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Abstract

Background: Despite the vaccination process in Germany, a large share of the
population is still susceptible to SARS-CoV-2. In addition, we face the spread of
novel variants. Until we overcome the pandemic, reasonable mitigation and
opening strategies are crucial to balance public health and economic interests.

Methods: We model the spread of SARS-CoV-2 over the German counties by a
graph-SIR-type, metapopulation model with particular focus on commuter
testing. We account for political interventions by varying contact reduction values
in private and public locations such as homes, schools, workplaces, and other. We
consider different levels of lockdown strictness, commuter testing strategies, or
the delay of intervention implementation. We conduct numerical simulations to
assess the effectiveness of the different intervention strategies after one month.
The virus dynamics in the regions (German counties) are initialized randomly
with incidences between 75-150 weekly new cases per 100,000 inhabitants (red
zones) or below (green zones) and consider 25 different initial scenarios of
randomly distributed red zones (between 2 and 20 % of all counties). To account
for uncertainty, we consider an ensemble set of 500 Monte Carlo runs for each
scenario.

Results: We find that the strength of the lockdown in regions with out of control
virus dynamics is most important to avoid the spread into neighboring regions.
With very strict lockdowns in red zones, commuter testing rates of twice a week
can substantially contribute to the safety of adjacent regions. In contrast, the
negative effect of less strict interventions can be overcome by high commuter
testing rates. A further key contributor is the potential delay of the intervention
implementation. In order to keep the spread of the virus under control, strict
regional lockdowns with minimum delay and commuter testing of at least twice a
week are advisable. If less strict interventions are in favor, substantially increased
testing rates are needed to avoid overall higher infection dynamics.

Conclusions: Our results indicate that local containment of outbreaks and
maintenance of low overall incidence is possible even in densely populated and
highly connected regions such as Germany or Western Europe. While we
demonstrate this on data from Germany, similar patterns of mobility likely exist
in many countries and our results are, hence, generalizable to a certain extent.

Keywords: SARS-CoV-2; Covid-19; Nonpharmaceutical intervention; Mitigation
strategy; Modeling; Predictive Analytics; NoCovid strategy
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Background
With about three million detected infections in Germany [1] and about 22 million

vaccinations [2] until April 2021, we could reasonably assume that at least 80% of

the population were still susceptible to SARS-CoV-2. New SARS-CoV-2 variants

(B.1.1.7, B.1.351 and P.1) contributed to the increase in case numbers [3, Report

of Apr. 7]. Due to the higher transmission risk of B.1.1.7 [4], previous mitigation

strategies had to be reconsidered and strengthened. Among other things, massive

deployment of antigent tests and regular testing were proposed [5].

As of February 2022, we have seen the more infectious Delta and Omikron variants.

Although we hoped for herd immunity in winter 2021/2022, still 25 % of the German

population have not been vaccinated twice and 43 % of the population have not yet

had a third vaccine dose [2]. With lockdowns and strict interventions not being in

place, testing becomes even more important.

The prediction of SARS-CoV-2 infections by mathematical models is an active

area of research of many groups from all over the world. There are various ap-

proaches to simulate the spread of infectious diseases across regions. In the follow-

ing, we will shortly discuss different approaches and provide a non-exhaustive list

of references with applications to SARS-CoV-2.

Sets of ordinary differential equations were already proposed in [6, 7] to model the

spread of infectious diseases. These models are often denoted SIR- or SEIR-models

and the letters (e.g., S, E, I, or R) represent infection states used in the model, e.g.,

susceptible, exposed, infected, or removed/recovered. In order to avoid a proliferation

of letters, we will denote models of this kind as SIR-type models. To be more precise,

we denote these models as (deterministic) ODE-SIR-type models to indicate their

reliance on ordinary differential equations. A good overview on these deterministic

models as well as a presentation of limitations is given, e.g., in [8, 9, 10]. Although

having certain limitations, these models are often praised for their simplicity and

understandability.

In the context of the SARS-CoV-2 pandemic, ODE-SIR-type models with focus

on vaccination were used by [11, 12] while [13] focused on hospitalization and ICU

demands. The authors of [14, 15] considered similar models with an additional

differentiation of confirmed and unconfirmed infections. This differentiation was

also used by the authors of [16, 17]. The authors of [18, 19, 20, 21, 22] considered

ODE-SIR models and laid a particular focus on the effect of non-pharmaceutical

interventions (NPIs) while [23] focused on contacts outside households and [24] tried

to assess the effect of seasonality of SARS-CoV-2. Latency effects in ODE-SIR-type

models were studied in [25].

