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ABSTRACT

High frequency oscillations (HFO) in scalp EEG are a new and promising epilepsy biomarker. 

HFO analysis is typically restricted to random and relatively brief sleep segments. However, 

considerable fluctuations of HFO rates have been observed over the recording nights, 

particularly in relation to sleep stages and cycles. Here, we identify the timing within the sleep 

period and the minimal data interval length that allow for sensitive and reproducible detection of 

scalp HFO. We selected 16 seizure-free whole-night scalp EEG recordings of children and 

adolescents with focal lesional epilepsy (median age 7.6 y, range 2.2-17.4 y). We used an 

automated and clinically validated HFO detector to determine HFO rates (80-250 Hz) in bipolar 

channels. To identify significant variability over different NREM sleep stages and over time 

spent in sleep, we modelled HFO rate as a Poisson process. We analysed the test-retest 

reliability to evaluate the reproducibility of HFO detection across recording intervals. Scalp HFO 

rates were higher in N3 than in N2 sleep and highest in the first sleep cycle, decreasing with 

time spent in sleep. In N3 sleep, the median reliability of HFO detection increased from 67% to 

79% to 100% for 5-, 10-, and 15-min data intervals, improving significantly (p=0.004) from 5 to 

10 min but not from 10 to 15 min. In this analysis of whole-night scalp EEG, we identified the 

first N3 sleep stage as the most sensitive time window for HFO rate detection. N3 data intervals 

of 10 min duration are required and sufficient for reliable measurements of HFO rates. Our 

study provides a robust and reliable framework for implementing scalp HFO as an EEG 

biomarker in pediatric epilepsy. 

Keywords: pediatric focal epilepsy, scalp EEG, high frequency oscillations, HFO, sleep

Abbreviation list: 

AASM: American Academy of Sleep Medicine 

AIC: Akaike Information Criterion

DBA: Delta Band Activity

EoI: Events of Interest

FCD: Focal Cortical Dysplasia                

HFO: High Frequency Oscillations 

NREM: Non-Rapid Eye Movement sleep

SBA:  Sigma Band Activity
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INTRODUCTION

High frequency oscillations (HFO) in scalp EEG are a new and promising non-invasive epilepsy 
biomarker providing added prognostic value, particularly in the pediatric population (Boran et al.,
2019; Ohuchi et al., 2019; Nariai et al., 2020; Tsuchiya et al., 2020; Cserpan et al., 2021). 
Beyond the initial use of HFO to delineate the epileptogenic zone in epilepsy surgery, HFO are 
currently investigated as potential biomarkers of epileptogenesis, seizure propensity, disease 
severity, and treatment response (Jacobs and Zijlmans, 2020; Gotman, 2021). The utility of 
scalp HFO as EEG-biomarker in pediatric epilepsy has been substantiated by recent studies 
corroborating the correlation of scalp HFO rates with (1) epileptogenesis after a first epileptic 
seizure, regardless of aetiology (Klotz et al., 2021), (2) seizure propensity in the presence of a 
predisposing condition such as centrotemporal spikes (Kramer et al., 2019) or tuberous 
sclerosis (Bernardo et al., 2018), (3) disease severity in focal lesional epilepsy (Boran et al., 
2019) as well as in a wide range of pediatric epilepsy syndromes (Toda et al., 2015; van Klink et
al., 2016; Ikemoto et al., 2018; Nariai et al., 2020); (4) treatment response following the 
administration of drugs or epilepsy surgery (Kobayashi et al., 2015; Boran et al., 2019). HFO 
analysis in patients with epilepsy is typically restricted to random and relatively brief time 
periods of mostly 5-30 min, even in those undergoing long-term EEG recordings (Zelmann et 
al., 2014). However, the question remains whether all available data, over several nights, should
be utilised for analysis or whether carefully selected segments suffice for clinically meaningful 
results (Fedele et al., 2019). Data selection will have to balance the need for stable estimates 
of, e.g., HFO localisation patterns and rates that accurately reflect network properties (Gliske et 
al., 2018; Fedele et al., 2019; Chen et al., 2021) against the benefits of shorter segments 
making this approach more widely applicable, even in short standard EEGs. This makes the 
appropriate choice of the most suitable time windows and sample size to ensure data quality 
and representativity essential. 

