- 1 Global Burden of Disease worldwide cohort analysis of
- <sup>2</sup> dietary and other risk factors for cardiovascular diseases:
- <sup>3</sup> lipid hypothesis versus fat-soluble vitamin hypothesis
- 4 David K Cundiff (0000-0002-3206-9665), independent researcher,<sup>1, 3</sup> Chunyi Wu (0000-0002-
- 5 2186-3433), Research Epidemiologist/Statistician,<sup>2, 3</sup>
- 6 1 Long Beach, California, USA
- 7 2 Area Specialist Lead in Epidemiology and Statistics, Michigan Medicine, Ann Arbor,
- 8 Michigan, USA
- 9 3 Volunteer collaborators with the Institute of Health Metrics and Evaluation, Seattle,
- 10 Washington, USA
- 11 Correspondence to David K Cundiff <u>davidkcundiff@gmail.com</u> Phone: 01-562-438-8805
- 12 Word count: abstract 366, Text: 3985
- 13

## 15 Abstract

- 16 **Objective** Using Global Burden of Disease (GBD) worldwide data to compare the "lipid
- 17 hypothesis" of Ancel Keys, MD with the "fat-soluble hypothesis" that we introduce here.
- 18 Design
- 19 With GBD 2017 data from the Institute of Health Metrics and Evaluation (IHME) on
- 20 cardiovascular disease deaths/100k/year, ages 15-69 years old in male and female cohorts (CVD)
- and dietary and other risk factors, we formatted and population weighted data from 195
- 22 countries. We correlated CVD with dietary and other risk factors worldwide and in appropriate
- 23 subsets.
- 24 Setting
- 25 Post hoc ecological cohort study
- 26 Participants
- 27 Each of the 7846 rows of data (cohorts) represented about 1 million people, projected to
- 28 represent about 7.8 billion people in 2020.
- 29 Interventions Define a "fat-soluble vitamin variable" (FSVV) as the sum of kilocalories/day
- 30 (KC/d) of processed meat + red meat + fish + milk + poultry + eggs + (saturated fatty acids
- 31 (SFA) + polyunsaturated fatty acids (PUFA) + trans fatty acids (TFA)) \* 0.46. Perform
- 32 Pearson correlations on the formatted worldwide dataset and on relevant subsets.

### 33 Main outcome measures

- 34 The correlations of 43 dietary and other potential CVD risk factors and FSVV with CVD
- 35 worldwide and in relevant subsets
- 36
- 37

#### 38 Results

- 39 Low density lipoprotein cholesterol (LDL-c) correlated strongly positively with FSVV
- 40 worldwide (r=0.780, 95% CI 0.771 to 0.788, p<0001, n=7846 cohorts), so we considered FSVV
- 41 our marker variable to test the lipid hypothesis as well as our fat-soluble vitamin hypothesis. The
- 42 FSVV correlated negatively with CVD worldwide (r = -0.329, 95% CI -0.349 to -0.309,
- 43 p < 0.0001), and FSVV correlated positively with CVD in high FSVV cohorts (when
- 44 FSVV 2567.3 KC/d: r=0.523, 95% CI 0.476 to 0.567, p<0001, n=974 cohorts, compared with
- 45 worldwide mean FSVV=285.4 KC/d, n=7846 cohorts).

### 46 **Conclusion**

- 47 Since FSVV correlated positively with CVD only in high FSVV cohorts (FSVV ≥ 567.3 KC/d,
- 48 n=974 cohorts), the lipid hypothesis is supported only in GBD cohorts (and by inference
- 49 individuals) with high FSVV intake. These data support the fat-soluble vitamins hypothesis
- 50 because FSVV correlated negatively with CVD worldwide, meaning the more fat-soluble
- 51 vitamin containing animal foods and fat for gut absorption the less the CVD. This GBD cohort
- 52 data analysis methodology could supplement prospective observational studies of individuals to

53 be used in developing food policy and education strategies for improving public health.

54

## 56 Introduction

57 The scientific validity of the Dietary Guidelines for Americans for 2015-2020, including 58 guidelines based on the lipid hypothesis, was challenged by Journalist Nina Teicholz in the *BMJ*. 59 The Center for Science in the Public Interest called for the *BMJ* to retract the article. The peer 60 reviewers the *BMJ* selected to adjudicate the far-reaching dispute concluded that, "Teicholz's 61 criticisms of the methods used by Dietary Guidelines for Americans Committee are within the 62 realm of scientific debate."

63

64 We define our fat-soluble vitamin hypothesis as, "suboptimal dietary intake of fat-65 soluble vitamins and added fat for gut absorption increases cardiovascular disease risk." Fat-soluble vitamins include vitamins A, D, E, and K (K1=phylloquinones and K2= 66 67 menaquinones). Vitamin A and its beta-carotene precursor are important in preventing congenital 68 heart disease. [1, 2] Vitamin E protects the vasculature against oxidative stress, including lipid 69 peroxidation and the production of atherogenic forms of LDLc—a part of the pathogenesis of 70 cardiovascular disease.[3] Vitamin K2 (menaguinones from animal foods and fermented plant 71 products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and 72 cardiovascular disease.[4] Regarding vitamin D, a meta-analysis showed an inverse 73 association between cardiovascular disease and circulating 25(OH)-vitamin D 74 ranging from 20 to 60 nmol/L.[5] 75

The four fat-soluble vitamins come primarily from animal foods. Vitamin K2 levels
are high in aged cheeses, other fermented dairy products,[6] organ meats (e.g.,
bovine and pork liver), chicken, and egg yolks.[7] The highest vitamin K2 levels per

- 79 100g serving are in fermented legumes, particularly soy (e.g., natto and miso (Japan),[8,
- 80 9] soybean Douchi, soybean Meitauza, and soybean curd (China and Taiwan),[10] and
- 81 Cheonggukjang, a fermented soybean stew (South Korea)).[11]
- 82
- 83 This paper will use population weighted, formatted, worldwide GBD 2017 data from the IHME
- 84 to assess the impact of dietary, metabolic, and other risk factors on cardiovascular disease early
- 85 deaths.
- 86

## 87 Methods

#### 88 Data sources

89 As volunteer collaborators with the IHME, we acquired and utilised raw GBD worldwide 90 ecological data (GBD 2017: 195 countries and 365 subnational locations, n=1120 male and 91 female cohorts). Data consisted of the rate of cardiovascular disease early deaths, metabolic risk 92 factors, dietary risk factors and covariates, and other risk factors of male and female cohorts 15-93 49 years old and 50-69 years old from each year 1990-2017. GBD worldwide citations of over 94 12,000 surveys constituting ecological data inputs for this analysis are available online from 95 IHME.[12] The main characteristics of IHME GBD data sources, the protocol for the GBD 96 study, and all risk factor values have been published by IHME GBD data researchers and 97 discussed elsewhere.[13-16] These include detailed descriptions of categories of input data, 98 potentially important biases, and the methodologies of analysis. We did not clean or pre-process 99 any of the GBD data. GBD cohort risk factor and health outcome data from the IHME had no 100 missing records. Food risk factors came from IHME as gram/day (g/d) consumed per capita. 101 GBD dietary covariate data originally came from Food and Agriculture Organization surveys of 102 animal and plant food commodities available per capita in countries worldwide (potatoes, corn, 103 rice, sweet potatoes, poultry, and eggs)—as opposed to consumed per capita.[12] Supplementary 104 Table 1 lists the relevant GBD risk factors, covariates, and other available variables with 105 definitions of those risk factor exposures.[17] Once IHME staff time constraints due to COVID-106 19 data collection and modeling are over, the updated GBD 2019 data with all the variables as 107 the GBD 2017 data we used for this analysis may be obtained by volunteer researchers 108 collaborating with IHME.[18]

109

110

### 111 Study design and population

For cardiovascular disease early deaths and all risk factors, we averaged the values for ages 1549 years old together with 50-69 years old for each male and female cohort for each year.

114 Finally, for each male and female cohort, data from all 28 years (1990-2017) of the means of the

115 rate of cardiovascular disease early deaths and risk factor exposures were averaged using the

116 computer software program R. We defined the rate of cardiovascular disease early deaths as

117 "deaths/100k/year of males and females 15-69 years old": abbreviated "CVD."

118

119 To weigh the data according to population, internet searches (mostly Wikipedia) yielded the 120 most recent population estimates for countries and subnational states, provinces, and regions. 121 The 1120 GBD cohorts available were population weighted by a software program in R resulting 122 in an analysis dataset with 7846 population weighted cohorts representing about 7.8 billion 123 people in 2020. Each male or female cohort in the population-weighted analysis dataset represented approximately 1 million people (range: < 100,000 to 1.5 million). For example, India 124 125 with about 1.234 billion people had 617 rows of the same data for males and 617 rows for 126 females. Maldives, with about 445,000 people, had a single row of data for males and another for 127 females. Without population-weighting the data, cohorts in India and Maldives each would have 128 had one row for males and one row for females in the analysis dataset, invalidating the analysis 129 results. World population data from the World Bank or the Organisation for Economic Co-130 operation and Development could not be used because they did not include all 195 countries or 131 any subnational data.

