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Analysis of the Number of Tests, the Positivity Rate, and Their 

Dependency Structure during COVID-19 Pandemic 

Running head: 

Test Positivity Dependency COVID-19 

 

Key messages 

- In a country, increasing the positivity rate is more representative than 

increasing the number of tests to warn about an epidemic peak.  

- Approaching zero positivity rate is a good criterion to scale the success of a 

health care system in fighting against an epidemic.  

- Except for the first half of the epidemic peaks, in a country, the higher number 

of tests is associated with a lower positivity rate.  

- In countries with high test per million, there is no significant dependency 

between the number of tests and positivity rate.  

 

 

Abstract  

Background 

Applying recent advances in medical instruments, information technology, and 

unprecedented data sharing into COVID-19 research revolutionized medical 

sciences, and causes some unprecedented analyses, discussions, and models.  

Methods 

Modeling of this dependency is done using four classes of copulas: Clayton, Frank, 

Gumbel, and FGM. The estimation of the parameters of the copulas is obtained using 

the maximum likelihood method. To evaluate the goodness of fit of the copulas, we 

calculate AIC. All computations are conducted on Matlab R2015b, R 4.0.3, Maple 

2018a, and EasyFit 5.6, and the plots are created on software Matlab R2015b and R 

4.0.3. 

Results 
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As time passes, the number of tests increases, and the positivity rate becomes lower. 

The epidemic peaks are occasions that violate the stated general rule –due to the 

early growth of the number of tests. If we divide data of each country into peaks and 

otherwise, about both of them, the rising number of tests is accompanied by 

decreasing the positivity rate.  

Conclusion 

The positivity rate can be considered a representative of the level of the spreading. 

Approaching zero positivity rate is a good criterion to scale the success of a health 

care system in fighting against an epidemic. We expect that if the number of tests is 

great enough, the positivity rate does not depend on the number of tests. 

Accordingly, the number and accuracy of tests can play a vital role in the quality 

level of epidemic data.  

 

Keywords: Dependence, Number of tests, Copula, Positivity, Peak, Correlation 

 

Introduction 

Dr. Li Wenliang, a 34-year-old ophthalmologist, warned his colleagues and set the 

alarm to the society about a new infection caused by a type of coronavirus in 

December 2019 in Wuhan, China [1]. Shortly after his warning, all over the world 

encountered this epidemic. WHO declared this fast speeding infection (COVID-19) 

in March 2020. As of January 27, 2021, over 100 million cases, and around 2200 K 

deaths involving COVID-19 have been reported around the world.  

The epidemic COVID-19 is the most informative pandemic throughout history. 

These unprecedented recorded data give rise to some unprecedented concepts, 

relationships, analyses, discussions, and models [2]. Modeling the dependence 

between the number of tests and the proportion of positivity (positivity rate) is one 

of these new issues. 

The proportion of positivity is a critical measure because it gives us an indication of 

how widespread infection is in the area of interest. The proportion of positivity helps 

public health officials answer questions such as: 

- What is the current level of SARS-CoV-2 (coronavirus) transmission in the 

community? 
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- Are we doing enough testing for the people who are getting infected? [3] 

According to the ratio nature, the high proportion of positivity is due to the high 

number of positive tests or the low number of total tests. Based on the first 

possibility, a higher positivity rate suggests higher transmission and that there are 

likely more people with coronavirus in the community who have not been tested yet. 

On the other hand, according to the second possibility, a high percentage of 

positivity means that more testing should probably be done. Accordingly, for 

policymakers, the high value for this parameter suggests either it is not a good time 

to relax restrictions aimed at reducing transmission, or it is a good time to add 

restrictions to slow the spread of disease [3]. In this regard, an analytic report 

segregated by regions in the UK was presented by the Office for National Statistics 

[4].   

This study aims to investigate the time series of positivity rates individually and 

together with the time series of the number of tests. This investigation is conducted 

in two analytic methods: regional and temporal. The individual analysis is mainly 

undertaken based on the peaks of the spreading of the pandemic (Table 3).  For the 

regional aspect, among the 221 countries, we selected twelve countries: the USA, 

India, the UK, Italy, Iran, the UAE, Bolivia, Guatemala, Nigeria, Australia, South 

Korea, and South Africa. The reasons for selecting these twelve countries are 

- They are the top countries in the influential indices (Table 1). 