HFO analysis is routinely performed in sleep to avoid contamination by muscle artefacts
(Zijlmans et al., 2017). However, considerable fluctuations of HFO rates have been observed 
across sleep stages and cycles (Staba et al., 2004; Bagshaw et al., 2009; Dümpelmann et al., 
2015; von Ellenrieder et al., 2017; Gliske et al., 2018), analogous to the significant modifications
in the rates of spikes, the standard EEG-biomarker of epilepsy. For spikes, a meta-analysis 
based on both scalp and invasive EEG revealed higher occurrence rates in NREM (N3) sleep 
compared to other vigilance states (Ng and Pavlova, 2013). Similarly, pathological HFO rates 
were shown to be highest during NREM sleep in invasive EEG studies in drug-resistant focal 
epilepsy (Staba et al., 2004; Bagshaw et al., 2009; von Ellenrieder et al., 2017; Al-Bakri et al., 
2018) and, most importantly, pathological HFO during NREM sleep were shown to best localise 
the epileptogenic zone (Klimes et al., 2019). Furthermore, pathological HFO rates have recently 
been shown to decrease with accumulated time in sleep in invasive recordings (von Ellenrieder 
et al., 2017), pointing to data from the first sleep cycle as being most best suitable for analysis, 
allowing the most sensitive detection of HFO. However, it is unclear if findings from invasive 
EEG in mainly adult cohorts with drug-resistant focal epilepsy undergoing presurgical evaluation
apply to scalp EEG recordings across childhood and adolescence and in a broader range of 
epilepsy syndromes. Despite being crucial for implementing HFO as a clinical tool, the 
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relationship between sleep and scalp HFO characteristics in pediatric epilepsy remains 
insufficiently explored. 

To address the hypotheses that scalp HFO rate is highest in the N3 sleep stage and decrease with 
accumulated time in sleep, we retrospectively analysed whole-night scalp EEG recordings of 
children and adolescents with focal lesional epilepsy, implementing a previously validated 
automated HFO detector (Fedele et al., 2016, 2017; Boran et al., 2019; Cserpan et al., 2021). While
our previous study addressed the impact of patient age on scalp HFO (Cserpan et al., 2021), here 
we investigated changes in scalp HFO rate across different sleep stages and cycles to verify 
whether sleep-related factors explain the variability in HFO rate during sleep and determine optimal 
data selection strategies to identify HFO rate distributions across the scalp reliably.

METHODS

Patient recruitment

We recorded whole-night video-EEGs from 72 children and adolescents (< 18 y) with epilepsy 
at the University Children's Hospital Zurich between January 2020 and January 2021. For the 
current study focusing on the effect of sleep homeostasis on scalp HFO rates, we included 16 
patients that 1) were diagnosed with focal lesional epilepsy based on electroclinical correlations 
and imaging findings, 2) had a whole-night scalp EEG recording obtained at a high sampling 
frequency (>1000 Hz), and 3) had no seizures during the recording night. The clinical purpose 
of whole-night EEG included presurgical evaluation and treatment monitoring. 

Scalp EEG recording & data selection 

Patients underwent whole-night video-EEG with 21 electrodes placed according to the 
international 10-20 system at a 1024 Hz sampling rate using the Micromed® EEG recording 
system (Mogliano Veneto, Treviso, Italy). Impedances were typically ≤ 1 kΩ. Sleep stages were 
marked by experienced neurophysiologists according to the American Academy of Sleep 
Medicine (AASM) (Berry et al., 2017). We selected only N2, and N3 sleep stages for further 
analysis since muscle activity and movement artefacts in wakefulness and REM sleep interfere 
with HFO detection, leading to increased false positives (Zelmann et al., 2014). We divided the 
selected data into 5-min intervals for further processing. Scalp EEG intervals with visible 
artefacts and channels with continuous interference based on visual inspection were excluded 
from further analysis.
HFO detection and analysis were performed blinded to clinical characteristics of the patients, 
and the results from HFO analysis were not considered for clinical decision making.

