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Abstract

Restricting in-person interactions is an important technique for limiting the spread
of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although early
research found strong associations between cell phone mobility and infection spread
during the initial outbreaks in the United States, it is unclear whether this relationship
persists across locations and time. We propose an interpretable statistical model to
identify spatiotemporal variation in the association between mobility and infection
rates. Using one year of US county-level data, we found that sharp drops in mobility
often coincided with declining infection rates in the most populous counties in spring
2020. However, the association varied considerably in other locations and across time.
Our findings are sensitive to model flexibility, as more restrictive models average over
local effects and mask much of the spatiotemporal variation. We conclude that mobility
does not appear to be a reliable leading indicator of infection rates, which may have
important policy implications.

1 Introduction

In the hopes of better informing public health decision-making, researchers have developed
many prediction models to forecast the COVID-19 pandemic. Effective forecasts capable
of identifying reliable leading indicators of emerging outbreaks could improve policy recom-
mendations. To this end, factors such as mask-wearing [1; 2], weather [3; 4], and demography
[5] have been found to be associated with rates of infection in the US. The effectiveness of
other non-pharmaceutical interventions (NPIs) such as government lockdowns is also well
studied [6; 7; 8], although some questions still remain. For instance, it is challenging to
disentangle the effects of overlapping NPIs, such as the rapid increase in mask-wearing in
early April 2020 alongside widespread lockdowns in many parts of the US.

Cell phone mobility data has emerged as an appealing surrogate of government man-
dates. Since it is a directly observable measure of human movement, it contains more
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information than the duration of government orders. In addition, it may serve as a better
proxy for the actual quantity that government actions are intended to reduce: the relative
frequency of risky in-person interactions where transmissions may occur. Mobility infor-
mation is available through public APIs such as Google’s Community Mobility Reports [9]
and SafeGraph’s completely at home metric [10]. The ubiquity of readily accessible mobility
data, along with the lack of widespread alternative sources of data—such as detailed contact
tracing information—has made it an attractive proxy for interactions.

As mobility plummeted to unprecedented levels during the first wave of the pandemic,
these publicly available data sources received widespread attention. Mainstream media
outlets such as the Washington Post [11; 12], Wall Street Journal [13], New York Times [14],
Los Angeles Times [15], and National Public Radio [16] have all analyzed cell phone mobility
and highlighted its record drop over the past year. Moreover, public-facing epidemiology
dashboards, such as the ones available by the US Centers for Disease Control and Prevention
[17] and the Institute for Health Metrics and Evaluation [18], prominently list mobility as
a metric of interest. As articles in leading scientific journals began to suggest that mobility
data could be a valuable tool for battling the pandemic [19; 20; 21], it is not surprising that
many COVID-19 forecasts have used mobility as a data source.

Although there is a large and growing body of work using mobility to predict COVID-19
spread, many of their conclusions are not broadly applicable outside of the initial wave of
the pandemic. In particular, limitations in the amount of data and in the inherent modeling
assumptions restrict the applicability of these earlier works [22; 21; 8; 23; 24; 25]. Since
the pandemic has been constantly evolving, a rather obvious limitation is that early papers
only looked at data from the first few months of the pandemic, such as through June 2020
[22; 21; 8; 23; 24]. Furthermore, most articles limited the set of locations modeled to a small
number of major cities [22; 21], or fit models at a coarser state level [8; 25]. Such limitations
in the length of time and number of locations modeled render these works incapable of
making inferences about local outbreaks across time. Another key limitation in most prior
work—with the exception of [24]—is the overly restrictive assumption that the relationship
between mobility and infection rates is stationary. Although this stationarity assumption
was reasonable during the initial wave of the pandemic, large shifts in behavior due to
evolving government guidance and adherence to such guidance suggest that coarse mobility
may no longer be a good proxy for potentially risky transmission events [26; 27]; as such,
the relationship between mobility and infection rates today likely differs from spring 2020.

Capturing the time-varying relationship between mobility and infection rates is especially
challenging due to the incomplete, heterogeneous, and non-stationary nature of the data.
For instance, the lack of reliable data on adherence to mask-wearing during the beginning
of the pandemic in spring 2020 makes it difficult to identify the relationship between mask-
wearing and infection rates. This problem is exacerbated by the fact that it is important to
adjust for mask-wearing when interpreting the effect of mobility on growth rates. Reported
case data come with their own set of unique challenges, including highly variable reporting
delays, strong day-of-week effects, and differential rates of testing. Moreover, since we only
observe this data over a relatively short time frame, it difficult to adjust for seasonality.

