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ABSTRACT 
Background: With over 83 million cases and 1·8 million deaths reported worldwide by the end 
of 2020 for SARS-CoV-2 (COVID-19), there is an urgent need to enhance identification of high-
risk populations to properly evaluate therapy effectiveness with real-world evidence and improve 
outcomes. 
Methods: Baseline and daily indicators were evaluated using electronic health records for 46,971 
patients hospitalized with COVID-19 from 176 HCA Healthcare-affiliated hospitals, presenting 
from March to September 2020, to develop a real-time risk model (RTRM) of all-cause, 
hospitalized mortality. Patient facility, dates-of-care, clinico-demographics, comorbidities, vitals, 
laboratory markers, and respiratory support findings were aggregated in a logistic regression 
model. 
Findings: The RTRM predicted overall mortality as well as mortality 1, 3, and 7 days in advance 
with an area under the receiver operating characteristic curve (AUCROC) of 0·905, 0·911, 0·905, 
and 0·901 respectively, significantly outperforming a combined model of age and daily modified 
WHO progression scale (all p<0·0001; AUCROC, 0·846, 0·848, 0·850, and 0·852). The RTRM 
delineated risk at presentation from ongoing risk associated with medical care and showed that 
mortality rates decreased over time due to both decreased severity and changes in care. 
Interpretation: To our knowledge, this study is the largest of its kind to comprehensively evaluate 
predictors and incorporate daily risk measures of COVID-19 mortality. The RTRM validates 
current literature trends in mortality across time and allows direct translation for research and 
clinical applications. 
Keywords: SARS-CoV-2, coronavirus, COVID, COVID-19, mortality, risk, prediction, 
hospitalized, in-hospital, hospital, severity, progression, model 
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Research in context 
Evidence before this study 
Due to the rapidly evolving nature of the COVID-19 pandemic, the body of evidence and published 
literature was considered prior to study initiation and throughout the course of the study. Although at study 
initiation there was a growing consensus that age and disease severity at presentation were the greatest 
contributors to predicting in-hospital mortality, there was less of a consensus on the key demographics, 
comorbidities, vitals and laboratory values. In addition, early on, most potential predictors of in-hospital 
mortality had been assessed by univariable analysis. In April of 2020, a systematic review of prediction 
studies for COVID-19 revealed that there were only 8 publications for prognosis of hospital mortality. All 
were deemed to have high potential for bias due to low sample size, model overfitting, vague reporting 
and/or insufficient follow-up. Over the duration of the study, in-hospital prediction models were published 
ranging from simplified scores to machine learning. There were at least 8 prediction studies that were 
published during the course of our own that had comparable sample size or extensive multivariable analysis 
with the greatest accuracy of prediction reported as 74%. Moreover, a report in December of 2020 
independently validated 4 simple prediction models, with none achieving greater than an AUCROC of 
0.72%. Lastly, an eight-variable score developed by a UK consortium on a comparable sample size 
demonstrated an AUCROC of 0.77. To our knowledge, however, none to-date have modeled daily risk 
beyond baseline. 
We frequently assessed World Health Organization (WHO) resources as well as queried both MedRXIV 
and PubMed with the search terms “COVID”, “prediction”, “hospital” and “mortality” to ensure we were 
assessing all potential predictors of hospitalized mortality. The last search was performed on January 5, 
2021 with the addition of “multi”, “daily”, “real time” or “longitudinal” terms to confirm the novelty of our 
study. No date restrictions or language filters were applied.  
Added value of this study 
To our knowledge, this study is the largest and most geographically diverse of its kind to comprehensively 
evaluate predictors of in-hospital COVID-19 mortality that are available retrospectively in electronic health 
records and to incorporate longitudinal, daily risk measures to create risk trajectories over the entire hospital 
stay. Not only does our Real-Time Risk Model (RTRM) validate current literature, demonstrating reduced 
mortality over the course of the COVID-19 pandemic and identifying age and WHO severity as major 
drivers of mortality in regards to baseline characteristics, but it also outperforms a model of age and daily 
WHO score combined, achieving an AUCROC of 0.91 on the test set. Furthermore, the fact that the RTRM 
delineates risk at baseline from risk over the course of care allows more granular interpretation of the impact 
of various parameters on mortality risk, as demonstrated in the current study using both sex disparity and 
calendar epochs that were based on evolving treatment recommendations as proofs-of-principle. 
Implications of all the available evidence 
The goal of the RTRM was to create a flexible tool that could be used to assess intervention and treatment 
efficacy in real-world, evidence-based studies as well as provide real-time risk assessment to aid clinical 
decisions and resourcing with further development. Implications of this work are broad. The depth of the 
multi-facility, harmonized electronic health record (EHR) dataset coupled with the transparency we provide 
in the RTRM results provides a resource for others to interpret impact of markers of interest and utilize data 
that is relevant to their own studies. The RTRM will allow optimal matching in retrospective cohort studies 
and provide a more granular endpoint for evaluation of interventions beyond general effectiveness, such as 
optimal delivery, including dosing and timing, and identification of the population/s benefiting from an 
intervention or combination of interventions. In addition, beyond the scope of the current study, the RTRM 
and its resultant daily risk scores allow for flexibility in developing prediction models for other clinical 
outcomes, such as progression of pulmonary disease, need for invasive mechanical ventilation, and 
development of sepsis and/or multiorgan failure, all of which could provide a framework for real-time 
personalized care.  
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Introduction 
 
A cluster of pneumonia cases in Wuhan, China in December of 2019 has become a global 
pandemic, with over 83 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and 1·8 million deaths reported from COVID-19 worldwide by the end of 2020.1-3 Despite 
unprecedented vaccine efforts, the pandemic is expected to remain a persistent threat given the 
challenges of global deployment. Therefore, there is an urgent need to identify higher risk 
populations as well as more accurately measure ongoing disease severity and progression to 
identify effective therapies. 
 
Moreover, due to practical challenges associated with operating and recruiting patients to 
randomized clinical trials, risk-adjusted retrospective cohort studies of real-world evidence have 
been essential to understanding treatment effects for COVID-19. These non-randomized studies, 
however, are inherently biased due to possible incomplete inclusion of prognostic indicators. 
 
Given the global impact of the pandemic on healthcare system resources, there is critical need to 
identify patients at higher risk for developing lung and multiorgan dysfunction in real-time in order 
to intervene early and properly allocate resources. There is also a need to rapidly and systematically 
evaluate clinical interventions while accounting for robust risk adjustment, concurrent 
medications, and an evolving interventional landscape. Thus, considering the patient timeline and 
trajectory of risk throughout hospitalization is critical. 
 
In this first proof-of-principle study, we leverage hospital data from HCA Healthcare, the largest 
private healthcare system in the U.S., to train and predict all cause, hospitalized mortality in a 
cohort of 46,971 patients. Our resultant real-time risk model (RTRM) is able to assess patient 
prognosis at presentation and throughout hospitalization. Moreover, the RTRM validates 
predictors for inclusion in retrospective, matched cohort studies for evaluating treatment 
effectiveness and produces a granular daily risk score that serves as a surrogate of disease 
progression and/or improvement. Importantly, we demonstrate the superiority of the RTRM at 
predicting hospitalized mortality in comparison to a combined model of age and the daily modified 
World Health Organization (WHO) clinical progression scale as the current benchmark measure 
of disease severity.4-8 Finally, we delineate baseline effects from responses across hospital care for 
calendar date epochs and for sex by comparing daily risk trajectories. 
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Methods 
 
Regulatory and Patient Selection 
This study was supported by HCA Healthcare and deemed exempt, non-human subjects research 
by the governing institutional review board. The design, analysis, and data interpretations were 
conducted independently by investigators. All authors testify to the accuracy and completeness of 
the data with the understanding that there may be issues in real-world records outside of our 
awareness. Electronic health records (EHRs) were compiled for patients hospitalized with 
laboratory-confirmed SARS-CoV-2 infection, representing COVID-19 disease, at 176 HCA 
Healthcare-affiliated facilities across the Unites States between March 2 and September 23 and 
were followed through October 7, 2020. A COVID-19 confirmed case was defined as a positive 
and/or presumptive positive SARS-CoV-2 result regardless of assay platform. A COVID-19-
associated hospitalization was defined by the date of hospital presentation to the date of discharge 
or death; whereby, all consecutive inpatient encounters such as emergency room or holding area 
stays, inter- or intra-HCA-affiliated hospital transfers, and/or readmissions were considered as a 
single hospitalization. For patients with multiple COVID-19-associated inpatient encounters 
separated by greater than 36 hours, only data from the first hospitalization was used. Only those 
patients that presented to the hospital prior to September 23, 2020 and experienced an outcome of 
either “discharged alive” or “death” by October 7, 2020 were included, which was 93.8% 
(46,971/50,059) of the overall source population (Figure 1A). Patients that were discharged or 
expired on the same date of hospitalization were excluded from the analysis. 
 
