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1   

Abstract   

Importance:    The   rapid   proliferation   of   COVID-19   has   left   governments   scrambling,   and   
several   data   aggregators   are   now   assisting   in   the   reporting   of   county   cases   and   deaths.   

The   different   variables   affecting   reporting   (e.g.,   time   delays   in   reporting)     necessitates   a   

well-documented   reliability   study   examining   the   data   methods   and   discussion   of   
possible   causes   of   differences   between   aggregators.   

Objective:    To   statistically   evaluate   the   reliability   of   COVID-19   across   aggregators.   
Design,   Setting,   and   Participants:    Cases   and   deaths   were   collected   daily   by   

volunteers   via   state   and   local   health   departments,   as   primary   sources   and   newspaper   

reports,   as   secondary   sources.   In   an   effort   to   begin   comparison   for   reliability   statistical   
analysis,   BroadStreet   collected   data   from   other   COVID-19   aggregator   sources,   

including   USAFacts,   Johns   Hopkins   University,   New   York   Times,   The   COVID   Tracking   
Project.   

Main   Outcomes   and   Measures:    COVID-19   cases   and   death   counts   at   the   county   and   

state   levels.   
Results:    Lower   levels   of   inter-rater   agreement   were   observed   across   aggregators   

associated   with   the   number   of   deaths,   which   manifested   itself   in   state   level   Bayesian   
estimates   of   COVID-19   fatality   rates.   

Conclusions   and   Relevance:    A   national,   publically   available   data   set   is   needed   for   

current   and   future   disease   outbreaks   and   improved   reliability   in   reporting.   
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2   

Introduction   

Science,   as   it   is,   almost   always   wanders   at   a   painstakingly   glacial   pace,   and   

even   when   finished   it   “circles”   back   for   self-reflection   and   correction,   because   science   is   

never   finished   and   never   truly   correct.   This   is   the   core   of   science,   a   slow,   dogged   and   

ethical   pursuit   of   self-doubt.   But   then   there   are   historical   moments   when   science   must   

simply   just   react,   and   when   it   does   the   ingredients   are   always   the   same:   a   fleeting   

moment   of   wandering   brilliance,   relentless   perseverance,   and   luck.   Much   like   the   19th   

century   London    cholera   outbreak   when    John   Snow   had   “his   most   brilliant   idea:”    death   

rates    and    spatially   mapping    578   cholera   deaths   counts,   the   COVID-19   ( 2019   novel   

coronavirus)    pandemic   has   been   such   a   moment    (1,2) .   With   COVID-19   this   has   not   

been   the   brilliance   of   one   or   two   or   even   three   scientists,   it   has   been   the   brilliance   and   

movement   of   many.   But   when   the   time   finally   comes,   as   always   demanded,   science   

must   circle   back   to   evaluate   and   reflect.   The   time   is   now   and   is   the   current   goal   of   this   

paper:   to   take   a   tiny   glacial   step   and   begin   the   evaluation   of   the   COVID-19   data   

collection   process.   Our   hope   is   that   others   will   follow   in   this   scientific   self-critique   of   the   

COVID-19   data.   

As   COVID-19   slowly   gained   momentum   in   late   winter   and   early   spring   of   2020,   

governments   and   other   organizations   scrambled   to   collect   and   present   temporo-spatial   

data.   When   governments,   understandably,   struggled   with   the   proliferation   of   COVID-19,   

many   non-governmental   organizations   and   universities   helped   with   the   COVID-19   data   

collection   by   innovating   with   data   aggregation   techniques   (e.g.,   web   scraping,   

crowd-sourcing)    (1–4) .    Despite   new   technology   and   methods,   aggregating   COVID-19   

data   remains   difficult   and   potentially   error-ridden   due   to   the   sheer   amount   of   data   (even   

Snow’s   much   smaller   cholera   data   underestimated   deaths   by   8%),   the   novelty   of   the   

worldwide   data   tracking   process,   and   the   attempt   to   collect   community-level   information   
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3   

(e.g.,   county)    (5) .   Due   to   the   efforts   of   multiple   aggregators   and   their   various   methods,   

the   COVID-19   pandemic   provides   a   unique   opportunity   to   evaluate   the   statistical   

reliability   of   near-real   time   and   fast-moving   infectious   disease   surveillance   data.   Thus,   a   

well-documented   reliability   study   examining   data   methods   and   possible   causes   of   

differences   between   aggregators   is   essential   knowledge   for   future   infectious   disease   

outbreaks.   

Despite   the   validity   challenges,   as   H artley   and   Perencevich    (6)    have   pointed   out,   

leveraging   continuous   COVID-19   data   from   multiple   sources   to   evaluate   public   health   

interventions   in   near   real-time   far   outweighs   the   inevitable   inaccuracies.    In   fact,   

technology   has   truly   transformed   the   disease   surveillance   response   to   COVID-19    (7,8) .   

Local   and   federal   governments,   hospitals,   newspaper   outlets,   universities,   the    Centers   

for   Disease   Control   and   Prevention   (CDC)    and   other   organizations   have   worked   

together   to   aggregate   and   survey   COVID-19     (9) .    Once   collected   and   combined   by   

aggregators,   COVID-19   data   has   been   used   to   create   geo-maps   and   other   data   

visualizations   and   statistical   models   to   track,   predict,   and   understand   the   disease   

(8,10,11) .   This   aggregated   COVID-19   data   has   helped   governments   and   communities   

formulate   responses,   allocate   resources,   measure   the   effectiveness   of   policy   

interventions,   such   as   stay-at-home   orders,   and   provide   guidance   in   loosening   

restrictions    (12–15) .     

As   a   result,   the   COVID-19   data   collection   and   reporting   process   has   transformed,   

not   only   our   ability   to   surveil   infectious   disease,   but   to   also   forecast   cases   and   

outcomes   under   varying   scenarios    (8,11,16–18) .   This   has   been   integral   in   preventing   

disease   and   saving   lives    (19) .   While   new   data   and   technology   solutions   have   been   

invaluable   in   easing   uncertainty   and   providing   facts   in   a   sea   of   unknowns,   much   of   the   

data   still   remains   unavailable   at   finer   resolutions   than   the   county-level    (1,7) .   There   is   

also   the   challenge   of   aggregating   data   across   government   agencies   that   collect   and   
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4   

report   their   data   differently    (20–23) .   Information   and   transparency   in   the   U.S.   related   to   

data   tracking   methods   is   often   limited   and   varied    (24)    as   there   are   numerous   

independently   established   systems   for   reporting   disease   cases   and   deaths    (6,9) .   Thus,  

numerous   challenges   remain   with   collecting   and   aggregating   valid   and   reliable   

COVID-19   data    (24,25) .   

In   an   effort   to   help   move   “real-time”   disease   surveillance   forward,   this   study   

attempts   to   make   several   contributions.   First,   we   describe   our   COVID-19   data   collection   

process   and   observations   of   the   process,   which   has   not   previously   been   documented   

for   COVID-19.   Second,   we   examine   the   reliability   of   several   COVID-19   data   

aggregators,   including   the   CDC-endorsed   USAFacts   (USAF)    (26) ,   Johns   Hopkins   

University   (JHU)    (27) ,   New   York   Times   (NYT)    (28) ,   The   COVID   Tracking   Project   (CTP)   

(29) ,   and   BroadStreet   (BS), (30)    at   the   national,   state,   and   county   levels.   Lastly,   it   is   

essential   to   examine   how   COVID-19   reporting   differences   may   be   manifested   in   

commonly   used   tracking   statistics,   thus,   we   examined   the   case   fatality   rate   estimates   at   

the   state   level.   

Methods  

Data   collection   process   

Starting   on   March   16th,   2020,   the   Broadstreet   team   (consisting   of   approximately   

120   volunteers)   began   tracking   diagnosed   cumulative   cases   of,   and   deaths   due   to   

COVID-19   reported   by   state   and   county   governments.   Following   CDC   guidelines   

published   on   4/5/2020    (31) ,   volunteers   tracked   case   and   death   totals   using   various   

sources   and   organizing   them   within   Google   Sheets.   Volunteers   were   organized   into   six   

regional   teams   consisting   of   members   acting   in   daily   data   entry,   management,   and   

quality   assurance   roles.   Probable   cases   are   defined   by   the   CDC   as   being:     
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1. Diagnosed   through   epidemiologically   linking   individuals   expressing   COVID-19   

symptoms   to   a   known   case;     

2. Tests   positive   for   presence   of   antigen,   and   either   expresses   COVID-19   

symptoms   or   is   epidemiologically   linked   to   a   known   case;   or,     

3. Meeting   vital   records   criteria    (32) .   All   data   prior   to   March   9th   was   entered   from   

Johns   Hopkins   University    (27)    and   validated   through   multiple   methods.   Between   

March   9th   and   March   16th   of   2020,   data   was   obtained   retroactively   from   state,   

county,   and   news   sources.     