To assess the temporal and spatial utility of mobility data in this challenging data setting,
a central objective of this work is to identify a flexible yet interpretable class of models that
can sufficiently disentangle how the effect of mobility changes over time and space. To
this end, we show that restrictive models effectively average over local effects by naively
assuming a constant relationship between mobility and transmission. Conversely, we show
that overly flexible models lead to spurious correlations and conclusions.
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Our proposed multilevel regression model strikes a balance: we allow the association
between mobility and growth rates to vary across groups of nearby counties and over four
distinct “waves” of 13 weeks each. The granularity of this spatial clustering and temporal
variation of coefficients is critical to the robustness of our inferences. We analyze an entire
year of data across 94% of all 3,143 US counties (covering 99.7% of the total population)
and use Google’s Mobility Trends as our measure of mobility. We replicate prior work that
found strong first wave associations between mobility and infection rates. Furthermore, we
find that the strength of this association is strongest in the most populous counties, but is
otherwise highly variable across geographies, and significantly weakens after the first wave.

2 Results

Visualization of mobility measures and infection growth rates over time. We first
examine weekly county-level mobility and infection growth rate trends. Figure 1 visualizes
the weekly growth rate of new infections for each of the 2,951 US counties modeled. Counties
are displayed according to the nine US Census divisions—within a division, counties falling
in the same combined statistical area (CSA—a grouping of counties connected by workplaces
and commuting patterns) appear in adjacent rows. Counties in the same CSA tend to exhibit
similar growth rates, as evidenced by the clear clustering patterns in growth rates. Different
waves of the pandemic across divisions are also apparent.

Google’s mobility trends capture six distinct types of mobility: grocery/pharmacy, res-
idential, retail/recreation, workplace, transit, and parks. Figure 2 shows the weekly trend
for each of these variables for each county in three CSAs: New York City, San Francisco,
and Green Bay, WI. Mobility values are reported relative to a baseline level in January
2020 for each county, which normalizes for population and pre-pandemic mobility levels.
The rapid drop in mobility following widespread lockdowns in March 2020 is present in all
locations. Furthermore, it is clear that these six mobility variables are tightly connected:
grocery/pharmacy, retail/recreation, workplace, and transit are positively correlated, while
residential mobility is negatively correlated with the others.

Overly flexible models lead to incorrect and misleading inferences. It is tempting
to include each of the Google mobility variables as separate predictors. However, the strong
correlations between them often lead to misleading estimated associations between distinct
mobility variables and growth rates. The “collinear” column of Figure 3 illustrates what can
go wrong, showing two highly correlated mobility measures (retail /recreation and workplace)
over time in one CSA. Nonsensically, the learned association between retail mobility and
infection rates is negative throughout the first three waves. This misleadingly suggests that
higher levels of retail-related mobility correlate with lower infection rates, but is clearly an
artifact of collinearity between retail and workplace mobility. In our final model, we collapse
the original six mobility measures into a single value using principal components analysis
to avoid such unintentional side effects caused by collinearity [28]. This univariate feature
captures over 60% of the variability in the original six mobility measures.

The “overflexible-mobility” column of Figure 3 identifies another pitfall associated with
too much model flexibility. The first principal component of mobility is visualized, along
with its estimated association with growth rates from an overly flexible model that allows
for the association to vary each month. The model’s effect of mobility over time for this
location varies considerably, and often is negative. However, it is implausible that increased
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levels of mobility might be associated with lower infection rates; at most, there may be
periods where they are uncorrelated.

The “overflexible-temperature” column Figure 3 shows results from allowing both the
effect of temperature and the univariate measure of mobility to vary smoothly over time.
Allowing the effect of temperature to also vary over time overpowers much of the signal
contained in mobility, and it is clear that the model is over-specified by the near-perfect fit
observed.

Properly constrained models lead to meaningful inferences. As a first set of qual-
itative checks, we display in Figure 4 how well the model fits the observed infection rates
for three CSAs chosen to illustrate heterogeneity in conclusions and model fit. Each column
shows results from San Francisco, New York City, and Green Bay, WI. For each location,
the aggregate mobility metric is plotted over time, along with the model’s coefficients for
mobility per wave and the fitted and observed infection rate values. New York had a strong
association between mobility and growth rates in the beginning of the pandemic, Green
Bay had a strong association later in the pandemic, and San Francisco never had a strong
association.