- Some of them are widely different from the others in some indices (Table 1). 

- Their positivity rates are greatly dispersed (Table 2). 

- The numbers and time of peaks are different about them (Table 3).  

- Their quality of health care systems are of different levels. 

- Their data, especially about the number of tests are relatively well recorded. 

- They are selected from all continents: the USA and Guatemala from North 

America, Bolivia from South America, India, Iran, the UAE, and South Korea 

from Asia, the UK and Italy from Europe, Nigeria and South Africa from 

Africa, and Australia from Australia.   

Finally, to illustrate the dependency of the number of tests and the positivity rates, 

we apply copulas.   

Sklar introduced the concept of copulas in 1959 [5]. A copula –mainly parametric, 

partially semi-parametric, and rarely non-parametric- is a function that completely 

describes the dependency structure. It contains all the information to link the 

marginal distributions to their joint distribution. Accordingly, to obtain a valid 

multivariate distribution function, it suffices to combine several marginal 

distribution functions with any candidate for the copula function. Thus, for the 
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purposes of statistical modeling, it is desirable to have a large collection of copulas 

at one's disposal. Copula is widely applied in diverse fields, including environmental 

studies [6 –7] finance [8 –9], hydrology [10], and medical studies [11 –16]. 

 

 Data 
The main data sources of the paper are the website Worldometers [17] and Our 

World in Data [18]. We summarize and illustrate all the relevant information about 

the twelve countries in three (twelve-row) tables and three (twelve-partitioned) 

figures created on Matlab R2015b.  

Table 1 includes the key general indicators up to January 25, 2021.  It is worth saying 

that the total indicators or even per-million indicators do not determine the quality 

of health care systems because there are observable underreported statistics about 

the countries Bolivia, Guatemala, Nigeria, Iran, and even India. Despite the 

mentioned reality, we consider the indicator of the number of tests per one million 

(the 7th column of Table 1) as a criterion representing the level of facilities, therefore 

the quality of health care systems. Based on the information about this criterion, we 

define the lags (the distance between the test and diagnosis) for the different health 

care systems.  

Table 2 represents the underlying properties of any country. As mentioned before, 

lag is the difference between the time of testing and the time of receiving the results 

of the tests, positive or negative, in days. The more facilities a health care system 

has, the more tests that system can do –therefore the lower positivity rate it has. Also, 

the more facilities a health care system has, the lower distance is between the tests 

and results. Based on the concept of lag, we pair the number of tests on the 𝑛th day 

with the number of results on the (𝑛 + 𝑙𝑎𝑔)th day to obtain the dependency structure 

by using the copulas. The last column is calculated based on the start date and end 

date of the period of recording data (the fourth and fifth columns) and the lag (the 

sixth column), and it displays the number of pairs that we use to obtain the 

dependency structure for each country.  
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Table 1. The information on the influential indicators of COVID-19 in the twelve countries of 

interest 

Country Total cases Total deaths Total tests Cases per 

Million 

Deaths per 

Million 

Tests per 

Million 

Population 

USA 26 M (1) 429 K (1) 299 M (1) 77 K (7) 1293 (11) 901 K (19) 333 M (3) 

India 11 M (2) 154 K (3) 192 M (2) 7688 (115) 111 (104) 138 K (107) 1387 M (2) 

UK 3647 K (5) 98 K (5) 67 M (5) 54 K (25) 1438 (5) 987 K (17) 68 M (21) 

Italy 2467 K (8) 85 K (6) 31 M (8) 41 K (36) 1415 (7) 512 K (40) 60 M (24) 

Iran 1373 K (16) 57 K (9) 8635 K (20) 16 K (88) 678 (43) 102 K (126) 85 M (18) 

UAE 278 K (43) 792 (90) 25 M (12) 28 K (63) 80 (117) 2466 K (5) 10 M (92) 

Bolivia 200 K (53) 9923 (33) 514 K (106) 17 K (84) 844 (34) 44 K (150) 12 M (79) 

Guatemala 154 K (67) 5465 (43) 738 K (94) 8519 (112) 302 (73) 41 K (153) 18 M (65) 

Nigeria 122 K (76) 1504 (80) 1241 K (75) 582 (180) 7 (178) 5939 (194) 209 M (7) 

Australia 29 K (107) 909 (88) 13 M (14) 1121 (163) 35 (138) 495 K (41) 26 M (54) 

S Korea 75 K (86) 1360 (82) 5284 K (37) 1500 (155) 27 (148) 108 K (121) 51 M (28) 

S Africa 1418 K 

(15) 

41 K (14) 7993 K (22) 24 K (75) 703 (42) 137 K (109) 60 M (25) 

The numbers in parentheses indicate the rank of countries among 221 countries in the world. For example, Iran has 

the 18th population among all countries.  

