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Abstract

Amid global scarcity of COVID-19 vaccines and the threat of new variant
strains, California and other jurisdictions face the question of when and how to
implement and relax COVID-19Nonpharmaceutical Interventions (NPIs). While
policymakers have attempted to balance the health and economic impacts of
the pandemic, decentralized decision-making, deep uncertainty, and the lack
of widespread use of comprehensive decision support methods can lead to the
choice of fragile or inefficient strategies. This paper uses simulation models and
theRobustDecisionMaking (RDM)approach to stress-testCalifornia’s reopening
strategy and other alternatives over a wide range of futures. We find that plans
which respond aggressively to initial outbreaks are required to robustly control
the pandemic. Further, the best plans adapt to changing circumstances, lowering
their stringent requirements to reopen over time or as more constituents are
vaccinated. While we use California as an example, our results are particularly
relevant for jurisdictions where vaccination roll-out has been slower.

∗Correspondence may be addressed to Pedro Nascimento de Lima (plima@rand.org)
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1 Introduction

The COVID-19 pandemic has wreaked havoc across the US, causing over 30 million
confirmed cases and 500,000 related deaths, and state-wide shutdowns of all non-
essential businesses. As state officials navigate the pandemic, they must manage
both health and economic goals. Generally, reopening plans [1–4] have been pro-
posed as phased strategies, in which the state allows economic activity to resume
based on meeting COVID-19 incidence targets. However, pandemics often follow
oscillatory waves of infection, and many states have already been forced to revise
their plans, either shutting down after new outbreaks or adjusting which activities
are allowed in each phase. To ensure long-term success in combating the pandemic,
local policymakers need to consider the trade-offs underlying reopening decisions,
while accounting for deep uncertainties.

Since one-time lockdowns have proven to be insufficient to control the pandemic,
a coherent, long-term strategy is needed. Instead of adopting a stable, pre-defined
strategy, local policymakers have changed regulations and instated NPIs adaptively,
often adoptingNPIs based on the decisions of other jurisdictions [5]. A key challenge
in recommending a stable, transparent strategy - i.e., a clear prescription of which
NPIs local policymakers should enact given a set of observed conditions - is to
account for the effects of the biological, behavioral, and technological uncertainties
surrounding thepandemic. Oneyear into thepandemic,many factors and constraints
are unknown and outside of the control of policymakers, including vaccine efficacy
to prevent transmission [6], the behavioral response to vaccination (i.e., change in
population mixing behaviors after vaccination) and vaccine uptake. Variant strains
withhigher transmissibility [7]mighthamper the effects of social distancingmeasures
and might impact vaccine efficacy.

Model-based analyses of alternative strategies for defending society against the
COVID-19 pandemic have been invaluable. Prior studies evaluating how local gov-
ernments should manage NPIs in the absence of COVID-19 vaccines have presented
a grim outlook [8–11] justifying the need for stringent NPI strategies, and have
revealed the impracticality of strategies based on naturally-acquired herd immu-
nity [12]. Analyses specifically focusing on vaccine strategies accounting for age-
dependent mortality and vaccine scarcity [13–16] have generally supported ACIP’s
vaccine allocation recommendations [17] if one seeks to minimize deaths. More
recently, analyses focusing on how to relax NPIs in the presence of vaccination gen-
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erally find that premature reopening would result in resurgences and potentially
compromise the benefits of vaccination [18–23].

This paper offers three contributions to the emerging literature of NPI strategies
in the presence of COVID-19 vaccines. First, we evaluate a range of alternatives to
manage NPI levels, including strategies that resemble reopening plans with fixed
thresholds such as California’s Blueprint for a Safe economy [3] and CDC’s Op-
erational Strategy for Reopening Schools [24] as well as alternative strategies that
change those thresholds over time. Second, we consider economic consequences
of NPIs, allowing the analysis of robustness trade-offs among strategies. Third, we
employ the Robust Decision Making (RDM) approach [25–27] to facilitate compari-
son of alternative adaptive NPI strategies and to address the deep uncertainties [28]
surrounding the COVID-19 pandemic and vaccination rollout. Although RDM has
proven useful in other policy areas where uncertainties abound (i.e., climate change
[29], coastal resilience [30], terrorism insurance [31], water resources management
[32]), this approach has been underutilized in the public health policy literature.
This approach allow us to seek and find robust, non-dominated reopening strategies.
Using the state of California as an example, we demonstrate that strategies with fixed
thresholds can be pareto-dominated1 by strategies with time-varying or endogenous
thresholds. This analysis and approach might support changes in reopening plans
in the wake of vaccination roll-out.

The paper is organized as follows. First, themethods section provides a high-level
overview of our approach, and details on the model can be found in our prior work
[10, 33] and in the Supplemental Information section. Once the problem framing is
defined,we focus on themain substantivefinding that strategieswithfixed thresholds
might be dominated by strategies with time-varying thresholds. Finally, we discuss
how improved strategies might be implemented, as well as potential challenges in
pursuing pareto-efficient strategies.

1Pareto-dominated strategies are those that are outperformed by another strategy in all criteria
under consideration. Because pareto-dominated strategies makes society unnecessarily worse off,
they should always be avoided.
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2 Methods

2.1 Problem Framing

State public health departments need to decide how tomanage their NPI levels using
a coherent set of rules that seek to minimize both the health and economic impacts
of the pandemic. California’s Blueprint for a Safer Economy plan [3], for example,
requires the number of daily new cases to be below 7 cases / 100 k and positivity
rates to be below 8 % to allow counties to move below their most stringent NPI level
(widespread). As of Feb 1st, 2021, 99% of the state population was living under the
widespread risk level, in which some non-essential businesses are closed or operate
under restrictions. We frame the decision problem as to how to define the threshold
criteria in those plans over time seeking to balance health and other welfare goals.

Reopening plans are not only defined by threshold criteria but also contain a
larger set of decisions not analyzed in this paper. These decisions include which
businesses are allowed to operate under each risk level, capacity constraints, and
a set of adaptation measures. These decisions directly affect societal welfare by
imposing differential costs on specific activities and have evolved over time within
California’s reopening plan [3]. While examining these decisions could reveal that
targeted interventions have the potential to produce pareto-improvements [34], doing
so is beyond the scope of this paper. Therefore, this paper holds the definition of the
risk levels constant and asks how one should navigate between the risk levels over
time.

Although states can mandate low-cost mitigation measures such as voluntary
social distancing and mask-wearing that have proven effective [35], imperfect com-
pliance still allows the virus to circulate among the population in many US states.
Therefore, the key decision-making challenge this paper investigates is how to man-
age blunt NPIs (such as restricting economic activity or interrupting in-person edu-
cation), contingent on the net effect of other low-costmeasures such asmask-wearing,
behavioral changes, and physical adaptation measures. High compliance to low-cost
measures and initial lockdowns, followed by tight strict movement interventions
(e.g, New Zealand’s strategy), and appropriate levels of testing, contact tracing, and
isolation to prevent re-seeding could potentially eliminate COVID-19 locally and ob-
viate the need for this decision-making process and reopening plans. Reality has
shown, however, that US states and many countries have failed to control the spread
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of the virus through those instruments, thus forcing local decision-makers to still
face trade-offs.

X - Uncertainties L - Policy levers

• Vaccine efficacy to prevent
transmission

• Loss of immunity
• Behavioral response to

vaccination
• Willingness to vaccinate
• Changes in transmissibility (i.e.,

induced by variant strains)
• Actual vaccination Rate

• Baseline level of caution G1
• NPI strategy B ∈ {�, ),+}
• Time-based strategies B = )

– Level of caution factor 

– Transition date )


• Vaccination-based strategies
B = +

– Vaccination reference point
+<83

– Relaxation rate :2

R - Relationships (models) M - Metrics
Meta-population deterministic ODE
[10, 33]
Computable general equilibrium model
[36]

75Cℎ Regret percentile of deaths / 100 k
people, years of life lost, cases, income
loss, and days under NPIs

Table 1: XLRM framework - uncertainties, policy levers, relationships andmetrics.
The XLRM framework provides an overview of the relevant components in an RDM
analysis. Each component in the list of policy levers is used todefine a set of strategies.
In this paper, we explore 78 strategies, which are defined in Appendix I.

When crafting reopening plans, decision-makers should seek strategies that are
both robust andnon-dominated - that is, theynot onlyperformwell across awide rangeof
futures (robustness), but they also do not make society unnecessarily worse-off with
respect to a set of relevant outcomes (pareto-efficiency)2. Because pareto-dominated
policies make members of society unnecessarily worse-off, seeking pareto-efficient
policies is an essential goal of policy analysis. While seeking robust, non-dominated
policies, decision-makers have to consider a number of factors, including the goals
that one seeks to achieve, the policy levers that are within reach, uncertainties that
can influence the decision between those policy levers, and how those elements are

2Some rigorous analyses considered robustness and pareto-efficiency of COVID-19 policies. For
example, analyses evaluating vaccination strategies [15, 16] do account for uncertainties and multiple
goals.
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connected. Table 1 contains the main elements of this decision problem that are
included in our analysis, using an XLRM framework [26]. The letters X, L, R, and
M refer to four categories of factors important to the analysis: outcome measures
(M) that reflect decision makers’ goals; policy levers (L) that decision-makers use to
pursue their goals; uncertainties (X) that may affect the connection between levers
and outcomes; and relationships (R), instantiated in the simulation model, that link
uncertainties and levers to outcomes. The subsequent sections provide details on
each of those four basic elements.

2.2 Relationships

This paper builds from the models underlying RANDs COVID-19 State Policy Tool
[10, 33, 36]. The original model and tool use a state-level deterministic epidemio-
logical model [33] and a general equilibrium economic model [36] to inform state
policymakers on the trade-offs of alternative NPIs. The set of NPIs used by each
US state is characterized by a discrete set of intervention levels ranging from 1 (no
intervention) to 6 (close schools, bars, restaurants, and nonessential businesses; and
issue a shelter-in-place order for everyone but essential workers). The economic
model [36] provides an estimate of weekly income loss for each US state and each
intervention level, which we integrate over time based on the NPI levels used in the
epidemiological model. The epidemiological model contains five strata: those below
18 years (Young), those with more than 65 years with or without chronic condi-
tions, frontline essential workers, working-age individuals with chronic conditions,
and working-age individuals without chronic conditions. Each intervention level is
associated with population mixing matrices that describe how strata interact with
each other in six different settings: household, work, school, commercial, recreation,
and other [10, 33]. Interventions are modeled as changing the level of mixing which
occurs in each of these settings. For instance, closing schools reduces school and
work mixing but increases home mixing. Given the specified model structure, the
NPI time series, and the mixing matrices, we can calibrate and run our model for
any US state using cumulative monthly deaths time series [37]. In this analysis, the
model was calibrated in the period of March 1st 2020 through Dec 25th 2020 for the
state of California. The policies are evaluated from Dec 25th through Jan 31st, 2021.
Further details about our model can be found in the Supplemental Information (SI)
section.
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2.3 Policy Levers and Strategies

Following the definitions commonly used in state-level plans, we define NPIs as
alternative sets of intervention levels. Within each NPI level, a set of restrictions
are imposed. For instance, when #%�C = 1, the lowest level, businesses and schools
are opened, although society may still have inexpensive policies in place, such as
mask-wearing. When #%�C = 6, the highest level, society imposes the most stringent
restrictions on people leaving their homes and interacting with others.

