimate Re, similar to the confirmed cases (with the same 431 
delay distribution) 2. Technically, the tests are reported by testing date, which typically precedes 432 
the reporting date, so this constitutes a misspecification of the delay distribution. However, an 433 
analysis where the delay between symptom onset and testing was assumed 0 did not yield 434 
qualitatively different results (Fig. S1). We additionally compared our estimates to the Rcc 435 
estimates for Santa Clara County from the California COVID assessment tool 436 
(https://calcat.covid19.ca.gov/cacovidmodels/). 437 
 438 
Comparing Re traces 439 
We assessed how well the Re estimates from SARS-CoV-2 concentrations in wastewater (Rww) 440 
match those estimated from case report data (Rcc) using several measures. First, the average 441 
root mean squared error between both point estimates across the time series (“RMSE”): 442 

1$
%
∑ 2𝑅&&,! − 𝑅((,!5

)%
!*$  , 443 

where j describes the date, and K the length of the time series. Second, the fraction of dates 444 
where the Rww point estimate was within the confidence interval of the Rcc estimate (“coverage”). 445 
Third, the mean average percentage error between the time series (“MAPE”):  446 

$
%
∑ 6+!!,#	#+$$,#

+!!,#
6%

!*$ . 447 

Scanning across shedding load distributions 448 
To investigate optimal parameters for the SLD, we conducted two separate scans. In the first 449 
scan, we varied the parameters of the SLD from infection. In the second scan, we estimated the 450 
parameters of the SLD from symptom onset onwards. In the latter case, the delay sampled from 451 
the SLD was added to a second sampled delay corresponding to the incubation period (gamma 452 
distributed with mean 5.3 days and standard deviation of 3.2 days) 36. In both cases, we 453 
assumed the SLD was described by a gamma distribution, and varied the mean μ and standard 454 
deviation 𝜎 on a grid (μ ∈ {0.5, 1.0, ..., 15} and 𝜎 ∈ {0.5, 1.0, ..., 10}). The normalization factor 455 
(N*M) was kept fixed to the location-specific value throughout. The Rww for the wastewater data 456 
was estimated across 50 bootstrap samples and compared to the Rcc for the catchment.  457 
 458 
Availability Statement 459 
All code and case data for Zurich are publicly available through the Github repository 460 
https://github.com/JSHuisman/wastewaterRe. Wastewater measurements and daily flow rates 461 
for Zurich are available at DOI: 10.25678/0003VC. Measurements from San Jose are available 462 
from the Stanford Data Repository https://purl.stanford.edu/bx987vn9177 31, and case data for 463 
Santa Clara County is available from the California Health and Human Services Open Data 464 
portal (https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state).  465 
 466 
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Approval 467 
No ethics approval was required for this study as no humans or animals were involved. 468 
 469 
Results: 470 
SARS-CoV-2 RNA in Wastewater. We tracked SARS-CoV-2 RNA concentrations in Zurich, 471 
Switzerland and San Jose, California, USA during a rise and fall in clinical COVID-19 cases 472 
(Fig. 1A,B; Fig. 2A,B). Data from Zurich were used to develop and assess Rww estimates, and 473 
data from San Jose were used to assess the generalizability of the approach.   474 
 475 
In Zurich, SARS-CoV-2 N1 and N2 markers of the N gene were detectable in the raw influent 476 
samples from the Zurich wastewater treatment plant between 1 September 2020 and 19 477 
January 2021 in all 99 samples collected (Fig. 1A). Of these, the average of the technical 478 
replicates was above the limit of quantification in 97, yielding median [range] loads of 13.4 [<12 479 
(limit of detection), 13.7] log10 gc/day (Fig. 1A). Two samples (11 and 29 October 2020) were 480 
excluded based on quality control, which included monitoring sample inhibition and consistency 481 
of effluent pepper mild mottle virus (PMMoV) loads. 482 
 483 
In San Jose, SARS-CoV-2 N, S, and ORF1a genes were quantifiable in the settled solids of the 484 
primary settling tank in all 125 samples collected between 15 November 2020 and 19 March 485 
2021 (Fig. 2A). The median [range] concentrations were 4.9 [3.4, 6.0], 5.0 [3.9, 6.0], and 5.0 486 
[3.8, 6.0] log10 gene copies per gram dry weight (gc/g-dry weight) for N, S, and ORF1a genes, 487 
respectively (Fig. 2A). Three samples (03 January, 18 February, 19 March 2021) were excluded 488 
based on quality control using consistency of PMMoV concentrations. 489 
 490 
Details pertaining to PMMoV measurements in all samples and resulting sample exclusion are 491 
