1 Genetic determinants of interventricular septal anatomy and the risk of ventricular septal

2 defects and hypertrophic cardiomyopathy.

3

4	Mengyao Yu PhD ^{1,2} *,	Andrew R. Harper MRCP DPhil ^{3,4,5} *,	, Matthew Aguirre AB ^{1,6} , Maureen

- Pittman^{7,8}, Catherine Tcheandjieu DVM PhD^{1,2,9}, Dulguun Amgalan PhD^{10,11}, Christopher 5
- Grace PhD^{3,4}, Anuj Goel MBBS MSc^{3,4}, Martin Farrall FRCPath^{3,4}, Ke Xiao MS¹², Jesse 6
- Engreitz PhD^{10,11}, Katherine Pollard PhD^{7,8,13}, Hugh Watkins MD PhD^{3,4}, James R. Priest 7
- MD^{1,2,13,14} 8
- 9

10 Affiliations:

- 11 1) Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School 12 of Medicine, Stanford, California, USA
- 13 2) Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- 14 3) Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular 15 Medicine, John Radcliffe Hospital, Oxford, UK.
- 4) Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK. 16
- 17 5) Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, 18 AstraZeneca, Cambridge, UK
- 19 6) Department of Biomedical Data Science, Stanford Medical School
- 20 7) University of California, San Francisco, San Francisco, CA, USA
- 21 8) Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- 22 9) Department of Medicine, Division of Cardiovascular Medicine, Stanford University 23 School of Medicine, Stanford, California, USA
- 24 10) Department of Genetics, Stanford University, Stanford, CA, USA
- 25 11) Basic Sciences and Engineering Initiative, Betty Irene Moore Children's Heart Center, 26 Lucile Packard Children's Hospital, Stanford, CA, USA
- 27 12) College of Information & Computer Sciences at University of Massachusetts Amherst, 28 Amherst, Massachusetts USA
- 29 13) Chan-Zuckerberg Biohub, San Francisco, California, USA
- 30 14) Current affiliation: Tenaya Therapeutics, South San Francisco, California, USA
- 31
- 32
- 33 *These authors contributed equally to this work

34 ABSTRACT

35	Background: The interventricular septum (IVS) plays a primary role in cardiovascular
36	physiology and a large proportion of genetic risk remains unexplained for structural heart disease
37	involving the IVS such as hypertrophic cardiomyopathy (HCM) and ventricular septal defects
38	(VSD).
39	
40	Objectives: We sought to develop a reproducible proxy of IVS structure from standard medical
41	imaging, discover novel genetic determinants of IVS structure, and relate these loci to two rare
42	diseases of the IVS.
43	
44	Methods: We performed machine learning to estimate the cross-sectional area of the
45	interventricular septum (IVS.csad) obtained from the 4-chamber view of cardiac MRI in 32,219
46	individuals from the UK Biobank. Using these extracted measurement of IVS.csad we performed
47	phenome-wide association to relate this proxy measure to relevant clinical phenotypes, followed
48	by genome-wide association studies and Mendelian Randomization.
49	
50	Results: Automated measures of IVS.csad were highly accurate, and strongly correlated with
51	anthropometric measures, blood pressure, and diagnostic codes related to cardiovascular
52	physiology. A Single nucleotide polymorphism in the intron of CDKN1A was associated with
53	IVS.csad (rs2376620, Beta 8.4 mm2, 95% confidence intervals (CI) 5.8 to 11.0, p=2.0e-10), and
54	a common inversion incorporating KANSL1 predicted to disrupt local chromatin structure was
55	associated with an increase in IVS.csad (Beta 8.6 mm2, 95% CI 6.3-10.9, p=1.3e-13). Mendelian
56	Randomization suggested that inheritance of a larger IVS.csad was causal for HCM (Beta 2.45

- 57 log odds ratio (OR) HCM per increase in SD of IVS.csad, standard error (SE) 0.48, pIVW =
- 58 2.8e-7) while inheritance of a smaller IVS.csad was causal for VSD (Beta -2.06 log odds ratio
- 59 (OR) VSD per decrease in SD of IVS.csad, SE 0.75, pIVW = 0.006)
- 60
- 61 **Conclusion:** Automated derivation of the cross sectional area of the IVS from the 4-chamber
- 62 view allowed discovery of loci mapping to genes related to cardiac development and Mendelian
- 63 disease. Inheritance of a genetic liability for either large or small interventricular septum, appears
- to confer risk for HCM or VSD respectively, which suggests that a considerable proportion of
- risk for structural and congenital heart disease may be localized to the common genetic
- 66 determinants of cardiovascular anatomy.

67

69 INTRODUCTION

70 Within the cardiac ventricles, the interventricular septum (IVS) separates deoxygenated 71 pulmonary blood flow from oxygenated systemic blood flow and is a foundation of mammalian physiology¹. The IVS is the site of two important diseases; ventricular septal defects (VSD) are 72 73 among the most common forms of congenital heart disease, where a thin or abnormally 74 developed IVS leaves a communication linking the lumens of the left and right ventricle which when untreated may lead to heart failure and pulmonary hypertension². Alternatively, the 75 76 increased thickness and altered geometry of the IVS in hypertrophic cardiomyopathy (HCM) may progress to the point of obstruction of the left-ventricular outflow tract.³ While both VSD 77 78 and HCM are primarily genetic in origin, Mendelian inheritance does not fully account for the 79 risk of HCM⁴ or for individual variability in disease amongst individuals carrying the same 80 pathogenic variant. Monogenic disease causing VSD is very rare, and the genetic basis of VSD is 81 simply not known in the majority of affected individuals⁵.

82

The IVS has two primary developmental origins, with the membranous portion arising from mesenchymal lineages in the cardiac cushions⁶ and the muscular portion developing from ingrowth of the primary heart tube⁷. A complex microanatomical orientation of cardiomyocyte fibers through the IVS links the function of the right and left ventricles⁸. After adaptation to postnatal circulation over the first months of life, the mature IVS has a complex relationship with normal physiology, with the thickness of the IVS increased in both exercise capacity⁹ as well as in hypertension¹⁰.

- 91 Here we derive a simple automated measure of the IVS derived from MRI imaging of the heart
- 92 in the 4-chamber view, IVS cross-sectional area at diastole (IVS.csad). We show that IVS.csad is
- 93 correlated with standard clinical measures and is useful as suitable proxy for the architechture of
- 94 the IVS. We report genetic correlates of IVS.csad in 32,219 individuals derived from cardiac
- 95 MRI of the UK Biobank. Using Mendelian Randomization, we describe new causal relationships
- 96 linking smaller IVS.csad with risk for VSD and larger IVS.csad with risk for HCM.

97 METHODS

98 Ethics statement. The NHS National Research Ethics Service (ref: 11/NW/0382) granted ethical
99 approval for the distribution of deidentified imaging, genetic, and medical record data from the
100 UK Biobank (UKB) for any qualified researcher.

101

102 UK Biobank cohort and IVS cross sectional area measurement from cardiac MRI

103 We built a U-Net segmentation model of cine images of the 4-chamber (4Ch) view of the heart 104 with pre-trained weights from VGG11, which was further trained on 60 hand-labeled 4Ch images, validated on 20 hand-labeled images, and tested on 20 hand-labeled images¹¹. This 105 106 approach yielded a validation dice score of 91.2% and a test dice score of 93.8% which were 107 equivalent to differences observed between expert human annotators in an open-source deep learning framework upon which this work is based¹². We then applied the segmentation model to 108 109 32,219 4Ch images from the UKB and generated masks for all 4 chambers including the left and 110 right ventricles and the left and right atrium. Following generation of the masks from the trained 111 U-Net segmentation model, we used another function to measure the interventricular septal 112 areas. We first located the base of the atriums and apex of the ventricles along the medial axis of 113 the chambers, and secondly we located the annuli of the atrioventricular valves using the 114 intersecting lines of the atriums and the ventricles, then finally we use the contour lines of the 115 masks of atriums and ventricles between the annulus lines and the base of the atriums or the apex 116 of the ventricles to enclose the area of the interventricular septum. The metadata in the dicom measurements were used to convert from pixels² to mm². The frame representing end-diastole 117 118 was obtained by selecting the image frame with the largest estimate of left ventricular volume 119 provided by the U-Net segmentation algorithm.

121	To exclude outliers related to imaging error or methodological inaccuracy, automated
122	measurements were plotted relative to body surface area with standard measures of quality
123	control. We excluded measures +/- 3 standard deviations. Manual annotation of 50 randomly
124	selected images spanning the cardiac cycle was performed by a clinician (JRP) blinded to
125	automated measures or anthropometric characteristics. The percent difference between
126	automated and manual measurements ([automated measure - manual measure]/manual measure)
127	was examined for systematic relationships to anthropomorphic predictors (Age in years, body
128	surface area, genetic sex). Body surface area was estimated from height and weight using the
129	Haycock formula ¹³ .
130	
131	Phenome wide association study
131 132	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described
131 132 133	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical
 131 132 133 134 	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical associations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ .
 131 132 133 134 135 	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical associations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ . For the reporting of PheWAS results, we excluded phenotypes with less than 50 individuals (for
 131 132 133 134 135 136 	Phenome wide association studyGiven that IVS.csad is not a standard clinical measurement, using previously describedmethods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinicalassociations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ .For the reporting of PheWAS results, we excluded phenotypes with less than 50 individuals (forcontinuous traits) or less than 50 cases (for binary-coded traits), and controled the positive false
 131 132 133 134 135 136 137 	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical associations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ . For the reporting of PheWAS results, we excluded phenotypes with less than 50 individuals (for continuous traits) or less than 50 cases (for binary-coded traits), and controled the positive false discovery rate (pFDR). We performed PheWAS for the IVS.csad amongst individuals with MRI
 131 132 133 134 135 136 137 138 	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical associations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ . For the reporting of PheWAS results, we excluded phenotypes with less than 50 individuals (for continuous traits) or less than 50 cases (for binary-coded traits), and controled the positive false discovery rate (pFDR). We performed PheWAS for the IVS.csad amongst individuals with MRI data (n=32,219).
 131 132 133 134 135 136 137 138 139 	Phenome wide association study Given that IVS.csad is not a standard clinical measurement, using previously described methods ¹⁴ we performed a phenome-wide association studies (PheWAS) to highlight clinical associations with 67 cardiovascular phenotypes aggregated from ICD-10 codes as phecodes ¹⁵ . For the reporting of PheWAS results, we excluded phenotypes with less than 50 individuals (for continuous traits) or less than 50 cases (for binary-coded traits), and controled the positive false discovery rate (pFDR). We performed PheWAS for the IVS.csad amongst individuals with MRI data (n=32,219).

