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Abstract 14 

Pandemic diseases such as plague have produced a vast amount of literature providing information 15 

about the spatiotemporal extent of past epidemics, circumstances of transmission, symptoms, or 16 

countermeasures. However, the manual extraction of such information from running text is a tedious 17 

process, and much of this information has therefore remained locked into a narrative format. Natural 18 

Language processing (NLP) is a promising tool for the automated extraction of epidemiological data 19 

from texts, and can facilitate the establishment of datasets. In this paper, we explore the utility of NLP 20 

to assist in the creation of a plague outbreak dataset. We first produced a gold standard list of 21 

toponyms by manual annotation of a German plague treatise published by Sticker in 1908. We then 22 

investigated the performance of five pre-trained NLP libraries (Google NLP, Stanford CoreNLP, 23 

spaCy, germaNER and Geoparser.io) for the automated extraction of location data from a compared 24 

to the gold standard. Of all tested algorithms, spaCy performed best (sensitivity 0.92, F1 score 0.83), 25 

followed closely by Stanford CoreNLP (sensitivity 0.81, F1 score 0.87). Google NLP had a slightly 26 

lower performance (F1 score 0.72, sensitivity 0.78).  Geoparser and germaNER had a poor sensitivity 27 

(0.41 and 0.61) From the gold standard list we produced a plague dataset by linking dates and 28 

outbreak places with GIS coordinates. We then evaluated how well automated geocoding services 29 

such as Google geocoding, Geonames and Geoparser located these outbreaks correctly. All geocoding 30 

services performed poorly and returned the correct GIS information only in 60.4%, 52.7% and 33.8% 31 

of all cases. The rate of correct matches was particularly low when it came to historical regions and 32 

places. Finally, we compared our newly digitized plague dataset to a re-digitized version of the plague 33 

treatise by Biraben and provide an update of the spatio-temporal extent of the second pandemic plague 34 

outbreaks. We conclude that NLP tools have their limitations, but they are potentially useful to 35 

accelerate the collection of data and the generation of a global plague outbreak database.  36 

Introduction 37 

Information about the places and times of epidemics are among the core aspects of infectious disease 38 

epidemiology. One of the most notorious infectious diseases – the plague – has produced a large body 39 

of publications about its historical spatio-temporal spread. Among the most complete compilations 40 

of places where plague reportedly occurred are the works of Sticker in 1908 (Sticker, 1908) and 41 
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Biraben in 1975 (Biraben, 1975). A brief overview over other publications is given in Table S1. 42 

Narrative plague texts must typically be converted into quantitative data in order to be usable for 43 

epidemiological analyses. However, the manual extraction of data from running text is time and labor 44 

intensive.  45 

In the past few years, advances in machine learning algorithms and increasing computing efficiency 46 

have led to a rise of digital methods in epidemiology (Salathe, 2018). Particularly the automated 47 

generation of data from text through Natural Language Processing (NLP) has gained popularity. For 48 

example, NLP approaches have been used to analyze the spread of infectious diseases based on social 49 

media postings (Broniatowski et al., 2013) or to analyze the geographical distribution of cholera 50 

mentions in the UK Registrar General's reports from England and Wales in the 19th century (Murrieta-51 

Flores et al., 2015). The plague dot txt project at the University of Edinburgh has recently started to 52 

develop a NLP workflow to build a structured account of plague epidemiology based on treatises and 53 

publications about the third pandemic (Casey et al., 2020). To our knowledge, the latter is the only 54 

project to date that explores the use of NLP in plague research.  55 

The possibilities of NLP algorithms are manifold. They can partition a text word-wise (tokenization),  56 

analyze the syntax (position-of-speech, POS), identify entities (named entity recognition, NER) or 57 

analyze the sentiment or relations among entities. The NER analysis identifies and classifies tokens 58 

into pre-defined categories based on rules (i.e. a dictionary), statistical predictions, or both. A special 59 

case of NLP NER is the extraction of geographical data from a text (geoparsing). Geoparsing 60 

comprises the identification of a geographical entity (toponym) and the linkage of the geographical 61 

entity with GIS data such as coordinates (geocoding). In theory, both steps can be done by hand and/or 62 

separately, but automated workflows may be preferable because they are faster and more reproducible.  63 