An NPI Strategy consists of a rule that determines how NPI levels change over
time. The time-dependent NPI level can be specified as a function of COVID-19
prevalence ?C using the controller function:

#%�∗C =


min(GBC ?C × 103, 5) + 1 if +C < +∗

1 if +C ≥ +∗
(1)

where ?C represents estimated COVID-19 prevalence scaled by 103, and GBC represents
the sensitivity of policymakers to this prevalencewhichwe label “level of caution”,+C
is the current vaccination coverage rate, and+∗ is the threshold vaccination coverage
rate at which policymakers terminate the use of NPI’s. The controller function is
bound between one and six, corresponding to the six intervention levels in ourmodel.
This results in a policy wherein a GBC 0.1% increase in COVID-19 prevalence results
in policymakers increasing restriction levels by one level until the highest restriction
level is adopted. This controller function provides a simple representation of the
types of phased reopening plans used by US states, such as California’s Blueprint
for a Safer Economy plan [3]. Eq. 1 also reflects the fact that policy-makers might
exhibit different levels of sensitivity to changes in COVID-19 prevalence, and that
this sensitivity GBC can change over time .

In this study, we ask how GBC should be managed over time. We evaluate three
types of NPI Strategies, denoted by B = �, ), and + , which differ in how the level
of caution GBC is managed. The strategies can use a constant level of caution (B = �),
a two-step function of time (B = )), or a smooth function of the proportion of the
population that is vaccinated (B = +). We define each type of strategy as follows:
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GBC =



G1 , if B = C

G1 , if B = ) and C < )


G1 , if B = ) and C ≥ )

G1

(
1 − 1

1+4−:2 (+C−+<83 )

)
, if B = +

(2)

The constant level of caution strategy (B = �) holds GBC constant at a baseline level
of caution G1 . The two-step strategy time-based strategy (B = )) begins with the
value G1 and changes to 
G1 at a predefined date )
 (i.e., )
 could be the beginning
of spring, or the fall). We assume, that and 0 > 
 > 1. The vaccination-based
strategy (B = +) calculates a time-varying level of caution as a smooth function of the
cumulative number of persons fully vaccinated +C using an inverse logistic function
that starts at 1 when +C = 0, and ends at zero when +C = 1, with mid-point +<83, and
curvature defined by :2. A particular NPI strategy is defined by the choice of values
for the parameters B, G1 , 
, +<83 , and :2 .

Figure 1 illustrates the model dynamics with a constant level of caution GC . This
formulation leads to frequent interventions, similar to patterns seen in California.
Note that with a low level of caution (G1 = 0.5) prevalence is allowed to increase sub-
stantially before a state takes action. With a high level of caution (G1 = 24) prevalence
is held much lower. As a reference, California’s current strategy is represented by a
level of caution of GC ≈ 5.3

Eqs 1 and 2 represent a range of alternative strategies to manage NPIs during vac-
cination roll-out. If California were to change its thresholds and reduce restrictions
in the fall of 2021, that could be represented by a time-based strategy B = ) with a
baseline level of caution G1 = 5, transition time )
 = �0;;, 2021 and a reduction factor
of 
 = 0.5. If 
 = 0, California would allow businesses and in-person education to
operate at )
. Similarly, California might decide to slowly scale down restrictions

3California’s criteria of 7 cases / 100 k to relax the most stringent intervention level translates to
a level of caution close to 5 in our model. One can translate a case rate threshold 2 to our model’s
level of caution G by approximating the known prevalence ? ≈ 2 ∗ � from Little’s Law [38], where � is
the average duration of the disease and 2 is the case rate criteria, and ? represents an estimate of the
prevalence. From that, and considering our model has five intervention levels, we can translate any
case rate criteria to a level of caution by letting G = 5/(2 ∗ � ∗ 103), which leads to a level of caution of
five when 2 = 7/100: and � = 14. We defined the range of the baseline level of caution parameter G1
by exploring the tradeoff surfaces they produce and ensuring that the range includes the edges of the
tradeoff space presented in figure 2. We do not include a level of caution of 0 because we regard this
level of caution as unrealistic.
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Cumulative Income Loss [%]
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Strategy C−0.5−1 C−24−1 C−6−1

Figure 1: Model dynamics with adaptive NPI strategies in California This figure
presents three illustrative runs testing three strategies in an example future state of
the world. Strategies are coded as follows throughout this paper. The first letter in
the strategy code represents the strategy type (C for constant caution, T for time-
based, and V for vaccine-based strategies). The subsequent number represents the
baseline level of caution G1 , and the third number is a sequential code to make the
strategy code unique. The full list of strategies tested in this paper is provided in
Appendix I. In this figure, the most stringent strategy, C-24-1 uses a level of caution
GC = 24 throughout the simulation run. Strategy C-6-1 uses a level of caution GC = 6
and produces similar results, while strategy C-0.5-1 results in a substantial increase
in deaths. None of these model runs represent a forecast.
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based on the number of vaccinations, such that restrictions would be halved when
50% of the population is vaccinated. This policy would be represented by a strategy
B = + , with G1 = 5 and +<83 = 0.5. We consider a set of strategies by combining
strategy types and their parameters in a full-factorial experimental design. The full
list of strategies and the parameters used in this paper is provided in Appendix I.

2.4 Uncertainties

Wecategorize uncertainties into twodistinct classes: well-characterized uncertainties
and deep uncertainties. Well-characterized uncertainties are those for which histor-
ical data or clinical evidence can provide information, either directly or through
calibration. Deep uncertainties [28] are those for which calibration or existing clini-
cal evidence provides little information at the time of this writing, and have a high
potential to affect the choice of the strategies.

Well-characterized uncertainties include the length of disease states, which are set
to fixed values based on published findings, and parameters that are selected using
model calibration, including the magnitude of the seasonal effect on mixing. Cali-
brated parameters are chosen using the Incremental Mixture Approximate Bayesian
Computation (IMABC) approach [39]. The IMABC algorithm results in 100 simu-
lated draws from the posterior distribution of the parameter set. This parameter set,
hereafter termed "calibrated parameters", contains values for 42 model parameters,
including information about how effectiveNPIs have been in the past, mortality rates,
and disease progression rates.

Deep uncertainties include vaccine efficacy to prevent transmission, the behav-
ioral mixing response to vaccination, willingness to vaccinate, changes in transmis-
sibility, immunity duration, and the actual vaccination rate. Uncertainties surround-
ing vaccine efficacy are particularly concerning given their impact on the pandemic
dynamics. While vaccine efficacy to prevent disease has been established, vaccine ef-
ficacy to prevent infection is unknown at the time of this writing [6, 40, 41]. Similarly,
the effect of new variant strains on transmissibility and other disease parameters is of
particular concern. For example, variants B.1.1.7, B.1.351, and P.1 have demonstrated
an impact on transmissibility, inactivity, and antibody escape capabilities[7].

To examine the impact of deep uncertainties on future outcomes, we first draw
a quasi-random sample of 200 unknown parameter vectors using Latin Hypercube
sampling to ensure representation of the parameter space. Details about these pa-
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rameters and their bounds are provided in Supplemental Materials under the Exper-
imental Design section. We then combine each row in our “calibrated parameters”
dataset with each row in our Latin Hypercube to create a new dataset with 20,000
rows in which each row represents a single future state of the world (SOW). The final
experimental design is obtained by testing each strategy in each of the 20,000 future
states of the world. We define our set of strategies using a full-factorial experimen-
tal design yielding 78 strategies, described in Appendix I. Hence, our experimental
design contains 1.56 million cases (78 strategies * 20,000 future states of the world).
Following the RDM approach [25], we evaluate how each strategy would perform in
a wide range of futures, and judge those strategies by their ability to cope with many
potential futures.

2.5 Outcome Measures

When judging alternative reopening strategies, policymakers often have to weigh
multiple criteria to make decisions. Our epidemiological model computes the cu-
mulative number of COVID-19 cases per 100,000 people including undetected cases,
years of life lost due to COVID-19 deaths per 100,000 people, and COVID-19 deaths
per 100,000 people. Reopening decisions, however, can have far-reaching social wel-
fare consequences which are not explicitly computed in COVID-19 epidemiological
models. While short-term economic impacts might have been limited in some cir-
cumstances [42], the full social welfare cost of NPIs includes the effects of interrupted
in-person education [43], mental health impacts of isolation, other illness exacerbated
by reduced use of non-COVID health services, impacts of financial effects on mental
and physical health, deaths of despair [44], and long-term loss of income. While we
are not aware of a published estimation of the total welfare loss induced byNPIs, one
needs to find criteria that can be computed from the model and are proportional to
the marginal welfare loss induced by alternative NPI levels.

One criterion one might use is the number of days under NPIs (#%�C > 1), which,
in our model, is equivalent to the number of days with school closures. This is the
outcome used in this paper to assess pareto-efficiency. While it is easily interpreted,
this number does not distinguish scenarios in which non-essential businesses are
closed for long periods, so other proxies for welfare loss might be desirable. One
approach is to useweights for eachNPI level, such that thoseweights are proportional
to the marginal daily welfare loss induced by each NPI level. With the purpose of
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demonstrating how this could be done, we use an estimate of Income Loss [36] as
those weights to present a proxy for economic consequences of NPI restrictions.
Although these proxies are imperfect measures of social welfare loss induced by
NPIs, our conclusions do not rely on their precision, but on the assumption that NPI
costs are increasing in the level of restriction. This structural assumption allows us to
illuminate trade-offs and reveal pareto-dominated strategies. Therefore, our findings
do not rely on the precision of any welfare loss estimate, but on the structure of the
epidemiological model4.