Data Collection and Definitions 
Data was collected from EHRs (Epic, Cerner, Meditech) and compiled in an enterprise data 
warehouse. Further data processing and standardization was done using Genospace, a cloud-based 
biomedical data ingestion and transformation platform. This study adhered to the transparent 
reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 
reporting guidelines. Missing value handling depended on the variable and is detailed in the 
supplemental methods (Figure S1). Medications were purposely excluded from the RTRM to 
facilitate downstream assessments of treatment effectiveness. 
 
Baseline Characteristics 
Data collection included patient demographics, admitting and primary treating facility, smoking 
status, and blood type, as well as certain comorbidities documented through past and current ICD-
9-CM and ICD-10-CM diagnostic codes (Table S1). Comorbidities of interest included diabetes 
with chronic complications, diabetes without chronic complications, hypertension, chronic 
ischemic heart disease, congestive heart failure, renal disease (mild or moderate), renal disease 
(severe), asthma or reactive airway disease, chronic pulmonary disease (excluding asthma), HIV 
infection, and cancer (including solid tumors and blood cancers but excluding non-melanoma skin 
cancer). 
 
Time-Course Data 
Time-course data were indexed by each day of hospitalization with baseline (t=0) defined as the 
date of hospital presentation (emergency room or direct admission). Longitudinal data on vitals, 
laboratory values, and level of respiratory support were collected throughout the course of 
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hospitalization. Additional data processing included standard unit transformation and validation 
of expected values; erroneous data-points outside of plausible range were removed and considered 
missing. Missing data were imputed for all patient-days with no available data for a particular 
variable. When multiple values were present for a particular patient-day, the mean of the observed 
values was used. 
 
Patients were categorized based on a modified 6-point scale, adapted from the WHO R&D 
Blueprint group to assess disease severity and measure clinical improvement.4 The modified 6-
point scale, subsequently, the WHO Progression Scale (WHO PS), is as follows: 1, discharged 
alive; 2, hospitalized, no supplemental oxygen; 3, hospitalized, low-flow supplemental oxygen; 4, 
hospitalized, non-invasive or high-flow oxygen including continuous positive airway pressure 
(CPAP) and bi-level positive airway pressure (BIPAP); 5, hospitalized, invasive mechanical 
ventilation or extracorporeal membrane oxygenation (ECMO); 6, expired. Modification excluded 
points that could not be reliably defined by hospital EHR data. Patients were assigned a score at 
presentation and each day following based on their most severe status that day, except day-of-
discharge, where they were assigned 1. 
 
Clinical Outcomes and Complications 
Clinical outcome measures were also collected, including WHO PS at discharge or death (primary 
outcome measure); maximum prior WHO PS; time on ventilator and time to first ventilation; 
intensive care unit (ICU) status, defined as receiving care in the ICU at any point during 
hospitalization; length of stay, defined as the time between date of presentation and death or 
discharge; and length of ICU stay, defined as the time between ICU admission and death or 
discharge from the ICU. Complications included development of acute respiratory distress 
syndrome (ARDS), defined as PaO2/FiO2 ratio ≤300 mmHg and a daily WHO PS of 3 or higher, 
as well as pneumonia, sepsis, and bacteremia based on ICD-10-CM codes (Table S2). 
 
Defining Calendar Epochs 
We evaluated the COVID-19 cohort as six independent date-of-hospital-presentation epochs to 
account for changes in treatment recommendations by the HCA Healthcare Clinical Operations 
Group over time in 2020. These epochs are detailed in Table 1. 
 
Statistical Analysis 
 
Feature Engineering 
The relationship between labs, vitals, or other predictors with clinical outcomes is complex and 
nonlinear (Figures S2 and S3). Three derived features of each time-course variable were 
engineered to consider binary, continuous, and outlier-driven relationships, which included (1) the 
raw data itself, (2) a categorical representation of the data bucketed into 1, 10, 25, 50, 75, 90, and 
99th percentile cut-points, and (3) a normalized version fitting to Gaussian distribution. Two 
additional features were generated for longitudinal data to account for momentum or the change 
in values compared to the prior day (1-day delta) and two days prior (2-day delta), where values 
were set to 0 for patients in their first day after hospital presentation or first two days, respectively. 
Higher values indicate current increasing trend. 
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Statistical interactions across a number of features were evaluated. Details are provided in 
supplemental methods. Given that ~400 features were investigated in the RTRM, candidate 
interaction testing was limited to those features that were clinically motivated or most significant 
as main effects to keep the model computationally tractable (Figure S4). 
 
Data Imputation 
We employed multiple imputation methods to impute missing data, which are detailed in 
supplemental methods and Figure S5. 
 
Model Fitting and Performance 
Patients were randomly split into training and testing sets with a 50:50 ratio (Figure 1B). 
Imputation and feature engineering were performed separately on each set following assignment. 
The RTRM can predict mortality for any n-days in advance; three n-days were reported (next-day, 
next-3-days, next-7-days) along with overall mortality by assigning a binary indicator to the 
corresponding days preceding death for each patient. Overall mortality at presentation was also 
modeled, which only assessed baseline risk. Each predictor consisted of the vector of all 
engineered features mapped to each patient-day.  Model coefficients were estimated using logistic 
regression with group-wise elastic net regularization (Figure S6). Additional model fitting and 
bootstrap validation details are described in the supplemental methods. 
 
Model performance was measured against age and daily WHO PS, alone and in combination, using 
the area under the receiver operating characteristic curve (AUCROC). Age and daily WHO PS 
were used to predict mortality n-days in advance in an unpenalized logistic regression model. The 
predictive scores for each of these reference models were evaluated in the testing set, along with 
the RTRM, and ROC curves were graphed and AUCROC computed for each of the n-day 
mortalities and for each day following hospital presentation. 
 
Role of the Funding Source 
All authors are employed by an affiliate of the sponsor, HCA Healthcare, who provided resources 
for this research and was involved in the decision to submit for publication. Data collection, 
analysis, and the writing of the report were performed independently by investigators.  
 
 
Results 
 
A total of 46,971 hospitalized patients were included in the risk model (Figure 1A). The cohort 
median age was 63 years with an interquartile range (IQR) of 49-76 and was 51·6% male, 20·3% 
Black or African American, and 51·6% White or Caucasian (Table 2). Comorbidities most 
prevalent were hypertension (62·2%), diabetes (39·5%), and chronic ischemic heart disease 
(21·0%). Among the cohort, 15·6% expired, 33·2% received ICU care, and 15·1% received 
invasive mechanical ventilation and/or ECMO during hospitalization (Table 3). The median 
hospital length-of-stay was 6 days for discharged patients and 11 days for expired patients (Table 
3). 
 
RTRM performance against benchmark predictors 
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The RTRM demonstrated strong performance in predicting mortality in real-time. For each day a 
test set patient remained hospitalized, the RTRM produced predictions for outcomes of next-day, 
next-3-days, next-7-days, and overall mortality, which resulted in an AUCROC of 0·911, 0·905, 
0·901, and 0·905, respectively (Figure 2A-D). We compared the RTRM result to the performance 
of two benchmarks of COVID-19 mortality, age and the daily WHO PS.4-6 The AUCROCs were 
significantly lower for all models using either age alone (all p<0·0001; AUCROCs, 0·653, 0·656, 
0·658, and 0·653) or the daily WHO PS alone (all p<0·0001; AUCROCs, 0·804, 0·803, 0·801, 
and 0·792; Table S3 and Figure 2A-D). Importantly, the RTRM significantly outperformed the 
model combining both age and the daily WHO PS (all p<0·0001; AUCROCs, 0·848, 0·850, 0·852, 
and 0·901; Table S3 and Figure 2A-D). This consistent outperformance across each outcome 
highlights the strength of the RTRM to predict mortality in the days preceding death. 
 