132

| 133 | Supplementary Table 2 details how omega-3 fatty acid g/d was converted to fish g/d using data            |
|-----|----------------------------------------------------------------------------------------------------------|
| 134 | on the omega-3 fatty acid content of frequently eaten fish from the National Institutes of Health        |
| 135 | Office of Dietary Supplements (USA). <sup>[19]</sup> As shown in Supplementary Table 3, we converted all |
| 136 | of the animal and plant food data, including alcohol and sugary beverage consumption, from g/d           |
| 137 | to kilocalories/day (KC/d). For the g/d to KC/d conversions, we used the Nutritionix track               |
| 138 | app,[20] which tracks types and quantities of foods consumed. Saturated fatty acids (SFA: 0-1            |
| 139 | portion of the entire diet) was not available with GBD 2017 data, so GBD saturated fatty acids           |
| 140 | risk factor data from GBD 2016 was used. Polyunsaturated fatty acid (PUFA) and trans fatty acid          |
| 141 | (TFA) GBD risk factor data from 2017 (0-1 portion of the entire diet) were also utilised, but            |
| 142 | monounsaturated fat data were not available. These fatty acid data expressed as 0-1 portion of           |
| 143 | the entire diet were converted to KC/d by multiplying by the total KC/d available per capita for         |
| 144 | each cohort.                                                                                             |
| 145 |                                                                                                          |
| 146 | Outcome and covariates                                                                                   |
| 147 | The principal outcome variable, CVD, was a combination variable consisting of the                        |
| 148 | deaths/100k/year from ischemic heart disease, stroke, hypertensive heart disease, rheumatic heart        |
| 149 | disease, non-rheumatic valvular disease, subarachnoid haematoma, myocarditis, alcoholic                  |
| 150 | cardiomyopathy, endocarditis, aortic aneurysm, and atrial fibrillation. Given the multiple dietary       |

151 and other influences on the causation of CVD, we did not attempt to differentiate between risk

152 factors and covariates.

153

154

155

### 156 Statistical methods

157 To test the fat-soluble vitamin hypothesis, we summed the KC/d of processed meat, red meat, 158 fish, milk (including all dairy products), poultry, eggs, and added fat (SFA, PUFA, and TFA) to 159 create a fat-soluble vitamins variable (FSVV). In determining the portion of SFA, PUFA, and 160 TFA added in addition to the SFA, PUFA, and TFA in the animal and plant foods, an adjustment 161 factor (fatty acids \* 0.46), adapted from the website "Our World in Data," differentiated the fatty 162 acids in individual foods from the added fatty acids (46% of the total).[21] This adjustment 163 prevented double counting fatty acids KC/d and allowed a reasonably accurate determination of 164 FSVV KC/d. 165 166 To determine the strengths of the risk factor correlations with CVD of population weighted 167 worldwide cohorts (n=7846 cohorts) or subgroups of cohorts (e.g., highest and lowest CVD 168 cohorts, etc.), we utilised Pearson correlation coefficients: r, 95% confidence intervals (CIs), and 169 p values. A subgroup of the cohorts with the lowest CVD values was determined as 500 pair of 170 male and female cohorts (mean CVD values) totaling 1000 total cohorts (an arbitrary number). 171 Using the FSVV median value in that low CVD subgroup, we formed a subgroup with FSVV 172 greater than or equal to the median FSVV. This allowed us to test the lipid hypothesis in cohorts 173 with the highest intakes of animal foods and added fats. 174 175 To identify confounding in the univariate correlations, we used partial correlations, holding 176 constant the suspected confounder variables.

177

- 178 We used SAS and SAS OnDemand for Academics software 9.4 (SAS Institute, Cary, NC) for the
- 179 data analysis.
- 180
- 181 Sensitivity analyses
- 182 We performed subset analyses on the 1000 cohorts with the lowest levels of CVD and on cohorts
- 183 with FSVV levels greater than or equal to the median FSVV KC/d value of the 1000 cohorts
- 184 with the lowest levels of CVD.
- 185
- 186 Patient and public involvement
- 187 This was a post hoc statistical analysis of IHME GBD 2017 data. No data or observations on
- 188 patient and public involvement were available from IHME or the over 12,000 surveys[12] from
- 189 which the raw GBD data were derived.
- 190

### 191 **Results**

### 192 Patient characteristics

- 193 Table 1 shows the 43 dietary, metabolic, and other risk factors potentially contributing to CVD.
- 194 See Supplementary Table 1 for definitions of the risk factor and co-variate variables. LDLc
- negatively correlated with CVD worldwide (r=-0.279, 95% CI -0.299 to -0.258, p<0001, Table
- 196 1), meaning the higher the LDLc mmol/L the lower the CVD. Figure 1 gives the worldwide plot
- 197 of LDLc versus CVD, showing widely scattered data points with negative slope.
- 198
- 199 The FSVV negatively correlated with CVD worldwide (r=-0.329, 95% CI -0.349 to -0.309,
- 200 p<0001, Table 1), meaning more FSVV KC/d (processed meats KC/d + red meats KC/d + fish
- and seafood KC/d + milk KC/d + poultry KC/d + eggs KC/d + added fatty acids) associated with
   reduced CVD.
- 203
- Table 1 also shows that six of the nine plant foods negatively correlated with CVD. Potatoes
- 205 (KC/d available, a covariate derived from total potato KC available/population, including highly
- processed potatoes) positively correlated with CVD (r=0.050, 95% CI 0.028 to 0.073, p<0001).
- 207 Sugary beverages also correlated positively with CVD (r=0.113, 95% CI 0.091 to 0.135,
- 208 p<0001). Rice and legumes were not significantly correlated with CVD.
- 209
- 210 Subset analyses
- 211 Table 2 includes 500 male and female pairs of cohorts (total=1000 cohorts, an arbitrary number,

representing approximately 1 billion people out of about 7.8 billion people worldwide) with the

213 lowest CVD values (CVD $\leq$  293.0 compared with mean CVD=543.7 worldwide).

214

| 215 | Table 3 shows FSVV related risk factors (processed meat, red meat, fish, milk, poultry, eggs, and            |
|-----|--------------------------------------------------------------------------------------------------------------|
| 216 | added (SFA+PUFA+TFA)) for the 34 countries in Table 2 in descending order by CVD.                            |
| 217 |                                                                                                              |
| 218 | Table 4 gives all the CVD risk factors for seven representative countries out of the 34 countries            |
| 219 | in Tables 2 and 3 (CVD≤293.0).                                                                               |
| 220 |                                                                                                              |
| 221 | Table 5 shows CVD and risk factor statistics for cohorts with FSVV≥567.3 KC/d (i.e., at or                   |
| 222 | above the median FSVV of Table 2 countries). In this subset of 974 cohorts, of which 500 were                |
| 223 | included in the low CVD subset (Table 2), FSVV strongly positively correlated with CVD                       |
| 224 | (r=0.523, 95% CI 0.476 to 0.567, p<0001).                                                                    |
| 225 |                                                                                                              |
| 226 | Although FSVV correlated strongly with LDLc worldwide (r=0.780, 95% CI 0.771 to 0.788,                       |
| 227 | p<0001, n=7846 cohorts, Table 1), FSVV negatively correlated with LDLc in cohorts with                       |
| 228 | $FSVV \ge 567.3 \text{ KC/d} \text{ (r=-0.571, 95\% CI -0.612 to -0528, p<0001, n= 974 cohorts)}.$ Also with |
| 229 | FSVV $\geq$ 567.3 KC/d, LDLc and CVD negatively correlated (r=-0.254, 95% CI -0.312 to -0.194,               |
| 230 | p<0001, n= 974 cohorts). Because of the inconsistency of the FSVV versus LDLc relationship                   |
| 231 | with very high FSVV KC/d levels, we considered LDLc confounded at high FSVV levels. We                       |
| 232 | therefore used FSVV, rather than LDLc, to test for the lipid hypothesis in high FSVV cohorts.                |
| 233 |                                                                                                              |
| 234 | The average alcohol intake was 81.0 KC/d worldwide, and alcohol KC/d correlated negatively                   |
| 235 | with CVD (r=-0.061, 95% CI -0.083 to -0.039, p<0001, Table 1). However, in high FSVV                         |
| 236 | cohorts (FSVV≥567.3 KC/d, mean FSVV=692.6 KC/d and mean alcohol=155.0 KC/d), alcohol                         |
|     |                                                                                                              |

| 237 | positively correlated with CVD (r=0.475, 95% CI 0.425 to 0.522, p<0001, n=974 cohorts, Table |
|-----|----------------------------------------------------------------------------------------------|
| 238 | 5).                                                                                          |
| 239 |                                                                                              |

240 The only fat-soluble vitamin in the GBD database, vitamin A deficiency incidence/100k in

241 children  $\leq$  5 years old, correlated positively with CVD worldwide (r=0.210, 95% CI 0.189 to

242 0.231, p<0001, Table 1).