Some obvious limitations of simple ODE-SIR-type models are the homogeneous

mixing assumption, the lack of stochastic effects and the implicit use of expo-

nentially distributed compartment stays. The authors of [26] considered stochas-

tic and deterministic ODE-SIR-type models and [27] provides an overview over

13, either stochastic or deterministic, models from 33 papers. The authors of [28]

used stochastic compartment models to consider the effect of NPIs and [29] used a

stochastic branching process which may be advantageous over compartment mod-

els in the beginning phase of pandemic. [30] proposed a simple generalized-growth

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2021.04.23.21255995doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.23.21255995
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model for the early phase of disease outbreaks. In [31], different stochastic and de-

terministic compartment and agent-based models for Germany and Poland from,

i.a., [32, 33, 16, 34, 35, 36], were compared.

Stochastic effects such as superspreading events can naturally be modeled by

agent-based models or, in parts, by stochastic differential equations. However, the

nature and setting of superspreading events is still an area of active research, cf.,

e.g., [37, 38] and will take years to be fully understood [39]. Agent-based models

(ABMs) have been used by many authors since they model infection dynamics in

a natural way [40, 41, 42, 43, 44, 45, 46, 47, 48]. Another ABM based on a traffic

simulation and mobile phone data was proposed by [49] and [50, 51] presented

agent-based models which build upon a predefined contact networks. While ABMs

do not have the limitations of the homogeneous mixing assumption or the lack of

stochastic events, their use comes at a huge computational overhead.

In [52, 53] agent-based models were combined with artificial intelligence and ma-

chine learning. Other machine learning approaches were presented by, e.g., [54,

55, 56]. [54] used ODE-SIR-type based Bayesian inference with invertible neural

networks. In [55], an ODE-SIR-type model based machine learning approach was

presented and [56] proposed the use of LSTM networks.

Although compartment and agent-based models seem to be contrary approaches,

links can be established. The authors of [57, 58] provide links between microscopic,

agent-based and ODE models and [59] presented a generalization of ODE-SIR-type

models and considered agent-based modeling. In [60], relations between Agent-based

and stochastic as well as deterministic metapopulation models were presented.

Metapopulation models reduce the limitations of simple ODE-based models by

introducing a spatial dimension and thus allowing for heterogeneous mixing across

regions. Metapopulation models were already used before Covid-19 [61] and different

approaches exist to extend ODE-models to account for exchange across regions [10,

Chapter 14]. The authors of [36, 62, 63, 64, 65] presented ODE-based metapop-

ulation models considering different regions and an additional focus on regional

differences in vaccination progress can be found in [66]. [67] presented network-

driven contagion phenomena based on ODE-SIR-dynamics but where the latter are

not essential for the results provided. Also, agent- and compartment-based models

can be combined to set up hybrid models [68].

In order to overcome another limitation of simple ODE-based models, integro-

differential equation-based (also named age of infection) models [6, 69, 70, 71] can

be used. Integro-differential equation-based (IDE) models allow for using arbitrary

distributions to waive the implicit use of exponential compartment stays as given

by ODE-based models. These have been used for SARS-CoV-2 in, e.g., [72, 73, 74].

A good overview is given in [75, 76]. A trade-off between simple ODE- and IDE-

based models are delay-differential equations and linear chain trick [77] also recently

used in [78]. The authors of [79] presented memory-equation-based spatial infection

dynamics.

The previous background provides a nonexhaustive list of models and papers for

mathematical epidemiology. For a broad overview, we refer to [80, 81, 10] and the

references therein.

A proactive approach to fight SARS-CoV-2 in Germany and Europe is presented

in [82] with the aim of a safe and sustainable re-opening of societies and economies;
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see also related discussions in [83, 84, 85]. Lockdowns remain implemented region-

ally until the incidence is below 12 cases per week and 100,000 inhabitants and local

measures are reintroduced rapidly should infections flare up again. This approach

was already successfully implemented in Australia. It is based on the observation

that the virus spreads heterogeneously: There are certain regions with very low

incidences while other regions (“hotspots”) are highly affected [3]. However, neigh-

boring regions can quickly become impacted, especially, by daily commuting. So far,

the feasibility and effectiveness of the strategy with respect to commuter testing and

local lockdowns has not been investigated numerically. The aim of this paper is a

quantification of the necessary test frequency, the required strength of the local

lockdown and the time frame that we have for the intervention implementation to

avoid the spreading of the virus to neighboring regions.

Methods

The aim of this study is to provide viable strategies of careful opening of facilities

in low-incidence regions without being affected by neighboring regions of substan-

tially higher incidence. Motivated by [82], the regions (here: German counties) are

partitioned into red and green zones. A region is labeled a green zone if there is

a stable low incidence below 12 per week and 100,000 inhabitants[1] with effective

tracing of new cases. As soon as this is no longer the case, a region is labeled a red

zone.