Mobility was most predictive in urban areas during spring 2020; elsewhere ex-
hibited substantial variation. Figure 5 presents the R? of our model across different
subsets of data. Panel (a) shows the overall R? of the model for each week and the R? across
counties with varying population sizes. The overall fit is best during the first months of the
pandemic and for the largest counties (populations of more than 250,000, comprising 64%
of the total US population). R? is low across the rural 46% of counties with a population
of less than 25,000. Panel (b) shows similar R? results according to US Census region. The
Northeast exhibits the best fit while the South, with its many rural counties, is the worst.
Panels (c) and (d) show additional R? results as a function of overall relative mobility levels
across all locations and time. Model performance is highest during the first wave in the
most urban counties, when mobility levels are at their lowest values. Interestingly, during
the third and fourth waves there is minimal difference in R? as a function of mobility levels,
suggesting that at this coarse level of analysis mobility’s association with infection growth
rates weakened over time.

In Figure 6 we visualize the effect of mobility alongside the corresponding R? for each
wave and CSA on a map of the US. There is a striking degree of non-stationarity in the
estimated effects over time and space. In the first wave, the estimated effect of mobility
is close to zero throughout most of the South, as well as much of the West and Midwest.
The signal weakens considerably in the second wave, while in the third wave the signal is
strongest in the Midwest. Although the estimated effects of mobility sometimes appear
strong, as in the fourth wave spanning winter 2020 into early 2021, the corresponding R?
values are often fairly weak.

Overly rigid models underfit and wash out spatial and temporal effects. To
assess whether our final model can be made simpler without sacrificing accuracy, we consider
simpler models that limit mobility’s effect to vary by time and space. We construct an
ablation study of six models: letting mobility’s effect vary by CSA, by region, or be fixed
nationally; and letting mobility’s effect vary for each wave, or be fixed in time.

For the three example CSAs shown previously, we display the estimated effect of mobility
across time for each ablation in Figure 7. Comparisons of models allowing differential effects
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of mobility across locations show that rigid national grouping averages over effects visible
at finer spatial groupings, such as by region and CSA. Similar limitations are observed with
constant temporal effects for mobility. This averaging is not just superficial: our conclusions
on the association between mobility and the infection growth rate change. For example, in
our final model, we conclude that there is no effect of mobility on infection growth rate
in New York during the third wave. However, all other progressions would conclude that
there is a strong association. Likewise, the simpler model that allows mobility’s effect to
vary by CSA but forces it to be fixed in time would conclude that New York and Green
Bay have very similar associations between mobility and infection rates. However, the final
model clearly shows that they are actually quite different, as New York had the strongest
association early on while the opposite trend held in Green Bay.

Table 1 tabulates the overall and by region R? for each of the six model progressions. As
expected, greater flexibility generally results in higher overall R2. The greatest differences
in R? are observed at finer disaggregations: the simplest model has an R? of just 19% in
the North East, whereas our four wave CSA model achieves an R? of over 40%; indicating
that both time-varying coefficients and choice of clustering are critical. In Appendix C of
the Supplementary Materials, we show that our final model does not overfit.

Assessing the mask effect. On April 4, 2020, the Centers for Disease Control (CDC)
began recommending public mask use, a stark reversal of earlier guidance. This led to an
increase in mask use across the United States coincident with large drops in mobility. As
a result of these concurrent events, mask use and mobility are strongly correlated in the
first wave. To facilitate interpretation, we model the association between masks and the
infection growth rate as a national effect that is constant across time. All other factors
held constant, we estimate an expected 2% decrease in the infection growth rate due to an
additive increase in mask adherence of 10%.

To untangle the effect of masks and mobility in the first wave, we compare the R? by
date in models with and without a mask variable. In the four week period following April
4, 2020, we find that overall R? increases by approximately 10% when the mask variable is
included in the model; see Supplementary Figure S3 for additional details.

Conclusions are robust across different mobility data sources. To assess whether
our conclusions are sensitive to choice of mobility measure, we consider SafeGraph’s com-
pletely at home data measure (completely_home_prop_7dav) [29; 10] in place of the first
principal component of Google’s mobility indicators. Our conclusions are very similar when
using either Google’s or SafeGraph’s mobility measure. Panel (a) of Figure 8 displays per-
formance, as measured by R?, over time and by county population. As in Figure 5, R? is
highest in the beginning of the pandemic and in high population counties.