243

244 Dietary fiber was not significantly correlated with CVD worldwide (r=0.019, 95% CI -0.003 to

245 0.041, p=0.09, Table 1). Once it was adjusted for FSVV, alcohol, sugary beverages, and potatoes

246 by partial correlation analysis; dietary fiber correlated negatively with CVD (r=-0.052, 95% CI -

247 0.074 to -0.030, p<0.0001).

248

249 Physical activity positively correlated with CVD worldwide (r=0.160, 95% CI 0.139 to 0.182,

250 p<0.0001, Table 1). Once it was adjusted for FSVV, smoking, and sex by partial correlation

analysis; physical activity correlated negatively with CVD (r=-0.127, 95% CI -0.149 to -0.104,

252 p<0.0001).

253

In cohorts, mostly in developed countries, with FSVV  $\geq$ 567.3 KC/d discontinuing breast feeding correlated positively with CVD (r=0.268, 95% CI 0.208 to 0.325, p<0.0001, Table 5).

256

257 Secondhand smoking negatively correlated with CVD worldwide (r=-0.225, 95% CI -0.246 to -

258 0.204, p<0.0001, Table 1). After adjusting secondhand smoking for smoking, sublingual tobacco

| 259 | use, household smoke, | ambient air pollution, | and sex by partial | correlation analysis; | secondhand |
|-----|-----------------------|------------------------|--------------------|-----------------------|------------|
|     |                       |                        |                    |                       |            |

260 smoke correlated positively with CVD (r=0.048, 95% CI 0.025 to 0.070, p<0.0001).

261

- 262 The metabolic risk factors, BMI, FPG, and LDLc, all correlated negatively with CVD worldwide
- 263 (r=-0.240, 95% CI -0.261 to -0.219, p<0.0001, r=-0.178, 95% CI -0.200 to -0.157, p<0.0001, and
- 264 r=-0.279, 95% CI -0.299 to -0.258, p<0.0001, respectively, Table 1). Once they were
- adjusted for FSVV, alcohol, sugary beverages, and potatoes by partial correlation analysis; they
- 266 all correlated positively with CVD (r=0.028, 95% CI 0.006 to 0.050, p=0.0144, r=0.076, 95% CI
- 267 0.054 to 0.098, p<0.0001, r=0.170, 95% CI 0.148 to 0.191, p<0.0001, respectively). In the
- 268 cohorts with FSVV≥567.3 KC/d, BMI and FPG positively correlated with CVD (r=0.484, 95%
- 269 CI 0.434 to 0.530, p<0.0001 and r=0.091, 95% CI 0.028 to 0.153, p=0.0046, respectively).

## 271 Discussion

| 272 | Why, in high FSVV cohorts, (FSVV≥ 567.4 KC/d), LDL-c correlated negatively with FSVV (r=-           |
|-----|-----------------------------------------------------------------------------------------------------|
| 273 | 0.571 95% CI -0.612 to -0.528, p<0.0001, n=974 cohorts) but positively correlated with LSVV         |
| 274 | worldwide (r=0.780, 95% CI 0.771 to 0.788, p<0001) is not entirely clear. However, multiple         |
| 275 | studies have documented that LDLc may be influenced by genetic, racial, or ethnic differences       |
| 276 | that do not necessarily correspond with risk of CVD.[22, 23] Additionally, LDLc lowering            |
| 277 | medications in wide use especially in high FSVV developed countries may also confound the           |
| 278 | relationship of LDLc with both LSVV and CVD risk in this subset cohort analysis.                    |
| 279 |                                                                                                     |
| 280 | Since there are high FSVV and low FSVV individual people widely distributed worldwide,              |
| 281 | prospective observational studies of individuals in high FSVV areas, rather than GBD cohort         |
| 282 | studies, could better demonstrate positive correlations between LDLc (or total cholesterol) and     |
| 283 | CVD. This may explain why the Seven Countries Study[24] of Ancel Keys and the Framingham            |
| 284 | Heart Study,[25] both in high FSVV regions, supported the lipid hypothesis. However, the            |
| 285 | Prospective Urban Rural Epidemiology (PURE) Study, with individual data on 135,335 patients         |
| 286 | from three high-income, 11 middle-income, and four low-income countries was clearly                 |
| 287 | at variance with the lipid hypothesis.[26] The PURE Study found that higher saturated fat intake    |
| 288 | was associated with lower risk of stroke (quintile 5 vs quintile 1, HR 0.79, (95% CI 0.64 to 0.98), |
| 289 | p <sub>trend</sub> =0.0498).                                                                        |
| 290 |                                                                                                     |
| 291 | This global data analysis supports the fat-soluble vitamin hypothesis or possibly another           |

292 mechanism that accounts for FSVV KC/d being negatively correlated with CVD worldwide (r=-

293 0.308, 95% CI -0.358 to -0.257, p<0001, Table 1).

294

| _/ . |                                                                                                    |
|------|----------------------------------------------------------------------------------------------------|
| 295  | Given the negative correlations of CVD with both fish and eggs in both tables 1 and 5, the         |
| 296  | reduction in FSVV might best come from meat, poultry, and added fats. Although milk                |
| 297  | (including other dairy products) correlated positively with CVD in Table 5 (r=0.185, 95% CI        |
| 298  | 0.123 to 0.245, p<0001), this probably related to Japan and Peru having the lowest and fifth       |
| 299  | lowest CVD in Table 3 (Japan: mean CVD=169.2, mean milk=29.0 KC/d, Peru: mean                      |
| 300  | CVD=197.7, mean milk=15.3 KC/d). Without Japan and Peru in the analysis (n=834 cohorts),           |
| 301  | milk correlated negatively with CVD (r=-0.071, 95% CI -0.138 to -0.030, p=0.0405). Of the 34       |
| 302  | low CVD countries in Table 3, 20 had high milk intakes (mean milk ≥68.8 KC/d versus mean           |
| 303  | milk worldwide=25.0 KC/d) and these all had relatively high per capita intakes of cheese.[27,      |
| 304  | 28] Fermented, full-fat dairy products have high levels of vitamin K2,[6, 7] which have been       |
| 305  | found to be important in preventing calcification of arteries and atherosclerosis.[29]             |
| 306  |                                                                                                    |
| 307  | Table 4 shows that the Japanese, with low milk KC/d intake (mean milk=29.0 KC/d), had the          |
| 308  | world's lowest CVD (mean CVD=169.2) while crucial risk factors were high (e.g., smoking:           |
| 309  | mean male/female smoking=26.8%, salt intake (mean sodium= 6.01 g/d, systolic blood pressure        |
| 310  | (mean SBP= 137.6 mm/Hg). Additionally, relative to fermented cheeses, the content of vitamin       |
| 311  | K2 in fish is low to negligible.[7] Instead, Japanese consume high quantities of vitamin K2 in the |
| 312  | form of fermented soy products like natto and miso.[8, 9] As noted in the introduction, people in  |
| 313  | Taiwan and South Korea (also listed among low CVD countries) also have high intakes of             |
| 314  | fermented legumes.                                                                                 |
| 315  |                                                                                                    |

315

| 316 | Potatoes KC/d available positively correlated with CVD both worldwide ( $r=0.050, 95\%$ CI 0.028     |
|-----|------------------------------------------------------------------------------------------------------|
| 317 | to 0.073, p< 0.0001, Table 1) and in cohorts with FSVV $\geq$ 567.3 KC/d (r=0.109, 95% CI 0.046 to   |
| 318 | 0.170, p< 0.0001, Table 5). Notably, half, or more of the potatoes consumed worldwide are in         |
| 319 | the form of highly processed food products.[30] Recent large prospective observational studies       |
| 320 | have found higher consumption of ultra-processed foods associated with an increased risk of          |
| 321 | cardiovascular disease incidence and CVD mortality.[31, 32] Data from 79 high- and middle-           |
| 322 | income countries show that ultra-processed products dominate the food supplies of high-income        |
| 323 | countries and that their consumption is now rapidly increasing in middle-income countries.[33]       |
| 324 |                                                                                                      |
| 325 | The finding that sodium negatively correlated with CVD worldwide (r=-0.213, 95% CI -0.234 to         |
| 326 | -0.192, p<0.0001) is contrary to an analysis of sodium intake versus cardiovascular deaths in 66     |
| 327 | countries by Mozaffarian, et. al who attributed 9.5% of cardiovascular deaths worldwide to high      |
| 328 | sodium intake.[34] However, O'Donnell and colleagues found the relationship of sodium to             |
| 329 | cardiovascular disease to be J shaped curve and suggested that the lowest cardiovascular risk is     |
| 330 | with moderate sodium intake in the 3-5 g/d range.[35]                                                |
| 331 |                                                                                                      |
| 332 | The positive correlation of physical activity with CVD was surprising (Table 1). However, (1)        |
| 333 | countries with higher FSVV KC/d levels also had less physical activity (FSVV versus physical         |
| 334 | activity: r=-0.366, 95% CI: -0.385 to -0.347, $p < 0.0001$ ), (2) females had less physical activity |
| 335 | than males (mean physical activity males=5061 METs/week, mean physical activity                      |
| 336 | females=4356 METs/week), along with less CVD (mean CVD males=656.2, mean CVD                         |
| 337 | females=428.6), and (3) males smoked tobacco more than females (mean smoking (0-1)                   |
| 338 | males=0.339 or 33.9%, mean smoking (0-1) females=0.070 or 7%). When FSVV, sex, and                   |
|     |                                                                                                      |

smoking were held constant, physical activity correlated negatively with CVD worldwide (r= 0.126, 95% CI -0.148 to -0.104, p<0.0001).</li>

341

342 The moderately strong positive correlation of child  $\leq$ 5 years old severe underweight (>2 SD

343 below the mean for height) with CVD worldwide (r=0.306, 95% CI 0.285 to 0.325, p<0.0001,

Table 1) suggested a relationship of infant/child malnutrition with later CVD. Babies surviving

the so called "Dutch famine" toward the end of the second world war (1944-45) have been

346 shown to have higher subsequent heart disease than earlier or later cohorts in Holland.[36] This

347 suggested that in utero and early infancy severe malnutrition may subsequently contribute

348 substantially to CVD, especially in developing countries.