County-level   case   and   death   count   totals   were   entered   daily   in   a   24-hour   cycle   to   

track   cumulative   totals   of   the   virus   over   time.   The   spreadsheet   consisted   of   rows   for   

each   county   so   COVID-19   totals   could   be   entered,   as   well   as   an   “Unknown   County”   for   

cases   that   could   not   be   assigned   to   a   county.   The   sources   used   were   official   state   or   

local   government   websites.   In   some   cases   this   was   supplemented   with   secondary   

sources,   such   as   news   sources,   due   to   infrequent   or   nonspecific   reporting   by   primary   

sources.   Team   managers   examined   the   accuracy   of   daily   totals   to   identify   and   correct   

errors.   The   Quality   Assurance   team   then   compared   BroadStreet's   county-level   

cumulative   totals   to   those   reported   by   other   aggregators,   including   the   NYT    (28) ,   JHU   

(27) ,   CTP    (29) ,   and   USAF    (33) ,   to   check   the   validity   of   entered   data.   If   significant   

discrepancies   between   aggregators   existed,   Quality   Assurance   performed   research   to   

determine   the   most   “accurate”   count   totals,   and   then   left   a   comment   with   the   results   of   

their   research   and   any   changes.   All   team   members   signed   off   on   a   tracking   sheet   after   

completing   their   assigned   tasks   to   ensure   accountability.     

In   situations   where   the   decrease   was   caused   by   a   one-day   anomaly   in   the   totals   

reported,   this   was   assumed   to   be   a   reporting   error   and   the   anomalous   data   was   

updated   to   match   the   following   day.   In   the   case   of   a   simple   decrease   in   cumulative   

totals,   if   research   did   not   produce   an   explanation   of   the   cause,   then   the   assumption   was   
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made   that   this   was   due   to   cases   or   deaths   being   reassigned   to   a   different   county,   and   

the   historic   totals   in   the   initial   county   were   reduced   and   transferred   into   an   “Unknown   

County”.   

In   an   effort   to   begin   comparison   for   reliability   statistical   analysis,   BroadStreet   

collected   data   from   other   COVID-19   aggregator   sources,   including   USAF,   NYT,   JHU,   

and   CTP    (27,28,33) .   Initial   examples   of   differences   in   reporting   included   BroadStreet   

reporting   89   more   counties   when   compared   to   other   aggregators   and    thousands   of   

anomalies   (number   is   less   than   previous   day)   in   county-level   case   and   death   counts.   

This   result   is   highly   biased   against   counties   with   rapidly   growing   cases   and   deaths   and   

illustrates   that   reported   numbers   are   not   always   immediately   accurate.   Table   1   provides   

a   summary   of   various   data   collection   methods   by   the   different   aggregators.   
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Data   cleaning   and   preparation   

Each   aggregator’s   original   dataset   was   cleaned   and   pre-processed   in   the   R   

statistical   computing   language    (35)    to   generate   comparable   datasets   across   

aggregators.   This   included   the   removal   of   unknown   case   or   death   data,   removal   of   

unmatched    Federal   Information   Processing   Standards   ( FIPS),   and   removal   of   

Table   1.   Aggregator   Data   Collection   Methods   
  

  
Variable   

Aggregator   

USAF (33)   JHU (34)   NYT (28)   CTP (29)   BS (30)   

Collection   
Method   

Web   
Scrapped   ✓   ✓         

Manual   
Entry   ✓   ✓   ✓   ✓   ✓   

Crowd   
Sourced     ✓         

Source   

State   Health   
Department   

✓   
  (Daily)     ✓   ✓   

  (Daily)   ✓   

County   
Health   

Department   
  ✓   ✓   ✓   ✓   

Media     ✓   ✓     ✓   

Data   
Collected   

Cases   ✓   
(Cumulative)  ✓   ✓     

(Cumulative)  ✓   ✓   

Deaths   ✓   
(Cumulative)  ✓   

✓   
  

(Cumulative)  
✓   ✓   

Testing         ✓     

Quality   
Assurance   

Revise   
Errors   ✓   ✓       ✓   

Validate   on   
other   

aggregators  
        ✓   

ͣ   USAF   =   USA   Facts;   NYT   =   New   York   Times;   JHU   =   John   Hopkins   University;   BS   =   
BroadStreet;   CTP   =   The   COVID   Tracking   Project   
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uncommonly   reported   US   territories   and/or   smaller   geographic   delineations.   In   an   effort   

to   reduce   the   negative   binomial   skew   resulting   from   a   significant   number   of   zero-count   

days   (i.e.,   before   COVID-19   was   prevalent   in   a   location),   a   modified   date   range   of   

March   15,   2020   through   June   30,   2020   was   selected   to   reduce   this   concern   while   

maximizing   the   inclusion   of   early   count   data.     

A   daily   case   and   death   count   was   calculated   using   a   date’s   cumulative   count   

minus   the   preceding   date’s   cumulative   count.   Negative   counts   resulting   from   daily   count   

calculation   for   cases   and   deaths   were   dropped   from   the   dataset.   Negative   counts  

accounted   for   0.77%   of   county   case   data,   0.21%   of   county   death   data,   0.05%   of   state   

case   data,   and   0.15%   of   state   death   data,   respectively.   Before   conducting   the   reliability   

analyses,   two   other   notable   changes   were   made   to   the   data;   daily   counts   were   

smoothed   using   a   3-day   moving   average   to   account   for   asynchronous   reporting   of   daily   

cases   by   each   aggregator   and   all   daily   case   and   death   counts   were   modified   by   +1   to   

remove   any   remaining   zero-count   data   to   improve   Cohen   Kappa   coefficient   estimates   

and   reduce   the   number   of   paradoxical   results.   

The   issue   of   smoothing   is   significant   for   several   reasons.   First,   data   were   

extremely   unreliable   prior   to   smoothing   due   to   the   reporting   process   and   significant   

outliers   in   the   data,   thus   the   smoothed   results   presented   here   are   more   positive   (i.e.,   

possess   higher   reliability   estimates)   from   a   data   aggregator   perspective.   Second,   this   

finding   suggests   that   government   officials   and   media   agencies   should   utilize   and   stress   

moving   averages   (or   some   other   form   of   smoothed   data)   rather   than   raw   new   counts   

given   their   lack   of   reliability   across   data   sources.   This   finding   largely   explains   the   

significant   increases   and   decreases   in   counts   that   are   commonly   seen   in   the   data   and   

reported   by   the   media.   These   large   changes   in   numbers   are   presumably   not   a   function   

of   large   fluctuations   in   new   cases   or   deaths,   but   instead   an   artifact   of   the   data   reporting   
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process   (see    Data   reporting   process    below   and   S1   Figure).   This   process   may   create   

unintentional   panic   or   claim   to   communities.   

Data   reporting   process   

Generally,   daily   COVID-19   counts   are   reported   from   a   given   data   source   (e.g.,   

county   public   health   websites)   and   then   extracted   by   aggregators    (36) .   The   challenge   

with   daily   reporting   counts   is   they   depend   on   many   varying   factors;   for   example,   the   

time   and   date   these   numbers   are   reported   can   be   nearly   immediate   or   significantly   lag.   

This   can   be   seen   in   Table   2,   where   the   numbers   of   new   cases   often   differ   depending   on   

the   day   and   time   these   numbers   were   reported.   Each   aggregator   reports   or   publishes   

the   same   day   counts   (e.g.,   cases   and   deaths   recorded   on   September   12th   2020),   at   

different   times   and   on   different   days   (e.g.,   one   aggregator   reports   September   12,   2020   

counts   at   the   end   of   day   on   September   12,   2020,   whereas   another   aggregator   may   

report   September   12,   2020   counts   on   at   8   a.m.   on   September   13,   2020).     

For   example   in   Table   2,   both   Aggregator   1   and   Aggregator   3   report   67   cases   on   

April   30,   2020,   whereas   Aggregator   2   reported   only   19   on   April   30,   2020   and   the   

additional   48   cases   the   following   day   (May   1,   2020).   While   the   average   number   of   

cases   are   comparable   across   data   aggregators,   the   number   of   cases   are   rarely   reliable.   

Because   of   daily   inconsistencies   such   as   this,   reliability   estimates   were   computed   and   

compared   using   the   raw   data   and   a   three   day   moving   average.   Given   the   higher  

reliability   of   the   moving   average,   this   suggests   that   media   and   government   reports,   

along   with   researchers,   should   consider   using   a   moving   average   to   better   represent   true   

trends   in   COVID-19   cases   and   deaths   given   the   increase   in   reliability.   This   is   especially   

important   in   early   disease   tracking   when   case   count   sample   sizes   are   small.   
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Statistical   analyses   

To   assess   the   inter-rater   reliability   (IRR)   of   COVID-19   aggregators   based   on   new   

cases   and   death   counts   across   the   counties,   states,   and   United   States,   a   Kappa   variant   

called   linearly   weighted   Cohen’s   Kappa   (LWCK)   was   used   to   examine   agreement   

between   paired   aggregators   due   to   the   discrete   nature   of   the   data    (37,38) .   LWCK   

inherently   takes   into   account   the   influence   of   chance   agreement,   thus   improving   the   

model’s   sensitivity   towards   disagreement   among   rater   observation   pairs.   Other   IRR   

statistics   were   considered   and   examined,   such   as   generalized   linear   mixed   effects   

model   intraclass   correlation   coefficients,   intraclass   correlation   coefficients   with   mixed   

effects,   and   Spearman   and   Pearson   correlations.   Note,   these   statistical   results   often   

varied   significantly   due   to   large   variation   of   data   distributions   and   ranges,   thus   the   

LWCK   statistic   represents   results   that   most   closely   matched   the   reliability   quality.     