Because our interest lies in the robustness of strategies rather than in their opti-
mality for any particular future, we use Regret [25] as a robustness metric and the
75th Regret percentile as a decision criterion. Regret is computed for each metric of
interest as follows. We construct a dataset of model runs in which each row contains
the values of the outcomes defined above at the end of the simulation. Each row
in this dataset represents the performance of each strategy on each future state of
the world (SOW) characterized by uncertainties as described previously. Robustness
in this study is operationalized with a separate regret metric for each outcome of
interest. Regret 'B, 5 is defined for each strategy B in each SOW 5 as the difference
between the observed outcome and the best possible outcome in that future:

'B, 5 = �B, 5 −min
G
[�G, 5 ] (3)

The goal of the decision-making process is to adopt a strategy that minimizes
regret across a wide range of potential futures, across all of the outcomes of inter-
est. When trying to minimize regret across a wide range of outcomes and futures,
decision-makers often find that prioritizing a single set of outcomes imposes regret
on other outcomes. Similarly, minimizing regret in a single future might create vul-
nerabilities to other future states of the world. While a thorough discussion on the

4Alternatively, onemight estimate the costs ofNPIs using awillingness to pay or a similar approach.
As long as the resulting weights are monotonically increasing (i.e., people are not deriving utility
from NPI restrictions), our substantive findings would hold because we refrain from aggregating
measures. While estimating more precise welfare costs of NPIs and using those costs as a criterion
could be valuable to compare benefits and costs at the same scale, we doubt that this approach would
lead to precise estimates because these weights are likely not stable over time. Still, as long as these
weights are monotonically increasing in the NPI level at any point in time our substantive results would
hold. Because the weights are highly uncertain and potentially not constant, we refrain from trying to
aggregate all outcomes under a single socialwelfaremetric in our analyses as a traditional Cost-Benefit
analysis would. Instead, we assess pareto-efficiency and seek strategies that dominate other strategies
across a set of outcomes, over a wide range of futures.
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use of regret metrics is beyond the scope of this paper, the interested reader can refer
to methodological pieces discussing the use of robustness metrics [25, 26].

3 Results

This section describes two main results from our analysis, namely: i) the trade-offs
among the baseline and alternative strategies, and ii) the existence and characteristics
of dominated policies. While traditional decision analyses often rule out dominated
policies as a first step, we find it useful to focus our discussion on those strategies
with the goal of illuminating potential alternatives.

Figure 2 (A) presents the distribution of Deaths / 100,000 people for each strategy,
which are defined in Table 2. These results emphasize that only strategies that use a
high baseline level of caution are able to control deaths and thus result in low regret in
terms of deaths. The strategies using lower baseline levels of caution unsurprisingly
result in higher death regret. These results demonstrate that the baseline level of
caution non-linearly affects deaths. For example, figure 2 (B) demonstrates that there
is a significant reduction in the number of deaths when one compares the level of
caution 0.5 to 1.5, but using a level of caution of 24 instead of 12 marginally reduces
deaths.

The baseline strategy with a fixed level of caution (C-6-1) seems to achieve a
compromise when compared to more stringent strategies. More stringent strategies
(i.e., C-24-1, C-12-1) are able to achieve a lower number of deaths regret, but doubling
the level of caution does not halve the number of deaths, nor does it double the
social welfare costs, as measured by Loss of Income or Days under NPIs. This
result indicates that a baseline strategy with a level of caution G1 > 6 is necessary
to robustly control the number of deaths. If the goal of policymakers was only to
minimize the number of deaths from the pandemic, these results would imply that
the best approach would be to sustain the highest level of caution indefinitely.

Preventing deaths, however, comes with a cost. Figure 2 (B) contains other out-
comes produced by the set of strategies evaluated. In figure 2 B, each line represents
one of the 78 tested strategies, and the parallel axes summarize the performance of
each strategy using the 75Cℎ percentile 5 of the regret distribution shown in panel A

5There are multiple approaches to summarize the many-objective robustness trade-offs implied by
alternative strategies when evaluated across a wide range of plausible futures. For example, if one
chooses the 100Cℎ percentile, this approach corresponds to a minimax regret criterion. If one chooses
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Figure 2: Robustness Trade-offs emerging from78 alternative reopening strategies.
Panel A shows the distribution of a Regret metric for four outcomes of interest. Each
line in Panel B and C represents a single strategy. Vertical axes represent the 75Cℎ
Regret percentile for each metric. All Health outcomes are normalized per 100
thousand people. Strategies are coded as follows. The first letter indicates whether
the NPI strategy uses a Time-based level of caution (T), a Vaccination-Based level of
caution (V), or a Constant level of caution (C). The subsequent number describes the
baseline level of caution G1 and a third number is a sequential number that creates a
unique code for each strategy. Table 2 contains a description of all strategies.
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for each one of the metrics. Again, this figure reveals that only strategies with higher
baseline levels of caution (i.e., G1 > 3) are able to reach the bottom of the Deaths
regret scale. Unsurprisingly, strategies that achieve the lowest numbers of deaths are
also the ones that generate the highest social welfare costs, as measured by the two
proxies available. Although the order of magnitude of the outcomes can vary among
other models, this finding is in line with prior studies using multiple models [8].

Strategy Strategy Parameters Deaths / 100k NPI Days
C-0.5-1 constant 93 73
C-1.5-1 constant 50 161
C-3-1 constant 28 209
C-6-1 constant 12 238
C-12-1 constant 4 247
C-24-1 constant 0 252
V-24-2 +∗ = 60%; :2 = 15 1 248
V-24-6 +∗ = 50%; :2 = 15 3 240
V-24-5 +∗ = 50%; :2 = 10 2 244
T-24-4 
 = 50%;)
 = 2021 − 03 − 10 4 229
T-24-3 
 = 10%;)
 = 2021 − 09 − 26 5 225
T-12-2 
 = 10%;)
 = 2021 − 07 − 04 18 192
T-24-2 
 = 10%;)
 = 2021 − 07 − 04 9 213

Table 2: 75Cℎ Regret percentiles by metric and strategy for a set of non-dominated
and constant-caution strategies. The table presents a subset of the strategies evalu-
ated in this paper including only Non-Dominated strategies and Constant strategies.
The complete list of strategies is available in Appendix I. The first letter in the strategy
code stands for the strategy type (C for constant caution, T for time-based, and V
for vaccine-based). The subsequent number represents the baseline level of caution
G1 , and the third number is a sequential number making the strategy code unique.
The parameters column describes policy levers that characterize each strategy, as
described in the methods section. The final three columns present the 75Cℎ regret
percentile of three metrics of interest.

Although the baseline strategy (C-6-1) seems to produce acceptable health out-
comes given the other alternatives, that does not imply that this strategy is pareto-
efficient. To assess pareto-efficiency, we categorize strategies into three classes. Non-
dominated strategies are those that are not outperformed by any other strategy with

the mean and assumes that future states of the world are equally probable, that would correspond to
a Laplace criterion. Here we choose the 75Cℎ percentile. While changing this percentile can change
the strategy rankings, doing so did not change the main substantive conclusions of this paper that
constant-caution strategies were dominated.
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respect to health and social welfare outcomes using the 75Cℎ regret percentile as a
criterion6. We select strategies with relatively low numbers of deaths seeking to
represent a decision-maker that is willing to prioritize health outcomes. Finally,
dominated strategies are those that exhibit worse health or social welfare outcomes.
These strategies are color-coded in panels C and D of figure 2.

Figure 2 (D) reveals a troubling pattern for strategies based on constant thresh-
olds. The figure illustrates that strategies with constant levels of caution (circles)
are dominated by many vaccination and time-based strategies. Vaccination-based
strategies (squares) and time-based strategies (triangles) are closer to the origin in
that plot. We find that strategies using a constant level of caution (the circles in figure
2 D) are systematically dominated, except for the most stringent strategy or the most
relaxed strategies. That is to say, unless society is willing to indefinitely sustain the
highest level of stringencywe considered, sustaining a fixed level of caution is always
dominated by strategies that change the level of caution over time.

The strategies that dominate the baseline strategy (C-6-1) while resulting in a
lower or equivalent number of deaths share the same characteristics. They start with
a higher level of caution, then relax as vaccination and time advances. For example,
strategy T-24-2 starts with a higher level of caution of 24 and relaxes its level of cau-
tion by 90% on the fourth of July. This strategy outperforms the baseline strategy
by achieving lower social welfare and health regrets. Starting with high stringency
levels then relaxing when immunity is widespread is arguably what other coun-
tries with higher capacity to control COVID-19 (i.e., New Zealand) will do and our
results support that strategy. Although California’s Blueprint for a Safer economy
plan originally had fixed thresholds, California has imposed a regional stay-at-home
order from December 2020 through January 2021, effectively increasing the level of
caution in that period. Recently, California updated its plan and made it depen-
dent on vaccination rollout. Our results generally support changes on reopening
plans that effectively make reopening policies more stringent while immunity is not
widespread. Nonetheless, our results also demonstrate that stress-testing a wide
range of strategies against other alternatives is important to ensure that the selected
policies are not pareto-dominated by other alternatives.

While simpler SEIRmodelswith homogenous populationsmight produce similar
results, that does not need to be the case. We attribute our results and the rationale be-

6Because all health outcomes are correlated, we use Deaths and Days under NPIs as criteria to
perform pareto-sorting and determine which policies are dominated.
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hind the vaccine-based strategies to the interactions between the vaccination strategy
being used and the heterogeneities included in ourmodel. Asmore individuals from
the most vulnerable groups are immunized first, the average infection-fatality ratio
(IFR) amongst the currently infected should decrease, thus suggesting that strategies
with a fixed level of caution would be dominated. In the limit, as we approach an
endemic state [45], the marginal benefit of NPIs decrease and the strategies account-
ing for these dynamics dominate strategies with fixed thresholds. The time scale
of that transition depends on several factors, including heterogeneous fatality rates,
vaccination strategy, and the rate at which immunity increases in the population.
Other models, such as similar ODEs models or agent-based models that incorporate
those heterogeneities should reach similar conclusions.

4 Conclusion

Our main substantive conclusion is that adaptive reopening strategies with fixed
thresholds can be dominated by alternatives that are more stringent but change
their stringency over time. While this finding points to potentially better policies, it
also demonstrates that seemingly sensible reopening policies might not be pareto-
efficient. This finding has important implications for existing reopening plans, not
only in California but also for other US states and countries pursuing similar reopen-
ing strategies. These findings suggest that localities with stringent policies might
have to craft time or vaccine-based reopening policies as vaccination is made widely
available. Similarly, jurisdictions pursuing strategies with a low baseline level of
caution might be trading death regret for small benefits, and are vulnerable to the
emergence of new, more transmissible strains. Failing to cautiously adjust reopen-
ing policies will result in excess deaths from premature reopening decisions and/or
unnecessary economic burden on those most vulnerable. While balancing multiple
outcomes has not generally been done formally (i.e., we fail to find published rig-
orous analyses comprising a wide range of alternatives associated with reopening
plans), these decisions are arguably the most important policy decisions of 2021.