349

350 Prematurely stopping breast feeding positively correlated with CVD in the countries with FSVV

351 ≥567.3 KC/d (r=0.268 95% CI: 0.208 to 0.325, p=0.0027, Table 5). In those countries,

352 prematurely stopping breast feeding was more common than in developing countries (range (0-

1): 0.129 to 0.268, mean=0.196). A review of observational studies, in developed countries, of

breast feeding related to metabolic risk factors for CVD suggested that breast feeding was

associated with increased insulin sensitivity and decreased systolic blood pressure in later life.

356 Breast feeding also has metabolic benefits for the mother.[37]

357

358 According to The World Health Organisation, ambient air pollution (particulate

359 matter  $\leq 2.5$  micrometers diameter (PM <sub>2.5</sub>)) causes cardiovascular and respiratory diseases and

360 cancers.[38] The WHO considers  $\geq 10 \,\mu g/m^3$  of PM<sub>2.5</sub> particles a health hazard. In this

analysis, the ambient air pollution (PM 2.5) in the countries with FSVV  $\geq$  567.3 KC/d

| 362 | averaged 12.7 $\mu$ g/m <sup>3</sup> and mean CVD=273.7 from 1990 to 2017 (Table 5). Worldwide,                |
|-----|----------------------------------------------------------------------------------------------------------------|
| 363 | comparable numbers were mean CVD=543.7 and air pollution (PM $_{2\cdot5}$ ) mean=44.7 $\mu$ g/m <sup>3</sup> . |
| 364 |                                                                                                                |
| 365 | These IHME GBD data support the link of smoking tobacco to CVD (r=0.298, 95% CI                                |
| 366 | 0.278 to 0.318, p<0.0001, Table 1). However, given the multiple dietary and other                              |
| 367 | contributors, the CVD population attributable risk for smoking is probably far below                           |
| 368 | the World Health Organization estimate that tobacco accounts for 20% of coronary                               |
| 369 | artery disease mortality.[39] The mean incidence of smoking worldwide=20.5%                                    |
| 370 | (Table 1). In the 34 countries with the lowest CVD, the mean smoking                                           |
| 371 | incidence=23.3% (n=974 cohorts). Smoking was clearly a major risk factor for CVD,                              |
| 372 | but these data suggest that diet was more influential                                                          |
| 373 |                                                                                                                |
| 374 | The positive correlation of blood lead levels with CVD worldwide (r=0.180, 95% CI 0.159 to                     |
| 375 | 0.201, p<0.0001, Table 1) is consistent with reports that lead toxicity leads to hypertension.[40]             |
| 376 | Also, environmental lead exposure has been linked with all-cause mortality,                                    |
| 377 | cardiovascular disease mortality, and ischaemic heart disease mortality in the                                 |
| 378 | US.[41]                                                                                                        |
| 379 |                                                                                                                |
| 380 | This analysis showed that kidney disease correlated positively with CVD (r=0.194, 95% CI                       |
|     |                                                                                                                |

381 0.173 to 0.215, p<0.0001, Table 1). A systematic GBD review of kidney disease revealed that

382 chronic kidney disease resulted in an estimated 1.2 million deaths in 2017, of which a large

383 portion were from CVD.[42] Other CVD risk factors may also lead to kidney disease (e.g.,

384 systolic hypertension, types 1 and 2 diabetes).

385

### 386 Meaning of the study

387 The meaning of the study can be said to be in attempting to answer the appeal of influential

388 Stanford University meta researcher, Dr. John Ioannidis, who called for radical reform of all

389 nutritional epidemiology methodologies used to influence food/agricultural policies and to

390 produce dietary guidelines for clinicians and the public.[43] Currently, no methodology for

391 relating cardiovascular disease events to food intake and other risk factors has been generally

392 accepted as rigorous, replicable, and scientifically valid.

393

394 Strength and limitations of this study

395 One strength of our study is in the creation of our population weighted database of worldwide 396 cohorts with the health outcome of CVD and 43 potentially associated risk factors. Another 397 strength was to define the fat-soluble vitamin variable, allowing for assessment of both the lipid 398 hypothesis and the fat-soluble vitamin hypothesis.

399

400 Our study was subject to all the limitations discussed in previous GBD publications. [44, 45] 401 These included gaps, biases, and inconsistencies in data sources as well as limitations in the 402 methods of data processing and estimation. Having comprehensive data on dietary inputs is key 403 to more accurate and reliable analyses. The GBD data on animal foods, plant foods, alcohol, 404 sugary beverages, and fatty acids were not comprehensive and comprised only 1191.4 KC/d per 405 person on average worldwide. Subnational data on all risk factors were available on only four 406 countries. Because the data formatting and statistical methodology were new, this was 407 necessarily a post hoc analysis and no pre-analysis protocol was possible. This GBD data

408 analysis should be repeated with the most recently released GBD 2019 data when it becomes409 available to volunteer collaborators.

410

### 411 Generalisability

412 This new methodology presented for probing the GBD raw data to find correlations between

413 dietary and other risk factors and health outcomes (e.g., CVD) can be applied to any of the risk

414 factors and health outcomes available with the new IHME GBD 2019 data.

415

### 416 **Conclusion**

417 The lipid hypothesis (e.g., dietary SFA and cholesterol from animal foods causing CVD) was

418 consistent with the strong positive correlation of FSVV with CVD in high FSVV cohorts but not

419 worldwide. Global data analysis supported the fat-soluble vitamin hypothesis, because FSVV

420 negatively correlated with CVD worldwide. Defining the optimal FSVV that will reduce CVD

421 risk while not increasing other diseases (e.g., cancers and obesity) will require more research.

422 Supplements of fat-soluble vitamins to reduce the FSVV required to minimise CVD should be

423 studied, especially in developing countries with less access to animal foods.

424

This methodology of analysing IHME GBD data should augment systematic literature reviews in

426 developing policy recommendations, clinical practice guidelines, and public health

427 recommendations. GBD data analysis can bring more rigor, precision, and consensus to the field

428 of population health, especially in the areas of dietary risk factors.

429

## 430 WHAT IS ALREADY KNOWN ON THIS TOPIC

- 431 The lipid hypothesis, which has been widely accepted for at least 40 years, has recently been
- 432 disputed with no resolution.

## 433 WHAT THIS STUDY ADDS

- 434 This study with worldwide cohorts suggests that the lipid hypothesis applies only to cohorts (and
- 435 individuals by inference) with high intakes animal foods and added fats. Insufficient intake of
- 436 foods containing the fat-soluble vitamins and added fats may account for considerably more
- 437 cardiovascular mortality than too much animal foods and added fats.