Table   2.   Number   of   New   COVID-19   Cases   by   Date   and   Aggregator   
  

Date   Aggregator   1   Aggregator   2   Aggregator   3    

April   23,   2020   (Thursday)   87   46   41   

April   24,   2020   (Friday)   167   41   0   

April   25,   2020   (Saturday)   0   28   64   

April   26,   2020   (Sunday)   0   36   0   

April   27,   2020   (Monday)   0   23   44   

April   28,   2020   (Tuesday)   -59   21   0   

April   29,   2020   (Wednesday)   32   32   32   

April   30,   2020   (Thursday)   67   19   67   

May   1,   2020   (Friday)   0   48   0   

Mean   32.67   32.67   27.56   

ͣ   USAF   =   USA   Facts;   NYT   =   New   York   Times;   JHU   =   John   Hopkins   University;   BS   =   
BroadStreet;   CTP   =   The   COVID   Tracking   Project   
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After   computing   LWCK   statistics   at   the   county,   state,   and   national   levels,   

choropleth   maps   were   generated   for   at   each   level   to   help   visualize   COVID-19   spatial   

event   density   and   understand   changes   in   reliability   across   aggregators   and   locations.   

While   several   standards   have   been   proposed   for   IRR,   this   study   employed   the   standard   

proposed   by   Cicchetti   and   Sparrow    (39) :   Excellent   (0.75   to   1.00),   Good   (0.60   to   0.75),   

Fair   (0.40   to   0.60),   and   Poor   (0   to   0.40).     

Bayesian   

As   discussed,   because   it   is   important   to   examine   how   reliability   results   may   

manifest   themselves   in   commonly   used   disease   tracking   statistics,   we   estimated   case   

fatality   rate   over   time   (March   15,   2020   to   June   15,   2020)   using   a   novel   empirical   Bayes   

approach.   Thus,   for   each   aggregator,   we   used   an   empirical   Bayes   procedure   to   

compute   a   posterior   Beta   distribution   for   each   state’s   case   fatality   rate   (March   15,   2020   

to   June   15,   2020),   based   on   the   number   of   cases   and   deaths   reported   by   the   

corresponding   aggregator.     

We   start   with   the   assumption   that   the   death   counts   in   each   state   are   

independently   sampled   from   beta-binomial   distributions   with   common   shape   parameters   

α    and    β ,   and   with   the   state-specific   number   of   reported   cases.   We   then   estimated   the   

global   (U.S.   wide)    α    and    β    parameters   via   maximum   likelihood   estimation.   These   shape   

parameters   form   the   empirical   prior   for   the   subsequent   analysis,   which   from   this   point   

forward   is   a   simple   Bayesian   estimation   of   binomial   proportion.   With   this   common   prior,   

we   separately   computed   the   posterior   distribution   for   case   fatality   rate   for   each   state,   

based   on   that   state’s   case   and   death   counts.   
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Results   

U.S.   level   

Table   3   results   provide   a   reliability   comparison   across   all   the   aggregators   at   the   

U.S.   level.   These   results   suggest   that   mean   ( M )   reliability   for   JHU   ( M Cases    =   0.89,    M Death   

=   0.69),   NYT   ( M Cases    =   0.89,    M Death    =   0.69),   USAF   ( M Cases    =   0.89,    M Death    =   0.68),   and   CTP   

( M Cases    =   0.88,    M Death    =   0.64)   displayed   the   highest   average   inter-rater   agreement   among   

the   five   reported   aggregators   for   both   new   cases   and   deaths.   On   average,   BS   (M Cases    =   

0.75,    M Death    =   0.59)   yielded   consistently   lower   inter-rater   reliability   when   compared   to   

other   aggregators   for   both   the   number   of   cases   and   deaths.   Interestingly,   lower   levels   of   

inter-rater   agreement   were   observed   across   aggregators   associated   with   the   number   of   

deaths.     

  
  

Table   3.    Reliability   Comparisons   for   Each   Pair   of   Aggregators   for   Cases   and   Deaths   
at   U.S.   Level   
  

Aggregator   at   U.S.   level   Cases   Deaths   

USAF   vs.   NYT   0.956   0.778   

USAF   vs.   JHU   0.932   0.688   

USAF   vs.   CTP   0.917   0.712   

NYT   vs.   CTP   0.914   0.677   

JHU   vs.   NYT   0.930   0.736   

JHU   vs.   CTP   0.924   0.638   

BS   vs.   USAF   0.741   0.547   

BS   vs.   NYT   0.745   0.583   

BS   vs.   JHU   0.771   0.683   

BS   vs.   CTP   0.756   0.545   

ͣ   USAF   =   USA   Facts;   NYT   =   New   York   Times;   JHU   =   John   Hopkins   University;   BS   =   
BroadStreet;   CTP   =   The   COVID   Tracking   Project   
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State   level   

USAF,   NYT,   and   JHU   yielded   the   highest   inter-rater   reliability   across   all   states   for   

both   the   number   of   cases   and   deaths   when   examining   each   pair   (Fig   1)   and   for   the   

average   of   these   aggregator   pairs   (see   Table   3).   Average   reliability   for   cases   and   

deaths   across   all   aggregators   was   0.86   and   0.66,   respectively.   Taking   a   deeper   look   

into   the   data,   high   (defined   here   as   kappa    >    0.90)   mean   inter-rater   reliability   averaged   

across   aggregator   pairings   (see   Table   4)   was   observed   across   all   aggregator   state   case   

comparisons   for   LA,   VA,   SD,   AZ,   CT,   MD,   NJ,   and   FL   when   examining   the   number   of   

cases.   Further,   the   average   reliability   for   deaths   was   high   for   only   SD,   ME,   OK,   and   CT.   

Note,   several   states   (i.e.,   RI,   OK,   MI,   NV,   and   KS)   had   unacceptable   average   reliability   

statistics   (defined   here   as   kappa    <    0.70)   associated   with   the   number   of   cases,   and   

reliability   was   even   worse   for   the   death   rates   of   29   states   (see   Table   4).     

Based   on   these   results   and   other   results   provided   in   Table   4,   the   number   of   

cases   data   were   consistently   more   reliable   than   the   number   of   deaths.   Further   

depending   on   the   aggregator,   the   variance   and   range   in   reliability   within   a   state   can   be   

large,   regardless   of   whether   it   is   the   number   of   cases   or   deaths.   Although   several   

examples   exist,   for   the   average   number   of   cases   and   death   data,   CTP   had   a   reliability   

of   0.76   within   NY   whereas   BS   only   had   a   reliability   of   0.23)   within   NY.   This   is   important   

to   note   as   it   suggests   that   reliability   is   a   function   of   both   the   aggregator   and   state.     
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Fig   1.   Provides   the   intra-rater   reliability   between   each   aggregator   pair   as   Kappas   state   daily   
counts.    Darker   (1.00)   to   lighter   (0.00)   color   indicates   more   to   less   agreement,   respectively.   
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County   level   

The   maps   in   Figures   2   and   3   provide   reliability   statistics     at   the   county   level   for   

each   aggregator   pair   based   on   the   number   of   cases   and   deaths,   respectively.   These   

results   suggest   that   county-level   reliability   appears   clustered   within   states,   such   that   

lower   county   reliability   tends   to   reside   in   certain   states.   Perhaps   more   interesting   is   that   

certain   pairs   of   aggregators   are   more   reliable   in   some   counties   than   others,   thus   

pointing   to   the   concern   that   the   data   collection   methods   used   may   result   in   significantly   

different   conclusions   (both   for   political   and   research   purposes)   at   local   levels.   While   it   is   

clear   from   Table   4   that   the   level   of   reliability   is   often   state   dependent,   Figures   2   and   3   

demonstrate   there   is   also   significant   variation   within   states.     