given in the Supplemental Results. 492 
 493 
Inferring the infection incidence dynamics. Next, we related the RNA measurements in 494 
wastewater to the original infection incidence by applying a deconvolution with the shedding 495 
load distribution. SARS-CoV-2 wastewater measurements reflect the cumulative contributions of 496 
all infected individuals actively shedding virus into the wastewater. The amount of virus shed by 497 
each individual varies through time after infection, and is captured in the shedding load profile. 498 
In general, this profile contains information about the timing of viral shedding - the shedding load 499 
distribution (SLD; which sums to 1) - and the total amount of virus shed - captured by a 500 
normalization factor N. To estimate the true number of infections in the sewer shed it is 501 
important to estimate the exact value of the normalization factor N, as well as a factor M 502 
describing losses along the way from shedding to sample processing. However, to estimate Re 503 
it suffices to know the temporal dynamics of shedding and infection (described in more detail in 504 
the Methods). As a first approximation, we assumed individuals do not shed prior to symptom 505 
onset, and thereafter shed according to the gastrointestinal SLD reported by Benefield et al. 25. 506 
With this assumption, we found that the dynamics of infection incidence inferred from 507 
wastewater measurements in Zurich are similar to the dynamics inferred from clinical case data 508 
(Fig. 1C). In particular, both data sources show a steep increase starting from mid-September, 509 
and capture two peaks (indicative of Re=1) around late October and early December, each of 510 
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which is followed by relatively rapid decline in daily case incidence. We later test the sensitivity 511 
of our results to the assumed SLD and normalization. 512 
 513 
Estimating the effective reproductive number Rww from wastewater measurements. We 514 
used the inferred time series of infection incidence from SARS-CoV-2 RNA measured in 515 
wastewater to estimate Rww in Zurich (Fig. 1D). The N1 and N2 markers result in nearly identical 516 
Rww estimates, and there is a good correspondence between Rww and Rcc. Both estimates show 517 
a rapid increase up to Re = 1.5 in mid-September, a decline to below 1 in late October, followed 518 
by a period where Re was slightly above 1 until dropping more clearly below 1 from early 519 
December onwards. Rww and Rcc are changing in similar ways, with Rcc lagging the Rww 520 
trajectory. Since both estimates describe the same underlying epidemic, this suggests that the 521 
wastewater measurements may be deconvolved too far back in time (the mean of the SLD is 522 
too high), or that the confirmed cases are not deconvolved back far enough (the mean of the 523 
delay distribution is too low). 524 
 525 
Over the entire time period, the average root mean squared error (RMSE) between Rww and Rcc 526 
is 0.11 and 0.12 for N1 and N2 respectively. This is smaller than the RMSE between the Re 527 
estimates based on different sources of case report data: 0.13 between confirmed cases and 528 
hospitalizations; and 0.26 between confirmed cases and deaths (estimated on case report data 529 
from canton Zurich, which has a population 3.4x the size of the catchment, for the same time 530 
period as Rww).  531 
 532 
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 533 
Fig. 1: Rww estimation from Zurich (CHE) wastewater measurements. (A) Measured RNA 534 
loads of the N1 and N2 markers (green and yellow respectively) between 1 September 2020 535 
and 19 January 2021. Imputed values are indicated in grey. (B) Confirmed cases (purple) in the 536 
catchment during the same time period. (C) The estimated infection incidence in the catchment 537 
per day from normalized RNA loads of the N1 and N2 markers (top; green and yellow 538 
respectively), and case reports (bottom; purple). The measured loads were normalized by the 539 
lowest measured value (N*M = 1*1012 gc per infection). The ribbons indicate the mean ± 540 
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standard deviation across 1000 bootstrap replicates. (D) The estimated Rww compared to the Rcc 541 
from confirmed cases. The colored line indicates the point estimate on the original data, and the 542 
ribbons the 95% confidence interval across 1000 bootstrap replicates. The N1 and N2-based 543 
confidence intervals nearly completely overlap. 544 