141 The UK Biobank data release available at the time of analysis included genotypes for 488,377

142 participants, obtained through either the custom UK Biobank Axiom array or the Affymetrix

Axiom Array. Genotypes were imputed to the TOPMed panel (Freeze5) at the Michigan 143 144 imputation server. Only variants with minor allele frequency (MAF) greater than or equal to 145 0.01, and minor allele count (MAC) greater or equal to 5, and variants which have Hardy-146 Weinberg equilibrium exact test p-value greater than 1e-20 in the entire MRI dataset and an empirical-theoretical variance ratio (MaCH r^2) threshold above 0.3 were included. The main 147 148 GWAS was conducted on the largest subset of participants with MRI data from the largest 149 unrelated European-ancestry cohort defined using the variable in.white.British.ancestry.subset in 150 the file ukb sqc v2.txt provided as part of the UKB data release ($n = \sim 27,100$ individuals with 151 estimates derived from imaging data, age = 55.0 ± 7.4). To replicate the findings, we separated the 152 dataset into a discovery set of 22,124 participants and a replication set of 4,899 participants 153 released at a later date. To further explore the findings from the European GWAS, we included 154 three independent sets of other ethnic backgrounds with cardiac MRI who were not included in 155 the discovery set, including African/Afro-Caribbean (AF, n = 222, age = 49.6 \pm 7.0), East Asian 156 (EAS, n = 85, age = 49.2±5.5), and South Asian (SAS, n = 368, age = 52.1±7.9). Examination of 157 those samples according the genetic principal components showed that many were mostly of 158 non-European ancestry and were unrelated [Table S1]. Testing of single nucleotide variants and indels was performed using an using linear regression PLINK¹⁶2 (v2.00a2LM) additive 159 160 model^{17,18}, including gender, age, BSA, and genetic principal components 1-4. For genic and 161 regional CNV burden tests, associations were performed using linear regression PLINK2 (v2.00a2LM) additive model^{17,18}, including gender, age, BSA, Principal components 1-10 and 162 163 the length and total number of CNV per individual as covariates as previously described¹⁹. Locuszoom or custom python scripts were used to generate regional association plots²⁰. Trans-164

165 ethnic meta-analysis was performed using the METAL software using the standard error analysis166 scheme.

167

168 Independent SNPs were identified by linkage disequilibrium (LD) r2 0.6 and were annotated to 169 cardiac eQTL (GTEx v8: heart atrial appendage and heart left ventricle), CADD, RDB, and the 170 GWAS catalog. GWAS of rare variant and gene-based tests were performed using score and 171 SKATO as implemented in the RVTEST package (link). For the RV-GWAS, age, sex, BSA, 172 Principal components 1-10 were used as covariates to calculate the association of 6 million 173 (6,593,945) imputed/genotyped variants of IVS with minor allele frequency between 0.01 and 174 0.0005, minor allele count greater than 15, an imputation quality MachR2 greater than 0.8, and 175 p-value for Hardy Weinberg Equilibrium greater than 1e-20. For gene-based tests, the selected 176 variants were mapped to the UCSC GRCh38 refGene annotations, where every unique protein-177 coding gene (n = 22,933) listed was tested.

178

179 In silico analyses for contact prediction and enhancer activity.

180 To predict changes in 3D chromatin folding brought about by the chr17 inversion, we used 181 Akita²¹, a convolutional neural network model trained to predict Hi-C maps from about one 182 megabase of DNA. We first validated that Akita can reproduce wildtype contact frequencies in 183 the region of [GRCh38/hg38] chr17:45392804-46440468. We then used the inversion sequence 184 as input to generate a mutant Hi-C prediction. Comparing this to the wildtype, we predicted 185 changes in contact frequency between promoters, gene bodies, and candidate enhancer elements in the GeneHancer database²². To determine possible regulatory functions for single variants in 186 187 GWAS loci, we examined all variants with P < 10-6. We intersected these variants with

predicted enhancers in 131 cell types identified by the activity-by-contact (ABC) Model, which combines measurements of enhancer activity (based on ATAC-seq, DNase-seq, and H3K27ac ChIP-seq) with estimates of enhancer-promoter 3D contact frequencies (based on Hi-C)^{23,24}. We examined DNase-seq and ATAC-seq data across a range of cardiovascular cell types from the ENCODE Project. Finally, we examined sequence motif predictions for identified variants using a database of transcription factor binding site motifs²⁵.

194

195 LDSC and genetic correlation analyses

196 To calculate genetic correlation between polygenic risk score of IVS cross sectional area annular 197 size and other related phenotypes, we obtained summary statistics for cardiac MRI-derived LV 198 measurements (left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic 199 volume (LVESV), stroke volume (SV), the body-surface-area (BSA) indexed versions for 200 cardiovascular traits (LVEDVi, LVESVi, and SVi), and left ventricular ejection fraction (LVEF)²⁶, atrial fibrillation (AF)²⁷, nonischemic cardiomyopathy (NICM)²⁸, heart failure²⁹, heart 201 failure using UK Biobank data²⁸, hypertension³⁰, PR Interval³¹, Myocardial Infarction (MI) and 202 coronary artery disease (CAD)³², heart rate³³, and IVS cross sectional area prolapse (MVP)³⁴. 203 Using these data we performed LD Score regression³⁵ based on the reformatted summary 204 205 statistics filtered to HapMap3.

206

207 Mendelian Randomization

208 We performed two-sample Mendelian randomization (MR) to test for causal relationships

209 between IVS.csad and risk of two structural diseases of the IVS, specifically VSD and HCM.

210 Summary statistics from a VSD GWAS that considered 191 individuals with VSD and 5,159

211 controls were retrieved.²⁶ Summary statistics from a multi-ancestry HCM GWAS that evaluated

212 2,780 HCM cases and 47,486 controls were retrieved³⁶. An instrumental variable (IV), consisting

of 22 variants was generated by first selecting variants with p-value < 5e-06 from a standardized

trans-ethnic meta-analysis of IVS.csad and then, applying a linkage disequilibrium clumping

215 procedure (r^2 of 0.01 across a window of 1000 kb) via TwoSampleMR

216 (https://github.com/MRCIEU/TwoSampleMR/). The F statistic for this 22 SNP instrument was

217 15.1 and accounts for 1.04% SNP heritability.

218 We performed two-sample MR using four different methods, specifically inverse-variance

219 weighted (IVW), weighted median, MR-Egger, and MR-PRESSO (mendelian randomisation

220 pleiotropy residual sum and outlier) using MR-Base^{37,38}. Each method assumes a different set of

221 underlying assumptions; all variants included in the instrument are assumed to be valid in the

IVW method, and a fixed effects IVW model assumes each variant confers the same mean effect,

223 with no horizontal pleiotropy. A random effects IVW model, accounts for the possibility that

variants included in the instrument yield different mean effects and can provide an unbiased

estimate when horizontal pleiotropy is balanced³⁹. The MR-Egger regression estimates the

relationship of effects across instruments functioning as a sensitivity analysis for directional

227 pleiotropy⁴⁰, weighted median offers a consistent estimate of effect size when a minimum of

228 50% of the weights come from valid IVs, and the MR-PRESSO model measures and robustly

229 accounts for the presence of horizontal pleiotropy 38 .

230 **RESULTS**

After exclusion of outliers we obtained automated estimates of the cross-sectional area of the interventricular septum during ventricular diastole (IVS.csad) for 31,587 individuals yielding a mean IVS.csad of 651 mm² (range 207 – 1108 mm², standard deviation 166 mm²) [Fig.1A]. In comparison to blinded manual measurements, automated measures were on average 24 mm² or 3.2% smaller than manual measures of IVS.csad with no systematic relationship of measurement error to body surface area (BSA), genetic sex, or age across 50 randomly selected test images [Table S2].

238

239 Given that IVS.csad is not a standard clinical measure in MRI or echocardiography and is

240 infrequently characterized in the literature²⁷ we sought to provide clinical context. Similar to the

size of other cardiac structures, IVS.csad scales with BSA in a linear fashion [Fig.1B]. Amongst

the 31,587 individuals with an automated estimate, IVS.csad was also correlated with genetic sex

and body mass index (BMI) (Pearson's r > 0.6), moderately correlated with systolic and diastolic

blood pressure (Pearson's r > 0.3), and mildly correlated with birthweight (Pearson's r > 0.1)

245 [Fig.1C]. Additionally, in a PheWAS of IVS.csad for 67 cardiovascular phenotypes we observed

that a larger IVS.csad was positively associated with PheCODES encompassing "abnormal heart

sounds" ($p_{fdr} = 0.003$, Odds Ratio (OR) 2.1 per standard deviation (SD) increase in IVS.csad,

ICD10 codes R00 - R01.3), "non-rheumatic aortic valve disease" ($p_{fdr} = 0.003$, OR 2.4 per SD

249 IVS.csad, ICD10 I08.2, I35, I35.9), and "abnormal functional study of the cardiovascular

system" (p_{fdr} = 0.02, OR 2.6 per SD IVS.csad, ICD10 R94.3[Fig.1D]. Importantly, in a random

subset of 50 individuals selected for manual measurement, IVS.csad was correlated with

252 maximal interventricular septal thickness (Pearson's r = 0.62), a standard clinical measure of IVS 253 structure²⁸.