Table   4.    Average   Kappa   (Fig   3)   for   Each   Aggregator   by   State   
  

State   

Cases   Deaths   

USAF   NYT  JHU   BS   CTP   M   USAF  NYT   JHU   BS   CTP   M   

AK  0.71   0.71   0.67   0.70   0.72   0.70   0.64   0.78   0.80   0.54   0.80   0.71   

AL   0.90   0.91   0.89   0.86   0.86   0.88   0.61   0.74   0.70   0.68   0.59   0.66   

AR  0.81   0.81   0.78   0.80   0.62   0.76   0.77   0.83   0.80   0.79   0.56   0.75   

AZ   0.96   0.94   0.95   0.93   0.94   0.95   0.74   0.69   0.72   0.69   0.77   0.72   

CA  0.77   0.78   0.72   0.75   0.68   0.74   0.49   0.50   0.47   0.49   0.25   0.44   

CO   0.81   0.83   0.85   0.85   0.66   0.80   0.57   0.57   0.60   0.60   0.09   0.48   

CT   0.91   0.95   0.94   0.94   0.90   0.93   0.88   0.92   0.92   0.91   0.85   0.90   

DC  0.79   0.86   0.84   0.63   0.84   0.79   0.74   0.80   0.80   0.45   0.78   0.71   

DE   0.87   0.93   0.90   0.89   0.84   0.89   0.74   0.83   0.82   0.81   0.51   0.74   

FL   0.93   0.93   0.90   0.92   0.85   0.91   0.79   0.86   0.82   0.79   0.78   0.81   

GA   0.72   0.76   0.75   0.43   0.75   0.68   0.42   0.53   0.54   0.09   0.47   0.41   

HI   0.74   0.75   0.69   0.71   0.48   0.67   0.76   0.78   0.77   0.78   0.44   0.71   

IA   0.82   0.84   0.87   0.82   0.84   0.84   0.49   0.50   0.56   0.52   0.54   0.52   
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ID   0.69   0.69   0.60   0.69   0.49   0.63   0.65   0.64   0.64   0.69   0.27   0.58   

IL   0.90   0.87   0.88   0.88   0.91   0.89   0.78   0.75   0.84   0.76   0.83   0.79   

IN   0.77   0.80   0.81   0.52   0.82   0.75   0.49   0.64   0.65   0.14   0.64   0.51   

KS   0.64   0.70   0.64   0.47   0.65   0.62   0.37   0.41   0.39   0.30   0.25   0.34   

KY   0.74   0.66   0.74   0.66   0.66   0.69   0.58   0.35   0.58   0.51   0.49   0.50   

LA   0.94   0.96   0.97   0.96   0.96   0.96   0.81   0.86   0.88   0.86   0.87   0.86   

MA   0.76   0.80   0.38   0.80   0.80   0.71   0.82   0.90   0.88   0.87   0.74   0.84   

MD   0.91   0.91   0.95   0.91   0.95   0.93   0.36   0.74   0.72   0.74   0.64   0.64   

ME   0.76   0.89   0.84   0.81   0.88   0.84   0.87   0.95   0.91   0.94   0.95   0.92   

MI   0.62   0.62   0.56   0.41   0.58   0.56   0.45   0.55   0.53   0.14   0.45   0.42   

MN   0.83   0.87   0.86   0.87   0.59   0.80   0.79   0.91   0.89   0.85   0.91   0.87   

MO   0.73   0.70   0.70   0.49   0.71   0.67   0.40   0.30   0.23   0.19   0.35   0.30   

MS   0.84   0.87   0.88   0.61   0.87   0.81   0.63   0.71   0.72   0.18   0.70   0.59   

MT   0.83   0.82   0.90   0.90   0.89   0.87   0.87   0.88   0.91   0.85   0.91   0.88   

NC  0.79   0.77   0.63   0.81   0.82   0.76   0.60   0.46   0.45   0.65   0.67   0.56   

ND  0.80   0.89   0.89   0.84   0.85   0.86   0.71   0.69   0.68   0.66   0.21   0.59   

NE   0.73   0.79   0.79   0.79   0.64   0.75   0.42   0.38   0.38   0.43   0.22   0.37   

NH  0.83   0.86   0.80   0.85   0.60   0.79   0.77   0.79   0.71   0.79   0.41   0.70   

NJ   0.87   0.90   0.91   0.91   0.93   0.91   0.58   0.73   0.70   0.71   0.65   0.67   

NM   0.76   0.80   0.75   0.80   0.52   0.72   0.72   0.74   0.73   0.76   0.36   0.66   

NV   0.61   0.68   0.68   0.47   0.65   0.62   0.32   0.37   0.38   0.17   0.33   0.31   

NY   0.75   0.76   0.75   0.23   0.76   0.65   0.30   0.29   0.17   0.12   0.13   0.20   

OH   0.80   0.82   0.82   0.31   0.82   0.71   0.66   0.72   0.71   0.09   0.72   0.58   

OK   0.67   0.70   0.68   0.04   0.69   0.55   0.86   0.91   0.91   0.87   0.92   0.90   

OR   0.83   0.82   0.81   0.50   0.82   0.75   0.60   0.54   0.62   0.10   0.60   0.49   

PA   0.77   0.77   0.76   0.75   0.74   0.76   0.55   0.50   0.55   0.34   0.56   0.50   

RI   0.43   0.58   0.57   0.32   0.39   0.46   0.57   0.73   0.68   0.44   0.66   0.62   

SC   0.85   0.91   0.88   0.87   0.78   0.86   0.72   0.84   0.84   0.80   0.68   0.78   

SD   0.93   0.96   0.97   0.96   0.96   0.96   0.89   0.95   0.96   0.95   0.95   0.94   
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TN   0.74   0.71   0.70   0.35   0.73   0.65   0.75   0.73   0.75   0.74   0.79   0.75   

TX   0.74   0.66   0.73   0.76   0.74   0.73   0.48   0.40   0.39   0.47   0.50   0.45   

UT   0.88   0.90   0.89   0.85   0.92   0.89   0.72   0.78   0.79   0.66   0.83   0.76   

VA   0.95   0.95   0.95   0.97   0.96   0.96   0.71   0.83   0.83   0.78   0.85   0.80   

VT   0.78   0.84   0.84   0.73   0.75   0.79   0.74   0.78   0.80   0.55   0.79   0.73   

WA   0.73   0.68   0.70   0.70   0.50   0.66   0.35   0.33   0.34   0.02   0.13   0.23   

WI   0.77   0.74   0.78   0.48   0.73   0.70   0.58   0.51   0.60   -0.01*  0.59   0.45   

WV   0.72   0.80   0.75   0.74   0.74   0.75   0.80   0.83   0.70   0.78   0.74   0.77   

WY   0.68   0.81   0.81   0.84   0.85   0.80   0.67   0.77   0.56   0.77   0.71   0.69   

Mean   0.79   0.81   0.79   0.71   0.76   0.77   0.64   0.68   0.67   0.57   0.60   0.63   

ͣ   USAF   =   USA   Facts;   NYT   =   New   York   Times;   JHU   =   John   Hopkins   University;   BS   =   
BroadStreet;   CTP   =   The   COVID   Tracking   Project.   
*Kappa   can   produce   negative   values   0   is   random   agreement   among   raters;   1   is   complete   
agreement;   less   than   0   is   generally   interpreted   as   “no   agreement.” (40)   

Fig   2.   Provides   the   reliability   within   each   county   for   the   number   of   COVID-19    cases    using   the   
reliability   categories   proposed   by   Cicchetti   and   Sparrow    (36) .    Darker   (1.00)   to   lighter   (0.00)   
color   indicates   more   to   less   agreement.   For   kappa,   smaller   sample   size   differences   won’t   penalize   
for   smaller   value   differences.   
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Bayesian   

It   is   essential   to   examine   case   fatality   rate   (CFR)   estimates   and   not   just   reliability   

statistics   to   explore   how   reliability   estimates   may   translate   into   actual   statistics   used   to   

track   COVID-19.   Since   the   empirical   Bayes   approach   was   repeated   over   time,   we   can   

see   how   the   estimate   for   case   fatality   rate   develops   as   more   data   becomes   available   

(Fig   4).   As   time   passes   and   more   cases   and   deaths   are   reported,   the   intervals   narrow,   

giving   a   more   precise   estimate   for   the   case   fatality   rate.   In   addition,   for   most   states,   the   

estimates   corresponding   to   the   different   aggregators   begin   to   align   with   each   other   over   

time.   

If   we   look   a   bit   closer   at   the   data   in   Figure   5   we   can   see   how   low   reliability   

manifests   itself   in   varying   fatality   estimates.   For   example,   in   NY   we   see   reliability   

estimates   ranging   from   0.12   to   0.30   (see   Table   4),   which   results   in   an   aggregate   fatality   

range   of   0.063   to   0.082   (26.20%   difference).   If   we   go   back   and   look   at   CFR   estimate   

Fig   3.   Provides   the   reliability   within   each   county   for   the   number   of   COVID-19    deaths    using   
the   reliability   categories   proposed   by   Cicchetti   and   Sparrow.    Darker   (1.00)   to   lighter   (0.00)   
color   indicates   more   to   less   agreement.   
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19   

differences   across   aggregators   for   NY   we   see:   0.008   to   0.016   (119.21%   difference)   on   

March   15,   2020;   0.050   to   0.076   (34.28%   difference)   on   April   15,   2020;   0.065   to   0.083   

(25.03%   difference)   on   May   15,   2020;   and   0.064   to   0.082   to   (24.68%   difference)   on   

June   15,   2020.   This   also   means   our   confidence   in   estimates   will   be   low   early   on,   

especially   when   sample   sizes   are   small.   Looking   at   AK   credible   intervals   (CI),   its   

smallest   lower   CI   is   0.007   and   its   largest   upper   CI   is   0.024,   which   are   fairly   large   

differences   for   potential   point   estimates   of   fatality   rates.   What   this   implies   is   that   low   

reliability   across   aggregators   can   lead   to   significant   differences   in   calculated   disease   

tracking   statistics,   especially   early   in   a   pandemic.   
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Fig   4.   Time-progression   of   case   fatality   rate   across   states   and   sources.    The   horizontal   bars   
represent   the   90%   equal-tail   credible   intervals,   with   the   vertical   black   bars   indicating   the   posterior   
means.   