After demonstrating that current strategies can be pareto-dominated, the next
question is whether and how pareto-efficient strategies can be implemented. This
paper does not offer a fixed timetable forwhen thresholds should be changed because
doing so would defeat the purpose of our quest for robust reopening strategies. In
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our model, strategies are defined with respect to local conditions such as the number
of cases and vaccination rates, which may be different across regions. However,
after running our analysis and considering a large experimental design for a single
state as we did for California, one can find a time-based reopening strategy that
approximates the performance of the robust vaccination-based strategy, provided
that vaccination progresses as expected. Translating a vaccination-based strategy to
a time-based might prove useful for implementation purposes because vaccination
strategies were defined as smooth functions of vaccination. Because vaccination rates
are not equal across jurisdictions and the immunity status of the population would
differ, the resulting timetablewouldbedifferent for each jurisdiction, butwould likely
dominate alternative fixed-threshold strategies. Nevertheless, the general result that
fixed-threshold reopening policies are dominated would still hold because they are a
result of model structure, not parameters that describe the population of California.

The disparities exacerbated by the pandemic offer a compelling reason for more
concern and rigor indefining reopeningplans. While affluentpopulations arehedged
against health and economic risks by savings and remote employment, vulnerable
populations - within the US and abroad - have been experiencing the worst of the
pandemic. Vulnerable populations were more likely to have had COVID-19 [34], be
denied in-person education [43], and experience hunger during the pandemic [46].
How NPIs are managed in the next several months will determine the outcomes of
the COVID-19 pandemic and will shape the trade-offs that these populations face.
While our paper did not explicitly evaluate outcomes for distinct sub-populations
within California or other jurisdictions, the evidence so far overwhelmingly points to
the conclusion that populations at the margins are likely to pay a high proportion of
the costs presented in this analysis, and therefore will bear the burden of dominated
reopening strategies. If policymakers choose pareto-dominated reopening strategies,
then it is inevitable that the already vulnerable populations will be the most affected
by the consequences of dominated decisions.

Even after accounting for multiple uncertainties and simulating a wide range of
strategies under many conditions, our analysis still presents limitations. While we
account for three behavioral responses in our model (increase in mixing due to vac-
cination, change in transmissibility driven by changes in behaviors, and willingness
to vaccinate), this analysis does not contain an endogenous behavioral response to
changing prevalence other than the effects induced by the NPIs. In reality, people
likely voluntarily react to COVID-19 prevalence, businesses adapt their operations
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to reduce the risk of transmission, and all these responses endogenously reduce the
need for state-mandated NPIs. Similarly, when individuals or businesses relax, new
surges can happen. These endogenous behavioral responses would likely introduce
additional oscillations and dynamic challenges to the NPIs and might even dom-
inate model dynamics if included. However, we are not aware of comprehensive
behavioral models that we could confidently apply to our model at this stage. Better
incorporating plausible behavioral mechanisms in our model is one of the next steps
in our research agenda, and could reveal even more interesting results.

Although we consider immunity duration as an uncertainty, our analysis does
not explicitly account for multiple components of immunological protection that
will likely influence the transition to an endemic state [45]. However, doing so would
likely strengthen the case for time-varying strategies. If sterilizing immunity is short-
lived but second infections have a substantially lower IFR, then loss of immunity
[47] will represent a smaller challenge going forward, thus requiring a lower level
of intervention in the future. This analysis also does not address other long-term
outcomes from alternative policies (lack of traditional education in the long-term
educational outcomes, long-term COVID-19 health effects such as lung damage,
mental health impacts of isolation, other illness exacerbated by reduced use of non-
COVID health services, the impact of financial effects on mental and physical health,
etc.).

Another limitation is a result of ourmodel structure. Themodel used in this anal-
ysis is a deterministic ODE model with heterogeneous population strata, implying
that eradicating COVID-19 is never achieved and that the state. While this assump-
tion might be reasonable for US states given the lack of coordination among states,
this assumption is not reasonable for smaller countries or countries with tight travel
controls that prevent re-seeding (e.g., NewZealand). Such countries can benefit from
our framing but should adopt models that can represent eradication. Because our
model is defined at the state level, this analysis also does not represent interactions
among different geographic levels. Accounting for multiple geographic levels and
re-seeding would also likely weaken the case for constant strategies and strengthen
our conclusions. Finally, this analysis does not explicitly consider distributional con-
cerns. While these limitations have the potential to shift the tradeoff curves, they are
unlikely to change our substantive results. Future iterations of this analysis might
choose to include these additional mechanisms and further stress test more policies
against an even wider set of uncertainties.
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Despite these limitations, this analysis demonstrated that the RDM approach
can be useful to stress-test a wide range of COVID-19 reopening policies under
conditions of deep uncertainty. More broadly, other decision-making under deep
uncertainty (DMDU) methods and tools [28] might also prove useful. Our approach
can accommodate the relaxation of the structural assumptions mentioned above,
allowing the policy set to be tested in an increasingly larger experimental design,
helping to meet the demand for rational policy-making during a pandemic [48]. In
that regard, our work contributes to a stream of analyses [49, 50] and initiatives [51]
that seek to address structural uncertainties in infectiousdiseasemodels. RDMshares
many of the goals of these approaches [50] but differs in how it addresses uncertainty.
Understanding those differences and how DMDU methods can contribute to and
learn from existing approaches used by infectious disease modelers might be useful
to help policymakers make better decisions in this and the next pandemic.
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Appendix I - List of Strategies

Table 3 characterizes each strategy assessed in this paper. Each row represents
one strategy, their corresponding parameters, and the 75Cℎ percentile of the regret
distribution over the 20,000 futures under which each strategy was tested. Lower
regret represents better performance. The parameters in this table as used in the
equations discussed in the Methods - Policy Levers section. Figure 3 illustrates
that the information provided in table 3 is a summary of the regret distributions of
each one of the strategies. While table 3 provides a summary of our findings, figure 3
illustrates howdifferent strategies handle the challenges imposed by the uncertainties
we used for our stress-tests, and how outcomes vary even when strategies are fixed.
Figure 3 A shows that strategies with lower levels of caution tend to result in more
deaths and lower numbers of days under NPIs. Strategies with higher levels of
caution absorb those challenges by imposing longer intervention periods. Figure 3
B shows that adaptive strategies with different initial levels of caution can achieve
similar results, hinting that it is possible to start with higher levels of caution and
adaptivelydecrease the level of caution (e.g, T-12-2, T-24-2)while arriving at outcomes
that are similar to outcomes obtained by strategies with constant levels of caution
(e.g., C-6-1).

Strategy codes are defined as follows. The first two columns describe the charac-
teristics of each strategy. The first letter in the strategy name represents the strategy
type (C for constant caution, T for time-based, and V for vaccine-based strategies).
The subsequent number represents the baseline level of caution G1 , and the third
number is a sequential code to make the strategy code unique. The parameters col-
umn describes the policy levers that characterize each strategy, as described in the
methods section. The final three columns present the 75Cℎ regret percentile of three
metrics of interest.

Table 3: Strategy characteristics and many-objective robustness measures.

Strategy Strategy Parameters Deaths / 100k NPI Days
C-0.5-1 constant 93 73
C-1.5-1 constant 50 161
C-3-1 constant 28 209
C-6-1 constant 12 238
C-12-1 constant 4 247
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Table 3 – continued
Strategy Strategy Parameters Deaths / 100k NPI Days
C-24-1 constant 0 252
V-0.5-2 +∗ = 60%; :2 = 15 93 72
V-1.5-2 +∗ = 60%; :2 = 15 53 153
V-3-2 +∗ = 60%; :2 = 15 31 200
V-6-2 +∗ = 60%; :2 = 15 14 231
V-12-2 +∗ = 60%; :2 = 15 5 242
V-24-2 +∗ = 60%; :2 = 15 1 248
V-0.5-1 +∗ = 60%; :2 = 10 94 71
V-1.5-1 +∗ = 60%; :2 = 10 54 149
V-3-1 +∗ = 60%; :2 = 10 32 197
V-6-1 +∗ = 60%; :2 = 10 15 230
V-12-1 +∗ = 60%; :2 = 10 5 243
V-24-1 +∗ = 60%; :2 = 10 1 248
V-0.5-6 +∗ = 50%; :2 = 15 94 70
V-1.5-6 +∗ = 50%; :2 = 15 58 140
V-3-6 +∗ = 50%; :2 = 15 37 181
V-6-6 +∗ = 50%; :2 = 15 19 213
V-12-6 +∗ = 50%; :2 = 15 8 232
V-24-6 +∗ = 50%; :2 = 15 3 240
V-0.5-5 +∗ = 50%; :2 = 10 95 68
V-1.5-5 +∗ = 50%; :2 = 10 59 138
V-3-5 +∗ = 50%; :2 = 10 37 182
V-6-5 +∗ = 50%; :2 = 10 19 218
V-12-5 +∗ = 50%; :2 = 10 8 238
V-24-5 +∗ = 50%; :2 = 10 2 244
V-0.5-4 +∗ = 40%; :2 = 15 95 65
V-1.5-4 +∗ = 40%; :2 = 15 68 123
V-3-4 +∗ = 40%; :2 = 15 50 154
V-6-4 +∗ = 40%; :2 = 15 33 177
V-12-4 +∗ = 40%; :2 = 15 19 202
V-24-4 +∗ = 40%; :2 = 15 10 222
V-0.5-3 +∗ = 40%; :2 = 10 97 62
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Table 3 – continued
Strategy Strategy Parameters Deaths / 100k NPI Days
V-1.5-3 +∗ = 40%; :2 = 10 66 124
V-3-3 +∗ = 40%; :2 = 10 46 161
V-6-3 +∗ = 40%; :2 = 10 27 195
V-12-3 +∗ = 40%; :2 = 10 14 224
V-24-3 +∗ = 40%; :2 = 10 6 238
T-0.5-6 
 = 50%;)
 = 2021 − 09 − 26 93 73
T-1.5-6 
 = 50%;)
 = 2021 − 09 − 26 53 155
T-3-6 
 = 50%;)
 = 2021 − 09 − 26 31 200
T-6-6 
 = 50%;)
 = 2021 − 09 − 26 14 223
T-12-6 
 = 50%;)
 = 2021 − 09 − 26 5 238
T-24-6 
 = 50%;)
 = 2021 − 09 − 26 1 249
T-0.5-5 
 = 50%;)
 = 2021 − 07 − 04 93 72
T-1.5-5 
 = 50%;)
 = 2021 − 07 − 04 56 140
T-3-5 
 = 50%;)
 = 2021 − 07 − 04 34 191
T-6-5 
 = 50%;)
 = 2021 − 07 − 04 16 224
T-12-5 
 = 50%;)
 = 2021 − 07 − 04 6 240
T-24-5 
 = 50%;)
 = 2021 − 07 − 04 1 248
T-0.5-4 
 = 50%;)
 = 2021 − 03 − 10 104 53
T-1.5-4 
 = 50%;)
 = 2021 − 03 − 10 71 127
T-3-4 
 = 50%;)
 = 2021 − 03 − 10 46 165
T-6-4 
 = 50%;)
 = 2021 − 03 − 10 24 211
T-12-4 
 = 50%;)
 = 2021 − 03 − 10 11 222
T-24-4 
 = 50%;)
 = 2021 − 03 − 10 4 229
T-0.5-3 
 = 10%;)
 = 2021 − 09 − 26 93 73
T-1.5-3 
 = 10%;)
 = 2021 − 09 − 26 53 149
T-3-3 
 = 10%;)
 = 2021 − 09 − 26 36 182
T-6-3 
 = 10%;)
 = 2021 − 09 − 26 22 204
T-12-3 
 = 10%;)
 = 2021 − 09 − 26 12 217
T-24-3 
 = 10%;)
 = 2021 − 09 − 26 5 225
T-0.5-2 
 = 10%;)
 = 2021 − 07 − 04 93 72
T-1.5-2 
 = 10%;)
 = 2021 − 07 − 04 64 130
T-3-2 
 = 10%;)
 = 2021 − 07 − 04 54 147
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Table 3 – continued
Strategy Strategy Parameters Deaths / 100k NPI Days
T-6-2 
 = 10%;)
 = 2021 − 07 − 04 33 168
T-12-2 
 = 10%;)
 = 2021 − 07 − 04 18 192
T-24-2 
 = 10%;)
 = 2021 − 07 − 04 9 213
T-0.5-1 
 = 10%;)
 = 2021 − 03 − 10 124 0
T-1.5-1 
 = 10%;)
 = 2021 − 03 − 10 109 65
T-3-1 
 = 10%;)
 = 2021 − 03 − 10 93 92
T-6-1 
 = 10%;)
 = 2021 − 03 − 10 71 112
T-12-1 
 = 10%;)
 = 2021 − 03 − 10 47 130
T-24-1 
 = 10%;)
 = 2021 − 03 − 10 26 161
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Figure 3: Regret distributions for a sub-set of strategies. This figure presents the
performance of a subset of the strategies presented in terms of Deaths / 100 k people
regret and Number of Days under NPIs regret. Each dot in this plot represents
the performance of each strategy in one of the 20,000 futures. The color gradient
represents Change in Transmissibility uncertainty.
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Supplemental Information