Automated HFO detection

To capture the HFO activity with the highest possible spatial resolution given the data, we re-
referenced to a bipolar montage using all combinations of neighbouring electrodes and thus 
obtained 52 bipolar channels. 
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Scalp HFO detection was conducted with a clinically validated, automated HFO detector
(Fedele et al., 2016, 2017; Boran et al., 2019; Cserpan et al., 2021) that operates in three 
stages. Stage I determines a baseline amplitude threshold in time intervals based on the 
Stockwell entropy value in the ripple band (80-250 Hz). Events exceeding the threshold are 
marked as events of interest (EoI). In Stage II, the detector selects all EoI that exhibit a high-
frequency peak isolated from low-frequency activity in the time-frequency space. In Stage III, 
the detector rejects all EoI with amplitude ≥40 µV or signal-to-noise ratio <4 or co-occurring in 
channels of the two hemispheres. There was no further visual validation of the events, rendering
the algorithm fully automated. 
We calculated the channel-wise HFO rate for each patient by dividing the number of detected 
HFO on each channel by the duration of the analysed EEG recording. For modelling purposes, 
we used the HFO count, i.e., the number of HFO events detected in each 5-min data interval, on
the channel with the highest HFO rate during the recording night.
We controlled for the clinical plausibility of scalp HFO rate distributions by comparing the 
localisation of the channel with the highest HFO rate with the localisation of spikes in scalp EEG
and focal lesions in MRI.

Modelling approach

We hypothesized that scalp HFO rates were modulated by sleep homeostasis. To identify 
significant effects of NREM sleep stage (N2, N3), and time spent in sleep on scalp HFO rates, 
we modelled the HFO rate as a Poisson process based on the methodology previously applied 
for HFO analysis in invasive EEG (von Ellenrieder et al., 2017). We assumed that HFO events 
are not overlapping and that time intervals between consecutive events are statistically 
independent (Nagasawa et al., 2012; Nonoda et al., 2016; von Ellenrieder et al., 2017). Primary 
variables of interest affecting HFO rates were the NREM sleep stage (N2, N3) and the time 
spent in sleep, determined as the elapsed time expressed in hours from the first sleep stage 
until waking up in the morning. We further included the delta band and the sigma band activity, 
estimated as the root-mean-square value of the bandpass filtered signal in the 0.5-4 Hz and the 
10-16 Hz band during each 5-min data interval. The delta band and sigma band activity were 
calculated for the scalp channels F3-C4, F4-C4 and averaged, then normalised to have zero 
mean and unit variance for each analysed sleep stage and patient. 

We used different combinations of the explanatory variables to create Poisson process models 
(N=15) to estimate the mean HFO rate for every 5-min data interval as a function of these 
variables and thus to provide statistical evidence for their contribution to the fluctuation of HFO 
rates during whole-night sleep. We considered the mean HFO rate calculated over the total 
analysed period and relative variations of the mean HFO rate as determined by the variables in 
the model. We used the Akaike Information Criterion (AIC) for model comparison (Burnham and
Anderson, 2002) since its value indicates both the goodness-of-fit and the complexity of the 
model. The respective coefficients and the AIC values for all 15 models are given in Suppl. 
Table 1. Two models can be considered significantly different with 95% probability when the 
difference in the respective AIC values exceeds 6 (Burnham and Anderson, 2002). To evaluate 
the performance of the Poisson process model, we used leave-one-out cross-validation using all
but one patient from our cohort to estimate the model coefficients and testing the result on one 
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patient, then repeating this procedure for all patients. To further validate our modelling of 
dynamic changes in HFO, we compared the predicted HFO counts in the 5-min data intervals, 
1) as given by the Poisson process model when including all patient data while training (Poisson
process - train), 2) when cross-validating the model on the left-out patient (Poisson process - 
test) model, with 3) the constant mean HFO rate model, according to the mean absolute error 
for each patient (Suppl. Table 2, Suppl. Figure 1).  

Test-retest reliability 

To evaluate the reproducibility of scalp HFO detection, i.e. to investigate whether channel-wise 
HFO rates are consistent among different data intervals for each patient, we applied the test-
retest reliability methodology as described in our previous work (Fedele et al., 2017). In short, 
we first calculated the normalised scalar products of HFO event vectors across different data 
intervals to depict the actual distribution and then created a null distribution from scalar products
of HFO event vectors with permutated channel order. We report the mean number of scalar 
products with higher values than the 97.5 percentile of the null distribution, thus giving an 
estimation for the consistency of detected HFO rates in the analysed data intervals compared to
randomised data. For this analysis step, we constructed 10-and 15-min data intervals for each 
patient by concatenating multiple 5-min data intervals.