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


21   

  

  
Fig   5.   Aggregated   (June   30,   2020)   case   fatality   rate   across   states   and   sources.    The   horizontal   
bars   represent   the   90%   equal-tail   credible   intervals,   with   the   vertical   black   bars   indicating   the   
posterior   means.   
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Discussion   

This   study   attempted   to   compare   the   reliability   of   COVID-19   death   and   cases   

count   data   across   national,   state,   and   county-levels   between   data   aggregators.   As   

expected,   given   the   larger   sample   sizes,   reliability   for   both   cases   and   deaths   was   higher  

at   the   national   level   across   aggregators   than   at   state   and   county   levels.   However,   death   

count   reliability   was   typically   lower   than   reliability   for   reported   cases.   Variation   in   

reliability   remained   across   aggregators   and   suggests   that   aggregator   choice   could   have   

an   impact   on   any   data   analysis   or   subsequent   action   based   on   the   data.   These   

differences   can   partially   be   explained   by   the   intended   purposes   and   collections   methods   

of   each   aggregator.   USAF    (33) ,   JHU    (27) ,   and   NYT    (28)    have   been   reporting   daily   

cases   early   in   the   pandemic   and   attempt   to   publish   case   and   death   totals   in   near   

“real-time”   or   as   they   are   reported.   They   occasionally   use   county-level   health   

departments   as   a   source   in   instances   where   the   state   health   department   is   lagging   

significantly   behind   them.   Conversely,   CTP    (29)    exclusively   uses   state   health   

departments   as   a   source   to   ensure   their   data   are   consistent.   Broadstreet   has   

emphasized   updating   data   to   ensure   it   is   following   a   logical   trend   and,   when   possible,   

updating   historic   data   to   reflect   more   epidemiologically   significant   dates,   such   as   date   of   

death   or   date   of   symptom   onset.   These   disparate   approaches   are   important   for   different   

reasons   (e.g.,   historical   accuracy   for   retrospective   analysis)   and   likely   caused   some   

differences   in   reliability   between   aggregators.   

State   level   reliability   (Fig   1   and   Table   4)   demonstrated   notable   findings   as   well.   

First,   reliability   is   not   equal   across   states,   suggesting   that   individual   state   practices   and   

policies   considerably   influence   the   data   reliability.   Second,   some   reliability   estimates   are   

extremely   poor   suggesting   analysis   of   these   data   could   produce   inconsistent   findings.   
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These   results   imply   the   need   for   standardization   of   collection   and   reporting   methods   

across   states,   which   would   increase   both   reliability   and   validity   of   the   data.   

USAF,   JHU,   NYT,   CPT,   and   BS   use   various   data   collection   and   quality   assurance   

methods,   as   well   as   sources    (27–30,33) .   Using   state   public   health   departments   as   a   

data   source   requires   less   maintenance   and   is   more   sustainable,   but   county   health   

departments   tend   to   be   more   up-to-date   than   state   health   departments,   which   may   be   of   

paramount   importance   early   in   a   pandemic.   County   health   departments   also   report   data   

based   on   Council   of   State   and   Territorial   Epidemiologists   (CSTE)   guidelines   and   case   

definitions,   which   can   help   avoid   including   unreasonable   cases   in   data    (41) .   However,   

this   may   potentially   cause   datasets   to   include   duplicate   cases   and   cases   with   an   

unreasonable   definition,   making   the   sum   of   all   counties   overestimate   the   national   total.     

While   data   scraping   is   a   quick   and   accurate   way   to   enter   data,   it   is   fraught   with   

technical   challenges   (e.g.,   updating   web   sites   breaks   the   scrapping   code)   and   in   our   

experience   is   not   yet   feasible   or   quicker   and   more   accurate   than   manual   crowdsourcing   

data   entry.   Moreover,   data   scraping   requires   human   eyes   monitoring   it,   which   may   

cause   data   to   be   missed   in   instances   where   the   health   department   alters   their   website.   

Likewise,   a   pipeline   may   fail   to   fetch   data   if   the   health   department   changes   how   their   

website   is   formatted;   especially   a   potential   issue   if   volunteers   are   not   expecting   this   

particular   county   to   update   daily,   and   may   not   notice   a   fetching   issue.   Updating   

historical   data   to   include   cases   and   deaths   by   date   of   symptom   onset   or   death   provides   

significant   information   when   analyzing   spread   of   virus   and   the   effectiveness   of   

preventative   measures.   

In   regards   to   case   and   death   data   the   NYT   attributes   cases   to   the   location   they   

are   being   treated,   which   may   provide   a   more   accurate   picture   of   how   the   virus   is   

spreading   in   particular   counties   and   states   compared   to   using   solely   the   date   reported.   

Despite   this,   the   information   they   use   to   assign   cases   to   counties   is   inconsistently   
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provided,   and   the   data   may   include   out   of   state   visitors   in   state   totals;   if   these   cases   are   

also   reported   back   to   the   home   state,   these   cases   will   be   counted   twice   on   the   national   

level.   

Limitations     

While   the   intent   of   this   study   was   not   to   explain   aggregator   differences,   a   short   

discussion   of   some   differences   are   noteworthy.   For   example,   Broadstreet   often   showed   

significant   disagreement   with   other   aggregators   in   several   states   where   they   update   

historic   case   and   death   totals   to   reflect   date   of   symptom   onset,   date   of   diagnosis,   or   

date   of   death.     

Consequently,   as   a   result   of   challenges   posed   in   the   many   stages   of   data   

analyses,   the   reliability   and   validity   of   these   statistics   is   critical   when   creating   policies   to   

protect   the   public   and   accurately   modeling   the   disease.   Disease   data   validity   is   

imperative   and   should   be   the   primary   objective   for   any   institute,   as   without   validity   there   

can   be   no   reliability.   Given   that   validity   cannot   be   assessed   without   significant   agency   

and/or   government   oversight,   this   study   sought   to   evaluate   COVID-19   data   reliability,   

providing   insight   into   the   consistency   of   data   across   different   sources.   

Fundamentally,   the   validity   of   any   statistical   analysis   is   based   on   the   quality   of   

data   collected    (39,41–46) .   Moreover,   it   is   critical   that   aggregators   are   transparent   in   

their   data   collection   process   so   users   can   judge   the   validity   of   their   process   and   can   

understand   discrepancies   in   numbers   across   data   collection   sources.   An   important   

caveat   is   the   validity   of   the   final   data   source   is   largely   dependent   on   the   initial   sources   

providing   the   data   (e.g.,   state   officials   and   hospitals).   For   this   reason,   it   is   critical   that   

mechanisms   are   also   put   in   place   to   evaluate   the   reliability   and   validity   of   data   sources   

at   this   level.   Unfortunately,   to   our   knowledge   there   is   currently   no   mechanism   in   place   to   

evaluate   this   process   or   the   accuracy   of   the   data   collected    (2) .   
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Due   to   validity   concerns,   several   findings   were   clear   when   evaluating   the   

reliability   of   reported   daily   cases   and   deaths   across   aggregators.   First,   a   3-day   moving   

average   is   likely   needed   to   ensure   reliability   across   aggregators   and   eliminate   large   

spikes   or   dips   in   the   data   associated   with   validity   issues.   To   account   for   this,   Cohen’s   

Kappa   was   used,   though   with   limitations,   one   being   the    potential   for   paradoxical   

coefficients   such   that   high   agreement   yield   zero-value   coefficients,   negative   coefficients,   

or   abnormally   low   coefficients    (47,48) .    Modifying   the   moving   average   counts   by   +1   did   

improve   overall   kappa   performance,   however   a   handful   of   paradoxical   results   still   

occurred.   

While   it   would   be   ideal   if   cases   were   reported   using   the   date   of   infection   or   death   

rather   than   when   the   event   was   reported   and   all   aggregators   used   these   dates,   this   was   

not   the   case   and   frequently   resulted   in   significant   spikes   on   certain   days   (e.g.,   cases   

often   dropped   over   the   weekend   and   spiked   on   Monday   or   Tuesday,   with   the   level   of   

these   spikes   often   being   agency   or   county   dependent).   While   the   aforementioned   

example   associated   with   data   spikes   certainly   impacts   the   data’s   validity,   one   should   be   

cognizant   that   it   should   not   impact   the   reliability   (i.e.,   aggregators   should   reliability   

report   those   spikes).   With   that   said,   it   is   clear   from   our   evaluation   of   the   aggregator’s   

data   that   the   practices   applied   across   aggregators   is   not   consistent   (Table   3),   thus   

practices   should   be   put   in   place   to   increase   reliability   rather   than   relying   on   data   

smoothing   methods   to   reduce   the   impact   of   inconsistent   reporting.   