Using only baseline risk for prediction of overall mortality at hospital presentation rather than daily 
risk assessments, the RTRM achieved an AUCROC of 0·874, compared to 0·721, 0·629, and 
0·776 for age and daily WHO PS alone and in combination, respectively (all p<0·0001; Figure 
2E). Furthermore, the fact that the RTRM AUCROC of overall mortality using daily risk was 
0·031 higher than the overall mortality at hospital presentation highlights the important 
contribution of longitudinal risk to model accuracy. While the baseline accuracy is high, the added 
value of the RTRM persists with a greater than 0·80 AUCROC over the entire course of 
hospitalization, out to 30 days (Figure 2F). 
 
RTRM daily risk predictions for next-day, next-3-days, next-7-days and overall mortality 
A primary purpose of the RTRM is a more granular elucidation of deteriorating health and 
increased mortality risk for patients over their hospitalization. The performance of the RTRM is 
demonstrated quantitatively with AUCROCs for next-day, next-3-days, next-7-days, and overall 
mortality (Figure 2A-F) and by swimmer plots provided as visualization of individual patient risk 
across length-of-stay. Patients were grouped by their eventual outcome, death or discharge, to 
highlight the divergence in risk scores that was observable with the RTRM well in advance of their 
eventual outcome (Figure 3). 
 
RTRM prognostic factors  
The evaluation of the most impactful predictors obtained from fitting the RTRM confirm 
previously known risk factors in COVID-19 and suggest interesting avenues for further 
investigation.9 Figure 4A shows the top 100 predictors by odds ratio (OR) associated with 
mortality by univariable analysis. Figure 4B shows the influence of all features in the RTRM. 
Although medications were excluded from the RTRM, frequencies of the predominant COVID-
19 medications is provided in Table S4. Cut-points for each laboratory measure percentile included 
in the RTRM are provided (Table S5). 
 
Severe sepsis (OR=5·32, p<0·0001) and WHO PS of 5 (OR=3·02, p<0·0001) contribute the most 
to identifying future mortality (Figure 4). Age provides the greatest baseline demographic impact, 
with a 16·8 year increase in age associated with a 16·6% increase in mortality (p<0·0001); an 
effect likely minimized due to inclusion of competing risk factors such as comorbidities. The 
unadjusted association of age with mortality was found to be 1·87, 95% CI [1·84, 1·89] (Figure 
4A). Figure S7 displays all variables used in the RTRM with the adjusted odds ratios. Overall, 
most of the blood markers showed appropriate dose responses with ferritin, interleukin-6, bilirubin, 
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and white blood cell count having the largest distribution of response or ability to discriminate 
risk. Additionally, most comorbidities evaluated were significant independent predictors of 
mortality; albeit, the interpretation of the direction and effect size is limited due to the complexity 
of the RTRM (Figure S7). 
 
 
RTRM and calendar-time dependent risk 
The mortality rate among patients hospitalized with COVID-19 has dropped substantially since 
the start of the pandemic.10,11 Improvements in clinical support care, changes in therapeutic 
regimens, evolution of the hospitalized patient population in regards to clinico-demographics, and 
alterations in hospital admission patterns or patient behavior have been speculated as reasons for 
improved mortality. The RTRM was utilized to investigate patterns across six epochs of time 
delineating major shifts in medication recommendations (Table 1). We evaluated the daily risk 
scores for all patients in our test set during hospitalization (Figure 5A, C) as well as restricted the 
evaluation to those patients who had not reached an endpoint for each day following hospital 
presentation (active; Figure 5B, D). 
 
Figure 5A shows the RTRM risk over days from presentation and stratified by the six epochs. The 
patient cohort presenting to hospitals during Epochs 1 and 2 had substantially increased mortality 
compared to all others. Risk increased rapidly over the first 10 days of Epochs 1 (slope=0·0044, 
p<0·0001) and 2 (slope=0·0043, p<0·0001); whereas, Epochs 3 to 5 experienced no change in risk 
(Figure 5A). Strikingly, Epoch 6 actually experienced reductions in risk over the first 10 days 
(slope= -0·0019, p<0·0001). These reductions in slopes across epochs suggest improvements in 
care led to improved outcomes over time, marked by reductions in severe sepsis for example (Table 
3). These data suggest improvement in clinical care may have occurred between Epochs 2 and 3, 
which corresponds with the shift in treatment recommendation towards the use of low-dose 
steroids in the late pulmonary phase, and between Epochs 5 and 6, which corresponds with a shift 
from restricting convalescent plasma to severe patients to less severe patients based on regulatory 
approvals (Table 1). 
 
Furthermore, there was a meaningful separation of risk at hospital presentation (Day 0), with 
Epochs 1 and 2 at greatest risk, Epochs 3 to 5 having moderate risk, and Epoch 6 having much 
lower risk (Figure 5). This suggests that disease severity and/or risk factors evolved over time. 
Interestingly, neither age nor any of the comorbidities consistently changed over epochs. There 
were, however, relatively fewer Asian and African Americans and an increase in Caucasians by 
Epoch (Table 2). There was a negative trend in the frequency of baseline mechanical 
ventilation/ECMO with a concomitant increase in the use of non-invasive ventilation or high-flow 
oxygen at hospital presentation (Table 2). This suggests decreases in mortality rates over time may 
also be attributed to patients either presenting to the hospital or being admitted with less severe 
disease. 
 
Lastly, showing the trajectory of RTRM mortality risk from days of hospital presentation for active 
patients only, indicate that risk of death increased for each day of hospitalization until days 10 to 
14 (Figure 5B, D). Risk of mortality then remained stable or decreased, as visualized most 
strikingly in Epoch 1 but demonstrated by all other Epochs (Figure 5B) and both males and females 
(Figure 5D). 
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Sex disparities in the RTRM  
 
We evaluated the trajectories of risk scores according to sex. The smoothed risk averages displayed 
in Figure 5C and D suggest that disparities in sex mortality can be attributed to differences in risk 
at hospital presentation. Following the separation at day 0, both men and women follow similar 
risk trajectories for the first 20 days for both overall (Figure 5C) and active patients only (Figure 
5D). 
 
 
Discussion 
 
Quantifying the risk of mortality at a specified time for patients hospitalized with COVID-19 is 
critical to understanding the impact of clinical interventions. The widespread impact of the 
COVID-19 pandemic yielded a broad spectrum of patients with diversity across geography, 
timeframe, medical history, and demographics. Patient prognoses differ substantially based on 
these factors. Recent studies highlighted the importance of age and oxygen saturation as key 
prognostic factors by multivariable analyses, but none evaluated risk beyond admission.5-8,12  
 
Utilizing EHRs for 46,971 patients hospitalized with COVID-19, we evaluated hundreds of 
elements to develop a real-time risk model (RTRM) of all-cause, hospitalized mortality. Both the 
daily WHO PS and the age models perform well at predicting mortality as previously reported.4-6 
Therefore, it is noteworthy that the RTRM is superior to the combined age and the daily WHO PS 
model for next-day, next-3-days, next-7-days, and overall mortality. Additionally, due to 
longitudinal daily assessment, the RTRM was able to separately evaluate differences in mortality 
based on risk at presentation versus risk during the course of care. The RTRM revealed that 
reduction in mortality rates over time during the pandemic was associated with not only reduction 
in baseline risk due to disease severity and shifts in demographics, but also suggested improvement 
in care over time. Notably, we did not find differences in age across epochs. Although other studies 
have shown that males are at increased risk of death due to COVID-19, the RTRM suggests this 
increase is primarily due to severity at presentation rather than decreased response to clinical care. 
Finally, evaluation of effect size and significance of all predictors in the RTRM multivariable 
regression model not only corroborates most of the current key predictors of mortality in COVID-
19 such as age, WHO PS, male sex, comorbidities, and markers of inflammation and organ 
dysfunction, but also shows clear dose responses for critical laboratory measures.13 
 
Our study has several limitations, some of which is inherent to real-world EHR data. In particular, 
because ICU care status was based on EHR location data, ICU misclassification may have occurred 
due to creation of COVID-19 isolation wards within ICUs, regardless of the necessity for ICU-
level care. Additionally, the complexity of the RTRM reduces its current applicability to clinical 
trials and other healthcare systems; however, we have provided a full list of variables and their 
contributions to prediction of hospitalized mortality, for further scrutiny and to allow incorporation 
of top contributors in other research and clinical applications.  
 