The bold numbers display the ranks of the second half of the global ranking. The ranks 111 to 221 are considered the 

second half. For example, regarding cases per million, India is a country of the second half. 

The light-highlighted cells show that the country is among the highest quarter of the countries based on the relevant 

parameter. The darker highlighted cells indicate the country is among the top 5% worldwide. For example, the first 

row illustrates that except for the criterion of the number of tests per million –where it is among the highest quartile-, 

the USA is of the top 5% in all indicators. 

 

Table 2. The properties of the datasets of the countries of interest 

Country Lag Positivity 

rate 

Start End Number of 

days 

USA 2 8 27 February 2020 27 January 2021 334 

India 3 6 3 March 2020 27 January 2021 329 

UK 2 5 21 February 2020 25 January 2021 338 

Italy 3 8 19 February 2020 27 January 2021 339 

Iran 4 16 1 April 2020 26 January 2021 303 

UAE 3 1 11 March 2020 26 January 2021 318 

Bolivia 5 39 19 March 2020 24 January 2021 308 

Guatemala 5 21 14 March 2020 27 January 2021 316 

Nigeria 5 10 17 March 2020 27 January 2021 313 

Australia 2 0.02 22 March 2020 26 January 2021 308 

S Korea 2 0.01 18 February 2020 30 January 2021 347 

S Africa 4 2 14 March 2020 30 January 2021 320 
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Generally, during an epidemic wave, the number of new infected individuals 

increases rapidly to an epidemic peak and then falls more gradually until the 

epidemic wave is over, and the number of new cases be stabilized. Roughly 

speaking, the epidemic peaks are the -neighborhood of- time points that corresponds 

the local maximum of the number of newly infected cases.  
 

Change point detection 

 

We define the epidemic peak as the time neighborhood -or the time point- that 𝑋𝑡:the 

number of new confirmed cases on the 𝑡th day, exceeds the mean plus three times 

standard deviation of the last three weeks for at least a week, that is, 

𝑡𝑝𝑒𝑎𝑘 = {𝑡 | 𝑋𝑡−𝑖 >  𝑚𝑒𝑎𝑛 {𝑋𝑡−𝑖−21, 𝑋𝑡−𝑖−20, … , 𝑋𝑡−𝑖−1} + 3 ∗

𝑆𝐷 {𝑋𝑡−𝑖−21, 𝑋𝑡−𝑖−20, … , 𝑋𝑡−𝑖−1}  𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 7 }. 

These epidemic peaks are local maximums. In addition, it is noticeable that the 

distance between two successive epidemic peaks must be at least one month. This 

definition is derived from the definition of outlier in regression analysis. According 

to this definition, the peaks of Table 3 are obtained for the countries of interest. It is 

remarkable that except for the peaks of Bolivia –which are almost the same-, the 

later waves are more acute than previous ones. We must add this point that the more 

acute peak means the more number of new confirmed cases, therefore the more 

intense spreading. Finally, it is possible that because of the lack of information at the 

beginning, this definition misses the epidemic peaks in the initial days.  

Mathematically and logically, the number of positive tests (confirmed cases) is 

affected by the number of tests and positivity rate. The number of cases equals the 

number of tests multiplied by the positivity rate. Therefore, the increment of the 

number of cases (as a multiplication) equals the sum of these two: 

-         The number of tests multiplied by the increment of positivity rate, and 

-         The positivity rate multiplied by the increment of the number of tests. 

Consequently, the intense changes in the count of cases are due to at least a 

remarkable change in one of these multiplications. About the countries with a regular 

increase in the number of tests like the USA, the increment of the proportion of 

positivity plays the principal role in the peaks. 

Table 3 shows that the proportion of positivity is significantly better than the 

frequency of tests to indicate the peaks of the pandemic. The positivity rate is more 

associated with the number of cases than the number of tests (90% versus 45%). 