Conclusions   and   relevance   

The   general   conclusion   from   this   study   is   that   the   United   States   needs   a   national   

public   data   reporting   system   that   is   free   from   the   inconsistencies   and   data   

discrepancies   that   result   from   decentralized   data   collection   and   aggregation.   The   

technology   to   make   this   happen   currently   exists.   More   than   95%   of   U.S.   hospitals   use   

an   Electronic   Health   Record     system    (5) ,   which   can   be   integrated   into   a   near-real-time   
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data   reporting   infrastructure   to   share   data   between   local,   state,   and   national   public   

health   agencies.    Additionally,   the   CDC   maintains   a   National   Notifiable   Diseases   

Surveillance   System   (NNDSS),   which   is   used   to   aggregate   data   on   nationally   reportable   

and   notifiable   diseases.   COVID-19   data   are   submitted   electronically   to   the   CDC   by   state   

or   jurisdictional   health   departments   via   the   COVID-19   Electronic   Laboratory   Reporting   

system.   However,   participation   in   reporting   to   the   NNDSS   varies   widely   between   states   

because   participation   in   the   program   is   entirely   voluntary.   The   problem,   therefore,   lies   in   

the   initial   collection   and   eventual   reporting   of   data   from   the   states.   Difference   in   the   

underlying   Infection   Fatality   Rate   (deaths   per   true   number   of   infections,   rather   than   

deaths   per   detected/reported   cases)   would   cause   discrepancies   if   certain   states   had   a   

more   vulnerable   populace   than   others,   due   to   demographics   such   as   age   or   

socioeconomic   status.     

Another   likely   contributor   is   differences   in   reporting.   The   lack   of   a   nation-wide   standard   

for   reporting   deaths   means   that   different   states   may   be   more   or   less   stringent   in   

attributing   deaths   to   the   virus.   A   third   possible   source   for   disagreement   across   states   is   

discrimination   in   testing.   Due   to   limited   availability   of   testing,   some   states   became   more   

restrictive   in   providing   free   tests   to   the   public.   Tests   in   such   states   were   prioritized   

towards   those   exhibiting   more   severe   symptoms,   and   consequently   could   have   

introduced   case   sampling   bias   towards   a   higher-risk   subset   of   the   greater   population   of   

infected   individuals.   Through   future   research,   different   databases   and   public   sources   

will   be   incredibly   valuable   in   the   tracking   and   documentation   of   cases   and   deaths   

(49,50) .     

Standardizing   infectious   disease   data   collection   and   dissemination   would   empower   

practitioners   to   do   more   linking   to   other   variables   and   analysis.   For   example,   the   Area   

Deprivation   Index    is   a   powerful   indicator   of   many   health   outcomes    (50–52) .   The   

Centers   for   Disease   Control   and   Prevention   (CDC)   reports   social   inequality   and   health   
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systems   issues   as   a   cause   for   an   increased   risk   of   health   and   socioeconomic   impacts   

as   a   result   of   COVID-19   for   these   groups    (53,54) .   Data   reporting   for   race   began   in   early   

April,   with   Louisiana   being   the   first   to   report   data    (54–56) .   Immediately,   disparities   in   

mortality   deaths   were   noticed,   and   a   June   2020   report   by   the   CDC   confirmed   this   

disparity   was   widespread.    Ultimately,   we   need   to   nationally   mandate   explicit   methods   

for   reportable      infectious   diseases   that   allows   for   comparing   data   across   geographic   

levels.   This   is   a   political   problem   that   can   only   be   solved   with   increased   public   health   

funding   at   all   levels   of   government   to   fully   modernize   disease   reporting   in   the   US.     

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Nwq4n1
https://www.zotero.org/google-docs/?57aJ9Z
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


28   

Acknowledgements   

We’d   like   to   give   a   special   thank   you   to   everyone   who   participated   in   the    COVID-19   

Data   Project .   What   a   Journey   it   has   been!   

We’d   also   like   to   thank   all   the   universities   that   have   helped   us   along   the   way   and   

allowed   us   to   borrow   their   wonderful   students   for   a   good   cause:    Simmons   University ,   

New   York   University ,    Temple   University ,    George   Washington   University ,   and   many   

others!   

Thank   you   to    BroadStreet    and    Franciscan   Health    for   continued   support.   

Author   Contributions   

Conceptualization:    Tom   Schmitt   and   Dan   Sass   

Data   curation:    COVID-19   Data   Project   interns   

Methodology:    Tom   Schmitt,     Dan   Sass,   Erik   Yan   and   Ryan   Frost.     

Analysis:    Dan   Sass,   Erik   Yan,   and   Ryan   Frost   

Writing   –   original   draft:    Tom   Schmitt,   Dan   Sass,   April   R.   Miller,   and   Samin   Charepoo   

Writing   –   section   contributions,   reviewing   &   editing:    April   R.   Miller,   Samin   

Charepoo,   Erik   Yan,   Ryan   W.   Frost,   Zachary   Sturgeon,   Grace   Gibbon,   Patrick   Balius,   

Cedonia   Thomas,   James   Walters,   Melanie   Schmitt,   Tracy   Flood,   Daniel   Sass,   and   Tom   

Schmitt   

  

  

  

  

  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://covid19dataproject.org/
https://covid19dataproject.org/
https://www.simmons.edu/
https://www.nyu.edu/
https://www.temple.edu/
https://www.gwu.edu/
https://www.broadstreet.io/about-us/
https://www.franciscanhealth.org/
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


29   

References   

1.   Whitelaw   S,   Mamas   MA,   Topol   E,   Van   Spall   HGC.   Applications   of   digital   technology   in   
COVID-19   pandemic   planning   and   response.   Lancet   Digit   Health.   2020   Aug;2(8):e435–40.   

2.   Callaghan   S.   COVID-19   Is   a   Data   Science   Issue.   Patterns   N   Y   N.   2020   May   
8;1(2):100022.   

3.   Data   Collection   and   Reporting   |   NNDSS   [Internet].   [cited   2021   Mar   12].   Available   from:   
https://wwwn.cdc.gov/nndss/data-collection.html   

4.   Killeen   BD,   Wu   JY,   Shah   K,   Zapaishchykova   A,   Nikutta   P,   Tamhane   A,   et   al.   A   County-level   
Dataset   for   Informing   the   United   States’   Response   to   COVID-19.   ArXiv200400756   Phys   
Q-Bio   [Internet].   2020   Sep   10   [cited   2021   Mar   12];   Available   from:   
http://arxiv.org/abs/2004.00756   

5.   Shiode   N,   Shiode   S,   Rod-Thatcher   E,   Rana   S,   Vinten-Johansen   P.   The   mortality   rates   and   
the   space-time   patterns   of   John   Snow’s   cholera   epidemic   map.   Int   J   Health   Geogr.   2015   
Jun   17;14:21.   

6.   Hartley   DM,   Perencevich   EN.   Public   Health   Interventions   for   COVID-19:   Emerging   
Evidence   and   Implications   for   an   Evolving   Public   Health   Crisis.   JAMA.   2020   May   
19;323(19):1908–9.   

7.   Budd   J,   Miller   BS,   Manning   EM,   Lampos   V,   Zhuang   M,   Edelstein   M,   et   al.   Digital   
technologies   in   the   public-health   response   to   COVID-19.   Nat   Med.   2020   
Aug;26(8):1183–92.   

8.   Aiken   EL,   McGough   SF,   Majumder   MS,   Wachtel   G,   Nguyen   AT,   Viboud   C,   et   al.   Real-time   
estimation   of   disease   activity   in   emerging   outbreaks   using   internet   search   information.   
PLOS   Comput   Biol.   2020   Aug   17;16(8):e1008117.   

9.   Social   Distancing   [Internet].   [cited   2021   Mar   14].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html   

10.   Kamel   Boulos   MN,   Geraghty   EM.   Geographical   tracking   and   mapping   of   coronavirus   
disease   COVID-19/severe   acute   respiratory   syndrome   coronavirus   2   (SARS-CoV-2)   
epidemic   and   associated   events   around   the   world:   how   21st   century   GIS   technologies   are   
supporting   the   global   fight   against   outbreaks   and   epidemics.   Int   J   Health   Geogr.   2020   Mar   
11;19(1):8.   

11.   Eshragh   A,   Alizamir   S,   Howley   P,   Stojanovski   E.   Modeling   the   dynamics   of   the   COVID-19   
population   in   Australia:   A   probabilistic   analysis.   PLOS   ONE.   2020   Oct   2;15(10):e0240153.   