254

- 255 Given that IVS.csad was strongly correlated with key clinical measures of cardiovascular
- structure and function, we performed a GWAS of IVS.csad as a proxy for interventricular septal
- mass in 26,844 individuals of European ancestry divided into discovery (n = 21,945) and
- replication (n = 4,899) subsets [Table S1]. Using the summary statistics, we performed LD-score
- 259 correlation (LDSC) to relate the genetic determinants of IVS.csad to a set of common
- 260 cardiovascular traits and diseases to provide further clinical context, which highlighted
- significant genetic overlap with left ventricular mass (correlation 0.81, $p = 1.6 \times 10^{-24}$) and the

262 PR interval (correlation 0.26, $p = 6.2 \times 10^{-06}$) but did not show strong negative genetic

263 correlations with cardiovascular traits selected for measurement [Fig.S1]. By LDSC, the total

observed h2 for IVS.csad was high at 0.068 (SD 0.0106).

265

266 Within European ancestry individuals there were two loci which were strongly significant [Table 1, Fig.2A]. A lead variant on chromosome 6 (rs2376620, $p_{combined} = 2.00 \times 10^{-10}$, CDKN1A 267 268 intron) which tags a haplotype of linked variants overlapping key open chromatin regions 269 exlusive to ventricular myocardium within the introns of CDKN1A [Fig.2C], a canonical regulator of ventricular cardiomyocyte proliferation^{41,42}. The other lead variant on chromosome 270 17 (rs62063281, $p_{combined} = 1.31 \times 10^{-13}$) appeared to display strong linkage across a large region 271 272 of 690,200 base pairs in length which represents a duplication flanked inversion (hg38 273 chr17:45571611-46261810) across three genes and is common (minor allele frequency 0.18) within in European populations. Using the Akita model of 3D genome folding²¹, we quantified 274

275	expected changes in chromatin contact frequency caused by the inversion which predicts a
276	severe disturbance in the local chromatin landscape, including loss of contact between the
277	KANSL1 promoter and regions including the MAPT gene body, KANSL1-AS1, and several
278	candidate regulatory enhancers predicted by the GeneHancer database [Fig.2B]. A burden-test of
279	structural variants overlapping genes did not reveal further structural variants ¹⁹ [Fig. S2].
280	
281	In the European-only GWAS analysis, a number of additional loci did not meet standard
282	genome-wide significance but had strong pre-existing evidence for involvement in
283	cardiovascular biology [Table S4] . Following the European-only analysis, we performed
284	analyses within three additional ethnic strata (South Asian, East Asian, and African/Afro-
285	Caribbean) and a trans-ethnic meta-analysis which confirmed the findings in CDKN1A across
286	population strata and identified additional variants on chromosome 3 (rs62253176, p= 2.3×10^{-08} ,
287	<i>MITF</i> intron) and chromosome 1 (rs2092867, p= 4.4×10^{-08} , <i>NFIA</i> intron) which were strongly
288	suggestive but were not meet standard significance threshold in the European only analysis
289	[Figs.S3 & S4]. Additional variants of interest on chromosome 2 (rs1368960, $p_{combined} = 1.3 \times 10^{-10}$
290	⁰⁷ , ASB1 intron) and chromosome 15 (rs11633294, $p_{combined} = 2.7 \times 10^{-07}$, <i>IGF1R</i> intron)
291	displayed clear genomic consequences [Fig.S5] but were not genome-wide significant in
292	European or Trans-ethnic meta-analyses. Additionally we performed both rare variant analyses
293	(MAF 0.01 to 0.001) and gene-burden testing which were unrevealing of genetic associations
294	meeting standard pre-specified significance thresholds [Figs.S6 & S7].
295	
296	Common genetic variation is known to underpin susceptibility to a variety of cardiovascular

diseases, including those determined by extremes in anatomical size.^{29,30,31} We sought to relate

298	the genetic determinants governing normal variation in the IVS to two rare forms of structural
299	heart disease manifesting as either a small or insufficient interventricular septum (VSD) or as a
300	large interventricular septum (HCM). Using an instrumental variable of 22 variants derived from
301	the IVS.csad GWAS [Table S4], we performed two-sample Mendelian Randomization for VSD
302	(191 VSD cases and 5,159 controls) and HCM (2,780 HCM cases and 47,486 controls) as
303	outcome phenotypes. We observed evidence suggesting a causal effect where inheritance of a
304	smaller IVS.csad corresponded to an increase in risk for VSD (beta coefficient: 2.06 log odds
305	ratio (OR) VSD per decrease in SD of IVS.csad, standard error (SE) 0.75, $p_{IVW} = 0.006$) while
306	inheritance of a larger IVS.csad corresponded to an increase in risk for HCM (beta coefficient:
307	2.45 log OR HCM per increase in SD of IVS.csad, SE: 0.48, p _{IVW} = 2.8e-7) [Figure 3].
308	
309	When evaluating IVS.csad as the exposure and VSD as the outcome, sensitivity analyses
310	suggested the observed causal effect was uniform across the variants included in the instrumental
311	variable (Q value = 15.8, df=20, p-value=0.73). The MR-Egger test of horizontal pleiotropy was
312	insignificant with broad standard errors around the slope and intercept (beta=-0.62, SE=2.43;
313	intercept=-0.06). The median weighted method, which provides a causal estimate assuming at
314	least 50% of the weight comes from valid instrumental variables, was consistent with the IVW
315	result (beta=-2.40; se=1.05; p=0.02). The MR-PRESSO global test for outliers indicates there
316	was no evidence of horizontal pleiotropy for the outcome of VSD (p=0.78).
317	
318	Sensitivity analyses evaluating IVS.csad as the exposure and HCM as the outcome suggested
319	there was evidence of heterogeneity within the instrument (Q value = 84.2, df=20, p-
320	value=7.58E-10, $i2 = 0.76$) and the MR-PRESSO global test for outliers indicated there was

321	horizontal pleiotropy ($p = 0.001$). The unadjusted MR-PRESSO result (beta coefficient: 2.45,
322	SE: 0.48, $p_{MR-PRESSO} = 4.36E-05$) is similar is magnitude to the IVW result, but considering the
323	observed horizontal pleiotropy could be artificially inflated. Performing the outlier-corrected
324	MR-PRESSO test (beta coefficient: 1.62 log OR HCM per increase in SD of IVS.csad, SE: 0.42,
325	$p_{MR-PRESSO} = 0.001$) shows an effect size comparable to the median (weighted) results (1.47 log
326	OR HCM per increase in SD of IVS.csad, SE 0.47, $p_{median-weighted} = 0.002$). The estimate of effect
327	size derived from the MR-Egger test is internally consistent (beta=1.82 log OR HCM per
328	increase in SD of IVS.csad, SE=1.67, p=0.29, intercept=-0.03).
329	
330	Because left-ventricular mass and IVS thickness are known to increase in the setting of chronic
331	hypertension ¹⁰ , a phenomenon that we observed in our clinical correlates of automated measures
332	of IVS.csad [Fig.1B], we performed an additional sensitivity analysis to rule out confounding for
333	the causal effect observed between IVS.csad and HCM. For the outcome of HCM we repeated
334	the two-sample MR for IVS.csad conditioned upon diastolic blood pressure, which did not
335	significantly change the positive and statistically significant causal estimate for IVS.csad (beta
336	3.08 log OR HCM per increase in SD of IVS.csad, SE 0.48, $p_{IVW} = 1.05e-05$) [Table S5].
337	

338 **DISCUSSION**

339 Here we report upon the genetic architecture of the cross-section of the interventricular septum 340 derived from a standard view in cardiac imaging. The measured cross-sectional area of the IVS 341 in diastole is correlated with genetic sex and body surface area along with a clinically accepted 342 measure of the interventricular septal thickness⁴³ and genetically correlated with left ventricular 343 mass suggesting that our 2-dimensional automated measure of IVS.csad is a good proxy for the 344 mass of this portion of cardiac anatomy. Genetic associations for IVS.csad are centered upon 345 genetic loci with previously established roles in cardiac development and mendelian forms of 346 cardiac malformations. Additionally, we show a causal relationship between inheritance of a 347 larger interventricular septum with risk of HCM and a smaller interventricular septum with risk 348 of ventricular septal defects.

349

350 Haploinsufficiency or truncating mutations in KANSL1 are causal for Koolen-de Vries syndrome which includes ventricular septal defects amongst a variety of other phenotypes^{44,45}. We found 351 352 that a variant associated with IVS.csad, rs62063281, tags a common inversion on chromosome 17, referred to as CPX_17_4670 on the gnomAD CNV browser⁴⁶, that encompasses KANSL1 353 354 and KANSLI-ASI along with four other protein coding genes, and was associated with an increase in IVS.csad (beta= 8.60 mm^2 , p=1.31e-13). The variant rs62063281 which tags the 355 356 inversion appears to be a strong tissue-specific splice QTL (Normalized expression -1.5, p = 357 1.7e-88) for KANSL1, In addition to disruption of the interaction of the KANSL1 promoter and 358 predicted regulatory elements, genes that contact KANSL1-AS1 (including ARL17B, LRRC37A, 359 NSFP1, LRRC37A2, NSF) in the reference configuration are also expected to lose this interaction 360 as a result of the common inversion, which potentially may additionally result in disrupted

expression of these other genes. As a group histone, modifying genes including the WDR5MLL1 complex of which KANSL1 is a component are well-recognized to be involved in cardiac
development and diverse forms of congenital heart disease^{5,47}. Together these data suggest that
common alterations to dosage and transcription of *KANSL1* impact the development and growth
of the interventricular septum.