Future directions could focus on both research and clinical applications. First, the depth of the 
cross-facility, harmonized EHR data allows for more robust risk adjustment in retrospective, 
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matched cohort studies and provides a granular endpoint to evaluate interventions beyond general 
effectiveness towards optimal delivery, including timing and dosing. Indeed, medications were 
purposely excluded from the RTRM in order to facilitate the use of the model in downstream 
interventional studies. In an environment where randomized control trials are challenging to 
operate and recruitment is limited, the RTRM allows real-world evidence to identify which 
populations benefit from an intervention or combination of interventions. Second, based on the top 
contributors to the RTRM that can be reliably measured, a simplified risk score can be developed 
to provide ease of calculation and broader applicability. In addition, RTRMs that predict other 
clinical outcomes, such as progression of pulmonary disease and development of sepsis and/or 
multiorgan failure should be investigated. Future work should consider readmissions related to 
COVID-19 complications and chronic COVID-19 etiologies, which is particularly relevant given 
studies show that 9-15% of patients hospitalized due to COVID-19 and discharged are readmitted 
within 60 days.14,15 In summary, to our knowledge, the RTRM is the first of its kind to evaluate 
daily risk of hospitalized mortality for patients with COVID-19. Not only does the RTRM 
outperform benchmark predictors of mortality, but it lays down a framework for optimizing future 
research and personalized care utilizing real-world evidence.  
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Tables 
 
Table 1. Definitions of six calendar epochs used to account for changes in treatment 
recommendations over time in 2020. 

Epoch Number Calendar Definitions Treatment Recommendations Summary 

Epoch 1 March 2 – April 2, 2020 

• Consider only hydroxychloroquine 
without azithromycin 

• Consider remdesivir 
• Avoid steroids 

Epoch 2 April 3 – April 29, 2020 

• Consider hydroxychloroquine with 
azithromycin  

• Consider tocilizumab 
• Consider convalescent plasma 

Epoch 3 April 30 – May 19, 2020 

• Consider only hydroxychloroquine, no 
azithromycin 

• Consider low-dose, short-course steroids 
in later pulmonary phase 

Epoch 4 May 20 – July 5, 2020 • Do not consider hydroxychloroquine  

Epoch 5 July 6 – August 23, 2020 • Steroids recommended for all patients 
requiring oxygen supplementation 

Epoch 6 August 24 – September 22, 2020 • Consider convalescent plasma for 
patients with lesser severity illness* 

* Shift in treatment recommendation for convalescent plasma from patient with more severe disease to 
patients with less severe disease based on the shift from the expanded access program (EAP) 
requirements to the emergency use authorization (EUA).
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Table 2. Frequencies and distributions of characteristics, comorbid conditions, initial laboratory results, and vital signs at presentation over key 
calendar epochs for patients hospitalized with COVID-19. 

Characteristics All Patients 
(n=46971) 

Epoch 1 
(n=2170) 

Epoch 2 
(n=3970) 

Epoch 3 
(n=2131) 

Epoch 4 
(n=11562) 

Epoch 5 
(n=21601) 

Epoch 6 
(n=5537) 

Age at encounter- years 63 (49-76) 63 (50-74) 66 (53-78) 63 (49-77) 59 (45-72) 64 (50-76) 65 (51-77) 

Sex         

Female 22755 (48·4%) 969 (44·7%) 1932 (48·7%) 1038 (48·7%) 5520 (47·7%) 10560 
(48·9%) 

2736 
(49·4%) 

Male 24216 (51·6%) 1201 (55·3%) 2038 (51·3%) 1093 (51·3%) 6042 (52·3%) 11041 
(51·1%) 

2801 
(50·6%) 

Race         

Asian/Asian American/Asian Indian 1031 (2·2%) 97 (4·5%) 173 (4·4%) 51 (2·4%) 209 (1·8%) 400 (1·9%) 101 (1·8%) 

Black/African American 9523 (20·3%) 627 (28·9%) 925 (23·3%) 466 (21·9%) 2185 (18·9%) 4375 (20·3%) 945 
(17·1%) 

White/Caucasian 24239 (51·6%) 1038 (47·8%) 1953 (49·2%) 959 (45·0%) 5412 (46·8%) 11588 
(53·6%) 

3289 
(59·4%) 

Native American/American 
Indian/Alaska Native 62 (0·1%) 5 (0·2%) 1 (0·0%) 6 (0·3%) 19 (0·2%) 15 (0·1%) 16 (0·3%) 

Native Hawaiian/Other Pacific 
Islander 75 (0·2%) 1 (0·0%) 8 (0·2%) 3 (0·1%) 16 (0·1%) 44 (0·2%) 3 (0·1%) 

Other/multiracial/multiethnic 9511 (20·2%) 299 (13·8%) 724 (18·2%) 530 (24·9%) 3130 (27·1%) 4031 (18·7%) 797 
(14·4%) 

Unknown 1236 (2·6%) 67 (3·1%) 129 (3·2%) 71 (3·3%) 307 (2·7%) 521 (2·4%) 141 (2·5%) 

Missing 1294 (2·8%) 36 (1·7%) 57 (1·4%) 45 (2·1%) 284 (2·5%) 627 (2·9%) 245 (4·4%) 
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Ethnicity        

Hispanic/Latino 15429 (32·8%) 464 (21·4%) 1012 (25·5%) 681 (32·0%) 4877 (42·2%) 7057 (32·7%) 1338 
(24·2%) 

Non-Hispanic/Non-Latino 27442 (58·4%) 1561 (71·9%) 2683 (67·6%) 1288 (60·4%) 5757 (49·8%) 12604 
(58·3%) 

3549 
(64·1%) 

Decline to specify 113 (0·2%) 13 (0·6%) 18 (0·5%) 11 (0·5%) 18 (0·2%) 37 (0·2%) 16 (0·3%) 

Unknown 1950 (4·2%) 87 (4·0%) 181 (4·6%) 93 (4·4%) 410 (3·5%) 911 (4·2%) 268 (4·8%) 

Missing 2037 (4·3%) 45 (2·1%) 76 (1·9%) 58 (2·7%) 500 (4·3%) 992 (4·6%) 366 (6·6%) 

BMI- kg/m2 † 29·32 (25·20- 
34·79) 

29·91 
(25·88- 
35·26) 

28·46 
(24·46- 
33·97) 

28·40 
(24·71- 
33·81) 

29·90 (25·83- 
35·37) 

29·32 (25·23- 
34·79) 

29·11 
(25·01- 
34·40) 

Comorbidities        

Hypertension 29198 
(62·2%) 

1518 
(70·0%) 

2741 
(69·0%) 

1339 
(62·8%) 6580 (56·9%) 13548 

(62·7%) 
3472 

(62·7%) 

Congestive heart failure 8900 (18·9%) 427 
(19·7%) 

928 
(23·4%) 

422 
(19·8%) 1859 (16·1%) 4151 (19·2%) 1113 

(20·1%) 

Chronic ischemic heart disease 9861 (21·0%) 444 
(20·5%) 

881 
(22·2%) 

452 
(21·2%) 2050 (17·7%) 4757 (22·0%) 1277 

(23·1%) 

Asthma or reactive airway disease 4663 (9·9%) 288 
(13·3%) 

440 
(11·1%) 187 (8·8%) 1085 (9·4%) 2113 (9·8%) 550 (9·9%) 

Chronic pulmonary disease 9012 (19·2%) 440 
(20·3%) 

845 
(21·3%) 

438 
(20·6%) 1884 (16·3%) 4275 (19·8%) 1130 

(20·4%) 

Diabetes  18559 
(39·5%) 

944 
(43·5%) 

1683 
(42·4%) 

834 
(39·1%) 4354 (37·7%) 8700 (40·3%) 2044 

(36·9%) 
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Cancer 2776 (5·9%) 156 (7·2%) 286 (7·2%) 107 (5·0%) 583 (5·0%) 1277 (5·9%) 367 (6·6%) 

HIV infection 232 (0·5%) 19 (0·9%) 20 (0·5%) 14 (0·7%) 68 (0·6%) 99 (0·5%) 12 (0·2%) 

Renal disease - mild or moderate 9209 (19·6%) 472 
(21·8%) 

937 
(23·6%) 

452 
(21·2%) 1887 (16·3%) 4375 (20·3%) 1086 

(19·6%) 

Renal disease - severe 2883 (6·1%) 152 (7·0%) 308 (7·8%) 162 (7·6%) 639 (5·5%) 1339 (6·2%) 283 (5·1%) 

Smoking Status        

Never smoker 26910 
(57·3%) 

1366 
(62·9%) 

2199 
(55·4%) 

1158 
(54·3%) 7096 (61·4%) 12218 

(56·6%) 
2873 

(51·9%) 