After moving average, these proportions reach 100% and 50%, respectively. 

Countries of the southern and northern hemispheres faced a peak around July and 

November, respectively, possibly due to falling temperatures.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.20.21255796doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.20.21255796
http://creativecommons.org/licenses/by/4.0/


8 
 

 

 

 

 

 
Table 3. The epidemic peaks of COVID-19 in the countries of interest 

Country First peak Second peak Third peak 

USA Early April** Second half of July** From November to January 2021** 

India Middle September*** - - 

UK Middle April*** Early November** Late December*** 

Italy Late March** Early November*** - 

Iran Late March** Second half of 

November** 

- 

UAE Middle May** January 2021** - 

Bolivia July to August*** Middle January 2021*** - 

Guatemala - - - 

Nigeria June to July**# January 2021***# - 

Australia Late March** Early August*** - 

S Korea February to March*** Second half of August** December*** 

S Africa July*** December and January 

2021*** 

 

All the dates belong to 2020. Otherwise, the year is mentioned. 

(*): Indicated only by the time series of the number of tests 

(**): Indicated only by the time series of the proportion of positive tests 

(***): Indicated by both time series 

(#): After moving average 
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Figure 1. The time series of the number of new tests (daily) 

USA (r1 c1), India (r1 c2), UK (r2 c1), Italy (r2 c2), Iran (r3 c1), UAE (r3 c2), Bolivia (r4 c1),  

Guatemala (r4 c2), Nigeria (r5 c1), Australia (r5 c2), South Korea (r6 c1), and South Africa (r6 c2) 

r : row & c : column 

 

 
Figures 1, 3, and 5 consist of twelve subfigures, each of them belonging to one 

country. The arrangement of the subfigures in all three figures is identical. The 

horizontal axes in Figures 1 and 3 represent time in days from the start to the end of 
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the period of study for the studied countries (the fourth and fifth columns of Table 

2). The vertical axis of Figures 1 and 3 display the number of new tests –conducted 

on that day- and the proportion of positive tests –reported that day-, respectively. 

Figure 5 is the plot of the joint distribution of the number of tests on a day and the 

proportion of positivity on the 𝑙𝑎𝑔 days later.    

Figure 1 shows that the peaks of the number of tests coincide with the epidemic 

peaks of COVID-19 in different countries. For example, in the USA, there are two 

peaks of the number of tests simultaneous with the second and the third epidemic 

peaks –mentioned in Table 3-. Also, it is obvious that Bolivia has experienced two 

peaks for the number of tests around 150th and 300th days -from March 19, 2020-

which coincide with the epidemic peaks in Table 3.  

The USA, the UK, and the UAE experienced some regularly rising time series. 

Except for some overruns in epidemic peaks, the patterns of Italy and South Africa 

are increasing too. The number of tests in Guatemala is increasing, accompanied by 

an increasing fluctuation. Owing to the restriction by the limited capacity of tests, 

Iran and Nigeria followed a stepwise trend. Apart from the peaks, one for each of 

them, the plots of Australia and South Korea are stationary. In the case of Bolivia, 

the time series is proportional to the peaks. India is the only country whose time 

series is initially increasing, then stable, and after that decreasing. Generally, the 

counties have an increasing trend. 

Figure 2 gives us a clustering about the countries from the viewpoint of the number 

of tests: 1. The USA, 2. India, 3. The UK, 4. Italy, Australia, and the UAE, 5. South 

Korea, South Africa, and Iran, and 6. Nigeria, Guatemala, and Bolivia. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The time series of the number of new tests (daily) 

 

 

Figure 3 illustrates the time series of the positivity rate of the tests (the ratio of the 

number of positive tests on a day to the number of taken tests on 𝑙𝑎𝑔 days ago). It is 

interesting that the subfigures of Figure 3 are more in accordance with the epidemic 
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peaks than their analogous in Figure 1. For example, it is clear that the USA has 

encountered three peaks. It is worthwhile that the graph of Iran has three peaks while 

the first of them is missed in Table 3 because of the lack of information at the 

beginning. A similar situation (being missed by investigation of either the number 

of tests or the number of confirmed cases while discovered by the analysis of the 

positivity rate) happens to the epidemic peak in India in late March, the first and the 

second peaks of the UK, and the epidemic peaks in middle May and the November 

for the UAE. 