In general, text mining tools can accelerate the generation of large spatio-temporal datasets, but their 64 

performance has to be sufficient to outweigh the errors arising from the automated process. The 65 

performance of these algorithms depends on the chosen model or algorithm, and the structure and 66 

language of the text. Ideally, an NLP algorithm has a high recall or sensitivity (e. g. the proportion of 67 

locations that are correctly identified as locations) and a high specificity (e. g. the proportion of non-68 

locations that are correctly identified as non-locations). Various NLP algorithms and libraries have 69 

been tested for modern English medical and non-medical texts and their performances differ 70 

substantially (see e.g. (Dreisbach et al., 2019; Gritta et al., 2018)). The sensitivity and the precision 71 

of the Edinburgh Geoparser, a popular tool for historical English texts, was found to vary between 60 72 

and 80% depending on the text type and the relative frequencies of the location entities (Grover et al., 73 

2010).  74 

There is a growing scientific interest in building a global database of historical plague outbreak (van 75 

Bavel et al., 2019). The Black Death Digital Archives project 76 

(http://globalmiddleages.org/project/black-death-digital-archive-project) initiated by Green and 77 

Roosen aims to “newly interrogate our traditional sources of historical information” and to link 78 

biological, archaeological and documentary databases (Green and Roosen, 2019). We here contribute 79 

to this effort with a case study on the use of NLP to facilitate the digitization of plague location data. 80 

We use the plague treatise by Sticker (Sticker, 1908) as an example. We compare the application of 81 

different NLP libraries and geocoding services for the extraction of place names and coordinates. 82 

Finally, we compared our novel, geocoded plague dataset to Biraben’s plague dataset - which we 83 
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newly re-digitized and geocoded - to highlight the benefits of drawing information from a broader 84 

corpus of literature.  85 

Methods 86 

Source text 87 

A short description of the structure of Sticker’s work is given in the supplement (Text S1). The text 88 

is a combination of running text interspersed with semi-tabulated year and place listings. The running 89 

text contains both specific information about places that mention plague in a given year, but also 90 

general information on plague as well as historical anecdotes and elaborations. A scanned OCR 91 

version of the book is freely available on the Internet Archive (https://archive.org/details/ 92 

abhandlungenausd01stic/mode/2up).  93 

Pre-processing and establishment of gold standard location list 94 

In a first preprocessing step, we cleaned the raw OCR text manually. We removed interspersed tables, 95 

end-of-line hyphenations, page numbers, headers, and notes in the book margins. We corrected 96 

misaligned text and checked the text file for OCR errors by looking for special characters and words 97 

that were not recognized by the Notepad++ Spell Checker. To facilitate the automated geoparsing 98 

approach, we also removed all words or sentences in parentheses, which were mainly author names 99 

and references and thus irrelevant for the tagging. We then established the gold standard list of 100 

location toponyms, with both authors independently annotating the preprocessed text using the 101 

annotator tool webanno (version 3.5.9) (Eckart de Castilho et al., 2016). We included all 102 

administrative place, region or country names as well as natural features such as “the Black Sea”. 103 

Associative toponyms such as “the Bishop of Avignon” were excluded because they are not true 104 

locations. We then compared our two annotations and established a consensus document. This list of 105 

toponyms contained all geographical entities in the text irrespective of whether the location was 106 

linked to plague or not. This gold standard list was used for the evaluation of the tagging performance 107 

of various NLP libraries (see below). A schematic of the workflow is shown in Fig. S1.  108 

Establishment of plague dataset 109 

We used the gold standard location list to generate the final dataset of places with plague outbreaks. 110 

For this we extracted text snippets of 100 characters before and after each toponym to obtain the 111 

context and decided for each case individually whether it was linked to a specific plague outbreak. If 112 

the context was unclear, we referred back to the original text. Furthermore, we extracted the 113 

corresponding years (usually a four-digit string) using regular expression (regex) and allocated them 114 

manually to the corresponding toponym. We also linked the referenced author names (i.e. the source 115 

of the information) with the corresponding places wherever it was available. Finally, we batch 116 

geocoded the locations of the plague dataset using the REST API services of ArcGIS 117 