1.1 Model Overview

Themodel used in this analysis is based on our previously publishedODEmodel [10]
and its recent extension [33]. Figure 4 presents an overview of our compartmental
model, whereby individuals in our population progress over the different stages of
the infection.
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Figure 4: Compartmental Model Structure. Each circle in this figure represents a
progression state, each subdivided in 5 population strata. For simplicity and clarity,
the figure omits arrows representing loss of immunity (from the recovered states to
the S state). See equations for details.

Individuals in our population are divided into 21 compartments. The set of com-
partments that are common to our NPI-only model include: The noninfected and
susceptible ((), the exposed and infected but not yet infectious (�), the presymp-
tomatic or primary infectious stage (%), the infected with mild symptoms (�(<), the
infected with severe symptoms (�(B), the diagnosed infected with mild symptoms
(.(<), the diagnosed infected with severe symptoms (.(B), the non-ICU hospitalized
(�), the hospitalized in the ICU (���* ), the infected asymptomatic (��), the diagnosed
infected asymptomatic (.�), and those that died (�). We assume that individuals in
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the % and �� compartments are completely asymptomatic and thus are unaware of
being infectious. All those compartments were present in our previous work [10, 33].

The model used in this paper includes new compartments aiming to represent
vaccination roll-out. Here, we focus our description on these compartments. New
compartments include those who have received a full vaccination dose (+), the vac-
cinated who have been infected and are in the exposed and infected but not yet
infectious stage (�E), the vaccinated in the presymptomatic infectious stage (%E), the
vaccinated in the infected asymptomatic (��E) and those diagnosed infected asymp-
tomatic (.�E). This model also has three distinct recovered stages '� , '� and '�E

allowing us to respectively track those that have recovered having been symptomatic,
non-vaccinated asymptomatic, and vaccinated asymptomatic.

The arrows connecting the disease states describe the progression rates between
the different compartments. We assume that mild symptoms are a dry cough and
a fever, while severe symptoms also include shortness of breath. The sum of the
population in all of the states gives the total population # . However, we assume that
# = 1 and thus each state variable gives the proportion of the population belonging
to that state.

1.1.1 Model Formulation

Our compartmental model is described by the following set of coupled ordinary
differential equations (ODEs):

¤( = −�( − $(C)(, (4)
¤+ = $( − �E(, (5)
¤� = �( − ��, (6)
¤% = �� − (�( + ��)%, (7)
¤�E = �E+ − �E�E , (8)
¤%E = �E�E − (�+ + ��E)%, (9)
¤�� = ��% − [�� + ��(C)]�� , (10)
¤.� = ��(C)�� − �∗�.� , (11)
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¤��E = ��E% − [�� + ��E(C)]��E , (12)
¤.�E = ��E(C)��E − �∗�.�E , (13)
¤�(< = �(% − [ + �< + �((C)]�(< , (14)
¤.(< = �((C)�(< − [ ∗ + �∗<].(< , (15)
¤�(B =  �(< − [�B + �B + ℎ�� + (1 − ��)�((C)]�(B , (16)
¤.(B = (1 − ��)�((C)�(B +  ∗.(< − [�∗B + �B + ℎ∗��].(B , (17)
¤� = �[ℎ�(B + ℎ∗.(B] − [�� + " + ��]�, (18)

¤���* = ���*"� − [���* + ���*]���* , (19)
¤'� = ���� + �∗�.� , (20)
¤'�E = ����E + �∗�.�E , (21)
¤'( = �<�(< + �∗<.(< + �B �(B + �∗B.(B + ��� + ���*���* , (22)
¤� = �((�(B + .(B) + [�� + (1 − ���*)"]� + ���*���* . (23)

Many of the ODEs and transition rates in equations 4 -23 are the same as those
used by our first COVID-19 transmission model described in our recent work [33].
Here we focus on providing a high-level overview of the way NPIs are represented
in our model and on describing the additions made to the ODEs and the model.
Vaccination is the most important addition compared to our previous model, and
most of the description is centered around how we model vaccination.

The additional disease compartments include new disease-specific progression
rates. In particular, disease progression rates for those that have vaccinate can differ
from those who have not. The vaccination rate is given by the parameter $(C), de-
scribed later in this paper. We denote the per-person progression rate from exposure
to the presymptomatic for those vaccinated by �E . The progression rates for those
who vaccinate differs from the progression rates for those who do not vaccinate.
Hence, the progression rates �E and ��E are not respectively equal to �( and ��.
However, we assume that the overall duration of the presymptomatic phase does
not change with vaccination. Hence, (�E + ��E)−1 = (�( + ��)−1. However, the pro-
portion 0E of those vaccinated that remain asymptomatic is higher than the same
proportion 00 of those who did not. Hence, 0E > 00, where 0E = ��E(�E + ��E)−1 and
00 = ��(�( + ��)−1. We assume that those who have been vaccinated but get infected
and develop mild symptoms progress through the disease’s clinical states as if they
were not vaccinated. Hence, for these people, we assume that the vaccine has failed
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and no longer provides benefits. However, the majority of vaccinated individuals
will continue to stay asymptomatic. Their disease progression rate is the same as
those asymptomatic who did not vaccinate except for the detection rate. We assume
that those who are vaccinated and asymptomatic have a lower rate of seeking to get
tested, and hence ��E < ��.

Our model also tracks additional outputs. We compute the true cumulative case
counts ¤�) ; the reported cumulative case counts ¤�', the cumulative number of people
tests ¤), the reported recovered ¤'', the reported deaths ¤�' and the reported case-
fatality rate CFR'(C). These output quantities are respectively computed using the
following equations.

¤�) = �, (24)
¤�' = �([�(< + (1 − ��)�(B] + ℎ�� �(B + ���� , (25)
¤) = ¤�' + �(( + � + %), (26)
¤'' = �∗�.� + �

∗
<.(< + �∗B.(B + ��� + +���*���* , (27)

¤�' = ¤� − �(�(B , (28)

CFR'(C) = �'(C)/�'(C). (29)

1.1.2 Population Groups and Mixing

Our model considers different population groups or strata. We consider five popu-
lation strata, including the front-line essential workers (FLEW), the employed non-
FLEW, the unemployed, minors of age below 17, and seniors of 65 and above. The
first three population strata only include those aged 18 to 64. The prognosis param-
eters that enter the ODEs depend on the population strata. Prognosis parameters
include the proportion of people that develop symptoms (i.e., �(, ��, �+ and ��E),
the proportion of symptomatic who develop severe and critical symptoms (i.e.,  and
"), and the proportion of critical cases that lead to death without pharmaceutical
treatment (i.e., ���* ).

The structure of the model is expressed as an array of ODEs, where the disease
progression dynamics for each stratum are expressed by equations 4-23. This for-
mulation extends the model from the more conventional version of a single-strata
compartment model that assumes homogeneous mixing and implicit interactions
within the population. Heterogeneity in disease transmission is introduced by strata-

42



dependent mixing contact rates describing the variations in how people belonging to
the different population strata mix with each other. These strata-dependent mixing
contact rates control the transmission dynamics, specifically the force of infection terms
� and �E that enter the ODEs. We consider six different mixing modes including
household, work, school, commercial, recreation, and other. We used a combination
of a network-based dataset and self-reported survey data to create matrices describ-
ing the average daily contacts between each stratum in eachmixingmode [52, 53]. We
decompose these matrices into a set of row normalized five-by-five mixing matrices
M< , column normalized contact vectors �< , and scalar mode weight F< for each
mixing mode labeled by the index <. The total contact matrix,  is calculated by a
weighted sum of the mode-specific contact matrices K< , and expressed as

K =

∑
<

F<[�< �M<] =
∑
<

F<K< , (30)

where � denotes the element-wise multiplication. The weights, F< give the pro-
portion of contacts (or duration of contacts) of how people mix over the different
mixing modes. Under the disease-free status-quo conditions these weights sum to
one, hence

∑
< F< = 1.