We initialize the set of German counties randomly with weekly incidences per

100,000 inhabitants of around 5 for green zones and 75-150 for red zones. The

values of 5 and 75-150 are to some extent arbitrary and are chosen such that we

have two well distinguished infection dynamics. They are motivated by the proposed

strategy [82] and represent infection dynamics which are well under control (green

zone) as well as infection dynamics that are out of control and where a lot of

infections happen undetected (red zone). We consider 25 different random scenarios

with in between 2 and 20 % of the counties as red zones; cf. Fig. 3 (top). Random

variables are sampled from a uniform distribution. In green zones, all facilities are

open with only protective measures, such as distancing and face masks, in place.

Red zones start from an incidence of 12, and in that case a lockdown is implemented

for 30 days. For counties with incidence 100 or higher enforced measures are applied.

Since political decisions require time, intervention implementation allows for certain

delay. Commuter testing is conducted for all commuters coming from red zones.

If tested positive, presymptomatic, asymptomatic or symptomatic people will be

isolated and prevented from traveling or commuting before recovery. For the precise

set of values for lockdowns or testing rates, see the section on mitigation and opening

strategies. To assess the impact of the initial overall incidence, we also present two

scenarios with 42 % and 60 % of counties classified red at the beginning.

Note that throughout this work, incidence always refers to the incidence averaged

over 100 000 people and 7 days.

[1]The small deviation from the incidence 12 in [82] takes into account reporting

delays.
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Figure 1 Number of neighboring zones according to geographical and mobility definitions.

Mathematical model

In order to achieve the numerical investigation, a large number of ensemble runs

of a regionally resolved model have to be conducted. While agent-based models

come at a huge computational cost and are well suited for capturing microscopic

effects, age-resolved metapopulation models reliably allow for capturing macroscopic

effects of a large number of regions at a reasonable cost. We have also decided

to use deterministic metapopulation models to avoid making assumptions on the

quantification and nature of stochastic events. While this may be a limitation on

the county-scale, this will capture the mean macroscopic effects well.

Our mathematical model for the spread of SARS-CoV-2 accounts for age-

dependence [86, 87, 88], heterogeneous spread across regions [3], and commuter

testing for mitigation [5].

For the geographic resolution, we use a graph approach as presented in [64] and

assign one SIR-type model to each German county. The resulting models will be

coupled by the edges of the graph which represent the mobility between the regions.

The mobility data is obtained from the German Federal Employment Agency [89]

complemented with geo-referenced Twitter data [90]. For more details on the data

and the practical exchange between regions, we refer to [64]. In the graph, counties

are not only connected to their geographical neighbors. We define neighbors by

mobility, depending on the numbers of in-commuters. If the number of daily in-

commuters in county A (coming from county B) exceeds 1000 on average, B will be

classified a neighbor of A. This leads to an increased number of neighbors for larger

cities in particular as shown in Fig. 1.

For each county, we use an age-resolved SIR-type model based on [14, 64], with

particular new focus on commuter

testing. The model uses the compartments Susceptible (Si); Exposed (Ei), who

carry the virus but are not yet infectious to others; Carriers (Ci), who carry the

virus and are infectious to others but do not yet show symptoms (they may be pre-

or asymptomatic); Infected (Ii), who carry the virus, are infectious and show symp-

toms; Hospitalized (Hi), who experience a severe development of the disease; In

Intensive Care Unit (Ui); Dead (Di); and Recovered (Ri), who cannot be infected
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again. To resolve age-specific disease parameters, the totality of people N into n

different age groups i = 1, . . . , n. Note that our focus in this paper is not on hospi-

talizations, ICU bottlenecks, deaths or vaccinations such that these compartments

are of minor interest for our considerations here.

In order to model commuter testing, we introduce the new compartments C+
i

and I+i for carriers or infectious who are tested positive while commuting. The

compartment C+
i does not have any natural influx and only depends on the number

of commuters and testing rates defined between counties on a daily basis. I+i has

only influx from C+
i and can also increase due to testing results. For a visualization

of the process see Fig. 2. Testing within counties and lockdown strictness will be

handled as presented in [64], adapted to counterstrategies against novel SARS-CoV-