In panel (b) of Figure 8, the rolling three month correlation between SafeGraph’s com-
pletely at home measure and each of Google’s six mobility measures is plotted. From
March-June 2020, we see correlations with large magnitudes across all variables, providing
evidence that stay-at-home orders, lockdown orders, and general uncertainty resulted in a
large correlated shift in mobility that is observable across different measures. As a result,
during the first wave of the pandemic, any of these mobility measures should have similar
ability to predict infection rates. However, as the pandemic progressed this relationship
eroded, potentially suggesting that coarse cell phone measures of mobility began to capture
different aspects of mobility and in ways that may not as reliably explain person-to-person
contact patterns.
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3 Discussion

The primary aim of our study is to disentangle how the association between mobility and
COVID-19 infection rates varies across time and space. Our work is unique in that it fits
time-varying models down to the county level for the vast majority of US counties with
an entire year of COVID-19 data. This allows us to much more closely examine when and
where broad claims do or do not hold, and to try to assess what drives those patterns.

We find that at an aggregate level, mobility was a strong predictor of COVID-19 weekly
infection rates in the first wave, from February 29, 2020 through May 23, 2020. This
is similar to findings in other studies, where cell phone mobility was lauded as a strong
predictor in the US and globally during the early part of the pandemic [30; 31; 22; 32; 21;
24; 30]. A few later studies noted that mobility was markedly less effective as a predictor
in the US after the first wave [26; 27; 33], which is supported by our findings. We found
that the association between mobility and infection rates in the most populous areas largely
diminished over the summer and into the fall, then briefly strengthened in late 2020 and
into early 2021 before weakening again.

A complete understanding of the relationship between mobility and infection rates re-
mains frustratingly elusive. Importantly, mobility is only a coarse proxy for a desired, but
unmeasured quantity: the frequency of risky in-person interactions in a location, which
should correlate more directly with infection rates. As in-person interactions changed over
the last year due to better mask-wearing, hygiene, and social distancing, mobility data has
become confounded and thus a worse proxy for risky interactions. We have also demon-
strated that as mobility levels have slowly rebounded from extreme decreases seen during
the first wave, different mobility measures have become less correlated. This implies that
while almost any mobility metric would be a good proxy for risky interactions during ex-
treme mobility decreases, much more care is required to select a proxy as mobility levels
veer closer to pre-pandemic levels. We conclude that, while mobility was a reasonable proxy
for less-safe practices at first, it was not necessarily stable through time or space.

In terms of modeling, our findings show that models that include mobility need to be
either targeted to specific times and places, or include a relationship that varies with time
and space. The latter is fundamentally challenging if other complicated relationships, such
as with spatiotemporal-varying temperature or mask-usage associations, are included as
well. The degrees of freedom quickly overwhelm data that is limited by collection period
and correlations between explanatory variables. All statistical models used to understand
relationships COVID-19 incidence and explanatory variables should be checked for the sta-
bility of coefficient values and predictive accuracy across time and space to avoid overfitting
and spurious conclusions.

There are several limitations to these conclusions. From a data perspective, we face the
fundamental problem of correcting for systematic differences in testing that occur over long
periods of time and across locations. Although our use of growth rates provide some im-
provement over unadjusted case data, such period-by-period estimates cannot capture longer
term trends in differential testing. While modeling hospitalizations could have addressed
such issues, these data are not widely available at the county level. Another limitation
arises due to a lack of detailed mask behavior during the initial phases of the pandemic,
making the task of disentangling the effect of mobility and masks very difficult. Addition-
ally, observed data is often systematically missing and must be imputed, and checking the
embedded assumptions in our imputation models is challenging. Finally, we only observe
a year of data which makes it impossible to correct for seasonality, such as with the effect
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of temperature. On a modeling side, we choose to pursue statistical models that estimate
the association between mobility and the infection growth rate. Although these regression
models do not allow us to simulate counterfactual scenarios as is possible with compartmen-
tal models [32; 21; 34; 35], such models are restrictive and subject to misspecification. To
correctly specify these models would require knowledge of every infection for every county
without reporting delays. Instead, infection count data is subject to changing protocols and
availability, both of which are confounded by the dynamics of disease spread. In contrast,
our regression framework is relatively easy to calibrate with existing data, and furthermore
the simplicity of these models makes them much more computationally efficient to fit than
compartmental models.