Statistics

We calculate the mean HFO rate over all recording intervals of each patient. Across patients, 
we describe distributions by their median and their interquartile range (iqr). To compare these 
distributions, we used non-parametric statistics. We used the Wilcoxon signed-rank tests to 
compare the reliability values between sleep stages and data intervals of 5-, 10-, and 15-min 
duration. To quantify correlations, we used Spearman's rank correlation. Statistical significance 
was established at p < 0.05.

RESULTS

Patient characteristics, total length of sleep recordings, and HFO count

We included 16 patients (4 female) with focal lesional epilepsy (Table 1). The median age at the
time of the whole-night EEG recording was 7.6 y (range 2.2-17.4 y). Aetiology included focal 
cortical dysplasia in 8 cases, perinatal or childhood stroke in 3 cases, and single cases of 
diffuse glioma, hypothalamic hamartoma, Rasmussen's encephalitis, hippocampal sclerosis, 
and hemiconvulsion- hemiplegia-epilepsy syndrome. The localisation of the presumed 
epileptogenic zone was frontal in 4 cases, temporal in 3, frontocentral in 2, parietal and 
temporoparietooccipital in one case each, and hemispheric in the remaining 5 cases.

We analysed 3605 min of EEG data, including 2500 min of N2 and 1105 min of N3 sleep. In 
total, we detected 4621 HFO: 2636 in N2 and 1985 in N3 sleep. The median length of analysed 
data per patient was 210 min (iqr 67.5), with a median of 237.5 (iqr 323) detected HFO per 
patient. The median length of analysed data per patient was 132.5 min (iqr 87.5) for N2 and 
67.5 min (iqr 42.5) for N3 sleep.
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ID Sex Aetiology 
Localisation of the
epileptogenic zone 

Mean HFO
rate in total
(HFO/min) 

Mean HFO
rate in N2
(HFO/min)

Mean HFO
rate in N3
(HFO/min)  

Channel
with the
highest

HFO rates

1 m Postnatal stroke  L hemispheric  3.8 3.2 4.6 Fp1-Fz

2 m FCD R temporal 3.1 2.1 5.0 T6-P4

3 f FCD R fronto-central 2.4 2.6 2.1 F4-Cz

4 m FCD L parietal 2.4 2.5 1.7 F3-C3

5 m FCD L fronto-central 1.8 1.6 2.3 T5-C3

6 m 
Hypothalamic
hamartoma  

L frontal 1.6 1.6 1.7 Pz-O1

7 m Perinatal stroke R hemispheric 1.4 1.3 1.4 Fp2-F8

8 f FCD  R frontal 1.3 0.3 2.6 P4-O2

9 f 
Rasmussen`s
encephalitis 

L hemispheric 0.6 0.3 0.9 C3-Fz

10 m FCD L frontal 0.5 0.6 0.3 Fp1-F3

11 m FCD 
L temporο-parieto-

occipital 
0.4 0.4 0.5 Fp1-Fp2

12 m 
Hippocampal

sclerosis 
L temporal 0.3 0.2 0.3 F8-T4

13 m 
Hemiconvulsion-

hemiplegia-epilepsy
syndrome 

R hemispheric 0.2 0.2 0.8 Fp1-Fp2

14 f FCD L frontal 0.2 0.2 0.3 Fp1-F3

15 m Diffuse glioma R temporal 0.2 0.2 0.2 Fp1-Fz

16 m Perinatal stroke L hemispheric 0.1 0.1 0.2 T3-P3

Table 1: Patient characteristics and HFO properties. 
Patient characteristics include the etiological substrate of their focal epilepsy and the lobar localisation of 
the presumed epileptogenic zone based on the electroclinical correlations and MRI findings. HFO 
properties include mean HFO rates in events/min in all analysed data intervals for the channel with the 
highest HFO rates in total and separately for N2 and N3 sleep. 
y: years, f: female, m: male, nr: number, FCD: focal cortical dysplasia; nr: number; L: left; R: right

The scalp HFO rate is higher in N3 than in N2 sleep

The mean HFO rate over all data intervals (N2+N3) varied widely between patients 
(median 0.9 HFO/min, iqr 1.8), Table 1, Fig. 1A). The mean HFO rate was lower for N2 (median
0.5 HFO/min, iqr 1.6) and higher for N3 (median 1.2 HFO/min, iqr 1.9) (Table 1). Across all 
patients, mean HFO rates in N3 were higher than in N2 (median 29%, iqr 77; Wilcoxon signed-
rank test, p= 0.049, z=1.96) (Fig 1B).
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Figure 1. The mean HFO rate is higher in N3 and decreases with time spent in sleep.