Figure 4 illustrates a clustering of the countries based on the positivity rate: 1. 

Nigeria, Guatemala, and Bolivia, 2. South Africa, and Iran, 3. The USA, India, the 

UK, and Italy, and 4. Australia, the UAE, and South Korea. 

The horizontal and vertical axes of Figure 5 display the number of new tests and the 

proportion of positivity of them, respectively. Generally, as the number of new tests 

increases, the positivity rate falls. Since the epidemic peaks are opposing this general 

rule, it is not very clear to see the opposite direction of the changes. Guatemala, due 

to lack of epidemic peak, is a good example of this diversely proportional 

relationship.   
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Figure 3. The time series of the positivity rate (daily) 
USA (r1 c1), India (r1 c2), UK (r2 c1), Italy (r2 c2), Iran (r3 c1), UAE (r3 c2), Bolivia (r4 c1),  

Guatemala (r4 c2), Nigeria (r5 c1), Australia (r5 c2), South Korea (r6 c1), and South Africa (r6 c2) 

r : row & c : column 
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If the reason for an increase be the rising number of tests, we expect not to return the 

previous channel in short term. In addition, the positivity rate does not undertake a 

remarkable change. On the other hand, it is normal to assume that entering a peak is 

accompanied by increasing the number of negative tests as well. Consequently, the 

lack of the growth of negative test results (rising the positivity rate while continuing 

the previous trend for the frequency of tests) is only reasonable if at least one of the 

factors of tests accuracy, testing policy, or the viewpoint of the population were 

changed around that time. Otherwise, there are a remarkable number of un-reported 

cases belonging the peak. It is noticeable that this company of risings causes the 

observed acceleration in growth regarding epidemic peaks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The time series of the positivity rate (daily) 
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Figure 5. Scatterplots of the relationship between the number of tests and the positivity rate 
USA (r1 c1), India (r1 c2), UK (r2 c1), Italy (r2 c2), Iran (r3 c1), UAE (r3 c2), Bolivia (r4 c1),  

Guatemala (r4 c2), Nigeria (r5 c1), Australia (r5 c2), South Korea (r6 c1), and South Africa (r6 c2) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.20.21255796doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.20.21255796
http://creativecommons.org/licenses/by/4.0/


15 
 

Methods 
Copulas 

Copulas are functions that connect multivariate distribution functions to their one-

dimensional marginal distribution functions -uniform on the interval [0,1]. 

Mathematically speaking, if H is a bivariate distribution function with margins )(XF  

and )(YG , there must exist a copula C such that   );(),(),( YGXFCYXH  , where   is 

introduced as the dependence parameter [5]. Accordingly, Copula is mostly defined 

as a function ],[],[:  C  that satisfies boundary conditions: 

(P1)  ),(),( xCxC  and ],[,),(),(  xxxCxC , 

(P2)   
  ],[,,, ttss , such that   ss  and   tt ,  

           ),(),(),(),( tsCtsCtsCtsC .  

Eventually, for twice differentiable function C , 2-increasing property (P2) can 

be replaced by the condition 









ts

tsC
tsc

),(
),(  

, where ),( tsc is the so-called copula density. A copula C is symmetric if ),(),( stCtsC 

, for every  ],[),( ts , otherwise C is asymmetric. The most well-known, powerful, 

and applicable copulas are: 

- FGM copula [19-20]; 

)))(((),( tssttsC FGM   , ],[  ,  ],[),( ts , 

 

- Clayton copula [21]; 






  )(),( tstsCClayton , ),(  ,  ],[),( ts , 

- Frank copula [22]; 































 e

ee
tsC

ts
Frank ))((

ln),( , ),(  ,  ],[),( ts , and 

- Gumbel copula [23]; 


















 ]))ln(())ln([(exp),( sstsCGumbel , ),[  ,  ],[),( ts . 

The parameters of the marginal and copula distributions are estimated using the 

maximum likelihood method. The computations and illustrations regarding copula 

theory are conducted in software Maple, R, and R 4.0.3, Maple 2018a, and EasyFit 

5.6.  
 