366

367 The *CDKN1A* locus has been specifically identified as a target of HIF-1a within the developing ventricular septum⁴⁸ and has been experimentally described as a key mediator of the 368 hypertrophic response within postnatal life 41,49 . The variant rs2376620 sits within an intron of 369 *CDKN1A*, a locus well known to play a role in cardiomyocyte growth⁴² recently identified in 370 371 heart failure²⁹. Together these data suggest a specific role for *CDKN1A* in normal development 372 of the interventricular septum along with physiological function throughout postnatal life. 373 Among the other identified in the trans-ethnic analysis, the variant rs62253176 occurs within an 374 intron of the transcription factor MITF, an important mediator of beta-adrenergic induced hypertrophy via the renin-angiotensin system expressed in cardiomyocytes⁵⁰. Importantly, *MITF* 375 376 binds the promotor of canonical cardiac development transcription factor GATA4 and 377 knockdowns in human embryonic stem cell derived cardiomyocytes specifically reduce the expression of genes in the sarcomere 51,52 . The role of *NFIA* in cardiac development and function 378 is less well defined though it is associated with a variety of electrocardiographic traits^{53,54} and the 379 380 variant rs2092867 occurs on a haplotype associated with a recently reported novel trait related to 381 the presence of cardiac trabeculae derived from the same UK Biobank imaging dataset⁵⁵.

383 It is well established that rare causal variants confer large effects and produce extreme 384 phenotypes. However, many individuals possessing an extreme phenotype do not yield such causal variants when subject to clinical genetic testing⁵⁶. Instead, there is increasing evidence 385 386 that such extreme phenotypes may also be attributable to the aggregate burden of common variants associated with the disease or a causal trait⁵⁷. As such, extremes in polygenic risk may 387 388 explain variability in cardiovascular anatomy and represent an important disease risk factor for a 389 variety of different diseases. For instance, we have previously shown that polygenic risk scores 390 influence ascending aorta size (PRS_{Aorta}); increases in PRS_{Aorta} are associated with risk of developing thoracic aortic aneurysm and dissection⁵⁸, and decreases in PRS_{Aorta} are associated 391 392 with left ventricular outflow tract congenital heart disease⁵⁹.

393

394 Using two-sample Mendelian randomization, we show that inheritance of a smaller IVS.csad 395 results in an increase in ventricular septal defect risk, and conversely, inheritance of a larger 396 IVS.csad confers increased risk in HCM. Identifying risk of ventricular septal defects is 397 increased through the inheritance of a smaller interventricular septum, as measured by IVS.csad, 398 supports the need for systematic inquiry into the relationship between normal variation in the 399 size and shape of cardiovascular anatomy and congenital heart disease, for which the majority of 400 genetic risk remains unexplained. For HCM, rare pathogenic variants within core sarcomere 401 genes account for 40% of HCM cases, but with unexplained phenotypic heterogeneity. Recent data suggest common genetic variants also underpin HCM risk³⁶. The analyses presented here 402 403 suggest that a proportion of HCM risk is attributable to normal variation in the size and mass of 404 the interventricular septum as measured by IVS.csad [Fig.S2].

405

406 There are limitations to each aspect of our study. While we have created an automated measure 407 of the interventricular septum which is simple in conception and shown correlation with a variety 408 of traits, the measure lacks phenotypic context provided by many years of use in standard clinical 409 imaging. The cross-sectional area of the interventricular septum is a reductive two-dimensional 410 measure of a complex three-dimensional structure which changes dynamically over the course of the cardiac cycle⁶⁰. More complex measures of the septum are likely to provide nuanced 411 412 correlations with clinical phenotypes, patient outcomes, as well as substrate for discovery of novel genetic determinants of structure and function⁵⁵. Our analyses were limited by the small 413 414 proportion of individuals of African/Afro-Caribbean, South and East Asian descent, which 415 reduced the power to detect genetic signal within these groups for this trait and underscores the urgent need to diversify genetic studies of all human diseases and traits⁵³. While the inclusion of 416 417 structural variation in our association studies is novel and our finding is supported by the 418 association of KANSL1 with Mendelian diasease and mouse models of cardiac development, 419 there are no cohorts available for external confirmation which include both CNV calls and 420 readily available bespoke measures of cardiac anatomy. Although our Mendelian randomization 421 analyses yielded clear and consistent results relating the heritable architecture of septal 422 architecture to rare cardiovascular diseases, they are limited in scope by the relatively 423 underpowered outcome GWAS for VSD and the clinical utility of these findings require further 424 contextualization in larger cohorts.

426 Overall, the data and analyses presented here illustrate the power of combining genetics with 427 phenotyping of cardiac imaging accelerated by machine learning to identify new loci related to 428 cardiovascular development and pathology. The study of cardiovascular anatomy measured as a 429 continuous trait offers the potential to disentangle complex risk factors and reveal previously 430 unrecognized heritability for rare forms of structural heart disease. While the risk is primarily 431 thought to be inherited, the genetic architecture of congenital heart disease has been difficult to establish. In addition other evidence⁵⁹, the relationship between a small IVS to increased risk of 432 433 VSD may suggest a that a proportion of genetic risk for other forms of congenital heart disease 434 can be localized to heritable extremes in size of cardiovascular anatomy which arise primarily 435 from common genetic variation.

436

438 ACKNOWLEDGEMENTS

- 439 The authors wish to thank Dan Bernstein, James Pirruccello, and Euan Ashley for helpful
- 440 commentary on the manuscript.
- 441

442 FUNDING

- 443 NIH NHGRI R35HG011324 (to JME), Gordon and Betty Moore and BASE Initiative at the
- 444 Lucile Packard Children's Hospital at Stanford University (to JME), American Heart Association
- 445 / Children's Heart Foundation Congenital Heart Defect Research Award (to DA), Stanford
- 446 Maternal and Child Health Research Institute (to DA). JRP has been supported by the Stanford
- 447 University Department of Pediatrics, National Heart Lung and Blood Institute (R00 HL130523),
- 448 and Chan-Zuckerberg Biohub.

449 **REFERENCES**

- 450 1. Koshiba-Takeuchi K, Mori AD, Kaynak BL, Cebra-Thomas J, Sukonnik T, Georges RO,
- 451 Latham S, Beck L, Henkelman RM, Black BL, Olson EN, Wade J, Takeuchi JK, Nemer
- 452 M, Gilbert SF, Bruneau BG. Reptilian heart development and the molecular basis of
- 453 cardiac chamber evolution. *Nature* [Internet]. 2009 [cited 2020 Oct 3];461:95–98.
- 454 Available from: /pmc/articles/PMC2753965/?report=abstract
- 455 2. Penny DJ, Vick GW. Ventricular septal defect [Internet]. In: The Lancet: 2011
- 456 [cited 2020 Sep 28]. p. 1103–1112. Available from:
- 457 https://pubmed.ncbi.nlm.nih.gov/21349577/
- 458 3. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura
- 459 RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW. 2011
- 460 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy:

461 Executive summary: A report of the American College of cardiology

- 462 foundation/American heart association task force on practice guidelines. Circulation.
- 463 2011;124:2761–2796.
- 464 4. Canepa M, Fumagalli C, Tini G, Vincent-Tompkins J, Day SM, Ashley EA, Mazzarotto F,
- 465 Ware JS, Michels M, Jacoby D, Ho CY, Olivotto I. Temporal Trend of Age at Diagnosis
- 466 in Hypertrophic Cardiomyopathy: An Analysis of the International Sarcomeric Human
- 467 Cardiomyopathy Registry. *Circ Heart Fail* [Internet]. 2020 [cited 2020 Sep
- 468 28];13:e007230. Available from:
- 469 https://www.ahajournals.org/doi/10.1161/CIRCHEARTFAILURE.120.007230
- 470 5. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant
- 471 MC, Hung W-C, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR,

472	Bilguvar	K. Mane	SM. Sande	ers SL Mital S	Russell MW	Gaynor JW	Deanfield L
172	Dingu vui .	is, ivianc	, Duri, Duria	15 55, Millui 5	, it association \cdots ,	Ouynor 5 m	, Doumioid 3,

- 473 Giardini A, Porter GA, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ,
- 474 Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz
- 475 E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M.
- 476 Contribution of rare inherited and de novo variants in 2,871 congenital heart disease
- 477 probands. *Nat Genet* [Internet]. 2017 [cited 2019 Apr 29];49:1593–1601. Available from:
- 478 http://www.nature.com/articles/ng.3970
- 479 6. Camenisch TD, Runyan RB, Markwald RR. Molecular Regulation of Cushion
- 480 Morphogenesis. In: Heart Development and Regeneration. Elsevier Inc.; 2010. p. 363–
- 481 387.
- 482 7. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart:
- 483 (2) Septation of the atriums and ventricles. *Heart* [Internet]. 2003 [cited 2020 Sep
- 484 21];89:949–958. Available from:
- 485 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767797/
- 486 8. Saleh S, Liakopoulos OJ, Buckberg GD. The septal motor of biventricular function
- 487 [Internet]. Eur. J. Cardio-thoracic Surg. 2006 [cited 2020 Sep 28];29. Available from:
- 488 https://pubmed.ncbi.nlm.nih.gov/16564701/
- 489 9. Gerling S, Pollinger T, Michel H, Dechant MJ, Melter M, Krutsch W. Z-score values of
- 490 left ventricular dimensions in adolescent elite male soccer players. *Eur J Pediatr*
- 491 [Internet]. 2020 [cited 2020 Sep 28];Available from:
- 492 https://pubmed.ncbi.nlm.nih.gov/32705342/
- 493 10. Eliakim-Raz N, Prokupetz A, Gordon B, Shochat T, Grossman A. Interventricular Septum
- 494 and Posterior Wall Thickness Are Associated With Higher Systolic Blood Pressure. J Clin