The violin plot shows the median (white circle) and the interquartile range (grey perpendicular line) of 
each distribution. A) HFO rate averaged over all N2 and N3 intervals for each patient.  B) Compared to 
the mean HFO rate shown in panel A, the mean HFO rate is lower for N2 intervals and higher for N3 
intervals. C) The Poisson process model indicates that the HFO rate decreases per hour spent in sleep 
(N2 median -6.3%, N3 median -8.3%). 

The scalp HFO rate is higher in the first sleep cycle

Figure 2 presents the hypnogram of Patient 2 with the respective delta- and sigma band activity
and the HFO rate during N2 and N3, including both the measured rate and the rate estimated by
the Poisson process model. The figure illustrates the decrease of the HFO rate with time spent 
in sleep for Patient 2. 

To analyse the HFO rate across all patients, we used the Poisson process model. Based on the 
AIC values (Suppl. Table 1), the best model was the one including all four variables, i.e., sleep 
stage, time spent in sleep, delta and sigma band activity. The coefficients of the relative HFO 
rate variation for all four included variables, as estimated by the best model, are given in Table 
2. The mean HFO rate decreased with time with a relative median rate change of –6.3% (iqr 
20.8) per hour in N2 and -8.3% (iqr 26.1) per hour in N3 sleep (Figure 1C). 

  N2  N3 

NREM sleep stage  -16.4% 30.6%

Time spent in sleep  -5.0% -2.1%

Delta band activity  9.8% 23.2%

Sigma band activity  7.1% 9.7%

Table 2.  Estimated coefficients of relative HFO rate variation for the best model.                               
The relative HFO rate variation is defined as follows: a change of X times in delta band activity is 
associated with a change in the HFO rate in N3 sleep of 0.232 X times. Both delta- and sigma band 
activity of the included N2 and N3 data intervals were normalised to zero mean and unit standard 
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deviation. The mean HFO rate is higher in N3 than in N2 sleep and in the presence of delta- and sigma 
band activity, and it decreases with time spent in sleep by 5.0% and 2.1% per hour in N2 and N3 sleep. 

Figure 2. Hypnogram of a four-year-old patient with right temporal lobe epilepsy.                           
We present the hypnogram (dark blue line), the delta- and sigma band activity (light blue and black line), 
the measured HFO rate (green dots) and the modelled HFO rate (red dots) in N2 and N3 sleep as a 
function of time spent in sleep. The measured HFO rate is highest in N3 sleep and decreases with time 
spent in sleep. 

Higher scalp HFO rates correlate with higher delta- and sigma band activity.

Delta- and sigma band activity positively correlate with HFO rates during both N2 and N3 sleep 
stages, while this correlation is considerably stronger for delta- than for sigma band activity (Table 
2). On a group level, an increase of one standard deviation in the delta band activity is associated 
with 23.2% higher mean HFO rates for N3 and 9.8% higher mean HFO rates for N2 sleep, whereas 
an increase of one standard deviation in the sigma band activity correlates with 9.7% higher mean 
HFO rates for N3 and 7.1% higher mean HFO rates for N2 sleep compared to the mean HFO rates.

N3 data intervals of 10 min are required for HFO analysis

We calculated the test-retest reliability of HFO detection in 5-, 10-, and 15-min data intervals 
(Fig. 3). For 5-, 10-, and 15-min data intervals, the reliability of HFO detection was significantly 
higher in N3 than in N2 sleep (Wilcoxon signed-rank, 5-min: p=0.005, z=2.8; 10-min: p=0.013, 
z=2.5; 15-min: p=0.009, z=2.6). 

For N3 sleep, the median reliability of HFO detection increased from 67% (iqr 61) to 79% (iqr 
59) to 100% (iqr 70%) for 5-, 10- and 15-min data intervals, with significant improvement in 
reliability when increasing the analysed data interval length from 5 to 10 min (Wilcoxon signed-
rank, p=0.004, z=2.9), but not when increasing from 10 to 15 min (Wilcoxon signed-rank, 
p=0.953, z=0.1). For N2 sleep, the median reliability of HFO detection increased from 27% (iqr 
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68) to 45% (iqr 73%) to 50% (iqr 67%) for 5-, 10- and 15-min data intervals, with significant 
improvement in reliability when increasing the analysed data interval length from 5 to 10 min 
(Wilcoxon signed-rank, p<0.001, z=3.3) and from 10 to 15 min (Wilcoxon signed-rank, p=0.04, 
z=2.0). 