Former smoker 7199 (15·3%) 387 
(17·8%) 

588 
(14·8%) 

294 
(13·8%) 1591 (13·8%) 3370 (15·6%) 969 

(17·5%) 

Current smoker 2106 (4·5%) 75 (3·5%) 152 (3·8%) 127 (6·0%) 520 (4·5%) 959 (4·4%) 273 (4·9%) 

Unknown status 10756 
(22·9%) 

342 
(15·8%) 

1031 
(26·0%) 

552 
(25·9%) 2355 (20·4%) 5054 (23·4%) 1422 

(25·7%) 

Labs and Vitals at Hospital Presentation† 

Temperature, °C 37·17 (36·78-
37·94) 

37·5 
(36·94-
38·22) 

37·22 
(36·78-
38·00) 

37·17 
(36·78-
37·94) 

37·28 (36·83-
38·06) 

37·17 (36·78-
37·89) 

37·06 
(36·72-
37·67) 

SpO2, % 95 (92-98) 95 (92-97) 95 (92-98) 95 (93-98) 95 (92-98) 95 (92-98) 95 (92-98) 

Systolic blood pressure, mmHG 133 (118-
149) 

134 (120-
148) 

133 (119-
148) 

133 (118-
148) 

133 (119-
148) 

133 (118-
149) 

134 (119-
151) 

White blood cell count, x103/uL 7·1 (5·2-9·8) 6·3 (4·8-
8·7) 

6·9 (5·2-
9·5) 

7·2 (5·3-
10·0) 6·8 (5·1-9·3) 7·2 (5·3-

10·1) 
7·5 (5·4-

10·4) 

Absolute neutrophil count, x103/uL 5·2 (3·6-7·7) 4·6 (3·3-
6·8) 

5·0 (3·4-
7·2) 

5·2 (3·6-
7·8) 5·0 (3·4-7·3) 5·4 (3·6-8·0) 5·4 (3·7-

8·3) 
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Absolute lymphocyte count, 
x103/uL 1·0 (0·7-1·4) 0·9 (0·7-

1·3) 
1·0 (0·7-

1·4) 
1·1 (0·8-

1·6) 1·0 (0·7-1·4) 1·0 (0·7-1·4) 1·0 (0·7-
1·5) 

Aspartate aminotransferase, U/L 41 (28-62) 42 (30-62) 42 (29-64) 40 (27-59) 42 (28-64) 41 (28-62) 37 (25-57) 

Alanine aminotransferase, U/L 32 (22-53) 34 (23-52) 32 (22-52) 31 (21-50) 34 (23-56) 32 (21-52) 31 (20-50) 

Serum creatinine, mg/dL 1·02 (0·8-
1·4) 

1·06 (0·8-
1·4) 

1·04 (0·8-
1·5) 

1·00 (0·8-
1·4) 

1·00 (0·8-
1·4) 

1·05 (0·8-
1·5) 

1·03 (0·8-
1·4) 

D-dimer, ng/mL DDU 470 (293-
837) 

430 (270-
718) 

469 (290-
850) 

453 (290-
850) 

430 (275-
734) 

497 (300-
882) 

485 (289-
900) 

Ferritin, ng/mL 430 (193-
885) 

436 (214-
925) 

449 (201-
948) 

406 (188-
833) 

436 (186-
871) 

432 (199-
895) 

404 (176-
847) 

Lactate dehydrogenase, units/L 320 (239-
442) 

320 (250-
458) 

317 (244-
445) 

311 (232-
430·5) 

317 (239-
430) 

326 (242-
452) 

306 (228-
434) 

C-reactive protein, mg/dL 7·8 (3·7-
14·3) 

6·9 (3·3-
12·5) 

8·1 (4·0-
14·3) 

7·8 (3·7-
14·8) 

7·8 (3·6-
14·4) 

8·0 (3·9-
14·6) 

6·8 (3·1-
13·0) 

Procalcitonin, ng/mL 0·18 (0·09-
0·50) 

0·17 (0·09-
0·35) 

0·21 (0·10-
0·61) 

0·23 (0·10-
0·65) 

0·17 (0·08-
0·46) 

0·18 (0·09-
0·51) 

0·20 (0·10-
0·43) 

Level of Respiratory Support at Hospital Presentation* 

No supplemental oxygen 10075 
(21·4%) 

439 
(20·2%) 

764 
(19·2%) 

490 
(23·0%) 2596 (22·5%) 4485 (20·8%) 1301 

(23·5%) 

Received low-flow supplemental 
oxygen 

20379 
(43·4%) 

1077 
(49·6%) 

1954 
(49·2%) 

1009 
(47·3%) 4789 (41·4%) 9262 (42·9%) 2288 

(41·3%) 

Received non-invasive ventilation 
or high-flow oxygen devices 7710 (16·4%) 180 (8·3%) 583 

(14·7%) 
281 

(13·2%) 1830 (15·8%) 3899 (18·1%) 937 
(16·9%) 

Received invasive mechanical 
ventilation or ECMO 2541 (5·4%) 320 

(14·7%) 382 (9·6%) 132 (6·2%) 535 (4·6%) 935 (4·3%) 237 (4·3%) 
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No data confirming respiratory 
support 6266 (13·3%) 154 (7·1%) 287 (7·2%) 219 

(10·3%) 1812 (15·7%) 3020 (14·0%) 774 
(14·0%) 

Data are n (%) unless otherwise indicated. Epochs were all in 2020 and were defined as follows based on changes in treatment recommendations: 
Epoch 1, March 1 to April 2; Epoch 2, April 3 to April 29; Epoch 3, April 30 to May 19; Epoch 4, May 20 to July 5; Epoch 5, July 6 to August 23; 
Epoch 6, August 24 to September 22.† BMI and laboratory and vital values at presentation are presented as median (IQR). IQR=interquartile 
range. BMI=body mass index. ECMO = extracorporeal membrane oxygenation. 
* Level of respiratory support at presentation followed the WHO Progression Scale. 
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Table 3. Frequencies and distributions of severity indices- complications- and outcome measures over key calendar epochs for patients 
hospitalized with COVID-19. 

Clinical measure All Patients 
(n=46971) 

Epoch 1 
(n=2170) 

Epoch 2 
(n=3970) 

Epoch 3 
(n=2131) 

Epoch 4 
(n=11562) 

Epoch 5 
(n=21601) 

Epoch 6 
(n=5537) 

Expired  7327 (15·6%) 415 (19·1%) 844 (21·3%) 330 (15·5%) 1637 (14·2%) 3418 
(15·8%) 

683 
(12·3%) 

Received invasive mechanical 
ventilation  7095 (15·1%) 665 (30·6%) 840 (21·2%) 328 (15·4%) 1690 (14·6%) 2984 

(13·8%) 
588 

(10·6%) 

Time to invasive mechanical 
ventilation, days§ 3 (0-8) 1 (0-3) 1 (0-4) 2 (0-7) 4 (0-10) 4 (0-10) 2 (0-8) 

Received ICU care   15602 
(33·2%) 

1006 
(46·4%) 

1691 
(42·6%) 

912 
(42·8%) 

4110 
(35·5%) 

6225 
(28·8%) 

1658 
(29·9%) 

Length ICU stay, days†  5·53 (2·19-
11·77) 

6·96 (3·21-
14·56) 

6·74 (2·72-
13·38) 

5·78 (2·44-
11·88) 

5·33 (2·20-
11·84) 

5·26 (2·02-
11·59) 

4·73 (1·87-
9·69) 

Length of stay, days†         

  Discharged 6 (3-11) 7 (3-15) 7 (4-15) 7 (3-14) 6 (3-12) 6 (3-11) 5 (3-8) 

  Expired 11 (6-19) 9 (5- 16) 9 (4·75-17) 11 (5·25-19) 13 (6-22) 12 (6-19) 10 (4-15) 

Level of Respiratory Support at Most Severe*  

No supplemental oxygen 6790 (14·5%) 230 (10·6%) 443 (11·2%) 304 (14·3%) 1757 (15·2%) 3073 
(14·2%) 

983 
(17·8%) 

Received low-flow supplemental 
oxygen 19070 (40·6%) 888 (40·9%) 1691 (42·6%) 901 (42·3%) 4726 (40·9%) 8723 

(40·4%) 
2141 

(38·7%) 

Received non-invasive ventilation 
or high-flow oxygen devices 11266 (24·0%) 324 (14·9%) 855 (21·5%) 480 (22·5%) 2722 (23·5%) 5532 