Copula vs Correlation Coefficient  

Measures of dependence are common instruments to summarize a complicated 

dependence structure in the bivariate case. Pearson’s, Spearman’s rho, and Kendall’s 
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tau correlation coefficients are common statistical measures of dependence structure 

[24-26]. The correlation comes in trouble when the random variables are not 

elliptically distributed. The performance of the copula does not depend on the fact 

that if you are dealing with elliptical distributions or not. The Pearson’s linear 

correlation measure (  r ) is the most popular and well-known measure between 

pairwise random variables. Despite its simplicity and plain rationale, Embrechts et 

al. [27] noted that   is simply a measure of the dependency of elliptical 

distributions, such as the binormal distribution (the marginals are normally 

distributed, linked by the Gaussian copula). Moreover,   measures a linear 

relationship itself and does not capture a non-linear one on its own, as noted in [28]. 

These properties constitute obvious limitations for modeling the dependency 

structure. In addition, copulas could be useful to define nonparametric measures of 

dependence between random variables. Since the values of Kendall’s tau are easy to 

calculate, this measure is used for observation dependencies. If )(XF  and )(YG are 

continuous then ),( tsC is unique, else ),( tsC is uniquely determined on the range of 

)(XF × range of )(YG . 

One standard non-parametric dependence measures Kendall’s k  is expressed in the 

copula form as: 

 








 dudvvuCvuck ),(),(

 
    

Table 4. Kendall’s tau of copula function 

Copula Parameter 

space 

Kendall’s tau 

FGM ],[     k  

Clayton  ),(   )(   k  

Frank  ),(   














 dx
e

x
DD

xk )()( ,  

Gumbel  

 

),[    )( k  

 

 

  The parameter copula is estimated and the relationship between parameter copula 

and k  is given in the last column of Table 1. The parameter copula in each case 

measures the degree of dependence and controls the association between two 

variables. When the parameter approaches 0 there is no dependence, and if the 

parameter tends to infinity there is a perfect dependence. Schweizer and Wolff [29] 

showed that the dependence parameter copula, which characterizes each family of 

copulas can be related to Kendall’s k . Therefore, copulas allow modeling both linear 
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and non-linear dependence. Using copulas, regardless of marginal distributions, can 

model extreme endpoints. 
 

Copula vs Regression 

Regression analysis is a statistical method for investigating the relationships between 

some dependent variables and some independent variables. The basic form of the 

regression analysis, ordinary least squares is not suitable for some applications 

because the relationships are often nonlinear and the probability distribution of the 

response variable may be non-Gaussian.  

The major advantage of copula regression is that there are no restrictions on the 

probability distributions that can be used. The copula regression is the most 

appropriate method in non-Gaussian (no need for normality assumption) regression 

model fitting. Copula functions, connecting the marginal distributions to their joint 

distributions, are useful in simulating the linear or nonlinear relationships among 

multivariate data. Copula is a multivariate distribution function with marginally 

uniform random variables on [0, 1] (the PDF of the CDF). Copula functions have 

some appealing properties such as they allow scale-free measures of dependence and 

are useful in constructing families of joint distributions.  

 

Results 

The presumptions to apply copula theory for a couple of variables are the existence 

of continuous marginal distributions accompanied with their correlation. Table 5 

investigates whether the pair of the frequency of the tests and positivity rate meets 

the presumptions. The marginal distributions were obtained in EasyFit. It is 

observable that the generalized Pareto and Weibull distributions had good 

performance to fit the positivity rates. It is observable that the correlation in countries 

with the highest number of tests is negative and it is commonly between -0.2 and -

0.3. In countries lacking enough tests, the correlation coefficient is significantly 

greater –possibly due to the low quality of data and under-reporting. It is noticeable 

that calculation over the data of Bolivia, Iran, and South Africa, lead even to positive 

correlations.  
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Table 5.  The results of fit distribution to data 

K-S: Kolmogrov-Smirnov. 

3p: 3-parameter. 

The highlighted rows indicate that the correlation are not significant for those countries.  

 

Based on Table 5, we are allowed to look for the suitable copula functions to connect 

the marginal distributions to find the desired joint distributions for nine of the 

Country frequency of tests data positivity proportion data Correlation 

Marginal   Parameters K-S Test Marginal Parameters K-S Test r P-Value 

Statistic P-Value Statistic P-Value 

USA Rayleigh 
  

0.0654 0.11266 Gen. Pareto  .k

 .
 . 

0.04538 0.48317 -0.134 0.014 

India Logistic 
  

0.04919 0.19214 Weibull  .
 . 