12.   Haffajee   RL,   Mello   MM.   Thinking   Globally,   Acting   Locally   -   The   U.S.   Response   to   
Covid-19.   N   Engl   J   Med.   2020   May   28;382(22):e75.   

13.   CDC   activities   and   initiatives   supporting   the   COVID-19   response   and   the   President’s   plan   
for   opening   America   up   again :   May   2020   [Internet].   [cited   2021   Mar   12].   Available   from:   
https://stacks.cdc.gov/view/cdc/88478   

14.   Gasser   U,   Ienca   M,   Scheibner   J,   Sleigh   J,   Vayena   E.   Digital   tools   against   COVID-19:   
taxonomy,   ethical   challenges,   and   navigation   aid.   Lancet   Digit   Health.   2020   
Aug;2(8):e425–34.   

15.   Cheng   C,   Barceló   J,   Hartnett   AS,   Kubinec   R,   Messerschmidt   L.   COVID-19   Government   
Response   Event   Dataset   (CoronaNet   v.1.0).   Nat   Hum   Behav.   2020   Jul;4(7):756–68.   

16.   Lapointe-Shaw   L,   Rader   B,   Astley   CM,   Hawkins   JB,   Bhatia   D,   Schatten   WJ,   et   al.   Web   and   
phone-based   COVID-19   syndromic   surveillance   in   Canada:   A   cross-sectional   study.   PLOS   
ONE.   2020   Oct   2;15(10):e0239886.   

17.   Buonanno   P,   Galletta   S,   Puca   M.   Estimating   the   severity   of   COVID-19:   Evidence   from   the   
Italian   epicenter.   PLOS   ONE.   2020   Oct   1;15(10):e0239569.   

18.   Heerden   A   van,   Young   S.   Use   of   social   media   big   data   as   a   novel   HIV   surveillance   tool   in   
South   Africa.   PLOS   ONE.   2020   Oct   2;15(10):e0239304.   

19.   (COVID-19)   in   the   U.S.   Centers   for   Disease   Control   and   Prevention.   [Internet].   CDC.   
Coronavirus   Disease;   2019   [cited   2020   Aug   19].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html   

20.   IHME   COVID-19   health   service   utilization   forecasting   team,   Murray   CJ.   Forecasting   
COVID-19   impact   on   hospital   bed-days,   ICU-days,   ventilator-days   and   deaths   by   US   state   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


30   

in   the   next   4   months   [Internet].   Infectious   Diseases   (except   HIV/AIDS);   2020   Mar   [cited   
2021   Mar   12].   Available   from:   http://medrxiv.org/lookup/doi/10.1101/2020.03.27.20043752   

21.   Wang   CJ,   Ng   CY,   Brook   RH.   Response   to   COVID-19   in   Taiwan:   Big   Data   Analytics,   New   
Technology,   and   Proactive   Testing.   JAMA.   2020   Apr   14;323(14):1341–2.   

22.   Brownstein   NC,   Louis   TA,   O’Hagan   A,   Pendergast   J.   The   Role   of   Expert   Judgment   in   
Statistical   Inference   and   Evidence-Based   Decision-Making.   Am   Stat.   2019   Mar   20;73(0   
1):56–68.   

23.   Adams-Huet   B,   Ahn   C.   Bridging   Clinical   Investigators   and   Statisticians:   Writing   the   
Statistical   Methodology   for   a   Research   Proposal.   J   Investig   Med.   2009   Dec   
1;57(8):818–24.   

24.   Li   R,   Pei   S,   Chen   B,   Song   Y,   Zhang   T,   Yang   W,   et   al.   Substantial   undocumented   infection   
facilitates   the   rapid   dissemination   of   novel   coronavirus   (SARS-CoV-2).   Science.   2020   May   
1;368(6490):489–93.   

25.   Weinberger   DM,   Chen   J,   Cohen   T,   Crawford   FW,   Mostashari   F,   Olson   D,   et   al.   Estimation   
of   Excess   Deaths   Associated   With   the   COVID-19   Pandemic   in   the   United   States,   March   to   
May   2020.   JAMA   Intern   Med.   2020   Oct   1;180(10):1336.   

26.   US   Coronavirus   Cases   &   Deaths   by   State   [Internet].   USAFacts.org.   2021   [cited   2021   Mar   
12].   Available   from:   /visualizations/coronavirus-covid-19-spread-map   

27.   COVID-19   United   States   Cases   by   County   [Internet].   Johns   Hopkins   Coronavirus   
Resource   Center.   [cited   2021   Mar   12].   Available   from:   https://coronavirus.jhu.edu/us-map   

28.   Coronavirus   in   the   U.S.:   Latest   Map   and   Case   Count   -   The   New   York   Times   [Internet].   
[cited   2021   Mar   12].   Available   from:   
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html   

29.   The   COVID   Tracking   Project   [Internet].   The   COVID   Tracking   Project.   [cited   2021   Mar   12].   
Available   from:   https://covidtracking.com/   

30.   BroadStreet   Covid19   Data   Project   [Internet].   [cited   2021   Mar   12].   Available   from:   
https://covid19dataproject.org/   

31.   CDC.   Coronavirus   Disease   2019   Prevention   (COVID-19)   [Internet].   Centers   for   Disease   
Control   and   Prevention.   2020   [cited   2020   Apr   5].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/index.html   

32.   CDC.   Cases,   Data,   and   Surveillance   [Internet].   Centers   for   Disease   Control   and   
Prevention.   2020   [cited   2021   Mar   12].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/index.html   

33.   Detailed   Methodology   and   Sources:   COVID-19   Data   [Internet].   USAFacts.   [cited   2021   Mar   
12].   Available   from:   https://usafacts.org/articles/detailed-methodology-covid-19-data/   

34.   Yang   T,   Shen   K,   He   S,   Li   E,   Sun   P,   Chen   P,   et   al.   CovidNet:   To   Bring   Data   Transparency   in   
the   Era   of   COVID-19.   ArXiv200510948   Cs   Q-Bio   [Internet].   2020   Jul   20   [cited   2021   Mar   
14];   Available   from:   http://arxiv.org/abs/2005.10948   

35.   R   Core   Team.   R:   A   Language   and   Environment   for   Statisctical   Computing.   Vienna,   Austria:   
R   foundation   for   Statistical   Computing;   2020.   [Internet].   [cited   2020   Sep   10].   Available   
from:   https://www.r-project.org/   

36.   BroadStreet-Health   [Internet].   GitHub.   [cited   2021   Mar   19].   Available   from:   
https://github.com/BroadStreet-Health   

37.   Hallgren   KA.   Computing   Inter-Rater   Reliability   for   Observational   Data:   An   Overview   and   
Tutorial.   Tutor   Quant   Methods   Psychol.   2012;8(1):23–34.   

38.   Vanbelle   S,   Albert   A.   A   note   on   the   linearly   weighted   kappa   coefficient   for   ordinal   scales.   
Stat   Methodol.   2009   Mar   1;6(2):157–63.   

39.   Cicchetti   DV,   Sparrow   SA.   Developing   criteria   for   establishing   interrater   reliability   of   
specific   items:   applications   to   assessment   of   adaptive   behavior.   Am   J   Ment   Defic.   

40.   McHugh   ML.   Interrater   reliability:   the   kappa   statistic.   Biochem   Medica.   2012   Oct   
15;22(3):276–82.   

41.   Thacker   S.   Council   of   State   and   Territorial   Epidemiologists.   :8.   
42.   Gill   JR,   DeJoseph   ME.   The   Importance   of   Proper   Death   Certification   During   the   COVID-19   

Pandemic.   JAMA.   2020   Jul   7;324(1):27.   
43.   WAC   246-101-220:   [Internet].   [cited   2021   Mar   16].   Available   from:   

https://app.leg.wa.gov/wac/default.aspx?cite=246-101-220   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


31   

44.   covid-19labreporting   State   of   Washington   [Internet].   State   of   Washington   Department   of   
Health;   2020   [cited   2021   Mar   15].   Available   from:   
https://www.doh.wa.gov/portals/1/documents/1600/coronavirus/20200307-covid-19labrepo 
rting.pdf   

45.   Case   Investigations   and   Contact   Tracing   FAQ ::   Washington   State   Department   of   Health   
[Internet].   [cited   2021   Mar   16].   Available   from:   
https://www.doh.wa.gov/Emergencies/COVID19/CaseInvestigationsandContactTracing/Ca 
seInvestigationsandContactTracingFAQ   

46.   Washington   Disease   Reporting   System   General   Communicable   Diseases   Instruction   
Manual   [Internet].   Washington   Disease   Reporting   System;   2018   [cited   2021   Mar   15].   
Available   from:   
https://www.doh.wa.gov/Portals/1/Documents/Pubs/420-227-WDRS-GCDmanual.pdf   

47.   High   agreement   but   low   Kappa:   I.   the   problems   of   two   paradoxes   -   Journal   of   Clinical   
Epidemiology   [Internet].   [cited   2021   Mar   12].   Available   from:   
https://www.jclinepi.com/article/0895-4356(90)90158-L/pdf   