(https://developers.arcgis.com/rest/) to query the GIS information for each place. We extracted the 118 

modern place names, the country ISO code, the centroid and bounding box coordinates and the type 119 

of administrative unit. The bounding box coordinates are the minimum and maximum longitudes and 120 

latitudes of a given administrative unit, and can be used a proxy for the spatial extent of a place. The 121 

coordinates are provided in WGS84. All ArcGIS geocoded locations were individually inspected and 122 

mapped to detect improbable results. Ambiguous or unclear toponyms or questionable results were 123 

checked individually by consulting the original literature or other sources referenced therein. Entries 124 
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that could not be identified through automatic geocoding were looked up and coded manually if 125 

identifiable. Historical or colloquial regions without a clear administrative border were geocoded 126 

approximatively by defining the boundary coordinates manually based on maps on Wikipedia and 127 

calculating the arithmetic centroid coordinates. Toponyms that could not be localized exactly were 128 

geocoded according to the next lower identifiable level administrative unit and were marked as 129 

approximate. Toponyms that could not be localized at all were marked as unknown. We categorized 130 

all results as one of the following: place (city, town, village, neighborhood, district, municipality and 131 

other populated place), administrative unit (county, state and province), country, island and region 132 

(colloquial area, historical or geographical region, and natural features such as streams, mountains or 133 

lakes). This dataset was used for the performance evaluation of the geocoding algorithms and is also 134 

the final output of our study. The study was conducted in a Windows environment with a german 135 

locale. All work was carried out in R/R Studio (version 4.0.0) and Notepad++. The R code and the 136 

final plague datasets are available in a repository (https://doi.org/10.5281/zenodo.6587267) (Krauer 137 

and Schmid, 2021). 138 

Toponym NER performance evaluation 139 

We tested four different NLP libraries and one geoparser for the identification of toponyms: Google 140 

NLP (Google Ireland Limited, 2019a), Stanford CoreNLP (Manning et al., 2014) with the pre-trained 141 

German model version 2018-10-05 (Faruqui and Padó, 2010), spaCy (Explosion, 2019b) with the 142 

pre-trained German model version 2.1.0 (Explosion, 2019a), germaNER (Benikova et al., 2015) and 143 

Geoparser.io (Geoparser Inc, 2019). For a technical comparison of the libraries see supplement Table 144 

S2. We performed syntax analysis (POS) to obtain the tokens, and named entity recognition (NER) 145 

to obtain the toponyms. All libraries except germaNER require running text as input. The NER for 146 

germaNER was done using the tokenization returned by spaCy. Geoparser.io only returns toponyms 147 

and the corresponding GIS information but not the tokenization of the complete text. Google NLP, 148 

spaCy and Stanford CoreNLP each have a different algorithm for tokenization, which results in a 149 

slightly different numbers of tokens returned. The main difference arises from how the different 150 

libraries treat punctuation in relation to words or numbers (e.g. “usw.” or “1346-47” may be treated 151 

as one or two tokens). Google, Stanford coreNLP and geoparser do not accept pre-tokenized text as 152 

input. For an accurate comparison we combined all in one dataset by mapping all the entities to the 153 

tokens of the gold standard. After the mapping, we re-categorized the entities of all five approaches 154 

as “location” or “other” (which includes non-identified tokens). If geographical entities were not 155 

recognized completely by a text mining algorithm, we allowed also for partial matches for the 156 

calculation of the performance indicators. For example, “Freiburg im Breisgau” could be identified 157 

as “Freiburg” or the full name. We then compared the sensitivity (recall, true positive rate), the 158 

specificity (selectivity, true negative rate), the accuracy, the positive and negative predictive value 159 

(PPV and NPV), the F1 score and Cohen’s Kappa. The formal definition of all measures is given in 160 

supplement Text S2 and Table S3. The German Stanford CoreNLP java library (version 2018-10-05) 161 

was downloaded from the Stanford NLP Github Page (https://stanfordnlp.github.io/CoreNLP/human-162 

languages.html) and accessed through the R package coreNLP (version 0.4.2) (Arnold and Tilton, 163 

2016). SpaCy (v2.0) was downloaded and accessed through the R package spacyr (version 1.2) 164 

(Benoit and Matsuo, 2019). The java standalone for GermaNER was downloaded from the Github 165 

account (https://github.com/tudarmstadt-lt/GermaNER) and run from the command line.  166 
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Geocoding performance evaluation 167 

We also assessed the performance of three alternative geocoding services: Google (Google Ireland 168 