2 variants. The full system of equations writes

dSi
dt

= −Siρi
n∑
j=1

φi,j
ξC,jCj + ξI,jIj

Nj
, (1)

dEi
dt

= Siρi

n∑
j=1

φi,j
ξC,jCj + ξI,jIj

Nj
− 1

TCi

Ei

Ei, (2)

dCi
dt

=
1

TCi

Ei

Ei −

(
1− µRi

Ci

T IiCi

+
µRi

Ci

TRi

Ci

)
Ci, (3)

dC+
i

dt
= −

(
1− µRi

Ci

T IiCi

+
µRi

Ci

TRi

Ci

)
C+
i , (4)

dIi
dt

=
1− µRi

Ci

T IiCi

Ci −

(
1− µHi

Ii

TRi

Ii

+
µHi

Ii

THi

Ii

)
Ii, (5)

dI+i
dt

=
1− µRi

Ci

T IiCi

C+
i −

(
1− µHi

Ii

TRi

Ii

+
µHi

Ii

THi

Ii

)
I+i , (6)

dHi

dt
=
µHi

Ii

THi

Ii

Ii +
µHi

Ii

THi

Ii

I+i −

(
1− µUi

Hi

TRi

Hi

+
µUi

Hi

TUi

Hi

)
Hi, (7)

dUi
dt

=
µUi

Hi

TUi

Hi

Hi −

(
1− µDi

Ui

TRi

Ui

+
µDi

Ui

TDi

Ui

)
Ui, (8)

dRi
dt

=
µRi

Ci

TRi

Ci

(Ci + C+
i ) +

1− µHi

Ii

TRi

Ii

(Ii + I+i ) +
1− µUi

Hi

TRi

Hi

Hi +
1− µDi

Ui

TRi

Ui

Ui, (9)

dDi

dt
=
µDi

Ui

TDi

Ui

Ui. (10)

For each age group i = 1, . . . , n, we denote the transmission risk by ρi and the

proportion of carriers and infected people not isolated or quarantined is denoted

by ξC,i and ξI,i, respectively. The contact frequency matrix Φ = (φi,j)i,j=1,...,n

represents the (mean) daily contacts of a person of age group i with people from

age group j. For the remaining parameters, we use the variables T ∗2∗1 for the time

spent in state ∗1 ∈ Zi before transition to state ∗2 ∈ Zi and µ∗2∗1 for the probability

of a patient to go to state ∗2 from state ∗1.

Except for the transmission risk ρi, the detection of carriers ξC,i and the isolation

and quarantine of infected ξI,i defined in Table 1, we use the parameter ranges and
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Figure 2 Implementation of commuter testing and traveling. Testing rates are applied according
to the defined strategy and the states of the neighboring regions (red or green). Carriers or

infectious who are tested positive become part of C+
i and I+i and are isolated accordingly. These

individuals will not travel anymore before recovery.

age groups as gathered and described elaborately in [64, Table 2]. To account for

the variant B.1.1.7 in Germany [3, Report of Apr. 7], we use a 1.4 times increased

value for the transmission risk ρi [4]. The sigmoidal cosine curves in Table 1 are

defined by the actual incidence of the zone. Thus, the minimum values are adopted

for incidences below 12, where even carriers are quarantined and symptomatic are

isolated fast and efficiently. From incidence 20 onward, carriers are generally no

longer detected on a larger scale and the non-isolation of symptomatic increases to

its highest value at incidence 150.

The range of contact patterns depends on the decreed non-pharmaceutical in-

terventions. The baseline number of contacts φB,i,j is obtained from [91, 92] as

described in [64, Sec. 3.2]. The resulting number of contacts according to the non-

pharmaceutical intervention then writes

φi,j =
∑

∗∈{H,S,W,O}

(
1−

2∏
l=1

r
(l)
∗

)
φM,∗,i,j . (11)

Here, ∗ ∈ {H,S,W,O} refers to the four locations of contact home, school, work,

and other, and r
(l)
∗ ∈ [0, 1] is the reduction factor in effective contacts as induced

from political decisions. The superindex l is the intervention level. With l = 1 we

describe interventions that yield direct contact reduction such as gathering bans.

With l = 2 we include protective effects from, e.g., face masks and distancing;

cf. [64] for more details. Precise values are provided in the following section. In

contrast to [64], r
(l)
∗ will not reduce the number of commuters from one region to

another. The reduction in traveling of infectious and carriers will be based upon the

isolation of symptomatic cases in the home region through ξIi and the commuter

testing rate as described in Fig. 2 and in the following section.

In order to account for the uncertainty, we consider an ensemble set of 500 Monte

Carlo runs for each scenario such that our final results are based on 200 000 different

runs.

Mitigation and opening strategies

Our tensor space of strategies summarized in Table 3 provides 16 different strategies.