In terms of policy, our findings imply that public health officials should not focus ex-
clusively on coarse mobility and must take into account other factors to measure possible
transmission events. Conversely, our findings also suggest that there are settings where
increased mobility does not necessarily indicate increased rates of transmission. However,
the data are far too coarse to indicate what those settings are and what level and type of
mobility would be safe. As states loosen mask usage and other restrictions, we might again
see a changing effect of mobility. Furthermore, both the proliferation of more transmissible
variants of the virus as well as the increasing number of vaccinated people will likely com-
plicate the future relationship between mobility and COVID-19 transmission. These effects
were not included in our analyses due to the time periods analyzed, but warrant future
investigation.

4 Methods

Overview Our primary interest is to understand how the relationship between COVID-19
outbreaks and mobility varies across time and geography. Unfortunately, the exact time that
new infections occur is never directly observed. Instead, we must rely on noisy observations
of the infection incidence such as reported cases, hospitalizations, or deaths. To account
for this discrepancy, we estimate the incidence of infections with a newly proposed statisti-
cal procedure that robustly estimates the true unknown infection incidence from reported
cases [36]. We apply this estimator to daily reported cases for 2,951 counties (covering
99.7% of the total population) using data from the New York Times Coronavirus (COVID-
19) repository [37] and the New York City Department of Health COVID-19 repository [38];
see Appendix A of the Supplemental Materials for data exclusion criteria. We then con-
struct features from aggregated cell phone mobility data, mask-usage surveys, temperature
data, and demographic data. These features are used to predict infection growth rates at
the county level via a hierarchical Bayesian regression model.

Infection growth rate as outcome We hypothesized that mobility is more likely to
correlate with the relative growth of an outbreak rather than with its absolute size. As
such, we consider the log growth rate of the estimated incidence curve, henceforth referred
to as the growth rate. Specifically, let r; ; be the estimated number of new infections for
county 4 that occurred in week ¢. As a unit-less quantity that measures the rate-of-change
in the infection rate, the growth rate, y; ¢, is more robust to differential testing rates than a
quantity such as the estimated infection incidence itself. Define the weekly growth rate y; ;
as the log ratio of the total infections in the last two weeks: y; , = log (73,¢/7i.t—1) -

Figure 1 displays the weekly growth rate of infections by geographic divisions, with
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counties ordered by their CSA. This figure illustrates the heterogeneity in the weekly growth
rate: different regions experienced outbreaks of varying severity at different times. Similar
temporal trends are observed not only within geographic divisions, but also in blocks of
counties corresponding to CSAs. Our subsequent modeling choices that involve geographic
hierarchies and wave break points are informed by this observed clustering.

Data sources We use Google’s publicly available mobility trends as a surrogate for the
frequency of person-to-person contact. Google uses cell phone location data to measure
the difference in movement trends during the COVID-19 pandemic from baseline activity
before the pandemic for grocery/pharmacy, residential, retail /recreation, workplace, transit,
and parks categories; see [9] for a detailed description. We apply weekly aggregation and
imputation to account for day of week effects and missingness. To avoid collinearity in these
features, as illustrated in Figure 3 of Section 2, we fit multilevel regression models with a
univariate summary of mobility obtained as the first principal component of Google’s six
mobility variables. For interpretation purposes, we enforce a positive first principal loading
for workplace mobility, so that higher values of this summary variable indicate more time
in public and less time at home.

State level mask usage features are created based on three surveys conducted at different
times and at different geographic resolutions during the pandemic [39; 37; 29]. To easily
interpret the expected effect of mask wearing, we combine responses from these surveys into
a single continuous mask feature at the state level. Details are provided in Appendix A of
the Supplementary Materials.

Mobility, mask use, and temperature time series are constructed by averaging daily
measurements within each week. Google’s six mobility metrics and temperature are collected
at the county level, and the mask feature is at the state level. The county level population
is an estimate from the 2018 US Census.

Multi-level regression model We assume that the expected weekly infection growth
rate in county 7 at week ¢ is a linear function of population X;, temperature T;;, mask
compliance Cj, +, and a three week moving average of the first principal component of
Google’s six mobility variables M; ¢,

Yie = e, + XiB + [Tit;Cs, 4]0 + My yye, o +€ies €50 ~ N(O, O—z)v (1)

where s; is the state of county ¢. To account for geographic clustering observed in the
growth rate, we assume that the effect of mobility varies by CSA, i.e., M;vc, ¢, where ¢;
maps county i to its CSA!. This allows local information sharing—effectively augmenting
missing or incomplete data—Dbetween counties within the same CSA. To account for non-
stationarity in mobility, we assume that the effect of mobility on the infection rate varies
across time. This is encoded through structured time-varying coefficients ~, +.