1.1.3 Modeling SARS-CoV-2 transmission

SARS-CoV-2 transmission is modeled by the force of infection � which characterizes
how infectious people in each disease state infect others. We express the force of
infection as a vector of five elements, one for each stratum and expressed as

�(C) = :�24 5 5 �4 5 5K ·
∑
-�

<-�X�(C), (31)

where 24 5 5 represents the effective contact rate, and �4 5 5 effective transmissibility, and
-� represents the set of the infectious disease compartments. This set includes all
the disease stages that are infectious, including those that follow from disease trans-
mission of vaccinated people, namely %E , ��E and .�E . People who have COVID-19
symptoms or are diagnosed are less likely to mix socially. Moreover, people in the
early stages of the disease are more infectious. Hence, we use the coefficients <-�

to represents the multiplicative reduction factor for infectious states -� that scale
the transmission rate relative to the asymptomatic and unaware of being infectious.
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We compute the value of the product 24 5 5 �4 5 5 by setting the values of the basic
reproductive ratio '0. By using the next-generation matrix method we find that
24 5 5 �4 5 5 = '0/C4 5 5 , where the time scale C4 5 5 is expressed in terms of the multiplica-
tive coefficients <-� and the values of the disease progression rates [33, 54]. The
multiplicative factor :� represents a calibration constant. Heterogeneity in transmis-
sion rates across the population strata is accomplished by the total contact matrix
 .

Our model assumes imperfect vaccines whereby those who vaccinate may still
contract the disease and become infectious and symptomatic. In section 1.1.7 we
describe howwemodel the efficacy of the vaccine and the virus transmission amongst
those who vaccinated.

1.1.4 Nonpharmaceutical Intervention Levels

Nonpharmaceutical interventions (NPIs) based on social distancing reduce the total
number of unique contacts. They are modeled using a different set of scalar weights
F< that enter equation 30, and are such that their sum is less than one. For exam-
ple, we can set all values of F< to zero except for < = Household mixing, which
retains its original value or perhaps increases it. Additionally, we can modify the
mixing matrix M< for < = Household mixing to describing a different behavior of
age group mixing within a household due to the new social-distancing measures.
Hence, we obtain a different contact matrix  . Specifically, to model the impact of
reduced mixing from NPI level = on mode <, we define a diagonal matrix Φ{=}< . The
diagonal elements ofΦ{=}< specify the reduction inmixing for each stratum inmode<
relative to the disease-free state. For interventions that apply to all strata (i.e., where
each stratum changes their mixing by the same proportion), such as the closure of
schools, all diagonal elements of Φ{=}< have the same value. However, there are some
interventions that only apply to some strata and not others. For example, the case
when only essential front-line workers are expected to attend their workplaces. In
such cases, the diagonal elements of Φ{=}< take on different values, each specifying the
strata-mode specific impact of the NPI. Hence, the expression for K{=} that accounts
for the impact of NPIs is:

K{=} =
∑
<

F<

{
(Φ{=}< )

1
2 K<(Φ{=}< )

1
2

}
. (32)
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NPI Level (=) Description

Level 1: No Intervention No Intervention
Level 2: Close schools All schools are closed.
Level 3: Close schools, bars, and
restaurants; and ban large events

In addition to school closures, all
bars’ and restaurants’ dine-in services
are closed, only allowing for take-out
options. Also, large gatherings are
banned.

Level 4: Close schools, bars, and
restaurants; ban large events; and close
nonessential businesses

In addition to school, bar, and restau-
rant closures, all nonessential busi-
nesses are closed.

Level 5: Close schools, bars, and
restaurants; ban large events; close
nonessential businesses; and shelter in
place for the most vulnerable

In addition to the closure of all
nonessential businesses, a shelter in
place recommended for the vulnerable
population, including the elderly, chil-
dren, and other at-risk populations.

Level 6: Close schools, bars, and
restaurants; ban large events; close
nonessential businesses; and shelter in
place for everyone but essential work-
ers

In addition to the interventions above,
shelter in place order is issued for ev-
eryone but essential workers.

Table 4: Nonpharmaceutical intervention levels.. This table describes theNPI levels
used by our original model [10]. While the levels could be reorganized to represent
alternative preferences (i.e., reopening schools before restaurants), we find that this
sequence was roughly equivalent to the sequence used in California. NPI levels im-
plicitly account for adaptation and mitigation measures undertaken to reopen these
sectors. Those effects, if observed in the past, are absorbed by an NPI effectiveness
factor during calibration.
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Table 4 provides a description of the intervention levels which are denoted by the
index =. These intervention levels are used in our model to mechanistically change
the transmission processes at different mixing modes and the goal of the model is to
compute the consequences of that level of transmissiononhealthoutcomes. However,
using only those outcomes is not sufficient to properly inform decision-making. As
discussed in the methods section, it is desirable to use additional outcome measures
to evaluate the pareto-efficiency of alternative strategies. Because minorities and
workers at high-contact service industries (e.g., hospitality and leisure) are more
likely to face unemployment and income loss during the pandemic [? ], accounting
for the effects of policies on those populations is essential if modelers seek to provide
comprehensive decision support to policymakers. For these reasons, we seek to use
measures that are monotonically increasing relative to the unknown marginal effect
of NPIs on social welfare. This paper uses the number of days of NPIs as the primary
measure. In addition to that measure we obtain an estimate of the weekly income
loss incurred in each of the NPI levels using the baseline estimates from the general
equilibrium economic model [36]. At the end of the simulation run, we aggregate
the income loss incurred under each NPI level.

1.1.5 Modeling Adaptive Strategies

This paper presented only three alternative types of adaptive strategies, which re-
sulted in 78 alternative strategies. Yet, there are many potential ways to frame and
model reopening policies. Instead of addressing the question of when society can
reopen schools by simulating outcomes under a simple set of rules with an exoge-
nous NPI time-series, we use an endogenous controller to represent a strategy and
ask how policymakers shouldmanage their level of caution over time. The difference
between the two questions is important. While other studies [8] and our early work
[10] addressed the impact of specific fixed policies, this approach does not address
the important question of how to adapt policies over time conditional on vaccination.
While the first question allows a simple comparison and is more intuitive, the first
framing inevitably results in large outbreaks if stringent policies are not followed,
and might lead to recommendations that are vulnerable to new strains with higher
transmissibility. Because the benefits of NPIs are a non-linear function of the im-
munity status in the population, and because immunity is changing over time, a
set of fixed intervention schedules can result in a menu of options that would be
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pareto-dominated if a wider set of options was included. This is the main concern
and motivation for expanding the option set with alternative strategies.

Framing policies as endogenous also has disadvantages. This formulation implies
that policymakers can and will sustain a coherent level of caution over time, and
strictly follow that strategy. We remedy this disadvantage by conceptualizing the
level of caution as a potentially time-varying control and implementing a stopping
condition to cease the use of NPIs once an immunity threshold based on vaccination
is crossed. This approach allows us to answer specific questions such as "when
interventions can be lifted" while using an endogenous controller that is more robust
to uncertainties and representative of adaptive policies. Rather than being an input,
the date when NPIs are relaxed is an outcome - a function of policy levers and the
uncertainties. The rationale behind this formulation is that policymakers will face
higher pressure to relax policies as awider proportion of the population is vaccinated.

One approach to reconciling the two approaches could be to run the analysis using
the endogenous policies over a wide range of futures and then derive an NPI time-
series from strategies thatwere not pareto-dominated. This policy could be translated
to an exogenous policy. We did not explicitly do that in this paper because using
that NPI time-series for other states or countries could be potentially misleading.
However, that approach couldbepotentiallyuseful forpublic healthdepartments that
wish to translate dynamic, endogenous policies to more interpretable prescriptions.

1.1.6 Vaccination

Ourmodel accounts for a phased vaccination rollout, where a one-dose or a two-dose
vaccine is distributed to population strata in order of priority.In ourmodel, thosewho
are immunized (either with a two-dose or a one-dose vaccine) enter the vaccinated
compartment + . Our model represents vaccination supply and demand separately.

Vaccination capacity is the average rate at which vaccine courses (VCs) can be
administered by state. Vaccination capacity increases over time. We assume that,
starting from the daywhen vaccines start to be administered, denoted by CE , the daily
supply rate of VCs BE(C) increases from zero to a maximum daily rate B{max}

E based on
the sigmoid function

BE(C) = B{max}
E

4 ln 2·(C−CE)/�E − 1
4 ln 2·(C−CE)/�E

for C ≥ CE . (33)
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�E is the time scale of capacity increase such that BE(�E) = B
{max}
E /2. We denote the

daily number of VCs utilized in each stratum by the vector u(C), and the total number
of available VCs as a stock variable E(C). The change in the daily number of available
VCs is equal to the difference between the daily number of VCs supplied BE(C), and
the sum of the daily number of VCs utilized across the population strata, which we
denote by D(C). The latter is equal to the sum of the elements of the vector u(C). Our
model tracks the total number of available VCs E(C) by treating it as a stock using the
following ODE

¤E(C) = BE(C) − D(C). (34)

Our model tracks the total number of utilized VCs in each stratum. This is denoted
by the vector U(C) and is given by the time integral of u(C). The daily number of
VCs used u(C) depends on the vaccination allocation policy and demand. At the start
of the vaccine rollout, we assume that policymakers specify a vaccination allocation
policy. The policy is denoted by a vector A∗

+
. Its elements determine the proportion

of vaccines allocated to each population strata, and hence they sum to one. The
vector A∗

+
specifies the initial allocation policy, such that higher priority groups have

higher values. It is constant over time. However, the actual allocation policy, denoted
by A+(C) changes over time because willing members of priority groups deplete as
vaccines are distributed. A+(C) depends on the proportion of each stratum willing
and eligible to receive additional vaccine doses and the vaccine allocation A∗

+
.