These are defined by the dimensions lockdown strictness for red zones, commuter
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range in age group

param. 0-4 5-14 15-34 35-59 60-79 80+

ρ(0) [0.028, 0.056] [0.070, 0.098] [0.11, 0.14] [0.21, 0.28]

k [0.1, 0.3]

ξC sigmoidal cosine curve from 0.5 to 1.0

ξI sigmoidal cosine curve from [0.0, 0.2] to [0.4, 0.5]

TC
E [2.67, 4.00]

µR
C [0.20,0.30] [0.15,0.25]

TR
C T I

C + 0.5TR
I

T I
C sampled with TC

E ; cf. [14].

µH
I [0.006,0.009] [0.015,0.023] [0.049,0.074] [0.15,0.18] [0.20,0.25]

TH
I [9,12] [5,7]

TR
I [5.6,8.4]

µU
H [0.05,0.10] [0.10,0.20] [0.25,0.35] [0.35,0.45]

TU
H [3,7]

TR
H [4,6] [5,7] [7,9] [9,11] [13,17]

µD
U [0.00,0.10] [0.10,0.18] [0.3,0.5] [0.5,0.7]

TR
U [5,9] [14,21] [10,15]

TD
U [4,8] [15,18] [10,12]

Table 1 Parameter ranges used in our model. We omit the age index i for better
readability. For derivation and more details, see [14].

testing rate from red zones, and delay of intervention implementation. Political

meetings of the German government with the federal state governments to discuss

NPIs were often held in a four weekly rhythm, cf., [93, 94, 95, 96, 97, 98, 99, 100,

101, 102, 103, 104]. We thus assume that a set of restrictions always lasts for 30

days. It will only be lifted (red zones become green) if the incidence is below 12 at

the end of the intervention.

For all strategies, the handling of green zones is identical. We assume that all

facilities can be opened and that first level political interventions are unnecessary,

i.e., r
(1)
∗ = 0 with ∗ ∈ {H,S,W,O} in eq. (11). However, second level interventions

with face masks and distancing are in place, and we assume a reduced contact rate

by r
(2)
∗ ∈ [0.25, 0.35] for ∗ ∈ {S,W,O} (schools, workplaces and other), and r

(2)
H = 0

(homes), since face masks may not be worn in most private situations if the spread

is under control.

For red zones, we consider two different sets of lockdowns. Both differ in their

severeness for incidences below 100 and above 100. For the stricter set denoted by

L+ and incidences below 100, we implement first level interventions (l = 1) that

achieve an average contact reduction by 50%. In addition (l = 2), we implement sec-

ond level interventions with protective measures that increase the average effective

contact reduction to 70% in total (l = {1, 2}). For incidences above 100, l = 1 leads

to 58% and l = {1, 2} to 76% of effective contact reduction. For the less stricter

set denoted by L, we have effective contact reductions (l = {1, 2}) of 57% and 64%
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Parameter Description
k seasonality parameter for sk(t) := 1 + k sin

(
π
(

t
182.5

+ 1
2

))
; cf. [14]

ρ(0) baseline transmission risk

ρ transmission risk with seasonality effects: ρ = sk(t)ρ
(0)

ξC proportion of carrier individuals not isolated

ξI proportion of infected individuals not isolated

TC
E period of latent non-infectious stage

µRC proportion of mild, asymptomatic cases

TR
C period of asymptomatic stage before recovery

T I
C period of latent infectious stage

µHI proportion of symptomatic cases needing hospitalization

TH
I period of mild symptoms for individuals requiring hospitalization later on

TR
I period of mild symptoms for individuals not requiring hospitalization later on

µUH proportion of hospitalized individuals getting ICU treatment

TU
H period of hospitalization before ICU treatment (of critical cases)

TR
H period of hospitalization before recovery (of non-critical cases)

µDU proportion of individuals in ICU care that die

TR
U period of ICU treatment before recovery

TD
U period of ICU treatment before death

Table 2 Description of parameters used in our model.

with incidences below and above 100, respectively. For the Monte Carlo runs, we

vary the contact reduction in a range of ±5%.

The particular contact reduction values for red and green zones and different

locations (homes, schools, workplaces, and other) are based on [64] and on model

calibration: red zones must substantially reduce their incidences in lockdown over

multiple weeks and green zones are calibrated to maintain stable low incidence

values within the local population (i.e. if there weren’t any commuters).

The second dimension of our strategy space is given by four different rates of

commuter testing. With T0, there is no particular commuter testing at all, and

with T1, T2, T5 we refer to testing rates of once, twice, and five times a week.

Based on a 5 days working week, T5 will also be called the daily testing strategy.

We assume massive deployment of antigen tests combined with a smaller number

of PCR or RT-qPCR and pool tests [105, 106, 107] to control the commuter spread

from highly infected regions. In [5], the sensitivity of antigen tests on the German

market is estimated by 40-80%, and [108] identifies average chances of 72% and 58%

to correctly detect an infection by antigen tests for symptomatic and asymptomatic

cases, respectively. Given a combination of different kinds of tests, we use a generic

daily detection ratio of 75% for carriers and infectious persons.