Limited, 2019b), Geoparser.io (Geoparser Inc, 2019), which combines the toponym recognition and 169 

geocoding, and Geonames (GeoNames, 2019). Geoparser.io returns only the name of the toponym, 170 

the type and the centroid coordinates. Google and Geonames.io provide more GIS information such 171 

as lower level administrative area units and place names in local or alternative languages. Google and 172 

Geoparser.io return the best match (according to internal criteria), while Geonames returns all 173 

possible matches in a ranked order. To make the algorithms comparable we picked only the first (i.e. 174 

best) match returned by Geonames. However, we restricted the Geonames search to places (P), 175 

administrative units (A), areas (L) and natural features (T, H and V). If no full match was found, we 176 

accepted also partial (fuzzy) match for Geonames and Google. We defined the following conditions 177 

for a result to be a match: 1) If both the gold standard entity and the comparator entity were a country 178 

and the country ISO codes agreed, 2) If both the gold standard entity and the comparator entity were 179 

a place or region in the same country and the Euclidian distance between the centroids of the standard 180 

and comparator was less than 30 km (for small entities with a standard bounding box up to 30 km), 181 

or less than half of the bounding box diameter of the standard (for larger entities with a standard 182 

bounding box diameter of more than 30 km). Based on the count of matches we calculated the 183 

proportion of toponyms identified (i.e. whether there was a result nor not) and the proportion of 184 

toponyms correctly identified for each approach. We also examined the mismatches and checked 185 

whether there was a potential regional or other bias in the geocoding. All Geocoding services were 186 

accessed through their REST-APIs between September and October 2019 using a designated batch 187 

geocoding script.  188 

Plague data description and comparison 189 

Finally, we summarized the spatial and temporal coverage of our dataset and compared it with a re-190 

digitized version of Biraben’s list (see supplemental Text S2). For this, we merge the two datasets by 191 

year and centroid coordinates. We calculated the proportion of full matches among all observations 192 

of both datasets for the same time period, plotted all locations in both datasets and compared the 193 

corresponding time series. We then restricted the merged dataset to the time period of the second 194 

pandemic and to exactly localized places (without regions, countries or other administrative areas) to 195 

update and summarize the spatio-temporal extent of the plague outbreaks.  196 

Results 197 

Gold standard 198 

The cleaned OCR text of chapters five to sixteen of Sticker’s treatise on plague was 864,106 199 

characters long. Removing the author citations that are present throughout the text reduced the length 200 

to 842,918 characters. We identified 7884 geographical entities (5.4% of all tokens) with manual 201 

annotation. Of these 7884 toponyms only 4474 (57%) referred to a specific plague outbreak in a 202 

specific year (Fig. 1). The rest were mainly repeated mentions of the same locations for a given year 203 

or additional geographical information to describe a place (e.g. “Geverske near Ostrovizza in the 204 

region of Zara”). Of these 4474 toponyms, 4087 (91.4%) could be localized exactly. Eight toponyms 205 

(0.2%) could not be localized at all (“unknown”). The remaining 379 toponyms (8.5%) were either 206 

colloquial or historical regions (e.g. “Podolia”) without clearly defined modern boundaries, or 207 

populated places that could not be localized exactly but were attributed to a lower level administrative 208 
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unit. These are marked as “approximate” in the final dataset. The automated geocoding procedure 209 

matched 93.8% of all entries, but 6.2% could not be geocoded with ArcGIS and had to be looked up 210 

manually. Only 4.8% of all entries that were historical regions and 21% of all entries that were 211 

colloquial areas could be identified automatically through the ArcGIS geocoding services.  212 

  213 
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Toponym NER performance evaluation 214 

The spaCy and the Stanford CoreNLP tokenizers yielded a similar number of total tokens (146,766 215 

and 146,743 respectively) while Google NLP returned marginally less tokens (146,340) (Table S4). 216 

GermaNER identified the most entities (34% of all recognized tokens = 50,374), followed by Google 217 

NLP (23% of all recognized tokens = 33,925), spaCy (9% of all recognized tokens = 12,963), Stanford 218 

coreNLP (6.5% of all recognized tokens = 9522) and Geoparser.io (3563). After mapping the results 219 

to the standard tokenization, Google and spaCy identified the largest percentage of all tokens 220 

identified as locations (6.4% and  6.6%), followed by Stanford coreNLP (4.6%) and germaNER 221 

(3.9%). The Geoparser.io algorithm identified only 2.4% of the tokens as locations.   222 