(25·6%) 
1353 

(24·4%) 
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Received invasive mechanical 
ventilation or ECMO 7102 (15·1%) 665 (30·6%) 841 (21·2%) 329 (15·4%) 1693 (14·6%) 2986 

(13·8%) 
588 

(10·6%) 

No data confirming respiratory 
support 2743 (5·8%) 63 (2·9%) 140 (3·5%) 117 (5·5%) 664 (5·7%) 1287 (6·0%) 472 (8·5%) 

Complications         

ARDS 12648 (26·9%) 764 (35·2%) 1165 (29·3%) 537 (25·2%) 3166 (27·4%) 5802 
(26·9%) 

1214 
(21·9%) 

Bacteremia 388 (0·8%) 15 (0·7%) 28 (0·7%) 19 (0·9%) 78 (0·7%) 198 (0·9%) 50 (0·9%) 

Bacterial pneumonia 2032 (4·3%) 146 (6·7%) 218 (5·5%) 86 (4·0%) 468 (4·0%) 881 (4·1%) 233 (4·2%) 

Sepsis (excluding severe sepsis) 10611 (22·6%) 504 (23·2%) 918 (23·1%) 524 (24·6%) 2691 (23·3%) 4784 
(22·1%) 

1190 
(21·5%) 

Severe sepsis 8456 (18·0%) 565 (26·0%) 981 (24·7%) 411 (19·3%) 1958 (16·9%) 3649 
(16·9%) 

892 
(16·1%) 

Viral/other/unspecified pneumonia 36388 (77·5%) 1850 (85·3%) 3208 (80·8%) 1614 (75·7%) 8817 (76·3%) 16 905 
(78·3%) 

3994 
(72·1%) 

Data are n (%) unless otherwise indicated. Epochs were all in 2020 and were defined as follows based on changes in treatment recommendations: 
Epoch 1, March 1 to April 2; Epoch 2, April 3 to April 29; Epoch 3, April 30 to May 19; Epoch 4, May 20 to July 5; Epoch 5, July 6 to August 23; 
Epoch 6, August 24 to September 22. IQR=interquartile range. ECMO = extracorporeal membrane oxygenation. ARDS=acute respiratory distress 
syndrome. 
§ Time to first episode of mechanical ventilation is presented as median (IQR). 
† Length of stay and time to outcomes are presented as median (IQR). 
* Level of respiratory support at most severe followed the WHO Progression Scale. 
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Figure Legends 
 
Figure 1. Patient Selection and Model Development Processes. 
Consort diagram displaying patient inclusion/exclusion and filtering criteria for defining the COVID-19 cohort of interest for evaluating 
hospitalized mortality (A). (B) Diagram of the data and analysis work-flow of the Real-Time Risk Model (RTRM). 
 
Figure 2: Receiver Operating Characteristic (ROC) Curves by Outcome and Model Type 
Performance analysis of the RTRM measured by ROC, with models of the daily WHO Progression Scale (WHO PS) and Age as 
references. Performance is broken down by next-day, next-3-days, and next-7-days mortality, overall mortality, and mortality predicted 
at the date of presentation (A, B, C, D, and E respectively). Results are graphed by day since presentation (F), highlighting strong 
predictive power of the RTRM throughout COVID-19 hospitalization. 
 
Figure 3: Swimmers Plots 
RTRM scores (colored) for individual patients over time, selected based on eventual outcome. Patients were filtered at random from the 
test set for visualization purposes. Red cells indicate a higher risk of overall mortality and all patients experienced death (A, B) or 
discharge (C, D) at the end of their segments. Patients in A and C include only those that died or were discharged, respectively, on 
exactly the 15th day after hospital presentation, while B and D depict randomly selected patients that died or were discharged, 
respectively, at any time. Patterns suggest that the RTRM is able to reliably identify patients several days prior to their eventual death. 
 
Figure 4: Forest Plots 
Estimated parameters (odds ratio, OR) and 95% confidence intervals from the 100 most significant predictors of all-cause, hospitalized 
mortality based on either (A) univariable logistic regression or (B) multivariable logistic regression with elastic net (i.e. RTRM). Max 
Prior WHO and WHO Index are all referring to the WHO PS. ORs for categorical data are reported as normal for each categorical level 
independently. ORs for continuous variables are reported as the OR for a one standard deviation increase in the variable value. 
 
Figure 5: Real-Time Risk Curves 
Smoothed and combined RTRM curves showing risk trajectories across six epochs and sex. A generalized additive model with integrated 
smoothness estimation was applied to the risk predictions over hospitalization time. Each point, n, on the y-axis represents the smoothed 
mean risk score for patients that were still hospitalized on the nth day following COVID-19 hospital presentation. Patients that have 
experienced an outcome continue to contribute to the risk of mortality after their death or discharge in A and C; whereas, in B and D 
only active patients (i.e. still-hospitalized) contribute to the model for any given day after hospital presentation. RTRM curves are broken 
down by six calendar date epochs (A, B) and sex (C, D). 
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Supplemental Material Index 
 
Supplemental Methods: Data Generation and Cleanup, Lambda Hyperparameter Tuning, Data Imputation, Imputation Evaluation, and Interactions Evaluation 
 
Table S1: ICD-9-CM and ICD-10-CM codes for Identification of Comorbidities in Electronic Health Record Data 
 
Table S2: ICD-10-CM codes for Identification of Pneumonia, Sepsis, and Bacteremia in Electronic Health Record Data 
 
Table S3: Pairwise Testing of Next-n-Day and Overall Mortality AUCROCs 
Pairwise testing of significant differences between the AUCROCs of the RTRM and the benchmark models using Age alone, daily WHO PS alone, and Age + 
daily WHO PS for Next-Day, Next-3-Day, Next-7-Day, and overall mortality outcomes. 
 
Table S4: Medications 
Frequency of medications for COVID-19 and the distribution of usage across the six epochs. 
 
Table S5: Laboratory Values and Vitals by Patient Percentiles 
Laboratory and vital value cut-points with units corresponding to each patient cohort percentile cut-point of 1, 10, 25, 50, 75, 90, and 99th used for categorization 
of laboratory findings or vitals represented in the RTRM. These bins were used as categorical variables in the RTRM. 
 
Figure S1: Data Completeness Summary 
Summary of missing data used in the RTRM.  (A) Describes the presence of any observed value (blue) present for an individual patient (x-axis) and key variable 
(y-axis). (B) Describes the proportion of observed values for key variables at individual points in time (x-axis). 
 
Figure S2: Continuous Data Variable Distributions 
Distributions for raw values for continuous variables included in the RTRM. 
 
Figure S3: Categorical Data Variable Distributions 
Distributions for raw values for categorical variables included in the RTRM. 
 
Figure S4: Interaction Pairwise Plots  
Pairwise plots summarizing the bivariate distributions of all variables included as interaction terms in the RTRM. 
 
Figure S5: Imputation Pairwise Plots 
Pairwise correlation scatterplots for RTRM scores derived from all ten individual imputations. Strong and consistent correlation between imputation runs suggest 
very little dependency on the randomization component for completing missing data. 
 
Figure S6: Forest Plots for All Variables in the RTRM 
Estimated parameters (odds ratio, OR) and 95% confidence intervals from all features in the RTRM. Max Prior WHO and WHO Index are all referring to the WHO 
PS. ORs for categorical data are reported as normal for each categorical level independently. ORs for continuous variables are reported as the OR for a one standard 
deviation increase in the variable value. 
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Supplemental Materials 
 
Supplemental Methods 
 
Data Generation and Cleanup 
Data was obtained from Genospace, an internal platform at HCA Healthcare that allows live querying of data obtained 
from HCA Healthcare’s Electronic Data Warehouse.  

All preprocessing was performed with the intention of generating a patient-day matrix where each row represented 
the available information for an individual patient on an individual day. The columns of this matrix contain all 
available data for that patient-day, including demographics, labs, vitals, oxygenation, and hospitalization status. Many 
variables are not necessarily available on the single-day level. For variables not associated with a specific date in the 
dataset, such as race, age, or weight, the values were repeated for each patient-day of hospitalization. Other values, 
such as vitals, were commonly available with much greater than single-day frequency. For any such variable 
containing multiple instances in a single day, the mean for each patient-day was taken. The minimum and maximum 
were also considered, but were not found to improve model performance on the whole due to added model complexity. 
This process was applied for all continuous variables. For WHO PS, which is based on the level of respiratory support 
received, the maximum value, representing the most severe level of respiratory support, for a given day was used 
rather than the mean, except if the patient was discharged alive, in which case a score of 1 was assigned. For categorical 
values with dates, such as comorbidities and complications, including pneumonia, sepsis, and bacteremia, the 
indication of the event was added to the given patient-day and all subsequent days.  