The last key property in our strategy space is the delay of implementation of new

interventions once critical thresholds are exceeded. Since the introduction of NPIs

always required political consensus, we decided to consider the effect of different

delays from the moment an incidence threshold passed and a new intervention was

decreed. We consider two well distinguished delays, a delay of one week denoted by

D1W and a delay of three weeks denoted by D3W before new NPIs get active.

This was done to study the effect of swift and slow reactions.
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Lockdown strictness Commuter Testing Delay of implementation

1.) L+: effective contact reduction: 1.) T0: no testing 1.) D1W: 1 week delay
70% (I ≤ 100), 76% (I > 100) 2.) T1: 1 test per week 2.) D3W: 3 weeks delay

2.) L: effective contact reduction: 3.) T2: 2 tests per week
57% (I ≤ 100), 64% (I > 100) 4.) T5: 5 tests per week

Table 3 Tensor space of mitigation strategies. The 16 considered strategies are defined by choosing
one item per column.

Figure 3 Simulated spread of SARS-CoV-2 for strategy L+, T5, D1W and four different initial
scenarios (from left to right). Random initial incidence of 75-150 for 2-20% of the counties and
incidence below 12 otherwise (top); state after 30 days (center) and after 60 days (bottom) of
simulation. Median results from 500 Monte Carlo runs for each scenario.

Results
In this section, we present numerical results for the simulation of the 16 defined

strategies for 25 randomized initial scenarios. In particular, we focus on the most

effective strategy consisting of strict lockdowns, daily testing, and fast implemen-

tation of interventions (L+, T5, D1W).

In Fig. 3, we present four different scenarios of virus spread across Germany with

2 to 20 % of the regions classified as red zones (incidence 75-150 at start). These are

generic scenarios of local outbreaks as they have been observed over the last year [3]

in a smaller quantity. Each red zone represents a snapshot of the situation before

the virus spreads into the surrounding regions. The initial situation is depicted on

the top. In the center, we see the median outcome after 30 days and on the bottom

the outcome after 60 days. Already after thirty days, we have a stable incidence of

about 5 and only a small number of counties with incidences around 20 or 30. After

60 days, the initial heterogeneous situation is completely under control with stable

incidences around 1 or 2 for all German counties.
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Figure 4 Country-wide SARS-CoV-2 infections per 100 000 and seven days (denoted: incidence)
with the strongest mitigation strategy after 30 days (orange) and after 60 days (green) with the
initial setting shown by the blue curve. The p25 and p75 percentiles for 500 Monte Carlo runs and
30 and 60 days of simulation, respectively, are shown by dashed lines in the same color.

In Fig. 4, we present the average incidence over the whole country for the 25 differ-

ent initial red zone distributions. The median incidences (as well as the percentiles

p25 and p75 of the Monte Carlo runs) for strategy L+,T5,D1W after 30 and 60

days are shown in orange and green, respectively. Analogous to the four scenarios

considered in Fig. 3, the overall incidence drops considerably after 30 days already

and is below 5 after 60 days in all 25 scenarios. As expected, a strong local lockdown

L+, daily testing and a fast response time lead to green zones remaining green and

red zones becoming green after only 1-2 months and thus avoiding a perpetuation

of interventions.

In Fig. 5 and Fig. 6, we present the results for all strategies and all 25 initial

scenarios. In Fig. 5, we see the number of counties in lockdown for all mitigation

strategies (averaged over the 25 different scenarios) for 30 days of simulation time.

Note that we use the same color for strategies that only differ in the strength of

the lockdown L+ (solid) vs L (dashed). In all cases, the L+ strategy leads to less

counties in lockdown over time. Hence, the most important factor for controlling the

dynamics is the strictness of the lockdown in the red zones. The reduced lockdown

strength L with an effective contact reduction of 57% (I ≤ 100) and 64% (I > 100)

needs to be complemented by daily testing T5 to control the propagation; see L,

T5, D1W and L, T5, D3W. With L and lesser testing, the number of counties

in lockdown doubles within just thirty days. Considering the slope of the curves,

we see that the weaker the strictness of the interventions, the faster immediate

action is required. With testing only once a week (L, T1, D∗W, ∗ ∈ 1, 3), almost

a third of all counties will be in lockdown after only one month. In order to control

the dynamics with testing rates under twice a week, very strict lockdowns L+

with effective contact reductions of 70% (I ≤ 100) and 76% (I > 100) have to be
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Figure 5 Counties in lockdown per day from start for the different mitigation strategies. Due to
the strictness of the interventions in L+, T5, D1W and L+, T5, D3W, the delay of
implementation is of minor importance and the curves overlap. For less strict interventions longer
delays lead to more severe situations.

implemented. These would have to be stricter than anything decreed for Germany

ever before.