0.04234 0.58217 -0.236 < 0.01 

UK Gen. Pareto  .k


 

0.05684 0.2165 Weibull 

(3p) 
 .
 .

 .  

0.07206 0.05687 -0.213 < 0.01 

Italy Log-

Logistic (3P) 
 .

 .

 .  

0.06078 0.15679 Weibull 

(3p) 
 .
 .

 .  

0.07386 0.0521 -0.001 0.986 

Iran Log-

Logistic (3P) 
 .

 .

 .  

0.00736 0.05101 Burr  .k

 .
 . 

0.05516 0.3040 0.123 0.032 

UAE Weibull  .
 . 

0.05992 0.19016 Log-

Logistic 
 .
 . 

0.07394 0.05619 -0.001 0.854 

Bolivia Gumbel Max  .
 .  

0.04872 0.44386 Beta  .

 . 

0.0332 0.87483 0.189 0.001 

Guatemala Dagum  .k

 .
 . 

0.0707 0.08088 Gamma  .
 . 

0.03456 0.8318 -0.329 < 0.01 

Nigeria Log-Logistic  .
 .

 . 

0.04696 0.48053 Weibull  .
 . 

0.03527 0.81772 -0.371 < 0.01 

Australia Logistic  .
 .  

0.04808 0.46066 Frechet  .

 . 

0.05106 0.38529 -0.269 < 0.01 

S Korea Burr  .k

 .
 .  

0.05161 0.30334 Gen. Pareto  .k

 .
 . 

0.03947 0.63718 -0.005 0.926 

S Africa Log-

Logistic (3P) 
 .

 .

 .  

0.03938 0.68861 Gen. Pareto  .k

 .
 . 

0.02748 0.96362 0.405 < 0.01 
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countries. Notice that the countries without meaningful correlation (Italy, South 

Korea, and the UAE) were of the countries with the least proportion of positivity of 

the tests. These countries have involved with tracing the infected cases.  

Table 6 represents the results of comparing the best candidates from the FGM, 

Clayton, Frank, and Gumbel families.  

According to Table 6, Clayton copulas are suitable candidates for the countries with 

low tests per million. In addition, Frank copulas can describe a wide variety of 

countries. Finally, the Gumbel family seems not to be a good option to couple the 

variables of the frequency of tests and the positivity rate. 

 

 

Table 6. The obtained copula to fit the dependency and their performances 

Country Model MLE of   Kendall’s tau AIC 

USA FGM copula -0.47285 -0.1051 -663.3515 

India Frank copula -0.77241 -0.1876 -660.0874 

UK Frank copula -0.75843 -0.1624 -658.2413 

Iran Clayton copula 0.28941 0.1264 -559.8742 

Bolivia Clayton copula 0.37651 0.1584 -661.2521 

Guatemala Frank copula -0.95054 -0.2743 -663.3011 

Nigeria Frank copula -0.84251 -0.3221 -663.2462 

Australia Frank copula -0.81262 -0.2138 -662.1021 

South Africa Clayton copula 0.46723 0.1894 -664.7824 

 

 

We now discuss the simulation of data from the obtained copula models and perform 

comparisons between correlations in the simulated data and in the observed data 

based on 1000 simulations. We follow the simulation method proposed by Johnson 

(1987, Ch.3) and later Nelson (2006, page 41). 
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Figure 6. Scatter plots of the transformed observed values (•) versus simulated samples (∗) variables from 

subfamilies of the copula model 

USA (r1 c1), India (r1 c2), UK (r1 c3), Iran (r2 c1), Bolivia (r2 c2),  

Guatemala (r2 c3), Nigeria (r3 c1), Australia (r3 c2), and South Africa (r3 c3) 

r : row & c : column 
 

Figure 6 illustrates the scatter plots of the transformed observed data versus 

simulated samples of the CDFs of the frequency of tests and positivity proportion 

variables taken from the fitted copula models in Table 6. It can be seen that the 

simulated data and the original data have similar dependence patterns. To settle this 

concern, Table 6 shows the rank correlations between the frequency of tests and 
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positivity proportion variables calculated from the original data and the simulated 

data of size 1000 taken from the fitted copula models. By comparing these 

correlations, we can conclude that the results show strong consistency of the 

estimated and real correlations. 