Missing value handling depended on the variable (Figure S1). For multi-level factors, e.g. race, patients with missing 
values were specifically given the value “Missing”. For binary indicator variables, e.g. comorbidities, the absence of 
a data point for a particular patient was treated as a negative. For continuous values, e.g. lab results, data was completed 
with multiple imputation, as described in the main text and below in the Imputation Evaluation section. 
 
Lambda Hyperparameter Tuning 
The Real-Time Risk Model requires selection of shrinkage coefficients to be estimated for L1 (absolute) and L2 
(squared) regularization. This process was performed with 10-fold cross validation and a grid search where L1 and L2 
were chosen independently. For each point in the grid, the risk model was fit for each fold and evaluated on the cross 
validation test set. The deviance of the model was measured at each stop. Hyperparameters were chosen based on the 
deviance minimization within the grid search.  
 
Interactions Evaluation 
The Real-Time Risk Model considered interactions between pairwise combinations of variables, i.e. the possible 
altering of the linear effect of a variable on mortality conditional on another variable. We allowed this complexity into 
our model with the introduction of simple interacting coefficients for selected variables. Given the large number of 
coefficients to be considered, we recognized that including all n-choose-2 pairwise combinations would dramatically 
increase the dimensionality of our model. To mitigate this, we limited the number of coefficients to those with higher 
clinical or statistical support. Interactions were modeled based on all pairwise combinations of the following ten 
variables - (1) Age, (2) WHO PS, (3) Admission Date, (4) ICU Status, (5) Hospitalization day number, (6) C-Reactive 
Protein (mg/dL), (7) D-Dimer (ng/mL DDU), (8) Systolic Blood Pressure (mmHg), (9) Temperature (C), and (10) 
SPO2 (%). These terms formed 45 pairwise interaction terms (Figure S4). The conditional distributions of each of the 
interacting variables were evaluated (Figure S6). 
 
Imputation Evaluation 
While missing data at any point after a baseline value can be directly inferred from the last available value, missing 
baseline data as well as values for variables not associated with a specific date in the dataset needed to be imputed 
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from available data. To prevent forward-looking data leakage, no timepoint data imputation was permitted to utilize 
data that was not available at the time of the missing datapoint. To perform this imputation, we used Multiple 
Imputation by Chained Equations (MICE).1 With this process, missing data for each variable was randomly sampled 
with replacement from the observed data. Then, for each variable, missing values were removed and replaced with 
fitted values from regressing the observed values for that variable against the rest of the dataset. This step was 
performed for each variable containing any missing data and repeated until convergence. The stochastic component 
of this procedure was designed to capture some of the variability present in the original data. Consequently, we 
produced 10 separate imputed datasets in this manner and executed our analysis separately on each. The results of 
each analysis were merged by combining, via simple average, the resulting coefficients into a single prediction model.2 
 
While all iterations of the multiple imputation method differed slightly from one another, the predicted probabilities 
were highly correlated (r = 0·977) and the merged model outperformed each individual model on its own (Figure S5). 
 
Variance for coefficients was measured with bootstrapping. Models were fit, as described above, repeatedly on 
prediction matrices obtained by resampling the patient population with replacement. This process was repeated 100 
times, with the standard deviation of the bootstrapped coefficient estimates taken as the bootstrap estimate of the 
standard errors, which are visualized and reported in Forest plots (Figure 4, Figure S6). 
 
Model Fitting and Performance 

Model validation was performed by applying the prediction coefficients generated from the training set to the held-
back testing set. This entire process was performed ten times; once for each imputation step. Prediction scores for 
each imputation, corresponding to probability of n-day mortality, were averaged into a single n-day risk of mortality. 
Each patient-day was evaluated for the probability of n-day and overall survival. The model performance was 
measured with the area under the curve of the receiver operating characteristic (AUCROC). This analysis was 
performed using the R packages ROCit, oem (Orthogonalizing EM: Penalized Regression for Big Tall Data) and 
glmnet.3-5 
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Supplemental Tables 
 
Table S1: ICD-9-CM and ICD-10-CM codes for Identification of Comorbidities in Electronic Health Record 
Data 

Comorbidity ICD-9-CM ICD-10-CM 

Hypertension 401-405 I10-I16 

Congestive heart 
failure* 

398.91, 402.01, 402.11, 402.91, 404.01, 
404.03, 404.11, 404.13, 404.91, 404.93, 
425.4-425.9, 428 

I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, 
I43, I50, P29.0 

Chronic ischemic heart 
disease 

412, 414 I25 

Asthma or reactive 
airway disease*✝ 

493 J45 

Chronic pulmonary 
disease (excluding 
asthma)* 

490-492, 494-496, 500-505, 506.4, 508.1, 
508.8 

J40-J44, J47, J60-J67, J68.4, J70.1, J70.3 

Diabetes  249.0-249.3, 249.9, 250 E08-E13 

Diabetes without 
chronic 
complications* 

249.0-249.3, 249.9, 250.0-250.3, 250.7-
250.9  

E08.0, E08.1, E08.6, E08.8, E08.9, E09.0, 
E09.1, E09.6, E09.8, E09.9, E10.1, E10.6, 
E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, 
E11.9, E13.0, E13.1, E13.6, E13.8, E13.9  

Diabetes with chronic 
complications* 

250.4-250.7 E08.2, E08.3, E08.4, E08.5, E09.2, E09.3, 
E09.4, E09.5, E10.2, E10.3, E10.4, E10.5, 
E11.2, E11.3, E11.4, E11.5, E13.2, E13.3, 
E13.4, E13.5 

Cancer* 140-149, 150-159, 160-165, 170-172, 174-
176, 179-189, 190-198, 199.0, 199.1, 200-
208, 238.6 

C00-C14, C15-C26, C30-C39, C40-C41, 
C43, C45-C49, C50, C51-C58, C60-C63, 
C76-C80, C81-85, C88, C90-C96 

HIV infection* 042 B20 

Renal disease - mild or 
moderate* 

403.00, 403.10, 403.90, 404.00, 404.01, 
404.10, 404.11, 404.90, 404.91, 582, 583, 
585.1-585.4, 585.9, V42.0 

I12.9, I13.0, I13.10, N03, N05, N18.1-
N18.4, N18.9, Z94.0 

Renal disease - 
severe*‡ 

403.01, 403.11, 403.91, 404.02, 404.03, 
404.12, 404.13, 404.92, 404.93, 585.5, 
585.6, 588.0, V45.1, V56 

I12.0, I13.11, I13.2, N18.5, N18.6, N25.0, 
Z49, Z99.2 

* The ICD-9 and ICD-10 codes used to identify these comorbidities were largely based on a modified Charlson 
Comorbidity Index (CCI) coding scheme (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684052/) 
✝ The diagnosis codes for asthma were separated from other chronic pulmonary diseases to facilitate the separate 
assessment of asthma, and because the same included diagnosis code can be used for both asthma and reactive 
airway disease, the label for this comorbidity is "Asthma or reactive airway disease"; the World Health Organization 
(WHO) ICD-10 code J46 was not included, as this code is not included in ICD-10-CM  
‡ The diagnosis codes for unspecified renal failure (i.e., the ICD-9 code 586 and the ICD-10 code N19) were not 
included, as these codes are not sufficient to identify previous acute renal failure, which may have been reversible, 
vs. chronic kidney disease (e.g., end-stage renal disease) vs. acute renal failure/acute kidney injury as a complication 
of COVID-19  
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Table S2: ICD-10-CM codes for Identification of Pneumonia, Sepsis, and Bacteremia in Electronic Health 
Record Data* 

Condition ICD-10-CM 

Bacteremia R78.81 

Bacterial pneumonia A01.03, A02.22, A37.01, A37.11, A37.81, A37.91, A54.84, J13-J15, J16.0, P23.1, 
P23.2, P23.3, P23.4, P23.5, P23.6 

Sepsis (excluding severe 
sepsis) 