Fig. 6 depicts how many lockdowns have to be implemented for each scenario

and each strategy over the whole country, i.e., how many counties turn red that

were green in the beginning. Lesser restrictions like lockdown L and testing T0,

T1 or even T2 lead to a substantial number of necessary lockdowns in neighboring

regions. This number is 20-30 or even 100 times larger than that of strategy L+,

T5, D1W. Stronger containment measures lead to more opening possibilities and

hence to less economical damage than a perpetuation of less effective measures as

also established in [82, 109]. The authors of [110] also advocated for aggressive

political actions in the contagion containment phase to reduce the economic burden

of the pandemic.

In Fig. 7, we depict the outcomes for one particular scenario of about 18 % red

zones after 30 days of simulation with all 16 opening and mitigation strategies

presented in Table Table 3. Again, strategies L+, T5, D1W and L+, T5, D3W

lead to the most promising results. The images also quantify how reduced testing

for the same lockdown strictness leads to slightly worse outcomes while reduced

testing combined with reduced lockdown strictness quickly lead to out-of-control

virus dynamics.

Finally, in Fig. 8, we present the outcome of the strongest and intermediate in-

terventions, i.e. L+, T5, D1W and L, T2, D3W, for the case of a much severe

initial situation with 42 % and 60 % counties as red zones. After 30 days with L+,

T5, D1W, the situations improves considerably (center), while after thirty days

with L, T2, D3W, we see a deterioration of infection dynamics (right).

Discussion
Within the first eighteen months of the pandemic, a variety of different approaches

to controlling the spread of the SARS-CoV-2 pandemic has been proposed. Many
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Figure 6 Median number of lockdowns per scenario (different initial distributions of SARS-CoV-2
spread) for the provided mitigation and opening strategies.

authors tried to assess the effectiveness of different non-pharmaceutical interven-

tions (NPIs). The authors of [109, 110, 111, 19] also partially focused on economic

development and provided evidence for the effectiveness of lockdowns. The authors

of [112, 113] derived confidence intervals for the effect of fine-grained NPIs such

as school or workplace closures or gathering bans based on data for 149 and 41

countries, respectively. Although this assessment is an issue of high importance,

this is not the focus of our paper. A key component in many successful interven-

tions is a more or less differentiated and explicit zone distinction strategy based on

regionally heterogeneous pandemic developments; see also Refs. [83, 84, 85]. Here,

we investigated a basic version with only two different zones that are distinguished

simply by incidence levels. While such zone distinction concepts are straightforward

to implement in sparsely inhabited countries or countries with clear regional sep-

aration that facilitates isolation of high-incidence regions, the densely populated,

highly mobile, highly connected situation in Germany, the EU, and similar regions

presents challenges.

In particular, concepts of dealing with commuters between regions are needed.

Work-related commuting between regions is often critical to maintaining a basic

level of economic and social activity. Given the enormous cost of a complete ban

on travel to neighboring cities, restricting mobility beyond a certain level seems

unrealistic from a pragmatic point of view.

On the other hand, unrestricted travel between high- and low-incidence regions

is problematic, as it effectively prevents regionally differentiated approaches due

to the expected high amount of imported cases that will quickly revert any local

progress towards lower incidence. Besides reducing unnecessary mobility between

zones with different status to a minimum, testing commuters has been proposed as

a tool to reduce import of cases into low-incidence zones. While this is intuitively

appealing, its utility and practicality in a real-world scenario remains yet to be

demonstrated. Recently, the authors of [111] found evidence in favor of domestic

lockdowns to reduce the spread of the disease. On the other hand, the authors could
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not find any results in favor of border closures such that alternative strategies need

to be found. Regular testing, however, may present a viable alternative that is more

targeted and interrupts infection chains by isolating infected individuals.

In [114], 34 studies assessing the effect of fine-grained interventions were reviewed.

While lockdowns were found to have an intermediate effect, testing was found to

be less effective. However, when these studies were conducted, massive deployment

of antigen tests was mostly not yet possible and effects of, e.g., daily or bi-daily

testing in zones of high risk need to be studied. Also, interventions were often

considered qualitatively and research on the interplay between the quantification of

intervention strictness and testing is needed.