- 495 *Hypertens* [Internet]. 2016 [cited 2020 Sep 28];18:703–706. Available from:
- 496 https://pubmed.ncbi.nlm.nih.gov/26607051/
- 497 11. Yu M, Tcheandjieu C, Georges A, Xiao K, Tejeda H, Dina C, Le Tourneau T, Fiterau I,
- 498 Judy R, Tsao N, Amgalan D, Munger CJ, Engreitz JM, Damrauer S, Bouatia-Naji N,
- 499 Priest JR. Computational estimates of mitral annular diameter in systole and diastole
- 500 cardiac cycle reveal novel genetic determinants of valve function and disease [Internet].
- 501 medRxiv. 2020 [cited 2021 Mar 12];2020.12.02.20242206. Available from:
- 502 https://doi.org/10.1101/2020.12.02.20242206
- 503 12. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N,
- 504 Lukaschuk E, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Carapella V, Kim YJ, Suzuki
- 505 H, Kainz B, Matthews PM, Petersen SE, Piechnik SK, Neubauer S, Glocker B, Rueckert
- 506 D. Automated cardiovascular magnetic resonance image analysis with fully convolutional
- 507 networks. *J Cardiovasc Magn Reson* [Internet]. 2018 [cited 2019 Jul 18];20:65. Available

508 from: http://www.ncbi.nlm.nih.gov/pubmed/30217194

- 509 13. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface
- 510 area: A height-weight formula validated in infants, children, and adults. *J Pediatr*
- 511 [Internet]. 1978 [cited 2021 Mar 12];93:62–66. Available from:
- 512 https://pubmed.ncbi.nlm.nih.gov/650346/
- 513 14. Cordova-Palomera A, Tcheandjieu C, Fries J, Varma P, Chen V, Fiterau M, Xiao K,
- 514 Tejeda H, Keavney B, Cordell H, Tanigawa Y, Venkataraman G, Rivas M, Re C, Ashley
- 515 E, Priest J. Cardiac imaging of aortic valve area from 26,142 UK Biobank participants
- 516 reveal novel genetic associations and shared genetic comorbidity with multiple disease
- 517 phenotypes. *medRxiv* [Internet]. 2020 [cited 2020 Sep 15];2020.04.09.20060012.

518 Available from: https://doi.org/10.1101/2020.04.09.20060012

- 519 15. Wu P, Gifford A, Meng X, Li X, Campbell H, Varley T, Zhao J, Carroll R, Bastarache L,
- 520 Denny JC, Theodoratou E, Wei WQ. Mapping ICD-10 and ICD-10-CM codes to
- 521 phecodes: Workflow development and initial evaluation. *J Med Internet Res* [Internet].
- 522 2019 [cited 2020 Sep 22];21. Available from: https://pubmed.ncbi.nlm.nih.gov/31553307/
- 523 16. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide
- association scans. *Bioinformatics* [Internet]. 2010 [cited 2019 Sep 18];26:2190–1.
- 525 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20616382
- 526 17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar
- 527 P, de Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association
- and population-based linkage analyses. *Am J Hum Genet* [Internet]. 2007;81:559–75.
- 529 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002929707613524
- 530 18. PLINK 2.0 [Internet]. [cited 2019 Sep 18];Available from: https://www.cog531 genomics.org/plink/2.0/
- 532 19. Aguirre M, Rivas MA, Priest J. Phenome-wide Burden of Copy-Number Variation in the
- 533 UK Biobank. *Am J Hum Genet* [Internet]. 2019 [cited 2019 Sep 9];105:373–383.
- 534 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31353025
- 535 20. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M,
- 536 Abecasis GR, Willer CJ, Frishman D. LocusZoom: Regional visualization of genome-
- 537 wide association scan results [Internet]. In: Bioinformatics. Oxford University Press; 2011
- 538 [cited 2021 Jan 20]. p. 2336–2337.Available from:
- 539 https://pubmed.ncbi.nlm.nih.gov/20634204/
- 540 21. Fudenberg G, Kelley DR, Pollard KS. Predicting 3D genome folding from DNA sequence

- with Akita. *Nat Methods* [Internet]. 2020 [cited 2021 Mar 22];17:1111–1117. Available
 from: https://pubmed.ncbi.nlm.nih.gov/33046897/
- 543 22. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn
- 544 A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of
- 545 enhancers and target genes in GeneCards. *Database (Oxford)* [Internet]. 2017 [cited 2021
- 546 Mar 22];2017. Available from: https://pubmed.ncbi.nlm.nih.gov/28605766/
- 547 23. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, Grossman SR,
- 548 Anyoha R, Doughty BR, Patwardhan TA, Nguyen TH, Kane M, Perez EM, Durand NC,
- 549 Lareau CA, Stamenova EK, Aiden EL, Lander ES, Engreitz JM. Activity-by-contact
- model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat.
 Genet. 2019;51.
- 552 24. Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, Jones
- 553 TR, Nguyen TH, Ulirsch JC, Natri HM, Weeks EM, Munson G, Kane M, Kang HY, Cui
- A, Ray JP, Eisenhaure TM, Mualim K, Collins RL, Dey K, Price AL, Epstein CB,
- 555 Kundaje A, Xavier RJ, Daly MJ, Huang H, Finucane HK, Hacohen N, Lander ES,
- 556 Engreitz JM. Genome-wide maps of enhancer regulation connect risk variants to disease
- 557 genes. *bioRxiv* [Internet]. 2020 [cited 2020 Dec 1];2020.09.01.278093. Available from:
- 558 https://doi.org/10.1101/2020.09.01.278093
- 559 25. Kulakovskiy I V., Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI,
- 560 Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA, Kolpakov FA, Makeev VJ.
- 561 HOCOMOCO: Towards a complete collection of transcription factor binding models for
- 562 human and mouse via large-scale ChIP-Seq analysis. *Nucleic Acids Res.* 2018;46.
- 563 26. Pirruccello JP, Bick A, Wang M, Chaffin M, Friedman S, Yao J, Guo X, Venkatesh BA,

- 564 Taylor KD, Post WS, Rich S, Lima JAC, Rotter JI, Philippakis A, Lubitz SA, Ellinor PT,
- 565 Khera A V., Kathiresan S, Aragam KG. Analysis of cardiac magnetic resonance imaging
- 566 in 36,000 individuals yields genetic insights into dilated cardiomyopathy. *Nat Commun*
- 567 [Internet]. 2020 [cited 2020 Sep 14];11. Available from:
- 568 https://pubmed.ncbi.nlm.nih.gov/32382064/
- 569 27. Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, Almgren P,
- 570 Alonso A, Anderson CD, Aragam KG, Arking DE, Barnard J, Bartz TM, Benjamin EJ,
- 571 Bihlmeyer NA, Bis JC, Bloom HL, Boerwinkle E, Bottinger EB, Brody JA, Calkins H,
- 572 Campbell A, Cappola TP, Carlquist J, Chasman DI, Chen LY, Chen YDI, Choi EK, Choi
- 573 SH, Christophersen IE, Chung MK, Cole JW, Conen D, Cook J, Crijns HJ, Cutler MJ,
- 574 Damrauer SM, Daniels BR, Darbar D, Delgado G, Denny JC, Dichgans M, Dörr M,
- 575 Dudink EA, Dudley SC, Esa N, Esko T, Eskola M, Fatkin D, Felix SB, Ford I, Franco
- 576 OH, Geelhoed B, Grewal RP, Gudnason V, Guo X, Gupta N, Gustafsson S, Gutmann R,
- 577 Hamsten A, Harris TB, Hayward C, Heckbert SR, Hernesniemi J, Hocking LJ, Hofman A,
- 578 Horimoto ARVR, Huang J, Huang PL, Huffman J, Ingelsson E, Ipek EG, Ito K, Jimenez-
- 579 Conde J, Johnson R, Jukema JW, Kääb S, Kähönen M, Kamatani Y, Kane JP, Kastrati A,
- 580 Kathiresan S, Katschnig-Winter P, Kavousi M, Kessler T, Kietselaer BL, Kirchhof P,
- 581 Kleber ME, Knight S, Krieger JE, Kubo M, Launer LJ, Laurikka J, Lehtimäki T,
- 582 Leineweber K, Lemaitre RN, Li M, Lim HE, et al. Multi-ethnic genome-wide association
- 583 study for atrial fibrillation. *Nat Genet* [Internet]. 2018 [cited 2020 Sep 14];50:1225–1233.
- 584 Available from: https://pubmed.ncbi.nlm.nih.gov/29892015/
- 585 28. Aragam KG, Chaffin M, Levinson RT, McDermott G, Choi SH, Shoemaker MB, Haas
- 586 ME, Weng LC, Lindsay ME, Smith JG, Newton-Cheh C, Roden DM, London B, Wells

	QS, Ellinor PT, Kathiresan S, Lubitz SA. Phenotypic Refinement of Heart Failure in a
	National Biobank Facilitates Genetic Discovery. Circulation [Internet]. 2019 [cited 2020
	Sep 14];139:489–501. Available from: https://pubmed.ncbi.nlm.nih.gov/30586722/
29.	Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk
	JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P,
	Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto J,
	Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J, Chutkow
	W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn ME,
	Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V,
	Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM, van
	der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber ME,
	Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA,
	Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W, Melander O,
	Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP,
	Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M,
	Portilla-Fernandez E, Psaty BM, Abecasis G, Backman J, Bai X, Balasubramanian S,
	Banerjee N, Baras A, Barnard L, Beechert C, Blumenfeld A, Cantor M, Chai Y, et al.
	Genome-wide association and Mendelian randomisation analysis provide insights into the
	pathogenesis of heart failure. Nat Commun [Internet]. 2020 [cited 2020 Sep 14];11.
	Available from: https://pubmed.ncbi.nlm.nih.gov/31919418/
30.	Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM,
	Patel YM, Sorokin EP, Avery CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky
	CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM, Lim U, Lin BM, Lu Y, Nelson
	29.