We define the vector W as the proportion of each stratum approved to receive the
vaccine and willing to get vaccinated. We then construct an indicator function, ℐ+(C),
which describes if there is still demand in each stratum at time C. This allows us to
’switch off’ vaccine supply to strata that have been fully vaccinated. The indicator
function ℐ+(C) is expressed as a Heaviside step function ℋ(G), and compares the
number of willing and eligible individuals, W, to the total number of utilized VCs,
U(C), element by element:

ℐ+(C) = ℋ[W −U(C)]. (35)

Each element of ℐ+(C) represents a population stratum. The value of the element is
equal to 1 as long as there are still individuals in the stratum approved and willing
to vaccinate and equal to 0 otherwise. As of January 2021, the FDA has approved
the vaccines for everyone except minors of less than 16. Hence, the value of the ℐ+(C)
for the youngest population strata only considers whether all eligible minors have
received the vaccine. The normalized element-wise multiplication of vectors A∗

+
and
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D+(C), gives the time-varying allocation vector A+(C), and is expressed as

A+(C) = N
[
A∗+ � ℐ+(C)

]
. (36)

The function N(.) is a normalization function such that the sum of the elements of
A+(C) is equal to one. Thus, as the highest priority stratum has all willing members
vaccinated, this value in A+(C) is set to zero, and the priority on other strata are
increased.

At the beginning of the rollout, we expect the demand for vaccines to be high. For
this case, supply will be limited, and the daily rate of vaccinations in each stratum
is given by BE(C) · A+(C). However, when the vaccination capacity is no longer a
constraint, the daily rate of vaccinations in each stratum no longer depends on the
initial vaccination policy A∗

+
. Instead, it depends on demand, which we denote as

D+(C). Asmentioned, our indicator functionℐ+(C) signalswhether demand is present
for each stratum. We assume that demand is limited to the unvaccinated susceptible
((), and recovered ('� and '() population. Hence, the vector representing the
demand for VCs in each population strata is given by an element-wise multiplication
of vectors ( + '� + '(, and ℐ+(C), and expressed as

D+(C) = (S + RA + RS) � ℐ+(C). (37)

When people no longer perceive the vaccination capacity as constrained, they may
seek to get vaccinated at a different rate, BF(C). We assume that this probability
is the same across the population strata and does not vary with time. We also
make the assumption that vaccination rate is independent of the Nonpharmaceutical
intervention policy. Hence, in our model the daily consumption rate of VCs is the
minimum of supply and demand in each strata:

D(C) = Pmin [BE(C) ·A+(C), BF ·D+(C)] (38)

The function Pmin[x, y] is the parallel minimum and returns the element-wise min-
imum between the vectors x and y. We can convert this into a per-person daily
consumption rate of VCs among the susceptible:

$(C) = D(C)
S + RS + RA

(39)
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Both the Heaviside step function and the parallel minimum introduce abrupt
changes in the model dynamics and lead to a significant increase in stiffness of
the ODEs. This is problematic because it significantly slows the numerical solvers.
To resolve this issue, we used a continuous approximation to these functions. For
example, we approximated the step function with a very steep sigmoid function. For
the parallel minimum, we used a "soft" parallel minimum algorithm [? ].

1.1.7 Vaccination Efficacy

Ourmodel separately considers the vaccine efficacy in protecting from disease trans-
mission and in preventing symptoms. As inputs, themodel requires the specification
of the vaccine’s overall efficacy of 4E and efficacy in protecting from disease transmis-
sion 4CE . The overall efficacy is given by

4E = 1 − �E/�0, (40)

where �E is the proportion of individuals in the treatment group that during phase 3
vaccine trials reported having symptoms, and �0 represents the same proportion in
the control-placebo group. We can express �E and �0 in terms of the 4E as

�E = �(1 − 4CE)(1 − 0E) (41)

�0 = � · (1 − 00) (42)

where � is the overall transmissibility common to the treatment and the control
group. The proportions 0E and 00 respectively represent the probabilities of remain-
ing asymptomatic after being infected for those who do and do not vaccinate. It
follows that we can express 0E in terms of 00 using the vaccine’s efficacy values by
the expression

0E = 1 − (1 − 4E)(1 − 0)1 − 4CE
. (43)

Therefore, by specifying 0, 4E and 4CE we can find the value for 0E and hence the
relative probabilities that those who are vaccinated develop mild or severe disease,
expressed through �+ and ��E .

To model the transmission of SARS-CoV-2 to those who have vaccinated we
consider both the efficacy of the vaccine in protecting from disease transmission 4CE
as well as the increase in the rate of social mixing of those who have vaccinated.
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Following from section 1.1.3, we express the force of infection on those who have
vaccinated as

�E(C) = :�24 5 5 �4 5 5 (1 − 4CE)<EK ·
∑
-�

<-�X�(C). (44)

The coefficient<E represents amultiplicative factor that accounts for the overall effect
of behavior changes of the people who vaccinate. For example, these behavioral
changes include the tendency for those who vaccinate to be less willing to comply
with NPIs and continue to wear their masks, and to generally increase their social
mixing rate. In the equations 31 and 44, -� represents the set of all infectious states
and it includes the states %E , ��E and.�E . These three infectious states follow from the
disease transmission to those who have vaccinated. Hence, both equations depend
on the coefficients <%E , <��E and <.�E that scale the transmission rate relative to
the asymptomatic and unaware of being infectious. The multiplicative factor <E is
included as part of these three coefficients. For example, we set <%E = <E<% , and
likewise for the other two factors. Hence, equation 44 considers a squared behavioral
effect whereby people who are vaccinated increasingly mix amongst each other by
an overall multiplicative factor of <2

E .

1.1.8 Additional Mechanisms

Our model includes additional mechanisms that influence the long-term transmis-
sion dynamics. These include seasonality and loss of immunity. We model season-
ality in transmission by multiplying 24 5 5 �4 5 5 by a time-varying term denoted by '(C)
that has an average value equal to one over a year. We use a sinusoidal function to
describe '(C). A parameter B controls for the strength of the seasonal effect in the
time-varying function '(C). To model loss of immunity [47], we allow those who
recover can become susceptible again. We use a first-order boxcar method and in-
clude an intermediate recovered compartment '�, which recovered people transition
into before losing immunity and returning the susceptible population pool (. These
mechanisms are described in more detail in our prior work [33].

1.2 Calibration

Model calibrationwasperformedusing the IncrementalMixtureApproximateBayesian
Computation (IMABC) algorithm [39]. The calibration approach requires the spec-
ification of parameter priors �(�2) and calibration targets H∗. IMABC begins with a
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rejection-based approximate Bayesian computation (ABC) step, drawing a sample of
parameters �2 of size #0 from their prior distribution �(�2), simulating calibration
targets HC , and accepting parameters that yield simulated outcomes near observed
targets within initial tolerance bounds of H∗C ± & 5 ,C . Next, the sample is iteratively
updated by drawing additional candidate parameters from amixture of multivariate
normal distributions, centered at the parameters that yield simulated targets that
are closest to observed targets. As more points are accepted, the initial tolerance
bounds are narrowed, and parameters that yield simulated targets outside of these
new bounds are removed. The algorithm has converged when it obtains the re-
quested number of draws that are within final tolerance intervals, H∗C ± & 5 ,C . Once
the algorithm has converged, posterior estimates can be obtained using a weighted
sample from accepted parameter vectors [39]. The weights account for the selection
of the sample, using the normal mixture distributions.
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Figure 5: Calibration results for California. The blue lines are the outputs of the
calibrated model across three metrics of interest. The data and the calibration target
bounds are displayed in gray.

We calibrate the model using data from March 1st, 2020 through December 25th,
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2020. We use this time period because we are interested in how policymakers should
shift their reopening strategy after vaccination started in the US. We use cumulative
deaths time-series at the state level, collapsed at ten 30-day intervals HC , C ∈ {1, ..., 10}
starting in March 1st, 2020 through December 25th, 2020. Figure 5(b) shows the data
we use and illustrates the model runs that the algorithm selects. We set the initial
tolerance level as &8 = <0G(HC) and the final tolerance level as & 5 = 0.2<0G(HC)where
HC is the cumulative number of deaths. Therefore, the goal of the algorithm is to find
model runs that are within the envelope HC ± & 5 ,C of the cumulative death time series
illustrated in the graph. In addition to the death time series calibration target, we
also require the number of susceptible individuals in the model to be greater than
65%, seeking to find model runs that are consistent with seroprevalence data.

We choose to use 30-day time periods with the aim of reducing the number of
individual targets that the calibration procedure needs to track. As figure 5(a) illus-
trates, choosing another time period (e.g, a 7-day) would yield similar results. Figure
5 also illustrates that the model does not fit the surge in cases around month number
6 in California (September 2020). That is the case because ourmodel does not contain
time-varying mixing parameters that could absorb that surge. For the purposes of
this analysis, we argue that adding more parameters to the model calibration phase
could be problematic7.

The calibration results presented above are a function of our model structure
presented earlier, the calibration targets and their tolerance interval used, and a
set of parameters. Parameters used during the calibration run are divided into three
sets: calibrated parameters (C), parameters thatwere fixed during calibration (F), and
parameters thatwere fixed during calibration but later explored as deep uncertainties
(F, D) using a new experimental design. Table 5 presents each parameter, the set to
which they belong, a formula or symbol relating the parameter to our model and
related sources. The value column includes the parameter mode and minimum and
maximum bounds used during calibration.

7Adding time-varying parameters to themodel seeking to improvemodel fit without amechanistic
explanation for the summer surge can be problematic for the purposes of this analysis. For example,
the surge could signal an increase in pandemic fatigue and not a month-level seasonal phenomenon.
Our future work might explore better ways of incorporating realistic behavioral components in our
model that could better explain the unexplained surges using more calibration targets to inform the
model. For the purposes of this analysis, we chose not to overfit the model to the data and preserve
only parameters that represent known mechanisms.
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Table 5: Model Parameters.

Set Parameter Formula or Symbol Value Sources

C Proportion of infec-
tions which are asymp-
tomatic

��
��+�( 0.25 [0.15,

0.5]
[55–58]

C Proportion of symp-
tomatic infections
which are severe (re-
quire hospitalization)

 
 +�<+�( 0.05 [0.03,

0.07]
[33]

C Proportion of severe
cases which are critical
(require ICU admis-
sion)

"
"+��+�� 0.32 [0.26,

0.38]
[58, 59]

C Initial proportion of
critical cases which re-
sult in death

���*
���*+���* 0.75 [0.7, 0.8] [59–61]

C Magnitude of seasonal
effect when it is at its
peak

B 0.2 [0.15, 0.3] [33]

C Intervention Calibra-
tion Factor

� 2 [0.5, 3.5] [33]

C Magnitude of behav-
ioral adaptation factor
after lockdown.