## 439 Table 1. Dietary and other risks related to CVD worldwide (n=7846 cohorts)

440

| CVD and CVD risk factors                                    | Mean   | SD     | Min    | Max     | r      | 95%<br>CI | 95% CI | р     |
|-------------------------------------------------------------|--------|--------|--------|---------|--------|-----------|--------|-------|
| Cardiovascular disease deaths/100k/year<br>ages 15-69 (CVD) | 543.66 | 288.01 | 73.47  | 1844    |        |           |        |       |
| CVD mean m/f                                                | 543.69 | 246.13 | 135.46 | 1727    | 0.855  | 0.849     | 0.860  | <.000 |
| LDL cholesterol mmol/L                                      | 2.35   | 0.40   | 1.27   | 3.25    | -0.279 | -0.299    | -0.258 | <.000 |
| Fat-soluble vitamin variable (FSVV)                         | 285.36 | 193.31 | 58.78  | 932.18  | -0.329 | -0.349    | -0.309 | <.00  |
| Processed meat KC/d                                         | 5.33   | 9.72   | 0.20   | 68.77   | -0.204 | -0.226    | -0.183 | <.00  |
| Red meat KC/d                                               | 50.27  | 45.13  | 3.21   | 235.95  | -0.232 | -0.253    | -0.211 | <.00  |
| Fish KC/d                                                   | 9.99   | 36.52  | 0.40   | 370.36  | -0.203 | -0.224    | -0.181 | <.00  |
| Milk KC/d                                                   | 25.04  | 27.05  | 1.06   | 146.82  | -0.192 | -0.214    | -0.171 | <.00  |
| Poultry KC/d available                                      | 44.32  | 50.08  | 1.06   | 411.87  | -0.289 | -0.309    | -0.268 | <.00  |
| Eggs KC/d available                                         | 19.36  | 14.71  | 0.79   | 69.64   | -0.390 | -0.408    | -0.371 | <.00  |
| Added Saturated fatty acids KC/d                            | 87.67  | 29.41  | 32.56  | 221.29  | -0.239 | -0.260    | -0.219 | <.00  |
| Added PUFAs KC/d                                            | 37.30  | 33.78  | 1.35   | 175.40  | -0.316 | -0.336    | -0.296 | <.00  |
| Added Trans fatty acids KC/d                                | 6.09   | 6.28   | 0.91   | 35.77   | -0.104 | -0.126    | -0.082 | <.00  |
| Alcohol KC/d                                                | 81.03  | 57.33  | 4.25   | 429.81  | -0.061 | -0.083    | -0.039 | <.00  |
| Sugary beverages KC/d                                       | 298.36 | 152.38 | 72.91  | 1472.00 | 0.113  | 0.091     | 0.135  | <.00  |
| Potatoes KC/d available                                     | 84.04  | 74.60  | 3.07   | 533.88  | 0.050  | 0.028     | 0.073  | <.00  |
| Corn KC/d available                                         | 34.72  | 48.28  | 0.16   | 305.17  | -0.062 | -0.084    | -0.040 | <.00  |
| Fruits KC/d                                                 | 40.21  | 22.50  | 3.58   | 161.39  | -0.355 | -0.374    | -0.336 | <.00  |
| Vegetables KC/d                                             | 79.76  | 43.12  | 9.48   | 304.17  | -0.107 | -0.128    | -0.085 | <.00  |
| Nuts and seeds KC/d                                         | 8.41   | 8.36   | 0.05   | 102.99  | -0.277 | -0.297    | -0.256 | <.00  |
| Whole grains KC/d                                           | 55.65  | 30.93  | 1.14   | 235.10  | -0.194 | -0.216    | -0.173 | <.00  |
| Legumes KC/d                                                | 51.74  | 32.23  | 0.51   | 194.70  | -0.024 | -0.046    | -0.002 | 0.03  |
| Rice KC/d available                                         | 141.86 | 116.34 | 1.42   | 461.80  | 0.007  | -0.015    | 0.029  | 0.54  |
| Sweet potatoes KC/d available                               | 22.76  | 35.95  | 0.02   | 364.74  | -0.167 | -0.189    | -0.146 | <.00  |
| Total KC/d available                                        | 2574   | 418    | 1579   | 3898    | -0.203 | -0.224    | -0.181 | <.00  |
| Vit A deficiency children/100k/yr                           | 23205  | 10939  | 1267   | 50969   | 0.210  | 0.189     | 0.231  | <.00  |
| Sodium g/d                                                  | 4.45   | 2.34   | 1.33   | 9.21    | -0.214 | -0.235    | -0.193 | <.00  |
| Calcium g/d                                                 | 0.301  | 0.179  | 0.081  | 1.044   | -0.169 | -0.191    | -0.148 | <.00  |
| Dietary fiber g/d                                           | 9.21   | 3.15   | 2.72   | 22.68   | 0.019  | -0.003    | 0.041  | 0.09  |
| Physical activity METs                                      | 4714   | 1368   | 1609   | 7669    | 0.160  | 0.139     | 0.182  | <.00  |
| Child underweight >2SD                                      | 0.186  | 0.171  | 0.004  | 0.535   | 0.302  | 0.282     | 0.322  | <.00  |
| Stop breast feeding <6 months                               | 0.119  | 0.055  | 0.016  | 0.242   | -0.302 | -0.322    | -0.282 | <.00  |
| Ambient pollution PM 0.25                                   | 44.73  | 26.46  | 4.38   | 95.54   | 0.153  | 0.131     | 0.174  | <.00  |
| Smoking rate (0-1)                                          | 0.205  | 0.176  | 0.003  | 0.640   | 0.297  | 0.277     | 0.317  | <.00  |
| Secondhand smoking (0-1)                                    | 0.376  | 0.155  | 0.164  | 0.796   | -0.225 | -0.246    | -0.204 | <.00  |
| Sublingual tobacco rate (0-1)                               | 0.068  | 0.095  | 0.001  | 0.419   | 0.284  | 0.264     | 0.304  | <.00  |
| Blood lead level mcg/dl                                     | 5.01   | 1.01   | 1.22   | 8.37    | 0.180  | 0.159     | 0.201  | <.00  |
| Household air pollution (0-1)                               | 0.482  | 0.325  | 0.000  | 0.996   | 0.179  | 0.158     | 0.201  | <.00  |
| Kidney disease stage III (0-1)                              | 0.056  | 0.028  | 0.015  | 0.154   | 0.194  | 0.173     | 0.215  | <.00  |
| Type 1 DM early deaths                                      | 10.37  | 9.39   | 0.55   | 112.49  | 0.340  | 0.320     | 0.359  | <.00  |
| Type 2 DM early deaths                                      | 17.50  | 15.65  | 0.63   | 269.67  | 0.227  | 0.205     | 0.247  | <.00  |
| BMI kg/M <sup>2</sup>                                       | 21.77  | 2.29   | 17.95  | 29.39   | -0.240 | -0.261    | -0.219 | <.00  |
| Fasting plasma glucose mmol/L                               | 4.30   | 0.35   | 3.32   | 5.58    | -0.178 | -0.200    | -0.157 | <.00  |
| Systolic BP mm Hg                                           | 133.91 | 4.32   | 123.41 | 147.89  | 0.195  | 0.174     | 0.216  | <.00  |
| Socio-demographic index (0-1)                               | 0.543  | 0.174  | 0.112  | 0.896   | -0.337 | -0.357    | -0.317 | <.00  |
|                                                             |        |        |        |         |        |           |        |       |

441

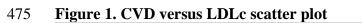
### 443 Table 2. CVD lowest and highest 1000 cohorts (~1 billion people)