Finally, we want to investigate the structure of dependency between the number of 

tests and positivity rate totally. By collecting the data of the twelve countries, 3877 

pairs are obtained whose Kendall’s correlation is -0.1434 (P-value: 2.8464*10^ 
−19). In addition, we split the data into two parts: peaks and otherwise. This split 

restricted us to applying marginal distributions –then copulas_ because it causes the 

gap in the number of tests. Table 7 represents the Kendall’s correlations for the 

countries of interest. It is worth saying that the correlation coefficient for the 

variables (the number of tests and positivity rate) is negative in both peaks and 

otherwise.  

 
 

Table 7. The correlation between the number of tests and the positivity rate regarding all countries 

separated based on the peaks 

Country Kendall’s tau 

after removing 

peaks 

P-value Kendall’s tau for peaks P-value 

USA -0.0168 0.8113 -0.4104 1.2402E-6 

India -0.2410 1.0457E-4 0.0993 0.3936 

UK 0.2496 0.0015 -0.7017 1.2403E-25 

Italy 0.3309 2.0731E-7 -0.5127 5.8909E-11 

Iran 0.0779 0.2354 0.1574 0.1898 

UAE 0.0387 0.5348 -0.1621 0.2081 

Bolivia 0.3028 8.7577E-6 -0.2402 0.0119 

Guatemala -0.2946 9.5948E-8 12222222222222222222222 22222222222222222222 

Nigeria 0.4474 2.3797E-9 -0.4197 6.6622E-8 

Australia -0.2337 3.1165E-4 -0.6295 3.1617E-9 

South Korea 0.3134 8.5238E-8 -0.7214 5.7158E-12 

South Africa 0.1203 0.0744 -0.4517 22.3897E-6 

Total -0.1381 3.0125E-13 -0.2132 2.9617E-13 

Light or dark bolded figures indicate that the coefficient correlation is significantly positive or negative, 

respectively. 

 

Discussion 

Generally, at the beginning of an epidemic, the number of tests is low and the 

proportion of positivity is high. As time passes, the number of tests rises. Also, as 

the number of new tests increases, the positivity rate falls. The correlation in 

countries with high number of tests, higher quality of data, is negative and it is 

commonly between -0.2 and -0.3. By considering all the data as a set, the Kendall’s 

coefficients are -0.1434, -0.2132, and -0.1381 for total, peaks, and total after 
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removing peaks, respectively. The positivity rate of the tests is significantly better 

than the frequency of tests to indicate the peaks of the pandemic. The positivity rate 

is more associated with the number of cases than the number of tests (90% versus 

45%).  

The proportion of positivity is more proportional than the number of tests to the 

number of infected cases. Approaching zero positivity rate is a good criterion to scale 

the success of a health care system in fighting against an epidemic. The number and 

accuracy of tests can play a vital role in the quality level of epidemic data. The 

policymakers can consider the factors affecting the positivity rate such as the testing 

policy, restricted facilities, peaks, fluctuations, and so on, and make decisions to 

prevent misleading because of them.  

The first limitation is the low quality of data for some countries because of the 

restricted facilities, the low number of tests, and non-organized data collection 

program. Also, some interpolation and moving average methods were applied to find 

some missing data regarding the countries of interest and calculating the correlation 

for the countries with poor data. Out of the twelve countries, Iran, South Africa, 

Nigeria, Bolivia, and Guatemala have been restricted by the number of tests. The 

data of Italy, the UAE, and South Korea showed no significant correlation. The lack 

of dependency is a good criterion to show that there is no shortage of facilities. The 

highest quality and most significant correlations belong to the USA, India, the UK, 

and Australia. 

The present approach using copulas is promising since it allows to take into account 

a wide range of correlation, frequently observed in medical. In fact, the classical 

multivariate models cannot reproduce all type of correlations. Moreover, the 

standard models are limited, especially because the choice of the marginal 

distributions is restricted. The crucial step in the modeling process is the choice of 

the copula function, which best fits the data. Further work is needed to choose the 

best copulas able to reproduce the dependence structure of bivariate medical 

variables. In clinical trials or medical studies, sample size is often an important 

consideration and is relatively small. The copula-based methodology overcomes this 

limitation as well, because the algorithm can be used to replicate data for any number 

of patients. The suggested copula-based methodology presented in this paper is 

simple and easy to implement. 
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