Across all sleep stages (N2, N3) and data interval lengths (5-15 min), we established a strong 
positive correlation between the HFO rates and the test-retest reliability of HFO detection 
(Spearman's rank correlation, p<0.05), suggesting that HFO detection is more reliable for 
patients with high HFO rates. However, it should be noted that longer data intervals ensure 
higher reliability values even for lower HFO rates. This observation suggests that longer 
intervals should be used for the later part of the night. 

Figure 3. The test-retest reliability of HFO detection increases with the data interval length. 

The violin plot shows the median (white circle) and the interquartile range (gray perpendicular line) for 
each distribution. For N3 sleep, the median reliability rate of HFO detection increased from 67% (iqr 61) to
79% (iqr 59) to 100% (iqr 70%) for 5-, 10- and 15-min data intervals. The reliability increased significantly 
when increasing the analysed data interval length from 5 to 10 min (Wilcoxon signed-rank p=0.004, 
z=2.9). For N2 sleep, the median reliability rate of HFO detection increased from 27% (iqr 68) to 45% (iqr 
73%) to 50% (iqr 67%) for 5-, 10- and 15-min data intervals. For 5-, 10-, and 15-min data intervals, the 
reliability of HFO detection remained significantly higher in N3 than in N2 sleep (Wilcoxon signed-rank, 
p=0.005, z=2.8, p=0.013, z= 2.5, p=0.009, z=2.6). * p < 0.05.   
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4. DISCUSSION

Electrophysiological markers of pathological epileptic brain activity show distinct dynamics 
associated with sleep stages and amount of sleep. This study demonstrates that scalp HFO in 
pediatric focal epilepsy change throughout whole-night sleep EEG recordings. To our 
knowledge, we are the first to determine the most sensitive time window in terms of sleep stage,
cycle, and data interval length to ensure the quality and reproducibility of scalp HFO detection in
pediatric epilepsy. We provide evidence that the first N3 sleep stage during a whole-night scalp 
EEG recording yields the highest HFO rates of the whole night recording. We demonstrate that 
reliable measures of HFO detection can be achieved in 10-min data intervals of N3 sleep, with 
higher HFO rates correlating with higher reliability values. Our observations enable selecting 
appropriate data intervals for stable HFO estimates in the first step towards their implementation
as a valid epilepsy biomarker in a clinical setting.       

Scalp HFO rates are higher in N3 sleep

Scalp HFO rates were significantly higher in N3 sleep than N2 sleep in our study, in line with the
significantly higher spike rates occurring in N3 sleep than other vigilance states (Ng and 
Pavlova, 2013). We may hypothesise that the higher scalp HFO and spike rates in N3 sleep are 
determined by the same neuronal processes that determine the decrease of spontaneous firing 
rates of cortical neurons with sleep (Vyazovskiy et al., 2009). 

Moreover, the effects of NREM sleep stage on HFO rates in the scalp EEG of children with focal
epilepsy reported here not only confirm previous observations deriving from the invasive EEG of
adult patients (von Ellenrieder et al., 2017; Al-Bakri et al., 2018) but also extend these 
observations to a more accessible EEG modality and a much younger age group. Our study 
further demonstrates that including data from N3 sleep will increase the sensitivity of HFO 
detection because of the higher HFO rate in this sleep stage. This increased sensitivity is crucial
for using HFO rate as a novel biomarker for epilepsy in the real-world clinical setting. 

Finally, the remarkably high HFO rates in N3 sleep may be at least partly attributed to higher 
synchronicity levels in this sleep stage. This neuronal synchronisation results in the increased 
slope of slow-wave activity observed in N3 sleep and the amplitude of high-frequency activity. 
This state results in a higher phase-amplitude coupling between high (gamma, ripple) and low 
(theta or lower) frequencies in this sleep stage (Amiri et al., 2016). Our study replicated the 
strong positive covariation of HFO rate with delta band activity in N3 sleep, as previously 
suggested based on invasive EEG recordings (Nonoda et al., 2016; von Ellenrieder et al., 
2017).