610		SC, Park SSL, Poisner H, Preuss MH, Richard MA, Schurmann C, Setiawan VW, Sockell
611		A, Vahi K, Verbanck M, Vishnu A, Walker RW, Young KL, Zubair N, Acuña-Alonso V,
612		Ambite JL, Barnes KC, Boerwinkle E, Bottinger EP, Bustamante CD, Caberto C,
613		Canizales-Quinteros S, Conomos MP, Deelman E, Do R, Doheny K, Fernández-Rhodes
614		L, Fornage M, Hailu B, Heiss G, Henn BM, Hindorff LA, Jackson RD, Laurie CA, Laurie
615		CC, Li Y, Lin DY, Moreno-Estrada A, Nadkarni G, Norman PJ, Pooler LC, Reiner AP,
616		Romm J, Sabatti C, Sandoval K, Sheng X, Stahl EA, Stram DO, Thornton TA, Wassel
617		CL, Wilkens LR, Winkler CA, Yoneyama S, Buyske S, Haiman CA, Kooperberg C, Le
618		Marchand L, Loos RJF, Matise TC, North KE, Peters U, Kenny EE, Carlson CS. Genetic
619		analyses of diverse populations improves discovery for complex traits. Nature [Internet].
620		2019 [cited 2020 Sep 14];570:514–518. Available from:
621		https://pubmed.ncbi.nlm.nih.gov/31217584/
622	31.	Ntalla I, Weng LC, Cartwright JH, Hall AW, Sveinbjornsson G, Tucker NR, Choi SH,
623		Chaffin MD, Roselli C, Barnes MR, Mifsud B, Warren HR, Hayward C, Marten J,
624		Cranley JJ, Concas MP, Gasparini P, Boutin T, Kolcic I, Polasek O, Rudan I, Araujo NM,
625		Lima-Costa MF, Ribeiro ALP, Souza RP, Tarazona-Santos E, Giedraitis V, Ingelsson E,
626		Mahajan A, Morris AP, Del Greco M F, Foco L, Gögele M, Hicks AA, Cook JP, Lind L,
627		Lindgren CM, Sundström J, Nelson CP, Riaz MB, Samani NJ, Sinagra G, Ulivi S,
628		Kähönen M, Mishra PP, Mononen N, Nikus K, Caulfield MJ, Dominiczak A,
629		Padmanabhan S, Montasser ME, O'Connell JR, Ryan K, Shuldiner AR, Aeschbacher S,
630		Conen D, Risch L, Thériault S, Hutri-Kähönen N, Lehtimäki T, Lyytikäinen LP, Raitakari
631		OT, Barnes CLK, Campbell H, Joshi PK, Wilson JF, Isaacs A, Kors JA, van Duijn CM,
632		Huang PL, Gudnason V, Harris TB, Launer LJ, Smith A V., Bottinger EP, Loos RJF,

633		Nadkarni GN, Preuss MH, Correa A, Mei H, Wilson J, Meitinger T, Müller-Nurasyid M,
634		Peters A, Waldenberger M, Mangino M, Spector TD, Rienstra M, van de Vegte YJ, van
635		der Harst P, Verweij N, Kääb S, Schramm K, Sinner MF, Strauch K, Cutler MJ, Fatkin D,
636		London B, et al. Multi-ancestry GWAS of the electrocardiographic PR interval identifies
637		202 loci underlying cardiac conduction. Nat Commun [Internet]. 2020 [cited 2020 Sep
638		14];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32439900/
639	32.	Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou
640		T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro
641		K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C,
642		Gustafsson S, Huang J, Hwang S-J, Kim YK, Kleber ME, Lau KW, Lu X, Lu Y,
643		Lyytikäinen L-P, Mihailov E, Morrison AC, Pervjakova N, Qu L, Rose LM, Salfati E,
644		Saxena R, Scholz M, Smith A V, Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao W,
645		de Andrade M, de Vries PS, van Zuydam NR, Anand SS, Bertram L, Beutner F,
646		Dedoussis G, Frossard P, Gauguier D, Goodall AH, Gottesman O, Haber M, Han B-G,
647		Huang J, Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, Lindgren CM,
648		Lokki M-L, Magnusson PK, Mallick NH, Mehra N, Meitinger T, Memon F-U-R, Morris
649		AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, Samuel M, Shah SH,
650		Sinisalo J, Stirrups KE, Trompet S, Wang L, Zaman KS, Ardissino D, Boerwinkle E,
651		Borecki IB, Bottinger EP, Buring JE, Chambers JC, Collins R, Cupples LA, Danesh J,
652		Demuth I, Elosua R, Epstein SE, et al. A comprehensive 1,000 Genomes-based genome-
653		wide association meta-analysis of coronary artery disease. Nat Genet [Internet]. 2015
654		[cited 2019 Apr 29];47:1121–1130. Available from:
655		http://www.nature.com/articles/ng.3396

656	33.	den Hoed M, Eijgelsheim M, Esko T, Brundel BJJM, Peal DS, Evans DM, Nolte IM,
657		Segrè A V, Holm H, Handsaker RE, Westra H-J, Johnson T, Isaacs A, Yang J, Lundby A,
658		Zhao JH, Kim YJ, Go MJ, Almgren P, Bochud M, Boucher G, Cornelis MC, Gudbjartsson
659		D, Hadley D, van der Harst P, Hayward C, den Heijer M, Igl W, Jackson AU, Kutalik Z,
660		Luan J, Kemp JP, Kristiansson K, Ladenvall C, Lorentzon M, Montasser ME, Njajou OT,
661		O'Reilly PF, Padmanabhan S, St. Pourcain B, Rankinen T, Salo P, Tanaka T, Timpson NJ,
662		Vitart V, Waite L, Wheeler W, Zhang W, Draisma HHM, Feitosa MF, Kerr KF, Lind PA,
663		Mihailov E, Onland-Moret NC, Song C, Weedon MN, Xie W, Yengo L, Absher D, Albert
664		CM, Alonso A, Arking DE, de Bakker PIW, Balkau B, Barlassina C, Benaglio P, Bis JC,
665		Bouatia-Naji N, Brage S, Chanock SJ, Chines PS, Chung M, Darbar D, Dina C, Dörr M,
666		Elliott P, Felix SB, Fischer K, Fuchsberger C, de Geus EJC, Goyette P, Gudnason V,
667		Harris TB, Hartikainen A-L, Havulinna AS, Heckbert SR, Hicks AA, Hofman A,
668		Holewijn S, Hoogstra-Berends F, Hottenga J-J, Jensen MK, Johansson Å, Junttila J, Kääb
669		S, Kanon B, Ketkar S, Khaw K-T, et al. Identification of heart rate-associated loci and
670		their effects on cardiac conduction and rhythm disorders. Nat Genet [Internet]. 2013 [cited
671		2018 Jun 20];45:621–631. Available from:
672		http://www.ncbi.nlm.nih.gov/pubmed/23583979
673	34.	Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Ka'la DD, Glover J, Peterson
674		N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling
675		FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F,
676		Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Starr Hazard E, Da Silveira WA,
677		Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T,
678		Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N,

- 679 Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. *Sci*
- 680 *Transl Med* [Internet]. 2019 [cited 2020 Sep 14];11. Available from:
- 681 https://pubmed.ncbi.nlm.nih.gov/31118289/
- 682 35. Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price
- 683 AL, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, Lee P, Collier DA,
- Huang H, Pers TH, Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu SA,
- 685 Begemann M, Belliveau RA, Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW,
- 686 Bruggeman R, Buccola NG, Buckner RL, Byerley W, Cahn W, Cai G, Cairns MJ,
- 687 Campion D, Cantor RM, Carr VJ, Carrera N, Catts S V., Chambert KD, Chan RCK, Chen
- 688 RYL, Chen EYH, Cheng W, Cheung EFC, Chong SA, Cloninger CR, Cohen D, Cohen N,
- 689 Cormican P, Craddock N, Crespo-Facorro B, Crowley JJ, Curtis D, Davidson M, Davis
- 690 KL, Degenhardt F, Del Favero J, DeLisi LE, Demontis D, Dikeos D, Dinan T, Djurovic S,
- 691 Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer P, Eriksson J,
- 692 Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman R,
- 693 Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Gershon ES,
- 694 Giegling I, Giusti-Rodríguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J,
- 695 De Haan L, Hammer C, Hamshere ML, Hansen M, et al. LD score regression
- 696 distinguishes confounding from polygenicity in genome-wide association studies. *Nat*
- 697 *Genet* [Internet]. 2015 [cited 2020 Sep 14];47:291–295. Available from:
- 698 https://pubmed.ncbi.nlm.nih.gov/25642630/
- 699 36. Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, Waring A, Ormondroyd
- 700 E, Kramer CM, Ho CY, Neubauer S, Kolm P, Kwong R, Dolman SF, Desvigne-Nickens
- 701 P, Dimarco JP, Geller N, Kim DY, Zhang C, Weintraub W, Abraham T, Anderson L,

702		Appelbaum E, Autore C, Berry C, Biagini E, Bradlow W, Bucciarelli-Ducci C, Chiribiri
703		A, Choudhury L, Crean A, Dawson D, Desai MY, Elstein E, Flett A, Friedrich M, Heitner
704		S, Helms A, Jacoby DL, Kim H, Kim B, Larose E, Mahmod M, Mahrholdt H, Maron M,
705		McCann G, Michels M, Mohiddin S, Nagueh S, Newby D, Olivotto I, Owens A, Pierre-
706		Mongeon F, Prasad S, Rimoldi O, Salerno M, Schulz-Menger J, Sherrid M, Swoboda P,
707		van Rossum A, Weinsaft J, White J, Williamson E, Tadros R, Ware JS, Bezzina CR,
708		Farrall M, Watkins H. Common genetic variants and modifiable risk factors underpin
709		hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet [Internet]. 2021
710		[cited 2021 Mar 12];53:135–142. Available from:
711		https://pubmed.ncbi.nlm.nih.gov/33495597/
712	37.	Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S,
713		Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM,
714		Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. The MR-Base platform
715		supports systematic causal inference across the human phenome. Elife [Internet]. 2018
716		[cited 2018 Jun 15];7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29846171
717	38.	Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in
718		causal relationships inferred from Mendelian randomization between complex traits and
719		diseases. Nat Genet [Internet]. 2018 [cited 2021 Mar 12];50:693-698. Available from:
720		https://www.nature.com/articles/s41588-018-0099-7
721	39.	Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S,
722		Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM,
723		Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. The MR-base platform
724		supports systematic causal inference across the human phenome. Elife. 2018;7.