 545 
Fig. 2: Rww estimation from San Jose (USA) sludge measurements: (A) Measured RNA 546 
concentrations of the N, S and ORF1a genes (blue, green, yellow respectively) between 15 547 
November 2020 and 19 March 2021. (B, C) Confirmed cases and testing-adjusted cases in 548 
Santa Clara county (purple, red) during the same time period. The testing-adjusted cases 549 
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describe the number of positive tests / total number of tests per day, normalized by the mean 550 
number of tests per day in Santa Clara county during the study period. (D) The estimated 551 
infection incidence per day from normalized RNA concentrations (top), case reports (middle) 552 
and testing-adjusted cases (bottom). The gene copies per gram dry weight were normalized by 553 
the lowest measured value (N*M = 2663.7 gc/g-dry weight per infection/day). The ribbons 554 
indicate the mean ± standard deviation across 1000 bootstrap replicates. (E) The estimated Rww 555 
compared to Rcc from confirmed cases (top) and testing-adjusted cases (bottom). The colored 556 
line indicates the point estimate on the original data, and the ribbons the 95% confidence 557 
interval across 1000 bootstrap replicates. 558 
 559 
Application to an independent data source and different wastewater matrix. To test 560 
whether these results could be generalized to different geographic locations and wastewater 561 
matrices, we analyzed daily-sampled primary sewage sludge data from the San Jose 562 
wastewater treatment plant in California.  563 
 564 
In San Jose, the inferred infection incidence curves between confirmed cases and wastewater 565 
data follow similar trends (Fig. 2D). The inferred incidence from confirmed cases rises rapidly, 566 
reaching a maximum and fluctuating at a plateau throughout December. This fluctuation seems 567 
primarily caused by reporting errors on Dec. 30th, as it fully disappears when replacing the 0 568 
cases reported that day by 1000 (Fig. S2). Instead, wastewater estimates continue to rise more 569 
gradually throughout December, similar to the cases adjusted for test-positivity. Starting in late 570 
December, all traces show a similar decrease.  571 
 572 
We found that Rww agreed with Rcc, although there is again some temporal lag between both, 573 
which seems more pronounced in November/December than in the second half of the time 574 
series (Fig. 2D). The Re estimates based on the testing-adjusted cases are more comparable to 575 
Rww, both in terms of slope (especially in December) and a more uniform delay throughout the 576 
entire time period. This further suggests that the Rcc estimates are biased by underreporting and 577 
increased testing delays, and not as trustworthy as Rww in this case. A comparison between Rcc 578 
estimated using different methods (as reported on the website of the California State 579 
Department of Public Health) shows substantially larger differences than between the 580 
wastewater and the confirmed case estimates from the same pipeline (Fig. S3). 581 
 582 
Minimal Frequency of Wastewater Sampling needed to inform Rww. While designing 583 
wastewater-based epidemiology studies, an important cost-benefit trade-off centers around the 584 
frequency of sampling. We subsampled the daily sampled wastewater measurements in Zurich 585 
and San Jose, prior to the Re estimation pipeline, to determine how this would affect the 586 
estimated Rww. We assessed a range of sampling strategies that differed in the number and 587 
identity of the days sampled (e.g. Mon-Wed-Fri or Tue-Fri). For Zurich, we restricted ourselves 588 
to the period with daily sampling (22 November 2020 to 11 January 2021). Using the RMSE to 589 
quantify the similarity between different Rww estimates, we found that subsampling down to 3 590 
measurements per week still leads to results comparable to a daily sampling regime (Fig. S4, 591 
Table S1, Table S2). However, below this frequency the representativity of the Rww estimate 592 
starts to depend on which days were sampled. 593 
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 594 
Susceptibility of Rww estimates to the shedding load distribution. We showed that Re can 595 
be estimated from RNA measurements in wastewater, given an assumption for the SLD. 596 
However, there is substantial variation between SLDs described in the literature, across 597 
patients, bodily fluids, and geographic locations. The shape of the SLD, in particular the mean of 598 
the gamma distribution used, affects the inferred timing of peak infection incidence (with larger 599 
means shifting the incidence further back in time; Fig. S5). In our pipeline, we also observe that 600 
smaller normalization factors N*M increase the amplitude of the estimated Rww, albeit only when 601 
mis-specified by more than 5 orders of magnitude (Fig. S6). In principle, the inference of the Re 602 
point estimate from an infection incidence is independent of the magnitude of this incidence 2,4. 603 
However, the expectation maximization algorithm used for deconvolution in our pipeline was 604 
optimized for data on the scale of infections per day. Here, we have chosen to normalize the 605 
wastewater measurements such that the considered gene loads are on that same scale, since 606 
Rww otherwise reacts too strongly to changes in the daily incidence.  607 
 608 
Estimating the shedding load distribution from the fit between clinical and wastewater 609 
data. Instead of assuming a single SLD and estimating Rww based only on that distribution, we 610 
also asked which SLD would maximize the similarity between the Rww and Rcc estimates. We 611 
numerically scanned across different SLDs and quantified the resulting goodness of fit between 612 
the Rww and Rcc for both Zurich and San Jose. We assumed the SLD is described by a single 613 
gamma distribution, starting at infection, and searched for the optimal fit on a grid of mean-614 
standard deviation parameter pairs (Table 1, Fig. 3). The fit was quantified using the root mean 615 
squared error (RMSE), coverage, and mean absolute percentage error (MAPE). Since the 616 
measurements of the different genetic markers followed nearly identical patterns in both 617 
locations (Figs. 1 and 2), we conducted the SLD optimization analysis only for the N1 marker in 618 
Zurich, and S gene in San Jose. 619 
 620 
The optimal fits based on these metrics suggest that the SLD has a mean between 7-11 days in 621 
Zurich and 5-7 days in San Jose, with a very low standard deviation of 0.5 days in both 622 
locations (Table 1). However, there is some non-identifiability in our analysis, with most optimal 623 
value pairs lying along a ridge (Fig. 3; repeated for coverage: S7, and MAPE: S8). This ridge 624 
corresponds to SLDs with a similar median, which result in nearly indistinguishable Rww 625 
estimates (examples shown in Fig. S9). If we consider the parameters yielding a fit within 10% 626 
from the optimum, the parameter ranges found in both locations are compatible and jointly 627 
suggest an SLD with mean between 6-9 days, and standard deviation between 0.5-3 days. 628 
Longer time series and more locations would further constrain this distribution. Compared to the 629 
delay between infection and case reporting, the SLD introduces a similar or lower mean delay to 630 
Rww. For Zurich, the cases were delayed with respect to infection by 8.1 days on average, which 631 
is comparable to the 6-9 days for Rww. For San Jose, instead, the delay distribution of the case 632 
report data had a mean of 9.8 days. There, the wastewater may lead the confirmed cases by 1-633 
4 days, if the current testing and reporting regime is upheld. 634 
 635 
To compare against published SLDs, which are frequently parameterized from symptom onset 636 
instead of infection, we conducted a second analysis. Here we assumed individuals do not shed 637 
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during their incubation period and subsequently shed with a gamma distribution, starting at 638 
symptom onset. In this case, we find optimal SLDs with a mean between 0.5-3 days for San 639 
Jose and 3.5-5.5 days for Zurich (Table S3, Fig. S10). These optimal distributions have a lower 640 
mean than the SLD reported by Benefield et al. (mean 6.7 days), and Han et al. (mean 4.7 641 
days) 24,25. If we add the mean incubation period (5.3 days) to the results of this scan, we find 642 
that for both locations the mean delay between infection and shedding is comparable to the 643 
mean of the SLD we estimated from infection.  644 
 645 