Overall, the proportion of correctly identified entities (accuracy) was large for all five libraries (range 223 

0.97-0.99) (Table 1). The spaCy library showed the highest sensitivity (0.92), followed by Stanford 224 

CoreNLP (0.82), Google (0.78), germanNER (0.62) and Geoparser.io (0.41). The specificity was 225 

equally high for all algorithms (range 0.98-0.99). Stanford coreNLP had the highest precision (PPV, 226 

0.95, i.e. 5% of the positives are false), followed by Geoparser.io (0.9), germaNER (0.85), spaCy 227 

(0.75) and Google (0.66). The F1 scores and Cohen’s kappa coefficients suggested a good overall 228 

performance for Stanford CoreNLP (0.88 and 0.87) and spaCy (0.83 and 0.81), a mediocre overall 229 

performance for Google NLP (0.72 and 0.70) and GermanER (0.71 and 0.70) and a poor performance 230 

for Geoparser.io (0.56 and 0.55).  231 

Most false positives arose from a rather broad definition of “location” consistent across all libraries, 232 

which included also nouns related to physical locations such as “Stadt” (town, city), “Ort” (locality) 233 

or “Haus” (house) (Fig. S2). Only 26% of the location tokens were correctly identified as such by all 234 

libraries and 2% of the locations were missed by all libraries. Locations that were missed by all 235 

included Germanized spelling (e.g. “Hoschiarpur” for “Hoshiarpur”), latin spelling (e.g. 236 

“Centumcellae” for “Civitavecchia”), composite entities (e.g. “Gurjewscher Kreis”), historic regions 237 

(e.g. “Podolien”, “Gevaudan”) or ambiguous words (e.g. “Sind” is a location but also a conjugated 238 

verb form of “to be”). Compared to the other libraries, spaCy had a remarkable low number of FNs 239 

(Fig. S3). All libraries performed better on toponyms for cities or towns, whereas natural features or 240 

small villages proved to be more difficult (Fig. S4). spaCy identified historical regions correctly as 241 

toponyms more often than the other libraries (percentage false negatives among all historical regions: 242 

Spacy 4.8%, coreNLP 26.7%, Google 29.9%, Germaner 51.9% and geoparser 73.8%).  243 

 244 

Table 1. Performance of different NLP algorithms for the identification of toponyms (location nouns) 245 

after mapping to a common tokenization.  246 

 Google NLP Stanford 

CoreNLP  

spaCy germaNER Geoparser 

TP 6154 6435 7267 4858 3237 

FP 3168 333 2462 863 342 

TN 135316 138151 136022 137621 138142 

FN 1730 1449 617 3026 4647 

Accuracy 0.97 0.99 0.98 0.97 0.96 

Sensitivity 0.78 0.82 0.92 0.62 0.41 
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Specificity 0.98 0.99 0.98 0.99 0.99 

PPV 0.66 0.95 0.75 0.85 0.90 

NPV 0.99 0.99 0.99 0.98 0.97 

F1 score 0.72 0.88 0.83 0.71 0.56 

Cohen’s Kappa 0.70 0.87 0.81 0.70 0.55 

 247 

Geocoding performance evaluation 248 

To evaluate the geocoding performances, we used the 1856 unique location names from the plague 249 

dataset. Google and Geonames geolocated substantially more toponyms (74.8.% and 75.3%) than 250 

Geoparser.io ( 44.4%). Google and Geonames also geolocated more places correctly than geoparser 251 

(60.5% and 52.7% vs. 35.7%). Many of the mismatches occurred for regions where places were 252 

renamed as the ruling power changed, through colonization or the contraction and expansion of 253 

empires (e.g. in the regions of Armenia, Georgia or the Balkans) or where a phonetic translation of 254 

the original place name was used (e.g. entities located in Iran, Iraq, Ukraine, Russia or Kazakhstan) 255 