Scalp HFO rate is higher in the first sleep cycle

The first N3 sleep stage during a whole-night scalp EEG recording in our study yielded the 
highest HFO rate, thus constituting the most sensitive time window for analysing HFO in 
pediatric epilepsy. Our findings are in line with the previously reported decrease of HFO rate 
with accumulated time in sleep in the invasive EEG of adults with focal epilepsy undergoing 
presurgical evaluation (von Ellenrieder et al., 2017), and confirm that the first sleep cycle is best 
suitable for studying HFO, irrespective of patient age and EEG modality. 
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The correlation of HFO rate with the accumulated time spent in sleep, in addition to their 
correlation with the different sleep stages, may be partly explained by the sleep-homeostatic 
changes in delta power showing a steady decline across the recording night (Riedner et al., 
2007). This observation supports the notion that synchronisation, most pronounced during 
NREM slow-wave sleep, may be crucial for HFO generation (von Ellenrieder et al., 2017) and 
that sleep homeostatic changes in slow-wave amplitude along the night determine the HFO rate
(Frauscher et al., 2015; Nonoda et al., 2016; von Ellenrieder et al., 2017). 

In the animal model, the levels of glutamate in the cortical extrasynaptic space decrease during 
NREM sleep (Dash et al., 2009), whereas sleep deprivation leads to increased cortical 
excitability, resulting in a lowered threshold for epileptic activity (Badawy et al., 2006; Scalise et 
al., 2006). While slow-wave slopes are likely a function of neuronal synchrony, during late sleep,
the periods of activity and inactivity of individual neurons became progressively less 
synchronised (Vyazovskiy et al., 2009). 

Reliability of scalp HFO detection

To confirm the reproducibility and establish the reliability of our scalp HFO detection, we 
performed a test-retest analysis, as previously developed by our group (Fedele et al., 2017), 
investigating the spatial profile of HFO rates across several EEG data intervals from each 
patient.

We showed that, while for higher HFO rates reasonably high reliability is reached even when 
using only 5-min data intervals, for lower HFO rates, longer data segments may prove 
indispensable. Nevertheless, it should be noted that the analysis of 10-min data intervals of N3 
sleep provides considerably higher reliability than the analysis of shorter (5-min) data intervals. 

Based on the findings from our cohort, we suggest that N3 data intervals of 10 consecutive 
minutes are required and sufficient for a consistent estimation of the spatial distribution of scalp 
HFO rate in most cases. We, therefore, recommend recording and analysing at least 10 min of 
N3 sleep to ensure a reliable scalp HFO detection in pediatric focal lesional epilepsy. HFO 
analysis requires stable spatial profiles over time that accurately reflect network properties since
data quality and representativity will determine the validity of results (Fedele et al., 2019). It 
should, however, be noted that generalising these results to other datasets remains a 
hypothesis, especially for non-lesional/genetic epilepsy.

Future directions

HFO have been shown to be modulated by sleep in all brain regions except for the frontal lobe 
in an invasive EEG study, including ten patients with frontal lobe coverage (Dümpelmann et al., 
2015). To investigate the effect of lobar localisation of the HFO generator, larger cohort sizes 
than reported here are required. 
Sleep stage but not sleep cycle has been demonstrated to determine the extent of HFO spread 
in an invasive EEG study focussing on the effect of sleep homeostasis on HFO (von Ellenrieder 
et al., 2017). Whilst standard EEG does not allow for evaluating such localised effects, similar 
questions may be investigated using high-density scalp EEG in the future (Fan et al., 2021). 
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This outlook is especially relevant for the clinical setting, as high-density scalp EEG can be 
readily implemented in clinical epilepsy units (Zelmann et al., 2014).  

CONCLUSION

Our study provides a robust and reliable framework for implementing scalp HFO as an EEG 
biomarker in pediatric epilepsy. Based on our findings, restricting HFO analysis to 10-min data 
intervals of N3 sleep can increase the diagnostic yield while condensing the EEG recording time
since these carefully selected segments should suffice for clinically meaningful results. This step
would permit the application of scalp HFO in the screening of children at risk of developing 
epilepsy as biomarkers in the estimation of prognosis and question of treatment. Non-invasively 
detected scalp HFO may prove an essential resource for clinical assessment in a broad 
population of children affected by epilepsy. 
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