725	40.	Burgess S.	Thompson	SG.	Inter	oreting	finding	s from	Mendelian	ı randomiz	ation	using	the
				~ ~ ·				~					

- 726 MR-Egger method. *Eur J Epidemiol* [Internet]. 2017 [cited 2021 Mar 12];32:377–389.
- 727 Available from: http://link.springer.com/10.1007/s10654-017-0255-x
- 41. Hauck L, Grothe D, Billia F. p21CIP1/WAF1-dependent inhibition of cardiac hypertrophy
- in response to Angiotensin II involves Akt/Myc and pRb signaling. *Peptides* [Internet].
- 730 2016 [cited 2021 Jan 20];83:38–48. Available from:
- 731 https://pubmed.ncbi.nlm.nih.gov/27486069/
- 42. Garnatz AS, Gao Z, Broman M, Martens S, Earley JU, Svensson EC. FOG-2 mediated
- recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart
- 734development. Dev Biol [Internet]. 2014 [cited 2021 Mar 31];395:50–61. Available from:

735 /pmc/articles/PMC4190033/

- 43. Toshima H, Koga Y, Uemura S, Zinnouchi J, Kimura N, Nakakura S. Echocardiographic
- 737 Study on Hypertrophic Cardiomyopathy. Jpn Heart J [Internet]. 1976 [cited 2021 Mar
- 12];17:275–289. Available from: https://pubmed.ncbi.nlm.nih.gov/133253/
- 44. Zollino M, Marangi G, Ponzi E, Orteschi D, Ricciardi S, Lattante S, Murdolo M, Battaglia
- 740 D, Contaldo I, Mercuri E, Stefanini MC, Caumes R, Edery P, Rossi M, Piccione M,
- 741 Corsello G, Monica M Della, Scarano F, Priolo M, Gentile M, Zampino G, Vijzelaar R,
- Abdulrahman O, Rauch A, Oneda B, Deardorff MA, Saitta SC, Falk MJ, Dubbs H, Zackai
- E. Intragenic KANSL1 mutations and chromosome 17q21.31 deletions: Broadening the
- 744 clinical spectrum and genotype-phenotype correlations in a large cohort of patients. *J Med*
- 745 *Genet* [Internet]. 2015 [cited 2021 Jan 20];52:804–814. Available from:
- 746 https://pubmed.ncbi.nlm.nih.gov/26424144/
- 747 45. Koolen DA, Pfundt R, Linda K, Beunders G, Veenstra-Knol HE, Conta EH, Fortuna AM,

748	Gillessen-Kaesbach G, Dugan S, Halbach S, Abdul-Rahman OA, Winesett HM, Chung

- 749 WK, Dalton M, Dimova PS, Mattina T, Prescott K, Zhang HZ, Saal HM, Hehir-Kwa JY,
- 750 Willemsen MH, Ockeloen CW, Jongmans MC, Van Der Aa N, Failla P, Barone C, Avola
- 751 E, Brooks AS, Kant SG, Gerkes EH, Firth H V., Unap K, Bird LM, Masser-Frye D,
- 752 Friedman JR, Sokunbi MA, Dixit A, Splitt M, Kukolich MK, McGaughran J, Coe BP,
- 753 Flórez J, Nadif Kasr N, Brunner HG, Thompson EM, Gecz J, Romano C, Eichler EE, De
- 754 Vries BBA. The Koolen-de Vries syndrome: A phenotypic comparison of patients with a
- 755 17q21.31 microdeletion versus a KANSL1 sequence variant. *Eur J Hum Genet* [Internet].
- 756 2016 [cited 2021 Jan 20];24:652–659. Available from:
- 757 https://pubmed.ncbi.nlm.nih.gov/26306646/
- 46. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, Khera A V.,
- 759 Lowther C, Gauthier LD, Wang H, Watts NA, Solomonson M, O'Donnell-Luria A,
- 760 Baumann A, Munshi R, Walker M, Whelan CW, Huang Y, Brookings T, Sharpe T, Stone
- 761 MR, Valkanas E, Fu J, Tiao G, Laricchia KM, Ruano-Rubio V, Stevens C, Gupta N,
- 762 Cusick C, Margolin L, Alföldi J, Armean IM, Banks E, Bergelson L, Cibulskis K, Collins
- 763 RL, Connolly KM, Covarrubias M, Cummings B, Daly MJ, Donnelly S, Farjoun Y,
- Ferriera S, Francioli L, Gabriel S, Gauthier LD, Gentry J, Gupta N, Jeandet T, Kaplan D,
- 765 Karczewski KJ, Laricchia KM, Llanwarne C, Minikel E V., Munshi R, Neale BM, Novod
- 766 S, O'Donnell-Luria AH, Petrillo N, Poterba T, Roazen D, Ruano-Rubio V, Saltzman A,
- 767 Samocha KE, Schleicher M, Seed C, Solomonson M, Soto J, Tiao G, Tibbetts K, Tolonen
- 768 C, Vittal C, Wade G, Wang A, Wang Q, Ware JS, Watts NA, Weisburd B, Whiffin N,
- 769 Salinas CAA, Ahmad T, Albert CM, Ardissino D, Atzmon G, Barnard J, Beaugerie L,
- 770 Benjamin EJ, Boehnke M, Bonnycastle LL, Bottinger EP, Bowden DW, Bown MJ,

771	Chamberg IC	Chan IC	Charmon D	Cho I	Chung MV	Cohon D	at al A atmiatural
//1	Chambers JC,	Chan JC,	Chasman D,	UIIO J,	Chung Mrk,	COLLELL D	, et al. A structular

- variation reference for medical and population genetics. *Nature* [Internet]. 2020 [cited
- 773 2021 Jan 20];581:444–451. Available from: https://pubmed.ncbi.nlm.nih.gov/32461652/
- 47. Kulkarni SS, Khokha MK. WDR5 regulates left-right patterning via chromatin-dependent
- and-independent functions. *Dev* [Internet]. 2018 [cited 2021 Mar 31];145. Available from:
- https://dev.biologists.org/content/145/23/dev159889
- 48. Guimarães-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, Henderson L, Kilberg
- 778 MS, Johnson RS, Chen J, McCulloch AD, Nobrega MA, Evans SM, Zambon AC. HIF1α
- 779 Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes.
- 780 *Dev Cell* [Internet]. 2015 [cited 2021 Jan 20];33:507–521. Available from:
- 781 https://pubmed.ncbi.nlm.nih.gov/26028220/
- 49. Liu ZP, Olson EN. Suppression of proliferation and cardiomyocyte hypertrophy by
- 783 CHAMP, a cardiac-specific RNA helicase. *Proc Natl Acad Sci U S A* [Internet]. 2002
- 784 [cited 2021 Jan 20];99:2043–2048. Available from:
- 785 https://pubmed.ncbi.nlm.nih.gov/11854500/
- 786 50. Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, Pikarsky E, Razin E.
- 787 Transcription factor MITF regulates cardiac growth and hypertrophy. J Clin Invest
- 788 [Internet]. 2006 [cited 2021 Jan 20];116:2673–2681. Available from:
- 789 https://pubmed.ncbi.nlm.nih.gov/16998588/
- 51. Fu K, Nakano H, Morselli M, Chen T, Pappoe H, Nakano A, Pellegrini M. A temporal
- transcriptome and methylome in human embryonic stem cell-derived cardiomyocytes
- identifies novel regulators of early cardiac development. *Epigenetics*. 2018;13:1013–1026.
- 52. Mehta G, Kumarasamy S, Wu J, Walsh A, Liu L, Williams K, Joe B, de la Serna IL.