 646 
Fig. 3: RMSE between Rcc and Rww for different shedding load distributions. We scanned 647 
across different parameter pairs (mean, standard deviation in days) for the SLD from time since 648 
infection. For the city of Zurich, the Rww from N1 loads in wastewater was compared to that of 649 
confirmed cases in the catchment. For San Jose, we compared S gene concentrations to 650 
confirmed cases in Santa Clara County. The contour lines show SLD parameter pairs with equal 651 
RMSE, in steps of 10% of the optimum value. 652 
 653 

Comparison Method Optimal pair 
(mean; sd) 

Mean within 10% 
from the optimum 

SD within 10% from 
the optimum 

RMSE (Zurich) (7.5; 0.5) [6, 11.5] [0.5, 10] 

Coverage (Zurich) (7.5; 0.5) [6, 12.5] [0.5, 10] 

MAPE (Zurich) (11; 9.5) [6.5, 11] [0.5, 10] 

RMSE (San Jose) (7.0; 0.5) [6, 9] [0.5, 3] 

Coverage (San Jose) (5; 0.5) [1, 11] [0.5, 10] 

MAPE (San Jose) (6; 0.5) [5, 8] [0.5, 2.5] 
 654 
Table 1: Parameters of the optimal shedding distribution from infection. We scanned 655 
across different (mean, standard deviation) parameter pairs for the SLD from time since 656 
infection. For Zurich, the Re from N1 loads in wastewater was compared to that of confirmed 657 
cases in the catchment. For San Jose, we compared S gene concentrations to confirmed cases 658 
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in Santa Clara County. For all values of the scan see Figs. 3, S7, S8. All parameters are in units 659 
of days. For the coverage, the 95% confidence intervals of Rcc and Rww were based on 50 660 
bootstrap replicates in each comparison.  661 
 662 
Discussion: 663 
We showed that regular measurements of SARS-CoV-2 concentrations in wastewater and 664 
settled solids can be used to estimate the effective reproductive number Re. The difference 665 
between Re estimates from wastewater (Rww) and from case report data (Rcc) is similar to the 666 
difference between Re estimates based on different types of case report data (clinical cases, 667 
hospitalizations, and deaths). This did not depend on which of the measured gene targets was 668 
used to estimate Rww. We further showed wastewater samples should be collected at least 3 669 
times per week to reliably estimate past Rww, in line with analyses based on direct comparison 670 
of wastewater signals to clinical cases 15,38. For real-time monitoring of Rww, more frequent 671 
measurements may be preferable to ensure stable estimates when new data comes in. 672 
 673 
Estimating Rww requires accurate characterization of the SLD, i.e. the temporal dynamics of 674 
shedding. In our primary analysis, we used the distribution for gastrointestinal shedding from 675 
Benefield et al. 25. In using this SLD, we implicitly assumed that fecal shedding dominates the 676 
viral load in wastewater. However, there is a wide range in published viral shedding loads, and it 677 
is unclear which - if any - accurately capture viral shedding dynamics of people within a 678 
catchment. Virus shed in saliva, sputum, and feces are possible contributors to the total amount 679 
of virus RNA in the wastewater 39. While upper respiratory tract swabs show peak viral loads 680 
around the day of symptom onset, there are indications that sputum samples peak a few days 681 
later, and feces even after that 40–42. Studies differ in the inferred timing of peak viral load (even 682 
in the same bodily fluids), and there is a general lack of information to constrain dynamics prior 683 
to symptom onset 43. Additionally, the duration and magnitude of viral shedding seem to differ 684 
within different populations (for example, due to age or severity of disease) 44,45. However, these 685 
individual differences will probably average out in a sufficiently large catchment and better 686 
estimates of the SLD are likely to become available as prospective sampling studies report 687 
results.  688 
 689 
We showed that the optimal SLD can also be inferred from the fit between Rww and Rcc. Once 690 
the SLD has been estimated from historic wastewater and case data, it may from then on 691 
provide a more accurate estimation of Rww, than using one of the published SLDs. Indeed, here 692 
we show a range of gamma-distributed SLDs inferred from our wastewater data that generally 693 
align with, but have lower means than published SLDs based on patient shedding profiles. 694 
Optimization based on alignment between Rww and Rcc assumes accuracy of Rcc, which only 695 
holds when there is adequate clinical case surveillance. However, given widespread wastewater 696 
monitoring coincident to clinical case reporting, broader application of our methods would help 697 
constrain the SLD of SARS-CoV-2.  698 
 699 
The utility of wastewater measurements for Re estimation is independent of the pipeline used to 700 
estimate Re. Here, we report results obtained with the pipeline of Huisman et al. 2. However, 701 
many estimation methods exist, differing in assumptions on smoothing, deconvolution, 702 
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uncertainty quantification as well as the underlying method to estimate Re from infection 703 
incidence 1,3,7,46,47. Although the Re point estimate is not affected by the absolute magnitude of 704 
the infection incidence (and thus comparable across wastewater treatment plants with differing 705 
sampling protocols), the rest of our pipeline (in particular the deconvolution) was originally 706 
developed specifically for use with clinical data. Thus, we had to normalize the measured 707 
wastewater concentrations to the same order of magnitude as the case data. Further 708 
development could make the method more specifically adapted to wastewater data, and 709 
alleviate this dependence on the normalization.  710 
 711 
Estimates of Rww are independent of biases influencing clinical case-based estimates. Rcc 712 
estimates are based on only the subset of infections, hospitalizations, and/or deaths that are 713 
captured by surveillance within the healthcare system. If this subset changes, for instance due 714 
to developments in testing or reporting policy, the resulting Rcc estimates will be temporarily 715 
biased 2,4. In Geneva, Switzerland, seroprevalence studies showed that the number of infections 716 
per reported case varied substantially, from an estimated 11.6 infections per reported case as of 717 
May 2020 to only 2.7 as of December 2020 48,49. During that period, SARS-CoV-2 RNA 718 
concentrations in wastewater better reflected the dynamics than the clinical cases 22.   719 
 720 
However, Rww estimates are also prone to biases. People’s behaviors, such as defecation timing 721 
outside of a daily routine 50 and/or movement into or out of the catchment 51 can influence Rww 722 
estimates, particularly when the number of infected individuals is low. RNA signals may also be 723 
impacted during sewer transport, with persistence influenced by environmental conditions (i.e., 724 
temperature) and/or sewage composition (i.e., solids content) 52–55. Furthermore, sample 725 
processing required to quantify SARS-CoV-2 RNA may introduce variation, as suggested by 726 
substantial day-to-day variation in measurements 13,15,22,56. Finally, Rww estimates are informed 727 
by the number and proportion of infected and/or shedding people within the catchment: if there 728 
are too few active shedders, Rww may be very sensitive to the increased fluctuations in SARS-729 
CoV-2 RNA concentrations. 730 
 731 
To conclude, deriving Re from wastewater offers an independent method to track disease 732 
dynamics. Wastewater-based epidemiology is used globally to track the COVID-19 pandemic 733 
(https://www.covid19wbec.org/covidpoops19) 13–19. The data collected within these campaigns 734 
could be used to estimate Rww with a robust method, not influenced by heterogeneous testing 735 
and reporting strategies, and hence more comparable across geographic areas. Additionally, 736 
Rww estimates could be derived for the transmission of SARS-CoV-2 variants and/or other 737 
pathogens for which SLDs are known. SARS-CoV-2 variants, including Variants of Concern 738 
(VOCs), are readily detectable in wastewater 57–59 as are other pathogens (e.g., norovirus, 739 
enterovirus, hepatitis A) 60–62. This could provide the temporal, quantitative wastewater 740 
measurements needed to estimate Rww. Wastewater surveillance allows estimating Rww to track 741 
disease transmission dynamics in near-real time, using low cost, rapid, and geographically-742 
comparable methods, and can be used when reporting clinical cases is not feasible, mandatory, 743 
or much delayed compared to infection and shedding.   744 
 745 
  746 
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Supplemental Material: 955 
 956 