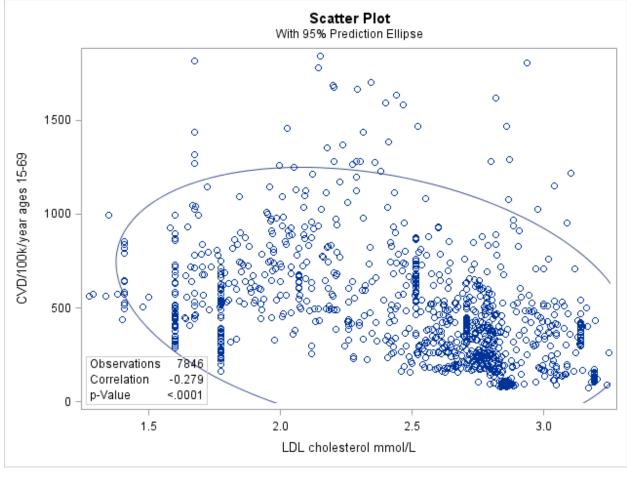
|                                              | CVD lov        |               | ion people<br>orts) | (n=1000         | CVD highest ≈1 billion people (n=1000<br>cohorts) |                |              |                 |  |
|----------------------------------------------|----------------|---------------|---------------------|-----------------|---------------------------------------------------|----------------|--------------|-----------------|--|
| CVD and risk factors                         | Mean           | SD            | Min                 | Max             | Mean                                              | SD             | Min          | Max             |  |
| Cardiovascular Disease<br>deaths/100k/year   | 227.81         | 95.25         | 73.47               | 422.36          | 1045                                              | 356.90         | 430.20       | 1844            |  |
| CVD male/female mean                         | 227.81         | 42.52         | 135.46              | 292.97          | 1045                                              | 200.47         | 802.24       | 1727            |  |
| LDL cholesterol mmol/L                       | 2.808          | 0.256         | 1.598               | 3.247           | 2.376                                             | 0.380          | 1.35         | 3.20            |  |
| Fat-soluble vitamin variable<br>(FSVV)       | 531.4          | 180.20        | 143.63              | 912.69          | 235.66                                            | 99.68          | 80.53        | 503.98          |  |
| Processed meat KC/d                          | 15.30          | 12.20         | 0.61                | 61.09           | 3.70                                              | 4.95           | 0.22         | 18.12           |  |
| Red meat KC/d                                | 90.72          | 48.06         | 12.03               | 235.95          | 36.82                                             | 29.40          | 7.07         | 172.00          |  |
| Fish KC/d                                    | 49.54          | 92.63         | 2.85                | 370.36          | 4.56                                              | 2.69           | 0.78         | 12.97           |  |
| Milk KC/d                                    | 55.64          | 35.39         | 7.70                | 146.82          | 25.61                                             | 16.78          | 1.06         | 75.87           |  |
| Poultry KC/d available                       | 90.44          | 47.27         | 4.74                | 240.56          | 30.23                                             | 22.39          | 2.78         | 100.04          |  |
| Eggs KC/d available                          | 36.63          | 11.25         | 4.77                | 69.64           | 14.73                                             | 13.63          | 1.51         | 46.81           |  |
| Added Saturated fatty acids KC/d             | 113.40         | 36.53         | 59.52               | 221.29          | 87.22                                             | 24.03          | 33.03        | 205.85          |  |
| Added PUFAs KC/d                             | 69.80          | 35.78         | 15.77               | 175.40          | 25.48                                             | 14.54          | 2.73         | 84.90           |  |
| Added Trans fatty acids KC/d<br>Alcohol KC/d | 9.91<br>119.72 | 9.25<br>66.67 | 1.65<br>4.25        | 34.90<br>296.70 | 7.31 45.83                                        | 8.62<br>46.24  | 1.21<br>5.77 | 35.77<br>340.37 |  |
| Sugary beverages KC/d                        | 320.29         | 251.94        | 4.25                | 1472            | <u>45.83</u><br>303.30                            | 46.24<br>63.68 | 5.77         | 685.42          |  |
| Potatoes KC/d available                      | 81.34          | 51.14         | 9.50                | 1472            | 98.34                                             | 96.77          | 3.94         | 533.88          |  |
| Corn KC/d available                          | 48.19          | 75.26         | 1.79                | 287.14          | 31.77                                             | 37.30          | 0.20         | 305.17          |  |
| Fruits KC/d                                  | 64.84          | 16.49         | 23.05               | 128.61          | 31.23                                             | 13.93          | 3.58         | 70.11           |  |
| Vegetables KC/d                              | 108.02         | 44.60         | 9.48                | 214.26          | 83.83                                             | 56.67          | 14.43        | 198.51          |  |
| Nuts and seeds KC/d                          | 15.90          | 10.50         | 0.66                | 39.80           | 4.81                                              | 2.91           | 0.05         | 17.91           |  |
| Whole grains KC/d                            | 64.71          | 38.62         | 1.61                | 173.46          | 28.30                                             | 33.01          | 1.14         | 156.75          |  |
| Legumes KC/d                                 | 47.88          | 25.99         | 2.95                | 133.26          | 31.55                                             | 18.93          | 0.51         | 103.17          |  |
| Rice KC/d available                          | 78.10          | 97.95         | 7.58                | 349.08          | 75.93                                             | 107.38         | 1.42         | 461.80          |  |
| Sweet potatoes KC/d available                | 3.92           | 5.14          | 0.04                | 27.51           | 5.84                                              | 20.20          | 0.02         | 364.74          |  |
| Total KC/d available                         | 2972           | 409           | 1948                | 3572            | 2627                                              | 409            | 1579         | 3254            |  |
| Vit A deficiency children/100k/yr            | 14181          | 8723          | 1948                | 44100           | 20559                                             | 11395          | 1722         | 50969           |  |
|                                              |                |               |                     |                 |                                                   |                |              |                 |  |
| Sodium g/d                                   | 3.92           | 1.22          | 1.33                | 6.70            | 3.30                                              | 0.76           | 1.33         | 5.96            |  |
| Calcium g/d                                  | 0.506          | 0.189         | 0.183               | 1.044           | 0.321                                             | 0.150          | 0.089        | 0.792           |  |
| Dietary fiber g/d                            | 10.58          | 2.90          | 5.15                | 17.95           | 9.53                                              | 3.32           | 3.87         | 18.83           |  |
| Physical activity METs                       | 3802           | 1164          | 2162                | 7607            | 4273                                              | 1497           | 1838         | 7607            |  |
| Child underweight >2SD                       | 0.038          | 0.043         | 0.004               | 0.242           | 0.186                                             | 0.141          | 0.011        | 0.411           |  |
| Stop breast feeding <6 mo                    | 0.176          | 0.032         | 0.071               | 0.218           | 0.116                                             | 0.044          | 0.036        | 0.208           |  |
| Ambient pollution PM 0.25                    | 17.60          | 8.27          | 4.38                | 38.42           | 40.81                                             | 22.19          | 7.90         | 77.69           |  |
| Smoking rate (0-1)                           | 0.217          | 0.121         | 0.012               | 0.448           | 0.212                                             | 0.190          | 0.005        | 0.627           |  |
| Secondhand smoking (0-1)                     | 0.328          | 0.097         | 0.164               | 0.569           | 0.397                                             | 0.158          | 0.164        | 0.780           |  |
| Sublingual tobacco rate (0-1)                | 0.010          | 0.015         | 0.001               | 0.111           | 0.060                                             | 0.072          | 0.001        | 0.238           |  |
| Blood lead level mcg/dl                      | 4.08           | 1.00          | 1.22                | 6.85            | 4.74                                              | 1.28           | 1.92         | 8.37            |  |
| Household air pollution (0-1)                | 0.103          | 0.182         | 0.001               | 0.839           | 0.404                                             | 0.353          | 0.002        | 0.993           |  |
| Kidney disease stage III (0-1)               | 0.042          | 0.020         | 0.001               | 0.111           | 0.078                                             | 0.033          | 0.035        | 0.139           |  |
| Type 1 DM early deaths                       | 4.79           | 3.88          | 0.013               | 20.65           | 16.38                                             | 15.31          | 2.62         | 112.49          |  |
|                                              |                |               |                     |                 |                                                   |                |              |                 |  |
| Type 2 DM early deaths                       | 15.69          | 18.23         | 0.75                | 87.92           | 23.65                                             | 24.88          | 0.89         | 269.67          |  |
| BMI kg/M <sup>2</sup>                        | 23.74          | 1.60          | 19.61               | 27.06           | 22.46                                             | 2.15           | 17.95        | 26.08           |  |
| Fasting plasma glucose mmol/L                | 4.56           | 0.25          | 3.54                | 5.12            | 4.28                                              | 0.42           | 3.38         | 5.18            |  |
| Systolic BP mm Hg                            | 133.26         | 4.41          | 123.41              | 142.15          | 136.86                                            | 4.39           | 124.59       | 147.89          |  |
| Socio-demographic index (0-1)                | 0.757          | 0.125         | 0.351               | 0.896           | 0.497                                             | 0.183          | 0.186        | 0.824           |  |
| Sex male 1 and female 2                      | 1.50           | 0.50          | 1.00                | 2.00            | 1.50                                              | 0.50           | 1.00         | 2.00            |  |