794		MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in
795		cardiac hypertrophy. J Mol Cell Cardiol. 2015;88:101-110.
796	53.	Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM,
797		Patel YM, Sorokin EP, Avery CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky
798		CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM, Lim U, Lin BM, Lu Y, Nelson
799		SC, Park SSL, Poisner H, Preuss MH, Richard MA, Schurmann C, Setiawan VW, Sockell
800		A, Vahi K, Verbanck M, Vishnu A, Walker RW, Young KL, Zubair N, Acuña-Alonso V,
801		Ambite JL, Barnes KC, Boerwinkle E, Bottinger EP, Bustamante CD, Caberto C,
802		Canizales-Quinteros S, Conomos MP, Deelman E, Do R, Doheny K, Fernández-Rhodes
803		L, Fornage M, Hailu B, Heiss G, Henn BM, Hindorff LA, Jackson RD, Laurie CA, Laurie
804		CC, Li Y, Lin DY, Moreno-Estrada A, Nadkarni G, Norman PJ, Pooler LC, Reiner AP,
805		Romm J, Sabatti C, Sandoval K, Sheng X, Stahl EA, Stram DO, Thornton TA, Wassel
806		CL, Wilkens LR, Winkler CA, Yoneyama S, Buyske S, Haiman CA, Kooperberg C, Le
807		Marchand L, Loos RJF, Matise TC, North KE, Peters U, Kenny EE, Carlson CS. Genetic
808		analyses of diverse populations improves discovery for complex traits. Nature.
809		2019;570:514–518.
810	54.	Evans DS, Avery CL, Nalls MA, Li G, Barnard J, Smith EN, Tanaka T, Butler AM,
811		Buxbaum SG, Alonso A, Arking DE, Berenson GS, Bis JC, Buyske S, Carty CL, Chen W,
812		Chung MK, Cummings SR, Deo R, Eaton CB, Fox ER, Heckbert SR, Heiss G, Hindorff
813		LA, Hsueh WC, Isaacs A, Jamshidi Y, Kerr KF, Liu F, Liu Y, Lohman KK, Magnani JW,
814		Maher JF, Mehra R, Meng YA, Musani SK, Newton-Cheh C, North KE, Psaty BM,
815		Redline S, Rotter JI, Schnabel RB, Schork NJ, Shohet R V., Singleton AB, Smith JD,
816		Soliman EZ, Srinivasan SR, Taylor HA, Van Wagoner DR, Wilson JG, Young T, Zhang

817		ZM, Zonderman AB, Evans MK, Ferrucci L, Murray SS, Tranah GJ, Whitsel EA, Reiner
818		AP, Sotoodehnia N. Fine-mapping, novel loci identification, and SNP association
819		transferability in a genome-wide association study of QRS duration in African Americans.
820		Hum Mol Genet. 2016;25:4350–4368.
821	55.	Meyer H V., Dawes TJW, Serrani M, Bai W, Tokarczuk P, Cai J, de Marvao A, Henry A,
822		Lumbers RT, Gierten J, Thumberger T, Wittbrodt J, Ware JS, Rueckert D, Matthews PM,
823		Prasad SK, Costantino ML, Cook SA, Birney E, O'Regan DP. Genetic and functional
824		insights into the fractal structure of the heart. Nature. 2020;584:589-594.
825	56.	Thomson KL, Ormondroyd E, Harper AR, Dent T, McGuire K, Baksi J, Blair E, Brennan
826		P, Buchan R, Bueser T, Campbell C, Carr-White G, Cook S, Daniels M, Deevi SVV,
827		Goodship J, Hayesmoore JBG, Henderson A, Lamb T, Prasad S, Rayner-Matthews P,
828		Robert L, Sneddon L, Stark H, Walsh R, Ware JS, Farrall M, Watkins HC. Analysis of 51
829		proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere
830		negative cases has negligible diagnostic yield. Genet Med [Internet]. 2019 [cited 2021 Jan
831		24];21:1576–1584. Available from: https://pubmed.ncbi.nlm.nih.gov/30531895/
832	57.	Khera A V, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander
833		ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores for common
834		diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet
835		[Internet]. 2018 [cited 2019 Apr 29];50:1219–1224. Available from:
836		http://www.nature.com/articles/s41588-018-0183-z
837	58.	Tcheandjieu C, Xiao K, Tejeda H, Lynch J, Ruotsalainen S, Bellomo T, Palnati M, Judy
838		R, Kember R, Klarin D, Kember R, Verma S, Center RG, Program VMV, Project F,
839		Palotie A, Daly M, Ritchie M, Rader D, Rivas MA, Assimes T, Tsao P, Damrauer S,

- 840 Priest J. High heritability of ascending aortic diameter and multi-ethnic prediction of
- 841 thoracic aortic disease. *medRxiv* [Internet]. 2020 [cited 2020 Jul
- 842 21];14:2020.05.29.20102335. Available from:
- 843 https://www.medrxiv.org/content/10.1101/2020.05.29.20102335v1
- 844 59. Tcheandjieu C, Zanetti D, Yu M, Priest JR. Inherited Extremes of Aortic Diameter Confer
- 845 Risk for a Specific Class of Congenital Heart Disease [Internet]. Circ. Genomic Precis.
- 846 Med. 2020 [cited 2021 Jan 20];13:724–727. Available from:
- 847 https://www.ahajournals.org/doi/10.1161/CIRCGEN.120.003170
- 848 60. Bidviene J, Muraru D, Maffessanti F, Ereminiene E, Kovács A, Lakatos B, Vaskelyte J-J,
- 849 Zaliunas R, Surkova E, Parati G, Badano LP. Regional shape, global function and
- 850 mechanics in right ventricular volume and pressure overload conditions: a three-
- 851 dimensional echocardiography study. Int J Cardiovasc Imaging [Internet]. 2021 [cited
- 852 2021 Jan 20];Available from: http://www.ncbi.nlm.nih.gov/pubmed/33389362

Figure 1. Cross-sectional area in diastole is a new proxy for structure and function of the interventricular septum. A. Schema of cardiovascular measurements. Still frame of a cardiac MRI in the fourchamber view (left panel) demonstrating segmentation of lumen of the cardiac chambers (middle panel) with the left ventricle indicated by the blue region, left atrium indicated by the red region, right atrium indicated by the green region, and right ventricle in magenta. Chamber segmentation is followed by segmentation of the interventricular septum (orange, indicated by white arrow). B. The distribution of interventricular septal crosssectional area in diastole (IVS.csad). Values are plotted in mm² relative to body surface area (BSA), orange and blue points represent male and female participants respectively. In a simple linear model including Sex, Age, systolic and diastolic blood pressure and body mass index, BSA explains 44.8% of the observed variation in IVS.csad (284 mm² IVS.csad per m² BSA, p < 2e-16). **C.** Correlation plot of IVS.csad versus a standard set of clinical measures. IVS.csad is most strongly correlated with genetic sex and BSA, moderately correlated with BMI and blood pressure, and slightly correlated with birthweight. Notably there was no strong correlation with age. All non-zero Pearson's correlations reported are strongly statistically significant (p < 5e-08). **D**. Volcano plot representing the PheWAS of IVS.csad for 67 cardiovascular phenotypes grouped as PheCODES. The X-axis represents the association with the PheCODE per standard deviation change in the IVS.csad, and the absolute value of Y-axis represents the negative logarithm of the p-value adjusted with a standard false discovery rate. Across an unbiased assessment of clinical phenotypes, increased IVS.csad was positively associated with the clinical findings of abnormal heart sounds, non-rheumatic aortic valve disease, and abnormal functional studies of the cardiovascular system.

						Combined Discovery & Replication		Discover	y set	Replication Set		
CHR	POS	SNP	REF	RA	RA_FREQ	Beta [95%CI]	P-value	Beta [95%CI]	P-value	Beta [95%CI]	P-value	
17	45961419	rs62063281	A	G	0.22	8.60 [6.33, 10.88]	1.31×10 ⁻¹³	7.72 [5.20, 10.2]	1.89×10 ⁻⁰⁹	12.39 [7.07, 17.71]	5.11×10 ⁻⁰⁶	
6	36681816	rs2376620	A	G	0.16	8.38 [5.80, 10.96]	2.00×10 ⁻¹⁰	7.72 [4.87, 10.5]	1.14×10 ⁻⁰⁷	11.29 [5.24, 17.34]	2.58×10 ⁻⁰⁴	

Table 1. Genome wide associations from measurements of IVS.csad in European ancestry individuals.RA: risk allele, FREQ: frequency

Figure 2. GWAS of IVS.csad identifies two loci meeting standard significance thresholds. A. Manhattan plot with two loci at KANSL1 and CDKN1A, along with loci below 5e-08 marked with a star Quantile-quantile plot indicates an absence of systematic inflation. **B.** Two-dimensional plots of the Akita model of genome folding with GRCh38 coordinates on the X and Y axis with relevant genes and strand orientation indicated by blue boxes. Predicted frequency of interaction between regions of DNA is indicated by color, where red(/blue) shows a higher(/lower) frequency of interaction relative to what is expected given linear genomic distance. The reference genotype predicts a strong chromatin interaction (black boxes) between the KANSL1 promoter and regions including the MAPT gene body and KANSL1-AS1. The common duplication/inversion 17:45571611-46261810 (orientation indicated by the orange arrow) is predicted to completely disrupt the interaction (corresponding locations within the inversion indicated by the grey boxes). The lead variant rs62063281 is an eQTL for multiple genes across the locus and a strong splicing QTL for MAPT and KANSL1 (-1.5 normalized expression, p=1.7e-88) within the left ventricle [Table S3]. C. Plot of tracks showing output of the activity-bycontact (ABC) which identifies CDKN1A as the gene target for the lead variant rs2376620, which is the marker for a haplotype inclusive of three other variants localized in open chromatin enhancer regions present most prominently in the left ventricle. Displayed for contrast are DNase-seq for cardiomyocyte, human umbilical vein endothelial cell (HUVEC), fibroblast of fetal lung, H1 human embryonic stem cells (hESCs), and H1-derived mesendodermal precursors; or ATAC-seq for heart left ventricle (LV), coronary artery, coronary smooth muscle cell (SMC), and telomerase immortalized human aortic endothelial cells (TeloHAEC).

Figure 3. Mendelian Randomization suggests that inheritance of increased IVS.csad is causal for HCM while inheritance of decreased IVS.csad is causal for VSD. Twenty two loci were selected for use as instrumental variables for interventricular septum, cross-sectional area as the exposure for two-sample Mendelian Randomization analysis of ventricular septal defects (VSD) and hypertrophic cardiomyopathy (HCM). Regression lines for the MR-Egger and Inverse Variants Weighted (IVW) methods are displayed in blue and green respectively, with the intercept from the MR-Egger method in dotted red for both graphs. The causal relationships of IVS.csad and risks for VSD and HCM are not driven by a single variant when analyzed individually or in a "leave-one out" sensitivity analysis (Figure S6).