 957 
Fig. S1: Rww estimation from San Jose (USA) sludge measurements, assuming zero delay 958 
between symptom onset and testing: (A) Measured RNA concentrations of the N, S and ORF1a 959 
genes (blue, green, yellow respectively) between 15 November 2020 and 19 March 2021. (B, C) 960 
Confirmed cases and testing-adjusted cases in Santa Clara county (purple, red) during the 961 
same time period. The testing-adjusted cases describe the number of positive tests / total 962 
number of tests per day, normalized by the mean number of tests per day in Santa Clara county 963 
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during the study period. In contrast to Fig. 2 in the main text, the delay between symptom onset 964 
and testing was assumed 0, rather than the same as for case reporting. (D) The estimated 965 
infection incidence per day from normalized RNA concentrations (top), case reports (middle) 966 
and testing-adjusted cases (bottom). The gene copies per gram dry weight were normalized by 967 
the lowest measured value (N*M = 2663.7 gc/g-dry weight per infection/day). The ribbons 968 
indicate the mean ± standard deviation across 1000 bootstrap replicates. (E) The estimated Rww 969 
compared to Rcc from confirmed cases (top) and testing-adjusted cases (bottom). The colored 970 
line indicates the point estimate on the original data, and the ribbons the 95% confidence 971 
interval across 1000 bootstrap replicates. 972 
 973 
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 974 
Fig. S2: Rww estimation from San Jose (USA) sludge measurements, accounting for case 975 
reporting errors: (A) Measured RNA concentrations of the N, S and ORF1a genes (blue, green, 976 
yellow respectively) between 15 November 2020 and 19 March 2021. (B, C) Confirmed cases 977 
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and testing-adjusted cases in Santa Clara county (purple, red) during the same time period. In 978 
contrast to Fig. 2 in the main text, the missing cases on Dec. 30th were set to 1000 in panel (B). 979 
The testing-adjusted cases describe the number of positive tests / total number of tests per day, 980 
normalized by the mean number of tests per day in Santa Clara county during the study period. 981 
(D) The estimated infection incidence per day from normalized RNA concentrations (top), case 982 
reports (middle) and testing-adjusted cases (bottom). The gene copies per gram dry weight 983 
were normalized by the lowest measured value (N*M = 2663.7 gc/g-dry weight per 984 
infection/day). The ribbons indicate the mean ± standard deviation across 1000 bootstrap 985 
replicates. (E) The estimated Rww compared to Rcc from confirmed cases (top) and testing-986 
adjusted cases (bottom). The colored line indicates the point estimate on the original data, and 987 
the ribbons the 95% confidence interval across 1000 bootstrap replicates. 988 
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 989 
Fig. S3: The estimated Rww based on N gene measurements in San Jose (black line, grey 990 
95% confidence intervals) compared to different Rcc estimates for Santa Clara county 991 
from the California COVID assessment tool (CalCat). The Rww estimate from Fig. 2D was 992 
compared to 6 methods to estimate Rcc, indicated by the color and panel title. “ETH“ refers to 993 
the pipeline of Huisman et al. 2 applied to the daily confirmed case data from Santa Clara 994 
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county, i.e. the same comparison as shown in Fig. 2D. We excluded the SEIR model based 995 
estimates included on the CalCat website (since these performed visibly worse than the other 996 
methods).  997 