| CVD lowest<br>Countries<br>(n=1000<br>cohorts),<br>Table 3 | n co-<br>horts | CVD<br>ascending<br>order | FSVV             | Processed<br>meat | Red<br>meat      | Fish           | Milk           | Poultry         | Eggs           | Added<br>SFA<br>+PUFA<br>+TFA |
|------------------------------------------------------------|----------------|---------------------------|------------------|-------------------|------------------|----------------|----------------|-----------------|----------------|-------------------------------|
| Japan                                                      | 158            | 169.19                    | 618.69           | 19.19             | 58.72            | 260.54         | 29.04          | 63.93           | 52.23          | 135.04                        |
| France                                                     | 64             | 174.00                    | 644.78           | 13.59             | 135.07           | 11.17          | 95.75          | 99.86           | 43.30          | 246.04                        |
| Switzerland                                                | 8              | 175.04                    | 558.41           | 11.50             | 129.01           | 6.75           | 110.90         | 55.57           | 31.20          | 213.47                        |
| Andorra                                                    | 2              | 185.55                    | 763.18           | 16.58             | 150.84           | 16.44          | 99.23          | 189.92          | 47.55          | 242.62                        |
| Peru                                                       | 32             | 197.74                    | 183.12           | 1.01              | 16.92            | 3.82           | 15.34          | 35.04           | 12.03          | 98.95                         |
| Spain                                                      | 46             | 206.25                    | 597.93           | 11.65             | 139.92           | 10.28          | 82.99          | 113.88          | 43.35          | 195.86                        |
| Italy                                                      | 60             | 206.44                    | 587.57           | 15.78             | 126.36           | 9.15           | 89.54          | 84.16           | 36.39          | 226.20                        |
| Iceland<br>Australia                                       | 2<br>24        | 206.51<br>208.03          | 609.62<br>698.26 | 11.97<br>9.79     | 112.73<br>164.14 | 11.67          | 85.37          | 63.57<br>153.33 | 29.51          | 294.81<br>234.89              |
| Canada                                                     | 36             | 208.05                    | 698.26<br>624.98 | 25.31             | 126.28           | 14.15<br>18.48 | 97.05<br>76.13 | 133.33          | 24.92<br>34.94 | 196.39                        |
| Israel                                                     | 8              | 222.11                    | 662.00           | 5.95              | 59.50            | 15.35          | 68.79          | 240.56          | 40.54          | 231.30                        |
| South Korea                                                | 50             | 232.63                    | 357.23           | 5.97              | 82.88            | 5.96           | 15.72          | 43.10           | 26.89          | 176.71                        |
| Belgium                                                    | 12             | 235.98                    | 636.39           | 12.28             | 122.36           | 11.19          | 93.44          | 85.00           | 33.28          | 278.86                        |
| Netherlands                                                | 18             | 236.61                    | 629.56           | 15.72             | 133.06           | 8.66           | 114.16         | 72.70           | 41.67          | 243.59                        |
| Taiwan                                                     | 24             | 237.37                    | 587.36           | 3.01              | 106.58           | 9.15           | 15.95          | 132.38          | 34.87          | 285.41                        |
| Mexico                                                     | 108            | 237.55                    | 413.25           | 11.29             | 63.03            | 8.69           | 34.29          | 85.85           | 39.92          | 170.19                        |
| Panama                                                     | 4              | 244.31                    | 383.83           | 2.75              | 61.32            | 9.44           | 20.72          | 95.43           | 12.96          | 181.23                        |
| Sweden                                                     | 10             | 247.21                    | 563.83           | 29.31             | 119.77           | 11.80          | 124.13         | 45.42           | 35.04          | 198.37                        |
| New<br>Zealand non<br>Mauri                                | 4              | 247.32                    | 699.81           | 9.31              | 158.86           | 11.56          | 88.74          | 128.14          | 40.24          | 262.95                        |
| Norway                                                     | 32             | 248.72                    | 605.30           | 48.14             | 109.37           | 10.10          | 100.96         | 41.65           | 31.52          | 263.56                        |
| England                                                    | 20             | 253.09                    | 534.56           | 19.21             | 96.29            | 10.70          | 87.80          | 89.30           | 32.90          | 198.36                        |
| Costa Rica                                                 | 4              | 260.73                    | 408.42           | 2.63              | 51.74            | 8.12           | 46.55          | 78.05           | 28.17          | 193.14                        |
| Luxembourg                                                 | 2              | 262.53                    | 578.00           | 14.65             | 163.17           | 11.79          | 91.99          | 71.48           | 27.60          | 197.32                        |
| Chile                                                      | 18             | 267.50                    | 404.12           | 19.11             | 90.33            | 9.65           | 31.93          | 97.29           | 19.70          | 136.10                        |
| Guatemala                                                  | 16             | 269.85                    | 231.05           | 1.89              | 20.05            | 5.28           | 13.32          | 53.94           | 30.46          | 106.12                        |
| Kenya                                                      | 12             | 270.04                    | 150.04           | 1.41              | 25.83            | 3.09           | 18.89          | 4.74            | 4.77           | 91.31                         |
| Ecuador                                                    | 16             | 270.64                    | 375.35           | 6.87              | 56.88            | 7.34           | 35.51          | 59.92           | 14.66          | 194.16                        |
| USA                                                        | 94             | 274.00                    | 825.54           | 36.45             | 136.35           | 15.79          | 90.90          | 190.90          | 41.10          | 314.05                        |
| Denmark                                                    | 6              | 275.10                    | 600.48           | 14.46             | 137.75           | 13.38          | 98.01          | 74.42           | 45.96          | 216.51                        |
| Austria                                                    | 8              | 277.67                    | 621.00           | 8.95              | 194.65           | 9.26           | 98.68          | 70.00           | 39.96          | 199.50                        |
| Portugal                                                   | 10             | 278.50                    | 524.81           | 5.16              | 124.77           | 8.77           | 79.43          | 94.26           | 24.18          | 188.25                        |
| Nicaragua                                                  | 6              | 282.04                    | 214.24           | 1.52              | 14.93            | 4.07           | 20.66          | 41.76           | 17.41          | 113.90                        |
| Tehran<br>(Iran)                                           | 16             | 283.29                    | 299.65           | 1.23              | 22.63            | 5.36           | 19.23          | 65.90           | 18.89          | 166.41                        |
| Thailand<br>Total<br>cohorts                               | 70<br>1000     | 289.91                    | 247.43           | 0.70              | 32.01            | 6.95           | 7.85           | 57.07           | 31.10          | 111.75                        |

## 445 Table 3. CVD related to fat-soluble vitamin related risk factors in low CVD countries

# Table 4. Representative examples of low CVD countries (n=1000 cohorts) including all risk factors


| CVD and CVD risk factors          | Japan <sup>a</sup> | France <sup>b</sup> | Peru <sup>c</sup> | Mexico <sup>d</sup> | Panama <sup>e</sup> | Guatemala <sup>f</sup> | Ecuador <sup>g</sup> |
|-----------------------------------|--------------------|---------------------|-------------------|---------------------|---------------------|------------------------|----------------------|
| n cohorts                         | 158                | 64                  | 32                | 108                 | 4                   | 16                     | 16                   |
| CVD/100k/year ages 15-69          | 169.19             | 174.00              | 197.74            | 237.55              | 244.31              | 269.85                 | 270.64               |
| Fat-soluble vitamin variable      | 618.69             | 644.78              | 183.12            | 413.25              | 383.83              | 231.05                 | 375.35               |
| LDL cholesterol mmol/L            | 2.81               | 3.08                | 2.37              | 2.59                | 2.61                | 2.20                   | 2.46                 |
| Processed meat KC/d               | 19.19              | 13.59               | 1.01              | 11.29               | 2.75                | 1.89                   | 6.87                 |
| Red meat KC/d                     | 58.72              | 135.07              | 16.92             | 63.03               | 61.32               | 20.05                  | 56.88                |
| Fish KC/d                         | 260.54             | 11.17               | 3.82              | 8.69                | 9.44                | 5.28                   | 7.34                 |
| Milk KC/d                         | 29.04              | 95.75               | 15.34             | 34.29               | 20.72               | 13.32                  | 35.51                |
| Poultry KC/d available            | 63.93              | 99.86               | 35.04             | 85.85               | 95.43               | 53.94                  | 59.92                |
| Eggs KC/d available               | 52.23              | 43.30               | 12.03             | 39.92               | 12.96               | 30.46                  | 14.66                |
| Added Saturated fatty acids       | 77.73              | 172.79              | 68.34             | 89.13               | 101.32              | 60.62                  | 133.54               |
| KC/d                              | 11.15              | 172.79              | 08.34             | 89.15               | 101.52              | 00.02                  | 155.54               |
| Added PUFAs KC/d                  | 53.78              | 67.38               | 24.47             | 52.14               | 72.29               | 41.90                  | 51.69                |
| Added Trans fatty acids KC/d      | 3.54               | 5.88                | 6.13              | 28.92               | 7.62                | 3.60                   | 8.93                 |
| Alcohol KC/d                      | 183.16             | 118.64              | 55.79             | 58.39               | 27.44               | 28.79                  | 59.77                |
| Sugary beverages KC/d             | 94.78              | 323.88              | 284.76            | 847.81              | 921.54              | 964.08                 | 283.57               |
| Potatoes KC/d available           | 42.29              | 126.40              | 142.55            | 25.79               | 32.01               | 16.68                  | 67.56                |
| Corn KC/d available               | 27.58              | 23.85               | 33.54             | 242.41              | 50.86               | 206.19                 | 11.76                |
| Fruits KC/d                       | 44.43              | 59.56               | 52.27             | 65.68               | 52.92               | 39.61                  | 107.07               |
| Vegetables KC/d                   | 149.32             | 101.07              | 46.17             | 60.72               | 27.81               | 54.98                  | 31.79                |
| Nuts and seeds KC/d               | 9.26               | 16.94               | 1.02              | 6.27                | 1.92                | 12.72                  | 0.68                 |
| Whole grains KC/d                 | 76.05              | 16.16               | 58.94             | 142.06              | 83.46               | 68.32                  | 43.78                |
| Legumes KC/d                      | 71.84              | 17.07               | 45.78             | 76.99               | 38.35               | 73.84                  | 21.99                |
| Rice KC/d available               | 124.52             | 12.09               | 93.09             | 14.07               | 141.66              | 13.46                  | 118.02               |
| Sweet potatoes KC/d available     | 12.09              | 0.04                | 7.94              | 0.69                | 8.67                | 1.71                   | 0.49                 |
| Total KC/d available              | 2590               | 3406                | 1948              | 3015                | 2288                | 2330                   | 2273                 |
| Vit A deficiency children/100k/yr | 8151               | 1643                | 19372             | 23939               | 11463               | 17947                  | 20185                |
| Sodium g/d                        | 6.01               | 3.21                | 3.14              | 2.62                | 2.97                | 1.83                   | 3.16                 |
| Calcium g/d                       | 0.425              | 0.707               | 0.299             | 0.370               | 0.293               | 0.220                  | 0.314                |
| Dietary fiber g/d                 | 13.43              | 8.68                | 9.44              | 15.51               | 5.90                | 12.54                  | 6.25                 |
| Physical activity METs            | 3460               | 2795                | 3774              | 3833                | 4935                | 6142                   | 3740                 |
| Child underweight >2SD            | 0.045              | 0.012               | 0.069             | 0.050               | 0.042               | 0.193                  | 0.096                |
| Stop breast feeding <6 months     | 0.171              | 0.208               | 0.108             | 0.171               | 0.140               | 0.087                  | 0.130                |
| Ambient pollution PM 0.25         | 13.10              | 13.87               | 28.99             | 24.28               | 13.24               | 28.61                  | 17.86                |
| Smoking rate (0-1)                | 0.268              | 0.289               | 0.075             | 0.149               | 0.073               | 0.077                  | 0.080                |
| Secondhand smoking (0-1)          | 0.353              | 0.320               | 0.238             | 0.344               | 0.178               | 0.224                  | 0.206                |
| Sublingual tobacco rate (0-1)     | 0.012              | 0.003               | 0.004             | 0.002               | 0.002               | 0.001                  | 0.004                |
| Blood lead level mcg/dl           | 2.65               | 3.86                | 5.17              | 5.34                | 4.80                | 5.89                   | 4.51                 |
| Household air pollution (0-1)     | 0.002              | 0.010               | 0.454             | 0.213               | 0.193               | 0.627                  | 0.080                |
| Kidney disease stage III (0-1)    | 0.038              | 0.028               | 0.050             | 0.078               | 0.068               | 0.075                  | 0.055                |
| Type 1 DM early deaths            | 1.25               | 2.91                | 4.84              | 12.64               | 7.71                | 12.03                  | 6.92                 |
| Type 2 DM early deaths            | 2.03               | 3.70                | 11.37             | 60.97               | 18.07               | 40.38                  | 27.44                |
| BMI kg/M <sup>2</sup>             | 21.89              | 23.47               | 23.29             | 24.82               | 22.98               | 21.97                  | 25.04                |
| Fasting plasma glucose mmol/L     | 4.77               | 4.46                | 4.01              | 4.53                | 4.31                | 4.12                   | 4.26                 |
| Systolic BP mm Hg                 | 137.56             | 135.11              | 125.19            | 130.31              | 133.66              | 131.15                 | 126.85               |
| Socio-demographic index           | 0.828              | 0.822               | 0.590             | 0.608               | 0.644               | 0.431                  | 0.575                |
| Likely mechanism of low CVD       | FSVV,              | FSVV                | Smoking,          | FSVV,               | Physical            | Physical               | FSVV,                |
| (see discussion for explanation)  | Plants             |                     | metabolic         | Plants              | activity,           | activity,              | smoking              |
|                                   |                    |                     |                   |                     | smoking             | smoking                |                      |