All geocoding services struggled to geocode historical regions, but Geonames and Google performed 256 

better (19.7% and 14.8% geocoded) than Geoparser (6.6%) (Fig. S4). Colloquial areas were also 257 

poorly geocoded (Google 23.5%, Geonames 20.6% and Geoparser 5.9%).  258 

Description of plague data sets 259 

Comparison of Sticker and Biraben 260 

The final Sticker dataset contained 4474 plague location observations, of which 91.4% could be 261 

localized exactly, 8.5% were localized approximatively and 0.1% could not be localized. Of the 262 

identified locations, 1631 were unique locations. The Biraben data set had much more data points and 263 

unique locations (11,180 observations, 2158 unique locations), of which 95.2% were localized 264 

exactly, 3.5% were localized approximately and 1.3% could not be localized) (Table S5). There was 265 

some overlap of the data points: 37% of the Sticker data were also in Biraben, and 15% of the Biraben 266 

data were also in Sticker. The majority of the data points in Sticker were located in Germany (13.6%), 267 

while Biraben had most data points in France (30.2%) (Fig. S5A). In both datasets, the majority of 268 

locations were places (Sticker 70.1%, Biraben 83.3%). Sticker contained more historical or colloquial 269 

regions or administrative units than Biraben, thus the average bounding box diagonal of a location 270 

was marginally larger for Sticker (17.6 km vs. 12.1 km) (Fig. S6). The most frequent places in Sticker 271 

were Istanbul (90 mentions, 2%), London (74 mentions, 1.7%) and Cairo (44 mentions, 1%) (Fig. 272 

S5B). Biraben listed the most outbreaks for London (166 mentions, 1.5%), Istanbul (118 mentions, 273 

1.1%) and Algiers (114 mentions, 1%). Both data sets have the same overall temporal coverage from 274 

the Black Death period to the beginning of the 20th century (Fig. S5C). However, the majority of 275 

entries in Biraben are from the 16th-17th century, while the majority of Sticker is from the 17th-18th 276 

century.  277 

Spatial and temporal extent of second pandemic plague outbreaks 278 

Fig. 2 shows all exactly localized places (without countries, regions or other administrative units) 279 

with plague outbreaks or occurrences reported during the second pandemic (1346-1894) resulting 280 

from both datasets. We found 1404 new observations (817 unique locations) in the Sticker dataset, 281 

which were not listed in Biraben. These were mainly in eastern Europe, southern Russia and the 282 
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Caucasus region, as well as India and Iran. London had the largest number of outbreaks (265), 283 

followed by Istanbul/Constantinople (205), Algiers (138), Paris (115), Cairo (113), Izmir/Smyrna 284 

(107), Venice (103) and Amiens (102).  As shown in Fig. 3, the spatio-temporal extent of plague 285 

outbreaks shifted considerably over time. Until the 17th century we observe the majority of the data 286 

in Central Europe. In the 18th century the focus appears to have shifted to Eastern Europe and North 287 

Africa. Finally, in the 19th century the majority of outbreaks seemed to be reported in southeast 288 

Europe and West Asia.   289 
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Discussion 294 

We have demonstrated how natural language processing (NLP) libraries and geocoding/geoparsing 295 

tools can be used to detect, extract and georeference locations in a running text to facilitate the 296 

collection and digitization of plague data from a running text. We have shown that the performance 297 

of the different algorithms can vary substantially. For the given German text, Stanford’s coreNLP 298 

and spaCy had a better overall performance than Google’s NLP, germaNER and Geoparser.io. While 299 

spaCy was better at detecting the true locations (i.e. high sensitivity), Stanford coreNLP was 300 

marginally better at avoiding the non-locations (i.e. high specificity). However, all algorithms had a 301 

high specificity. Geoparser.io showed a poor performance and missed more than half of the true 302 

locations. According to the authors the algorithm works best with English texts, but there is limited  303 

information online on how the model was trained. It also showed a poorer performance in returning 304 

the correct coordinates compared to Google and Geonames. Overall, the sensitivity of all algorithms 305 

was imperfect, and a small proportion of locations remained undetected even with the best performing 306 

algorithm. All tested algorithms were substantially faster than manual annotation (less than 30 307 

minutes vs. several days per annotator). The sensitivity of Stanford CoreNLP (0.81) and Google NLP 308 

(0.78) on Sticker’s treatise on plague was comparable to previous results from modern text corpora 309 

(0.64-0.89 and 0.77-0.87, respectively) (Dale, 2018; Gritta et al., 2020; Pinto et al., 2016; Schmitt et 310 

al., 2019), but spaCy outperformed its expectations, with a higher sensitivity (0.92) than advertised 311 

by the authors of the library (0.85) (Explosion, 2019a) and estimated in previous studies on English 312 

texts (0.57-0.75) (Gritta et al., 2020; Schmitt et al., 2019). Our F1 score for germaNER was somewhat 313 

lower (0.71) than evaluated by the authors of the algorithm (0.81) (Benikova et al., 2015). In terms 314 

of performance, it is more important to have a high sensitivity than a high specificity, because it is 315 

easier to remove false positives in the results than look for false negatives (missed locations) in a text. 316 