 998 
Fig. S4: The effect of sampling frequency on the Rww estimates in Zurich and San Jose. 999 
The data stems from measurements of the N1 marker for Zurich between 2020-11-22 and 1000 
2021-01-11, and the S gene for San Jose between 2020-11-15 and 2021-03-19. The row 1001 
indicates the number of samples taken per week (1, 2, 3, 5), while the colors indicate the 1002 
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sampling schedule: MTWTFSS corresponds to daily sampling, MTWTF sampling during the 1003 
working week, MWF Mon-Wed-Fri, TTS Tue-Thu-Sat, MT Mon-Thu, TF Tue-Fri, WS Wed-Sat, 1004 
M Monday, W Wednesday, F Friday. The colored line indicates the point estimate on the 1005 
original data, and the ribbons the 95% confidence interval across 1000 bootstrap replicates. 1006 
 1007 
Table S1: The match between the daily and further subsampled Rww traces for Zurich. The 1008 
data stems from measurements of the N1 marker for Zurich between 2020-11-22 and 2021-01-1009 
11. All traces are compared to the daily sampling; MTWTF corresponds to sampling during the 1010 
working week, MWF Mon-Wed-Fri, TTS Tue-Thu-Sat, MT Mon-Thu, TF Tue-Fri, WS Wed-Sat, 1011 
M Monday, W Wednesday, F Friday. 1012 
 1013 

                   
MTWTF   

         
MWF      

           
TTS      

           
MT        

            
TF       

            
WS        

 
M 

 
W 

  
F    

RMSE  0.03 0.04 0.03 0.12 0.09 0.06 0.17 0.06 0.18 

Coverage 1.00 0.97 0.94 0.78 0.83 0.92 0.53 0.83 0.61 

MAPE 0.02 0.03 0.02 0.09 0.07 0.05 0.12 0.04 0.17 

 1014 
Table S2: The match between the daily and further subsampled Rww traces for San Jose. 1015 
The data stems from the S gene measurements for San Jose. All traces are compared to the 1016 
daily sampling; MTWTF corresponds to sampling during the working week, MWF Mon-Wed-Fri, 1017 
TTS Tue-Thu-Sat, MT Mon-Thu, TF Tue-Fri, WS Wed-Sat, M Monday, W Wednesday, F Friday. 1018 
 1019 

                   
MTWTF   

         
MWF      

           
TTS      

           
MT        

            
TF       

            
WS        

 
M 

 
W 

  
F    

RMSE  0.05 0.09 0.08 0.15 0.06 0.16 0.13 0.13 0.08 

Coverage 0.95 0.88 0.91 0.83 0.93 0.60 0.76 0.68 0.84 

MAPE 0.05 0.08 0.07 0.15 0.06 0.14 0.11 0.11 0.07 

 1020 
 1021 
 1022 
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 1023 
Fig. S5: The impact of the shedding load distribution on (A) the inferred infection 1024 
incidence and (B) Rww estimation from the Zurich wastewater data. The results are 1025 
compared for four SLDs (see Methods): the Benefield SLD upon symptom onset (Incubation + 1026 
Benefield) 25, the Han SLD upon symptom onset (Incubation + Han) 24,25, shedding only on the 1027 
day of symptom onset (Incubation only), shedding only on the day of death (Incubation + Death) 1028 
36. The error bars (A; mean ± standard deviation) and 95% confidence intervals (B) are based 1029 
on 50 bootstrap replicates per condition. 1030 
 1031 
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 1032 
Fig. S6: The effect of data normalization on the estimated Rww in Zurich. We calculated Rww 1033 
from the measured N1 marker indicating the N gene copy loads, normalized in four different 1034 
ways: by 1x1012 gc per infection (the order of magnitude of the lowest measured concentration), 1035 
by 5x1010 gc per infection (roughly rescaled to case incidence), by 1x105 gc per infection (to 1036 
cover the space of possible orders of magnitude), no normalization. (A) After normalization the 1037 
measurements were deconvolved, and rescaled back to the original magnitude (multiplied by 1038 
the normalization factor) to illustrate differences in the inferred infection incidence. (B) The 1039 
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resulting Rww estimates differ both in the mean (due to the deconvolution illustrated in A) and 1040 
width of the uncertainty interval. The results are compared for four SLDs (panels; see Methods): 1041 
the Benefield SLD upon symptom onset (Incubation + Benefield) 25, the Han SLD upon 1042 
symptom onset (Incubation + Han) 24,25, shedding only on the day of symptom onset (Incubation 1043 
only), shedding only on the day of death (Incubation + Death) 36. The 95% confidence intervals 1044 
(B) are based on 50 bootstrap replicates per condition. 1045 
 1046 

 1047 
Fig. S7: Coverage between Rcc and Rww for different shedding load distributions. We 1048 
scanned across different parameter pairs (mean, standard deviation in days) for the SLD from 1049 
time since infection. For the city of Zurich, the Rww from N1 loads in wastewater was compared 1050 
to that of confirmed cases in the catchment. For San Jose, we compared S gene concentrations 1051 
to confirmed cases in Santa Clara County. The contour lines show SLD parameter pairs with 1052 
equal coverage, in steps of 10% of the optimum value. In each comparison (grid-point) the 95% 1053 
confidence intervals of Rcc and Rww are based on 50 bootstrap replicates. 1054 
 1055 