48.   High   agreement   but   low   kappa:   II.   Resolving   the   paradoxes   -   Journal   of   Clinical   
Epidemiology   [Internet].   [cited   2021   Mar   12].   Available   from:   
https://www.jclinepi.com/article/0895-4356(90)90159-M/pdf   

49.   Publicly   available   COVID-19   data   for   analytics   [Internet].   Google   Cloud   Blog.   [cited   2021   
Mar   23].   Available   from:   
https://cloud.google.com/blog/products/data-analytics/publicly-available-covid-19-data-for- 
analytics/   

50.   Area   Deprivation   Index   (ADI)   –   Marketplace   –   Google   Cloud   Platform   [Internet].   [cited   
2021   Mar   23].   Available   from:   
https://console.cloud.google.com/marketplace/product/broadstreet-public-data/adi?project= 
theta-terrain-285112   

51.   Area   Deprivation   Index   and   Vulnerable   Populations   -   How   do   I   find   them?   [Internet].   [cited   
2021   Mar   23].   Available   from:   https://help.broadstreet.io/article/adi/   

52.   BroadStreet-Health/Race-and-Ethnicity-Data   [Internet].   BroadStreet-Health;   2021   [cited   
2021   Mar   24].   Available   from:   
https://github.com/BroadStreet-Health/Race-and-Ethnicity-Data   

53.   CDC.   Increased   Risk   Factors   for   Exposure   [Internet].   Centers   for   Disease   Control   and   
Prevention.   2020   [cited   2021   Apr   23].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/racial-ethnic-dispariti 
es/increased-risk-exposure.html   

54.   CDC.   Health   Equity   Considerations   &   Racial   &   Ethnic   Minority   Groups   [Internet].   Centers   
for   Disease   Control   and   Prevention.   2020   [cited   2021   Apr   23].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/race-ethnicity.html   

55.   CDC.   Hospitalization   and   Death   by   Race/Ethnicity   [Internet].   Centers   for   Disease   Control   
and   Prevention.   2020   [cited   2021   Apr   23].   Available   from:   
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitaliza 
tion-death-by-race-ethnicity.html   

56.   CDC.   COVID   Data   Tracker   [Internet].   Centers   for   Disease   Control   and   Prevention.   2020   
[cited   2021   Apr   23].   Available   from:   https://covid.cdc.gov/covid-data-tracker   

57.   Interim   COVID-19   Testing   Guidance   for   Healthcare   Providers.   Wash   State   Dep   Health.   
2020;4.   

58.   Testing   for   COVID-19 ::   Washington   State   Department   of   Health   [Internet].   [cited   2021   Mar   
16].   Available   from:   https://www.doh.wa.gov/Emergencies/COVID19/TestingforCOVID19   

59.   What   is   contact   tracing?   [Internet].   WASHINGTON   STATE   DEPARTMENT   OF   HEALTH;   
2020.   Available   from:   
https://www.doh.wa.gov/Portals/1/Documents/1600/coronavirus/ContactTracingInfographic 
.pdf   

60.   WAC   246-101-201:   [Internet].   [cited   2021   Mar   16].   Available   from:   
https://app.leg.wa.gov/wac/default.aspx?cite=246-101-201   

61.   CDC.   Labs   [Internet].   Centers   for   Disease   Control   and   Prevention.   2020   [cited   2021   Mar   
16].   Available   from:   https://www.cdc.gov/coronavirus/2019-ncov/lab/reporting-lab-data.html  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


32   

62.   Letter   to   Lab   Directors/Managers   [Internet].   State   of   Washington   Department   of   Health;   
2020   [cited   2021   Mar   15].   Available   from:   
https://www.doh.wa.gov/portals/1/documents/1600/coronavirus/20200307-covid-19labrepo 
rting.pdf   

63.   COVID-19   testing   locations   in   King   County   -   King   County   [Internet].   [cited   2021   Mar   16].   
Available   from:   https://www.kingcounty.gov/depts/health/covid-19/testing.aspx   

64.   COVID-19   |   Testing   [Internet].   [cited   2021   Mar   16].   Available   from:   
https://www.skagitcounty.net/Departments/HealthDiseases/coronavirusdriveup.htm   

65.   White   House   to   hospitals:   Bypass   CDC,   report   COVID-19   data   directly   to   HHS   |   Healthcare   
IT   News   [Internet].   [cited   2021   Apr   23].   Available   from:   
https://www.healthcareitnews.com/news/white-house-hospitals-bypass-cdc-report-covid-19 
-data-directly-hhs   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.21256069doi: medRxiv preprint 

https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://www.zotero.org/google-docs/?rZywN7
https://doi.org/10.1101/2021.04.25.21256069
http://creativecommons.org/licenses/by-nc-nd/4.0/


33   

Supporting   information   

Washington   state   COVID-19   protocol   

The   first   step   in   Washington   state’s   COVID-19   protocol   involves   identifying   the   

symptomatic   individua l   (S1   Figure).    This   individual   will   either   be   expressing   symptoms   

of   COVID-19,   is   a   close   contact   of   a   case   of   COVID-19,   is   at-risk   of   transmitting   

COVID-19   due   to   various   factors   (below),   or   is   a   member   of   a   group   atypically   prone   to   

adverse   COVID-19   outcomes   undergoes   testing   through   a   healthcare   provider   or   at   a   

testing   site.   The   provider/testing   site   collects   information   during   the   testing   process,   

including   contact   information,   demographic,   race   and   ethnicity    (57) .   

After   identification,   most   tests   are   sent   to   clinical   labs,   and   in   certain   situations,   

the   specimen   is   sent   to   the   Public   Health   Lab   (which   tends   to   have   shorter   wait   times   

before   returning   a   result).   This   is   determined   by   various   factors,   most   of   which   are   used   

to   identify   people   who   work/live   in   environments   where   they   are   more   likely   to   transmit   

the   virus    (58,59) .    Next,   regardless   of   which   lab   conducted   testing,   all   results   (positive,   

negative,   and   inconclusive)   are   shared   with   the   local   health   jurisdiction   (county   health   

department).   If   the   suspicion   that   an   individual   is   carrying   COVID-19   is   high,   a   negative   

test   will   be   repeated.   Local   health   jurisdictions   must   be   notified   immediately   of   a   positive   

result   by   telephone,   regardless   of   the   hour.   Isolate   or   clinical   specimens   from   a   positive   

test   must   be   sent   to   the   Public   Health   Lab   within   two   business   days   of   the   test   result,   if   

tested   at   a   clinical   lab    (43,44,57,60) .   

After   results   are   received,   local   health   jurisdictions   input   case   information   into   the   

Washington   Disease   Reporting   System   (WDRS)   to   report   them   to   the   Washington   State   

Department   of   Health.   The   CDC   is   also   notified   through   the   WDRS.   Data   reported   to   the   

CDC   is   de-identified,   and   reported   through   HL7   messaging   or   a   correctly   formatted   

.CSV   file.   Case   interviews/contact   tracing   are   used   to   fill   in   any   information   not   gathered   
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during   the   initial   test.   Local   health   jurisdictions   may   not   be   given   complete   contact   

information   for   individuals,   delaying   notification    (45,46,61,62) .   

Individuals   are   then   notified   of   positive   results   in   various   ways,   depending   on   

where   they   had   their   test   done.   They   may   receive   a   call   from   the   healthcare   provider,   

from   local   health   jurisdictions,   or   from   their   tester.   Individuals   are   instructed   to   go   into   

isolation.   Contact   tracers   conduct   interviews   to   determine   how   the   virus   was   contracted,   

where   possible.   Contact   tracers   identify   close   contacts,   who   are   notified,   instructed   to   

quarantine,   and   monitored   for   two   weeks   for   symptoms   of   COVID-19.   Monitoring   of   

close   contacts   ceases   after   two   weeks.   Isolation   for   COVID   patients   ceases   after   their   

symptoms   improve,   they   have   had   at   least   ten   days   pass   since   initial   appearance   of   

symptoms,   and   have   gone   three   days   without   a   fever.   If   never   symptomatic,   isolation   

ends   ten   days   after   a   positive   test    (45,59,63,64) .    This   process   will   have   slight   variations   

depending   on   the   laws   in   a   given   state.     

The   CDC   allows   for   several   methods   of   reporting   this   data    (61) .   It   is   important   to   

note   that   there   may   be   numerous   caveats   of   how   COVID-19   data   is   reported   and   

aggregated   and   ultimately   making   its   way   to   the   CDC.   For   example,   on   July   10,   2020   

The   U.S.   Department   of   Health   and   Human   Services   (HHS)   directed   hospitals   that   

perform   COVID-19   testing   or   that   use   certain   commercial   labs   to   report   using   the   HHS   

Protect   System.   Thus,   some   testing   data   bypassed   the   CDC   and   went   directly   to   the   

HHS    (65) .   
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S1   Figure.   Visualization   of   Washington   state’s   COVID-19   protocol.   

 

  

Note:   Time   period   of   this   chart   is   July   10,   2020.   Process   may   have   been   updated.   
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