For ease of interpretation, we assume the effect of mobility is piece-wise constant over
four waves: February 22, 2020-May 23, 2020; May 30, 2020-August 22, 2020; August 29,
2020-November 21, 2020; November 28, 2020-February 20, 2021. This implies that ., ¢
is a piece-wise constant function with three discontinuities and can thus be parameterized
by four coefficients that describe the association between mobility and the infection rate in
each wave. To prevent physically implausible coefficient values, we constrain the coefficients

LA state pseudo-CSA is created for all counties within a state that do not belong to one of the 175 named
CSAs.
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to be positive, that is, v, + > 0 for all ¢; and t. Markov chain Monte Carlo is used to sample
from the posterior distribution. Appendix B of the Supplementary Materials contains a
detailed description of our model, prior specifications, and posterior inference settings.

Data availability We use publicly available data for county-level temperature [40], Covid-
19 case counts [37; 38], mask usage [41; 39; 29], Google mobility data [9], SafeGraph mobility
data [10], and county population [42].

Code availability Code to reproduce all data preprocessing, model fitting, and subse-
quent analyses will be made available on Github after review.
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Figure 1: Weekly log growth growth y; ; for all counties ¢ organized by US Census division
and CSA. Rapidly declining growth rates in New York City display prominently in the
Middle Atlantic division in April 2020. The national surge in fall 2020, followed by declining
infection rates in early 2021 is also pronounced.
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Figure 2: County-level weekly % change from baseline mobility for six mobility categories
(grocery and pharmacy, parks, residential, retail and recreation, transit stations, and work-
place) in three CSAs.
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Figure 3: Illustrative model shortcomings due to collinearity in covariates (left), too much
flexibility in mobility (middle), too much flexibility by including temperature (right). Ob-
served covariate values (top), estimated effects of mobility (middle), and fitted and observed
growth rates (bottom) are shown. Median (solid lines) and 95% quantiles (shaded) are
shown.

Clustering  Mobility Effect Overall Midwest Northeast South  West

None Constant 0.163 0.201 0.186 0.123  0.175
None Time varying 0.200 0.245 0.231 0.148  0.233
Region Constant 0.188 0.275 0.279 0.108  0.158
Region Time varying 0.216 0.318 0.289 0.125  0.196
CSA Constant 0.204 0.291 0.303 0.121  0.175
CSA Time varying 0.261 0.364 0.404 0.151 0.250

Table 1: R? for no spatial clustering, clustering by region, or clustering by CSA, and constant
or time-varying mobility coefficients.
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Figure 4: Mobility (top), estimated effect of mobility (middle), and fitted and observed
infection growth rate values (bottom) for three illustrative CSAs. New York has a strong
estimated effect of mobility in waves one and two, whereas Green Bay has a strong estimated
effect of mobility in the second to forth waves. San Jose has a moderate effect of mobility
in the fourth wave. Median (solid lines) and 95% quantiles (shaded) are shown.
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Figure 5: Model performance: (a) R? per week, overall and by county population. (b) R?
per region and overall. At these coarse levels, models fit the best during April - May 2020.
Fits were poor in summer, and improved in some places during fall and winter, but never
return to the initial high levels. (c¢) R? as a function of the overall level of mobility, further
broken down by county population. Median (solid lines) and 95% quantiles (shaded) are
shown. Mobility contains the most signal in the highest population counties when its overall
value is extremely low. (d) R? as a function of the overall level of mobility, further broken
down by wave. Mobility contains the most signal in the first wave at extremely low values.
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Figure 6: (Left) Estimated coefficients and (right) R? by CSA across the 4 waves (rows).
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Figure 7: Overly rigid models average over spatiotemporal effects. The estimated effect of
mobility for different spatial clustering (rows) and the form of temporal effects (line type)
for three illustrative CSAs are displayed. Median (solid lines) and 95% quantiles (shaded)
are shown.
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Figure 8: (a) R? obtained using SafeGraph’s completely at home metric in place of the
first principle component of Google’s mobility trends dataset. Median (solid lines) and
95% quantiles (shaded) are shown. (b) Rolling median three month correlation between
SafeGraph’s completely at home mobility metric and each of the six Google mobility indi-
cators. From March-June, absolute correlations were high, indicating consistency between
all measures of mobility. However, the strong relationship decayed through May-October
suggesting person-to-person contact patterns may not be well captured through coarse cell
phone mobility after the initial period.
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