German health minister Karl Lauterbach recently declared that we still need

strategies for ”hotspots”, i.e., regional outbreaks [115]. Our modeling approach aims

at providing a data-based estimate of the effect that a combination of regionally

differentiated restrictions and systematic testing of commuters with a given test

sensitivity and frequency has on the overall incidence, on the frequency of necessary

lockdowns, and on the containment of isolated local outbreaks. A limitation of the

approach is that border regions are not considered, e.g., the impact of systematically

higher incidences in a neighbouring country. However, since our simulation approach

consists of randomly initialized generic scenarios, our conclusions also hold true for

mobility across German borders.

Our results clearly indicate that a combined strategy of local lockdowns and sys-

tematic testing has the potential to contain isolated local outbreaks in a general

low incidence setting. In particular, rather strict local measures in combination with

frequent testing of commuters proves highly effective in preventing the spread of

localized infection hot spots and reducing the incidence in these regions. This can

be seen both in the number of counties that need to impose measures and in the

median incidence in the simulations which can be brought to surprisingly low levels

with the most effective strategies.

The results further clearly indicate a hierarchy of effectiveness that depends on

the strength of the locally imposed measures, the duration of the delay with which

they are imposed after a critical incidence threshold has been reached, and the

frequency at which commuters are tested which ultimately determines the fraction

of imported cases that are found.

Interestingly, although the strength of the locally imposed measures dominates the

further development of a local outbreak as expected, our simulations indicate that

with an effective daily testing regimen and a swift reaction to local outbreaks, even a

less severe reaction may be effective in containing isolated outbreaks. With less strict

contact reduction policies in the lockdown scenario, our model predicts especially

testing frequency to be a highly relevant factor in outbreak mitigation. It should be

noted, however, that our scenarios are low-incidence scenarios with a rather small

number of local infection hot spots. With a high overall incidence as demonstrated

in Fig. 8, strict measures are even more essential in first instance. With very strict

policy interventions, reaction delay and testing of commuters appear to have less

of an impact. However, testing only once a week or not at all can quickly lead to a

degeneration of infection dynamics.
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L+, T5, D1W L+, T5, D3W L+, T2, D1W L+, T2, D3W

L+, T1, D1W L+, T1, D3W L+, T0, D1W L+, T0, D3W

L, T5, D1W L, T5, D3W L, T2, D1W L, T2, D3W

L, T1, D1W L, T1, D3W L, T0, D1W L, T0, D3W

Figure 7 Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18 % red zones
and the 16 different strategies in Table 3. Each map represents the median result from 500 Monte
Carlo runs after 30 days of simulation time. The incidence is computed per 100 000 and seven
days. The maps are ordered according to the legend in Fig. 6 from L+, T5, D1W on the top left
to L, T0, D3W on the bottom right. The initial distribution is the second to left scenario shown
on the top in Fig. 3.

Conclusions
Using a regionally resolved model based on mobility data to describe pandemic

spread on a subnational level, we systematically investigated the feasibility of a

localized strategy for outbreak containment based on a simple distinction of low-

and high-incidence regions. Such a strategy may be especially useful in a scenario

where generalized, nation-wide measures have brought incidence to a rather low

overall level and a restrictive overall policy is no longer necessary. In that sense, it

can be seen as a perspective for careful resumption of economic and social activity.

This is especially important as there is a clear general pattern of re-emergence of

the pandemic after successful containment and lifting of restrictive policy; e.g., the

incidence in Germany remained at very low levels after the first outbreak in March

2020 until September when several local outbreaks emerged and, after lack of a
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Start scenario (t=0) L+, T5, D1W (t=30) L, T2, D3W (t=30)

Figure 8 Two scenarios with 42 % (top) and 58 % (bottom) of counties classified red at
initialization (left) and simulated spread of SARS-CoV-2 cases per 100 000 and seven days after
thirty days of simulation with strongest strategy L+, T5, D1W (center) and intermediate
strategy L, T2, D3W (right).

substantial intervention, developed into a nationwide second surge of infections.

Similar developments could be observed after Summer 2021.

Our results indicate that local containment of outbreaks and maintenance of low

overall incidence is possible even in densely populated and highly connected areas.

While we demonstrate this on data from Germany, similar patterns of mobility

likely exist in many countries and our results are, hence, generalizable to a certain

extent.

While it is obvious that a substantial reduction of transmission and, hence, con-

tacts in the population is necessary to mitigate a local high-incidence situation,

our results suggest that reduced mobility along with frequent testing of regular

commuters can successfully prevent generalized spreading of the infection in larger

areas even with less strict contact reduction policies, especially when reaction to

an outbreak is swift. This gives rise to a promising perspective after hard and eco-

nomically damaging policy interventions: Maintaining the situation at stable levels

may require moderate, localized interventions that affect only a small fraction of

the population, offering a viable alternative to switching back and forth between

premature lifting of restrictions and restrictive untargeted measures.
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