 1056 
Fig. S8: MAPE between Rcc and Rww for different shedding load distributions. We scanned 1057 
across different parameter pairs (mean, standard deviation in days) for the SLD from time since 1058 
infection. For the city of Zurich, the Rww from N1 loads in wastewater was compared to that of 1059 
confirmed cases in the catchment. For San Jose, we compared S gene concentrations to 1060 
confirmed cases in Santa Clara County. The contour lines show SLD parameter pairs with equal 1061 
MAPE, in steps of 10% of the optimum value. 1062 
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 1063 

 1064 
Fig. S9: The optimal shedding load distributions for Zurich and two counterexamples. 1065 
Counterexample A has a mean of 2 days and standard deviation of 5 days; Counterexample B a 1066 
mean of 13 days, and a standard deviation of 5 days. (A) The SLDs and their associated 1067 
cumulative distribution functions. Although the SLDs differ when optimized for RMSE, 1068 
Coverage, or MAPE, the median (i.e. the time after which they reach half their overall probability 1069 
mass) is very comparable. (B) The resulting Rww estimates for Zurich are highly similar for 1070 
RMSE, Coverage, and MAPE based optimal SLDs; but differ substantially for the two 1071 
counterexamples. The illustrated 95% confidence intervals of Rww are based on 50 bootstrap 1072 
replicates. 1073 
 1074 
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 1075 
Fig. S10: RMSE between Rcc and Rww for different shedding load distributions from 1076 
symptom onset. We scanned across different parameter pairs (mean, standard deviation in 1077 
days) for the SLD from time since symptom onset. For the city of Zurich, the Re from N1 loads 1078 
in wastewater was compared to that of confirmed cases in the catchment. For San Jose, we 1079 
compared S gene concentrations to confirmed cases in Santa Clara County. The incubation 1080 
period is assumed gamma distributed with mean 5.3, and standard deviation 3.2. The contour 1081 
lines show SLD parameter pairs with equal RMSE, in steps of 10% of the optimum value. 1082 
 1083 
Table S3: Parameters of the optimal shedding distribution from symptom onset. We 1084 
scanned across different (mean, standard deviation) parameter pairs for the SLD from time 1085 
since symptom onset. For the city of Zurich, the Rww from N1 loads in wastewater was 1086 
compared to that of confirmed cases in the catchment. For San Jose, we compared S gene 1087 
concentrations to confirmed cases in Santa Clara County. For all RMSE values of the scan see 1088 
Fig. S9. All parameters are in units of days. For the coverage, the 95% confidence intervals of 1089 
Rcc and Rww were based on 50 bootstrap replicates in each comparison. 1090 
 1091 

Comparison Method Optimal pair 
(mean; sd) 

Mean within 10% of 
the optimum 

SD within 10% of the 
optimum 

RMSE (Zurich) (5.5; 10) [1.5, 7] [0.5, 10] 

Coverage (Zurich) (3.5; 5) [1.5, 8] [0.5, 10] 

MAPE (Zurich) (5.5; 10) [2, 6] [0.5, 10] 

RMSE (San Jose) (3; 0.5) [1, 5] [0.5, 9] 

Coverage (San Jose) (0.5; 0.5) [0.5, 6] [0.5, 10] 

MAPE (San Jose) (1; 0.5) [0.5, 3] [0.5, 10] 
 1092 
 1093 
 1094 
  1095 
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Table S4: Primer and Probes 1096 
 1097 

Site Target Primer/Probe Sequence 

Zurich N1 Forward GACCCCAAAATCAGCGAAAT 

    Reverse GACCCCAAAATCAGCGAAAT 

    Probe ACCCCGCATTACGTTTGGTGGACC (5’ FAM/ZEN/3’ IBFQ) 

  N2 Forward TTACAAACATTGGCCGCAAA 

    Reverse GCGCGACATTCCGAAGAA 

    Probe ACAATTTGCCCCCAGCGCTTCAG (5’ FAM/HEX/ZEN/ 3’ IBFQ)  

  PMMoV Forward GAGTGGTTTGACCTTAACGTTTGA 

    Reverse TTGTCGGTTGCAATGCAAGT  

    Probe CCTACCGAAGCAAATG (5’ FAM/3’ MGB) 

San Jose N Gene Forward CATTACGTTTGGTGGACCCT 

    Reverse CCTTGCCATGTTGAGTGAGA 

    Probe CGCGATCAAAACAACGTCGG (5’ FAM/ZEN/3’ IBFQ) 

  S Gene Forward CAGACTAATTCTCCTCGGCG 

    Reverse TGCACCAAGTGACATAGTGT 

    Probe AGCTAGTCAATCCATCATTGCCT (5’ HEX/ZEN/3’ IBFQ)  

  ORF1a Forward CAGAACTGGAACCACCTTGT 

    Reverse TACAGTTGAATTGGCAGGCA 

    Probe TGCCACAGTACGTCTACAAGC (5’ FAM or HEX/ZEN/3’ IBFQ) 
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  PMMoV Forward GAGTGGTTTGACCTTAACGTTTGA 

    Reverse TTGTCGGTTGCAATGCAAGT 

    Probe CCTACCGAAGCAAATG (5’ HEX/ZEN/3’ IBFQ) 