Thus, based on our findings, we recommend to use spaCy for entity recognition in combination with 317 

a geocoding services that also cover historical place names regions for the extraction of outbreak data 318 

from rather historical texts. All tested geocoding services showed a poor performance in geolocating 319 

historical regions and colloquial areas, but their performance could potentially be improved by 320 

passing on additional information such as the country or region to the geocoding service. Geonames 321 

also stores historical place names, and filtering all returned matches instead of accepting the best 322 

match could further improve the toponym recognition, but we have not tested this here.  323 

Advantages and limitations of NLP for the extraction of outbreak data 324 

NLP libraries combined with geoparsers/geocoding tools are extremely useful to quickly generate 325 

quantitative data, but we have encountered some limitations for this specific project. As anticipated, 326 

these pre-trained models could not distinguish whether the mention of a geographical unit was related 327 

to a specific plague outbreak or not. This information can only be extracted from the context, but 328 

these standard models were not trained to recognize these situations. In this study, we have checked 329 

the link to a plague outbreak for each location entry manually, which is far from ideal. Moreover, the 330 

detection of time units was not optimal. We did not test the year numbers recognition formally, but 331 

we observed that Google, spaCy and Stanford CoreNLP don’t differentiate between years and any 332 

other number. For our plague dataset, we used regular expressions (regex), which can identify specific 333 

combinations of letters or numbers. The final linking of a specific year with a specific plague location 334 

was done manually again, since the order of appearance and the format in which years and locations 335 

were reported was not consistent throughout the text. Thus, the tested pre-trained NLP algorithms 336 

could not replace manual work entirely in our project.  337 
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The main potential of NLP and geoparsing for outbreak data extraction lies in custom trained models 338 

and reproducible, fully automated workflows. Some of the analyses that we did manually or in 339 

separate steps can potentially be improved with an automated procedure. Preprocessing of the raw 340 

OCR text prior to applying the NLP algorithms is inevitable, but OCR errors are often consistent and 341 

can be corrected with rule-based replacements as we have partially done here. NLP or geoparser 342 

libraries can be trained specifically on historical texts to improve the recognition of outdated spellings 343 

or old place names, and detect and extract relations of entities. The latter could potentially be used to 344 

link a specific outbreak to a specific place and time mention in the text. Text mining tools such as 345 

word embedding (i.e. linkage of entities by their proximity in the text) could also be used to detect 346 

relations. A custom trained model could also reduce the false positive rate for physical locations (e.g. 347 

“house” or “city”), which was an issue with all tested libraries. Examples of NLP models trained on 348 

epidemiological data include a recently published NLP pipeline (EpiTator) that uses the spaCy library 349 

in combination with Geonames specifically for the annotation of epidemiological data such as dates 350 

and date ranges, disease-related information and location data from running text (EcoHealth Alliance, 351 

2019). This tool has also been custom trained on the incidence database of the Robert Koch Institut 352 

to detect emerging infections, and has shown a promising performance for country recognition (85% 353 

correctly classified), disease recognition (88% correctly classified) and date recognition (81% 354 

correctly identified) (Abbood et al., 2020). The aforementioned plague dot txt project is also 355 

pioneering the field with automated OCR optimization and extended NER for the recognition of 356 

plague-specific ontology and dates (Casey et al., 2020). Given the continuous emergence of infectious 357 

diseases and the exponentially increasing amount of epidemiological literature, we expect the 358 

landscape of NLP tools and pipelines trained on epidemiological texts to growth and improve in the 359 

coming years. Our dataset could be used by others as a training set for both improved toponym and 360 

relation recognition.  361 

Usage and limitations of geo-referenced plague datasets 362 

We here also present two open, georeferenced plague datasets (Krauer and Schmid, 2021): the newly 363 

digitized Sticker dataset and an improved digitization of Biraben’s plague second pandemic appendix. 364 

The Biraben dataset has been digitized twice before (Atanasiu V et al., 2008; Buntgen et al., 2012), 365 

of which Büntgens version has been used by a number of studies (Schmid et al., 2015; Yue et al., 366 