A02.1, A22.7, A26.7, A32.7, A40, A41, A42.7, B37.7, O85, O86.04, P36 

Severe sepsis R65.2 

Viral/other/unspecified 
pneumonia 

B01.2, B05.2, B06.81, B77.81, J09.X1, J10.0, J11.0, J12, J16.8, J17, J18, P23.0, 
P23.8, P23.9 

* Dates associated with these ICD-10 codes were filtered to align with COVID-19 diagnosis, including only dates in 
the range of two weeks before the collection date of the first positive SARS-CoV-2 test to 90 days after the first 
encounter with SARS-CoV-2 infection 
 
Table S3: Pairwise Testing of Next n-Day and Overall Mortality AUCROCs* 

Model Mortality Type Age WHO PS Age + WHO PS RTRM 

Age 

Next-day 

1 <0·00001 <0·00001 <0·00001 

WHO PS <0·00001 1 <0·00001 <0·00001 

Age + WHO PS <0·00001 <0·00001 1 <0·00001 

RTRM <0·00001 <0·00001 <0·00001 <0·00001 

Age 

Next-3-day 

1 <0·00001 <0·00001 <0·00001 

WHO PS <0·00001 1 <0·00001 <0·00001 

Age + WHO PS <0·00001 <0·00001 1 <0·00001 

RTRM <0·00001 <0·00001 <0·00001 1 

Age 

Next-7-day 

1 <0·00001 <0·00001 <0·00001 

WHO PS <0·00001 1 <0·00001 <0·00001 

Age + WHO PS <0·00001 <0·00001 1 <0·00001 

RTRM <0·00001 <0·00001 <0·00001 1 

Age 

Overall 

1 <0·00001 <0·00001 <0·00001 

WHO PS <0·00001 1 <0·00001 <0·00001 

Age + WHO PS <0·00001 <0·00001 1 <0·00001 

RTRM <0·00001 <0·00001 <0·00001 1 

* p-values are reported. 
WHO PS = WHO Progression Scale. RTRM = Real-Time Risk Model. 
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Table S4: Medications 

Characteristics All Patients  
 

(n=46971) 

Epoch 1  
 

(n=2170) 

Epoch 2  
 

(n=3970) 

Epoch 3  
 

(n=2131) 

Epoch 4  
 

(n=11562) 

Epoch 5 
 

(n=21601) 

Epoch 6  
 

(n=5537) 

Antibiotics/Antivirals        

Hydroxychloroquine 5244 
(11·2%) 

1342 
(61·8%) 

2274 
(57·3%) 

558 
(26·2%) 

503 
(4·4%) 

474 (2·2%) 93 
(1·7%) 

Azithromycin 30324 
(64·6%) 

1855 
(85·5%) 

2917 
(73·5%) 

1318 
(61·8%) 

7471 
(64·6%) 

13 702 
(63·4%) 

3061 
(55·3%) 

Remdesivir 7885 
(16·8%) 

28 
(1·3%) 

75 
(1·9%) 

159 
(7·5%) 

3148 
(27·2%) 

4472 
(20·7%) 

3 (0·1%) 

Ceftriaxone 31381 
(66·8%) 

1642 
(75·7%) 

2624 
(66·1%) 

1397 
(65·6%) 

7914 
(68·4%) 

14 437 
(66·8%) 

3367 
(60·8%) 

Anticoagulation        

Heparin or Enoxaparin 38303 
(81·5%) 

1621 
(74·7%) 

3099 
(78·1%) 

1734 
(81·4%) 

9654 
(83·5%) 

17938 
(83·0%) 

4257 
(76·9%) 

Apixaban 6682 
(14·2%) 

194 
(8·9%) 

435 
(11%) 

265 
(12·4%) 

1453 
(12·6%) 

3481 
(16·1%) 

854 
(15·4%) 

Warfarin 1078 
(2·3%) 

56 
(2·6%) 

113 
(2·8%) 

53 
(2·5%) 

222 
(1·9%) 

484 (2·2%) 150 
(2·7%) 

Rivaroxaban 1653 
(3·5%) 

68 
(3·1%) 

128 
(3·2%) 

78 
(3·7%) 

366 
(3·2%) 

826 (3·8%) 187 
(3·4%) 

Anti-Inflammatories        

Corticosteroids 30314 
(64·5%) 

640 
(29·5%) 

1303 
(32·8%) 

694 
(32·6%) 

7307 
(63·2%) 

16446 
(76·1%) 

3924 
(70·9%) 

Aspirin 16960 
(36·1%) 

650 
(30%) 

1361 
(34·3%) 

698 
(32·8%) 

3772 
(32·6%) 

8357 
(38·7%) 

2122 
(38·3%) 

Statin 18065 
(38·5%) 

848 
(39·1%) 

1605 
(40·4%) 

809 
(38%) 

3991 
(34·5%) 

8577 
(39·7%) 

2235 
(40·4%) 

Tocilizumab 2170 
(4·6%) 

62 
(2·9%) 

333 
(8·4%) 

181 
(8·5%) 

793 
(6·9%) 

781 (3·6%) 20 
(0·4%) 

Other Therapies         

Convalescent Plasma 11242 
(23·9%) 

45 
(2·1%) 

337 
(8·5%) 

399 
(18·7%) 

2909 
(25·2%) 

5791 
(26·8%) 

1761 
(31·8%) 

Famotidine 16612 
(35·4%) 

785 
(36·2%) 

1435 
(36·1%) 

737 
(34·6%) 

3917 
(33·9%) 

7824 
(36·2%) 

1914 
(34·6%) 
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Data are n (%) unless otherwise indicated. Epochs were all in 2020 and were defined as follows based on changes in 
treatment recommendations: Epoch 1, March 1 to April 2; Epoch 2, April 3 to April 29; Epoch 3, April 30 to May 
19; Epoch 4, May 20 to July 5; Epoch 5, July 6 to August 23; Epoch 6, August 24 to September 22.  
 
 
Table S5: Laboratory and Vital Values by Patient Percentiles. 

Lab or Vital Test 1% 10% 25% 50% 75% 90% 99% 

Absolute Lymphocyte Count 
(x10E3/uL) 0·11 0·40 0·60 0·97 1·40 2·00 3·85 

Absolute Neutrophil Count (x10E3/uL) 1·2 2·9 4·5 7·1 10·7 15·0 26·3 

Alanine Aminotransferase (units/L) 9 16 24 38 65 117 675 

Arterial Blood Partial Pressure CO2 
(mmHg) 22·3 30·0 34·6 40·9 50·0 61·8 91·5 

Arterial Blood Partial Pressure O2 
(mmHg) 41·0 54·9 63·1 75·9 97·2 136·2 275·7 

Aspartate aminotransferase (units/L) 10 18 26 39 61 101 647 

Blood pH 7·06 7·26 7·34 7·41 7·45 7·49 7·55 

C-Reactive Protein (mg/dL) 0·4 1·1 2·5 6·0 12·5 19·4 35·8 

D-Dimer (ng/mL DDU) 125 230 355 650 1496 3375 15100 

Ferritin (ng/mL) 24 125 273 548 1020 1819 6825 

FiO2 (%) (excluding ECMO FiO2) 21 35 50 70 100 100 100 

Hgb A1c (%) 4·8 5·5 6·0 6·9 8·8 11·3 14·6 

Interleukin 6 (pg/mL) 1·5 6·2 16·9 48·5 129·3 365·9 2033·7 

Lactic Acid/Lactate in Blood (mmol/L) 0·5 0·9 1·1 1·5 2·1 3·1 11·4 

LDH, Serum or Plasma (units/L) 138 204 261 354 499 714 1753 

PaO2/FiO2 Ratio 44·4 61·8 81·6 123·4 191·6 282·1 460·9 

Peak Inspiratory Pressure (cmH2O) 10 14 18 24 30 36 47 

Procalcitonin (ng/mL) 0·03 0·06 0·11 0·28 1·06 4·55 48·80 

Serum Creatinine (mg/dL) 0·30 0·52 0·70 0·90 1·41 3·10 9·53 

Tidal Volume (mL) 174 350 400 450 500 530 748 

Total Bilirubin (mg/dL) 0·2 0·3 0·4 0·5 0·8 1·1 4·3 

Troponin I (ng/mL) 0·00 0·01 0·02 0·06 0·19 0·85 16·86 

White Blood Cell Count (x10E3/uL) 2·4 4·5 6·4 9·2 13·1 17·8 32·5 

Diastolic blood pressure (mmHg) 49·7 58·5 64·0 70·3 76·7 82·6 94·3 

SPO2 (%) 87·1 91·8 93·4 95·1 96·9 98·3 99·9 

Systolic blood pressure (mmHg) 93·3 105·5 114·0 125·6 139·2 151·9 173·0 
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