  BCoV Forward CTGGAAGTTGGTGGAGTT 

    Reverse ATTATCGGCCTAACATACATC 

    Probe CCTTCATATCTATACACATCAAGTTGTT (5’ FAM/ZEN/3’ IBFQ) 
  

 1098 
 1099 
  1100 
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 1101 

 1102 

 1103 

Fig. S11: Fluorescence plots from the Stilla Naica Crystal Droplet PCR used for the 1104 
wastewater samples from Zurich collected after 23 September 2020 from positive (top) and 1105 
negative (bottom) experimental results. Droplets positive for N1 (blue) and N2 (brown) and both 1106 
N1 and N2 (purple). RPP30 markers, detectable as elevated fluorescence in Green channel, are 1107 
included in the commercial assay used, but are not further analyzed.   1108 

 1109 
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 1110 

 1111 

 1112 

Fig. S12: Fluorescence plots from the Bio-Rad QX200 used for the wastewater samples.  1113 
Samples from Zurich collected from 03-20 September 2020 are shown in positive (top) and 1114 
negative (middle) experimental results. Droplets positive for N1 (red) and N2 (yellow) and both 1115 
N1 and N2 (brown) markers. Negative (bottom) experimental results are also shown for San 1116 
Jose Corresponding positive experimental results are provided in the reference of the 1117 
associated protocol 30.  1118 

 1119 

 1120 

 1121 

 1122 
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 1123 

Table S5: dMIQE Checklist 63 for RT-dPCR assays targeting SARS-CoV-2 gene markers 1124 
N1 and N2 (Zurich Site) and S, N, and Orf1a (San Jose Site). Checklist is not included for 1125 
other RT-qPCR (PMMoV, Zurich Site) or RT-dPCR (BCoV, PMMoV, San Jose) Assays.  1126 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2022. ; https://doi.org/10.1101/2021.04.29.21255961doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.29.21255961
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

Supplemental Results: 1127 

Quality Control: 1128 
Zurich, Switzerland. One sample (11 October) was removed from analysis because the dilute 1129 
sample (1:10) was below LOQ and the undiluted sample was inhibited, as defined by recovery 1130 
of less than 80% of the synthetic SARS-CoV-2 RNA added in. 1131 

PMMoV concentrations were obtained for all dates except October 4. Mean (standard deviation) 1132 
PMMoV loads were 16.5 (0.12) log10 (gc/day). All PMMoV loads fell within 3 standard deviations 1133 
of the mean, consistent with a normal distribution, except on 29 October (16.1 log10 gc/day). The 1134 
sample was subsequently removed from further analysis.  1135 

San Jose, California, USA. From San Jose Wastewater Treatment Plant (San Jose, California, 1136 
USA), daily samples were collected and processed throughout. PMMoV concentrations were 1137 
mean (standard deviation) 8.9 (0.20) log10 (gc/g-dry weight). On two days (03 January 2021, 18 1138 
February 2021), PMMoV concentrations exceeded the mean plus three times the standard 1139 
deviation. On one day (19 March 2021), PMMoV concentrations fell below the mean minus 1140 
three times the standard deviation. These three samples were excluded from further analysis.  1141 
All samples met criteria for inclusion based on BCoV concentrations, which were all greater than 1142 
10% of the expected concentrations based on the amount added.   1143 

Supplemental Methods: 1144 

Managing PCR inhibition in San Jose sludge samples: 1145 

We diluted the solids in DNA/RNA Shield (Zymo Research, Irvine, CA, USA) (hereafter referred 1146 
to as “diluent”) prior to RNA extraction, inhibitor removal, and RT-dPCR, as described in the 1147 
main text. This dilution was necessary as direct RNA extraction from the solids contained 1148 
inhibitors so dilution of the RNA template prior to RT-dPCR was required 15.To determine an 1149 
optimal concentration of solids to add to the diluent (mg wet weight / mL diluent) to reduce 1150 
inhibition, but retain reasonable sensitivity, we quantified SARS-CoV-2 RNA in solutions with 1151 
solids concentrations from 7.5 mg/mL to 150 mg/mL, where we used the exact methods 1152 
described in the main text. We aimed to identify the highest concentrations of solids in solution 1153 
that did not show inhibition. Representative results from two different samples from San Jose 1154 
are shown in Figure S13 where concentrations of SARS-CoV-2 RNA per g dry weight of solids 1155 
is shown for different starting concentrations of solids in diluent. Note that the numbers on the y-1156 
axis are directly comparable between solutions, as we account for the different mass of solids in 1157 
the dimensional analysis to derive the SARS-CoV-2 RNA concentration. The relatively lower 1158 
concentrations for SARS-CoV-2 RNA for solutions of 150 mg/mL suggest the presence of 1159 
inhibition at this relatively high solids concentration. Concentrations are relatively similar among 1160 
the lower concentration solutions suggesting that starting at 75 mg/mL, inhibition is mostly 1161 
alleviated. Only one gene target from one of the samples (the N gene in sample A shown in the 1162 
top graph) showed slightly higher concentrations in more dilute solutions. Given these results 1163 
we therefore moved forward using 75 mg/mL for the method.  1164 
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 1165 

Figure S13. Representative results from inhibition titration experiments with two samples from 1166 
San Jose. The x-axis shows the concentration of solids (wet weight) added to the DNA/RNA 1167 
Shield diluent in units of mg/mL. The y-axis shows the concentration of the three SARS-CoV-2 1168 
RNA targets in the solids in units of gc/g dry weight. Error bars represent standard deviations as 1169 
total error from the dPCR instrument’s software.  1170 

 1171 
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