2016; Yue and Lee, 2018, 2020; Yue et al., 2017). These studies have rightfully drawn criticism for 367 

not contextualizing the biases and uncertainties inherent to such aggregated accounts that cover a vast 368 

amount of space and time (Roosen and Curtis, 2018; van Bavel et al., 2019). Both Biraben (and 369 

colleagues) as well as Sticker may have been more likely to include sources from specific regions or 370 

countries due to easier access to archives or familiarity with the language of the source texts. It is not 371 

by accident that the majority of plague occurrences of Biraben are in France and the majority of 372 

Sticker in Germany. Also, some regions might be poorly represented by sources due to cultural 373 

differences in what was perceived important to write down, or poor archiving conditions. These issues 374 

can lead to spatial and/or temporal selection bias in the data. Thus, the absence of plague occurrences 375 

listed in these datasets is not necessarily an absence of outbreaks. Moreover, the retrospective 376 

identification of a plague outbreak from historical sources is also often problematic, and the criteria 377 

that Sticker and Biraben used to include or exclude information are unclear. In this study, we have 378 

not verified the data, but we have provided references to the original sources wherever they were 379 

indicated by Sticker, which allows users to cross-check questionable entries. Biraben’s treatise was 380 

digitized from the tables provided in the appendix, which did not include references for each outbreak. 381 
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However, the treatise itself includes an extensive bibliography for the origin of the data, which may 382 

be linked manually to specific outbreaks. Both datasets have inherent limitations due to the nature of 383 

the data collection and the digitization process. They are presented here as uncommented digitizations 384 

of all second and third plague pandemic entries provided in the Biraben and Sticker plague treatises, 385 

and should not be regarded as fully prepared and finalized plague data sets. Additional data cleaning 386 

and source verification is required depending on the research question and type of analysis. For 387 

example, the geographical scales of the observations in both datasets are very heterogeneous ranging 388 

from small villages to whole countries or historical regions spanning several hundreds of kilometers. 389 

For quantitative modelling studies, we recommend to work with data points that represent 390 

approximately the same geographic level. We have provided the bounding box coordinates and 391 

diagonal for each data point (which gives a rough estimate of the current geographical extent) as well 392 

as the type of location, which can be used to select data carefully. We also advise to check for 393 

duplicate entries for the same place in the same year, which occurred occasionally when the original 394 

dataset listed two separate entries for the same location (for example Saoudje and Boulak for Saoudje-395 

Boulak, presently Mahabad, or individual parishes in London). As a caveat, most location coordinates 396 

provided in our datasets refer to the modern locations and we did not correct for potential geographical 397 

displacements over time. In the case of historical regions, we used the bounding coordinates based 398 

on historical maps on Wikipedia. The borders of these regions are thus only approximate.  399 

Quantitative analyses will benefit from improved, georeferenced datasets, for example for the 400 

reconstruction of regional transmission chains or potentially the identification of putative historical 401 

plague reservoirs (Carmichael, 2014). As others have mentioned (Benedictow, 2019; van Bavel et al., 402 

2019), data collections such as our compilation of Biraben and Sticker can act as a foundation to 403 

which more data are added (and faulty data are labelled as such) in order to build an updated database 404 

of global plague outbreaks. The growing number of scanned and OCR encoded documents made 405 

available online (for example on the Internet Archive) provides a rich resource for historical 406 

epidemiology, which should be used with the right tools and the necessary caution. Combining plague 407 

data from different sources to fill the spatial and temporal gaps could potentially reduce the problem 408 

of spatial and/or temporal representativeness, and improve our understanding of the spatio-temporal 409 

spread. Particularly, new data on the plague dissemination in neglected regions such as sub-Saharan 410 

Africa (Green, 2018), Turkey and Southern Asia (Green, 2014; Green, 2018; Varlik, 2020) could 411 

confirm whether the shift of plague activity from Europe to North Africa in the 16th to 19th century, 412 

and the growing presence of plague in Asia in the 17th to 19th century is a real pattern or merely an 413 

artefact of missing data in the centuries before. However, consistency in the data definition and 414 

collection is crucial. The understanding of the spatio-temporal dynamics of the past and present 415 

plague pandemic is a big challenge, which is best tackled with a collaborative and interdisciplinary 416 

effort, and in the spirit of open data.   417 
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