1ℎ 0.45 [0.1, 0.8] [33]

C Reduction in ICU death
proportion when maxi-
mum treatment efficacy
is achieved

N/A 0.5 [0.4, 0.6] [60]

C 1/ rate at which
treatment improves
(months)

N/A 6 [3, 9] [60]

Continues on following page
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Table 5, continued

Set Parameter Formula or Symbol Value Sources

C Increased progression
rate for tested individu-
als

�� 2 [1.33, 4] [33]

F Infectivity of mild
symptomatic stage rel-
ative to asymptomatic
infectivity.

<�< 0.83 [58, 62–
64]

F Infectivity of severe
symptomatic stage rel-
ative to asymptomatic
infectivity.

<(B 0.14 [58, 62–
64]

F Infectivity of hospital-
ized stage relative to
asymptomatic infectiv-
ity.

<� 0.07 [58, 62–
64]

F Infectivity of tested
mild symptomatic
stage relative to asymp-
tomatic infectivity.

<.(< 0.28 [58, 62–
64]

F Infectivity of tested
severe symptomatic
stage relative to asymp-
tomatic infectivity.

<.(B 0.14 [58, 62–
64]

F Infectivity of tested
asymptomatic stage rel-
ative to asymptomatic
infectivity.

<.� 0.2 [58, 62–
64]

F Duration in days of in-
cubation phase

1
� + 1

��+�( 5 [58, 65–
67]

Continues on following page
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Table 5, continued

Set Parameter Formula or Symbol Value Sources

F Infectious duration in
days of asymptomatic
and mild disease

1
��

5 [58, 66–
69]

F Duration in day from
first developing severe
sympotoms to being
hospitalized. The de-
velopment of critical
symptoms (e.g., ARDS)
is assumed to happen
after one additional
day.

1/ℎ 0.1 [58, 70]

F Expected days spent
in hospital (including
ICU) at hospitalization

1
��+��+���*"

(
1 + "

���*+���*

)8 [58, 70]

F Proportion of incuba-
tion phase which is
non-infectious

��+�(
��+�(+� 0.6 [66, 71]

F Per person daily rate of
seeking a test - assum-
ing no capacity con-
straints

� 0.01 [33]

F Per person daily detec-
tion rate for those who
are symptomatic

�( 0.1 [33]

F Per person daily detec-
tion rate for those who
are asymptomatic

�� 0.01 [33]

Continues on following page
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Table 5, continued

Set Parameter Formula or Symbol Value Sources

F Expected days spent in
the ICU at ICU admis-
sion as a proportion of
expected days spent in
the hospital at hospital-
ization

��+��+���*"
���*+���*+" 0.9 [58, 70]

F Vaccine Overall Efficacy 4E 0.95 [40, 41]
F Average number of

days to adjust NPI Lev-
els.

; 14 [33]

F,D Change in transmis-
sibility from baseline
value

Δ�(C) 0 assumed

F,D Increase in mixing due
to vaccination

<E 1 assumed

F,D Maximum Vaccination
Rate

B
{max}
E 3 ∗ 10−3 assumed

F,D Vaccine Transmission
Efficacy

4CE 1 assumed

F,D Months before loss of
natural immunity

�# 20 [72]

F,D Proportion of the Pop-
ulation willing to vacci-
nate.

W 0.9 [33]

Most of our parameters are defined based on clinical evidence. Because disease
duration parameters are not informed by our calibration procedure (deaths time-
series do not carry information about these rates) and to reduce the dimensionality
of the calibration problem, we fix disease duration parameters that can be regarded
as less uncertain at this stage in the pandemic. We also fix parameters that define
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the relative infectiousness of different disease states. Our prior work has established
that these parameters have a small influence on the model outcomes we use for cali-
bration when one accounts for the ranges of the other, more uncertain and influential
parameters [33].

Other parameters are more uncertain and benefit from calibration. For param-
eters unique to our model (i.e., the effectiveness of NPIs �) or parameters poorly
characterized from existing literature (i.e., magnitude of the seasonal effect on mix-
ing in California during 2020), we use one of two approaches. The first approach
is to provide prior ranges and let the calibration algorithm find combinations of pa-
rameters that jointly are consistent with the data. The NPI Effectiveness parameter
� and the behavioral adaptation factor 1ℎ (to what extent people adapted after the
initial lockdowns) are part of this set of parameters. Finally, there are parameters that
are regarded as deep uncertainties. Further discussion about how these parameters
enter our model is available in our prior work [33]. The next section describes how
the full experimental design is created using these parameters.

1.3 Experimental Design

Our full experimental design table is composed by the combination of the set of
78 strategies described in the Methods section and listed in Appendix I, the 100
calibration parameters vectors obtained using the calibration approach described
earlier and a set of 200 draws from a Latin Hypercube sample of the six deeply
uncertain parameters described in table 6. Instead of adding these deep uncertainties
to the calibration process, we use baseline values during calibration and explored the
uncertainty in their values after calibration. Our approach resembles the scenarios
used by the Scenarios Hub initiative [51]. However, instead of defining four discrete
scenarios combining uncertainties (e.g. increased transmissibility driven by new
variants) and decisions (e.g. relaxation of NPIs), we explore a wider set of strategies
under a continuum of plausible futures. Table 6 presents each uncertainty explored
in this analysis, the baseline value used during model calibration, and the minimum
and maximum values. The baseline value reflects the assumptions commonly made
bymodelers elsewhere (e.g., there is no endogenous change in transmissibility driven
by higher vaccination coverage).

All these uncertainties are applied to the model as an exogenous shift in the
level of the baseline uncertainty values after the calibration period. Other functional
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Uncertainty Symbol Baseline Min Max

Change in transmissibility from
baseline value

Δ�(C) 0 -25% 50%

Increase in mixing due to vacci-
nation

<E 0 0 20%

Maximum Vaccination Rate B
{max}
E 0.0030 0.0023 0.0038

Vaccine transmissibility efficacy
factor

4CE 100% 10% 100%

Average duration of immunity
(months)

�# 20 10 40

Proportion of the Population
willing to vaccinate.

W 90% 54% 90%

Table 6: Deep Uncertainties and their ranges.

forms, (e.g., smooth transitions from the baseline value to the new value) could also
be implemented to represent these uncertainties with more realism. For example,
modeling the impact of variant strains on transmissibility could be done with a logis-
tic growth curve. However, considering these uncertainties using smooth transition
functions would require an even larger experimental design to accommodate the
additional parameters that control the rate and timing of the changes in parameters,
which could be uncertain themselves. To keep our experimental design computation-
ally tractable, we explore uncertainties by changing their values immediately after
the calibration phase.

These uncertainties were chosen to include factors often considered by other
modelers. For example, at the time of this writing, the MIDAS Network Scenario
Hub uses changes in transmissibility driven by variants and vaccination uptake and
efficacy [51]. Our uncertainties were chosen to encompass these scenarios and to
further explore the impacts of other concerns not commonly addressed in the existing
literature. For example, uncertainties in behaviors related to vaccination include
the actual maximum vaccination rate that society will achieve, the fraction of the
population willing to vaccinate (applied to each population strata), and a potential
increase in mixing after vaccination which is often ignored.

When multiple uncertainties are mechanistically entangled in our model (e.g.,
increases in transmissibility driven by new variant strains can be potentially offset by
higher levels of mask-wearing), we use a single parameter that represents the overall
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change in that parameter from baseline. For example, the change in transmissibility
froma baseline value uncertaintyΔ�(C) is intended to represent the combined effect of
more transmissible variant strains [7], increased use of adaptation measures (such as
reopening schools with enhanced mitigation protocols), as well as potential changes
in the overall mixing. Because all these factors would affect the same transmission
equation in our model, sampling multiple uncertainties in a Latin Hypercube to
represent separately them would prove inefficient and unnecessary to our purposes.
Therefore, we use a single uncertainty parameter to represent the combined effect of
these factors.

After calibration, we construct our final experimental design as follows. As de-
scribed in the calibration section, we obtain a weighted sample from the posterior
containing 100 calibration parameter vectors. This sample is obtained with substitu-
tion, and resulted in 75 unique parameter sets. We do not need to spend computation
time on duplicated parameter vectors. Therefore, we obtain the experimental design
by combining the 200 parameter vectors obtained from the uncertainties, with the
75 unique parameter vectors obtained from the calibration procedure. This process
results in 15,000 futures under which we test each reopening strategy. We obtain
our full experimental design by randomizing the order of the 15,000 futures8 and
combining this resulting dataset with the set of 78 strategies, which resulted in 1.17
million unique cases to be run. After this process, we re-create the full experimental
design by repeating the 25 non-unique calibration parameter vectors according to the
number of times they were sampled from the posterior distribution.

The set of decisions we made with respect to our parameters in this particular
analysis should not be interpreted as a set-in-stone representation of the pandemic.
The set of uncertainties we chose, their bounds and how they were modeled repre-
sented our knowledge and concerns with respect to the pandemic in the US as of
February 2021. In a regular Robust Decision Making engagement, this set of uncer-
tainties would evolve as more information become available. Parameters that were
once deep uncertainties would become regular calibration parameters. For example,
if it becomes clear that vaccine prevents transmission, that parameter could be either
set during the calibration phase or could be calibrated to data. Similarly, if highly
transmissible variant strains become dominant, that change could be reflected in our

8This is useful because it allows us to run a fraction of our experiments and evaluate results in the
interim, before spending the 50,000 hours of computing time required to run the full experimental
design.
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model with a smooth function. When it becomes clear what will be the final vacci-
nation rate, this parameter could be set. At that point, other uncertainties or policy
optionsmight emerge as important, and another analytical cycle could be undertaken
to provide further results. The RDM iterative approach would accommodate these
new developments, and decision-makers could regularly re-evaluate the robustness
of their decisions to the remaining uncertainties of concern.

This section described the additions made to our original model, documented
the parameters used in this analysis, and provided details on how the calibration
parameters are used with the deeply uncertain parameters and strategies to create
our large experimental design that is the basis of our conclusions. Further details
about our model can be obtained from our prior work [10, 33].

1.4 Computing Environment

The model and the functions used to perform this analysis were implemented in R.
The calibration process and the strategy stress-testing runs were performed on Be-
bop, a High-Performance Computing clustermanaged by the Laboratory Computing
Resource Center at Argonne National Laboratory. Bebop has 1024 nodes comprised
of 672 Intel Broadwell processors with 36 cores per node and 128 GB of RAM and
372 Intel Knights Landing processors with 64 cores per node and 96 GB of RAM.
This analysis used slurm’s array jobs to execute the runs in parallel across Broadwell
nodes, using 35 cores per node and up to three jobs of 12 nodes at a time.

1.5 Code

The model and the functions used to perform this analysis were implemented in R.
Readers can find our code and instructions to use it at this github repository [73].
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