- <sup>a</sup> Japan not only had high FSVV but also had relatively high intake of GBD risk factor plant
   foods (fruits, vegetables, nuts and seeds, whole grains, and legumes: 350.9 KC/d).
- <sup>b</sup> France was characteristic of 23 other low CVD countries in that intake of milk products was
- 452 high (France milk=95.75 KC/d and in the other 23 countries' milk>68 KC/d, Table 3 compared
- 453 with worldwide mean milk=25.04 KC/d).
- <sup>c</sup> The low CVD of Peru might be attributed to a relatively low smoking rate (7.5%) and good
- metabolic statistics (mean BMI=23.3 Kg/M<sup>2</sup>, mean FPG=4.01 mmol/L, mean LDLc=2.37
   mmol/L, mean SBP=125.2 mm/Hg).
- <sup>d</sup> While Mexico had a lower FSVV than most low CVD countries (Mexico FSVV=413.3 KC/d),
   like Japan it had relatively high intake of important plant foods (fruits, vegetables, nuts and
- 459 seeds, whole grains, and legumes: totaling 351.7 KC/d).
- <sup>e</sup> Panama, with moderate FSVV=383.8 KC/d, had relatively high physical activity (Panama physical activity=4935 METs) and low smoking rate (male/female mean smoking=7.3%).
- <sup>f</sup> While Guatemala had relatively low FSVV (FSVV=231.1 KC/d) and low GBD risk factor plant
- food intake (fruits, vegetables, nuts and seeds, whole grains, and legumes: 249.5 KC/d), it had
- relatively high physical activity (physical activity=6142 METs) and a low smoking rate
- 465 (male/female mean smoking=7.7%).
- <sup>g</sup> Ecuador had an intermediatory FSVV (FSVV=375.4 KC/d) and relatively low intake of
- 467 important plant foods (fruits, vegetables, nuts and seeds, whole grains, and legumes: totaling
- 468 205.3 KC/d). However, Ecuador had a low rate of smoking (male/female mean smoking=8.0%).
- and a low SBP (mean SBP=126.9 mm/Hg).
- 470
- 471

### 472 Table 5. CVD and risk factors for countries with FSVV ≥567.27 KC/d (n=974 cohorts)

| CVD and CVD risk factors                      | Mean    | SD     | Min     | Max     | r      | 95%<br>CI low | 95% CI | Р     |
|-----------------------------------------------|---------|--------|---------|---------|--------|---------------|--------|-------|
|                                               |         |        |         |         |        | CI IOW        | high   |       |
| Cardiovascular deaths/100k/year ages<br>15-69 | 273.72  | 143.95 | 73.47   | 913.18  |        |               |        |       |
| LDL cholesterol mmol/L                        | 2.91    | 0.14   | 2.36    | 3.20    | -0.254 | -0.312        | -0.194 | <.000 |
| Fat-soluble vitamin variable                  | 692.58  | 111.88 | 527.67  | 932.18  | 0.523  | 0.476         | 0.567  | <.000 |
| Processed meat KC/d                           | 25.01   | 15.30  | 2.16    | 68.77   | 0.459  | 0.408         | 0.507  | <.000 |
| Red meat KC/d                                 | 122.16  | 41.41  | 43.65   | 235.95  | 0.655  | 0.618         | 0.690  | <.000 |
| Fish KC/d                                     | 49.08   | 89.24  | 7.60    | 370.36  | -0.259 | -0.317        | -0.199 | <.000 |
| Milk KC/d                                     | 78.58   | 26.14  | 14.60   | 146.82  | 0.185  | 0.123         | 0.245  | <.000 |
| Poultry KC/d available                        | 129.97  | 60.21  | 41.65   | 411.87  | 0.366  | 0.311         | 0.419  | <.000 |
| Eggs KC/d available                           | 40.80   | 7.25   | 14.59   | 69.64   | -0.242 | -0.301        | -0.182 | <.000 |
| Saturated fatty acids KC/d                    | 299.88  | 66.83  | 129.39  | 481.07  | 0.193  | 0.132         | 0.253  | <.000 |
| PUFAs KC/d                                    | 211.86  | 83.06  | 80.53   | 381.31  | 0.382  | 0.327         | 0.435  | <.000 |
| Trans fatty acids KC/d                        | 25.17   | 17.82  | 4.23    | 66.89   | 0.224  | 0.163         | 0.283  | <.000 |
| Alcohol KC/d                                  | 155.02  | 65.23  | 11.92   | 429.81  | 0.475  | 0.425         | 0.522  | <.000 |
| Sugary beverages KC/d                         | 231.66  | 121.92 | 72.91   | 769.89  | 0.332  | 0.274         | 0.386  | <.00  |
| Potatoes KC/d available                       | 106.39  | 40.47  | 9.50    | 224.86  | 0.109  | 0.046         | 0.170  | 0.0   |
| Corn KC/d available                           | 19.45   | 9.41   | 1.79    | 47.39   | 0.086  | 0.024         | 0.148  | 0.0   |
| Fruits KC/d                                   | 66.91   | 15.93  | 34.83   | 161.39  | -0.014 | -0.077        | 0.049  | 0.6   |
| Vegetables KC/d                               | 117.42  | 34.24  | 42.27   | 304.17  | -0.127 | -0.188        | -0.064 | <.00  |
| Nuts and seeds KC/d                           | 21.98   | 8.91   | 0.85    | 102.99  | 0.177  | 0.115         | 0.237  | <.00  |
| Whole grains KC/d                             | 52.11   | 20.93  | 1.61    | 92.45   | 0.121  | 0.059         | 0.183  | 0.0   |
| Legumes KC/d                                  | 40.76   | 25.29  | 2.95    | 133.26  | 0.040  | -0.023        | 0.102  | 0.2   |
| Rice KC/d available                           | 38.82   | 46.75  | 6.50    | 179.63  | -0.138 | -0.199        | -0.076 | <.00  |
| Sweet potatoes KC/d available                 | 3.63    | 3.99   | 0.04    | 17.63   | -0.128 | -0.189        | -0.066 | <.00  |
| Total KC/d available                          | 3219    | 292    | 2516    | 3898    | 0.249  | 0.189         | 0.307  | <.00  |
| Vit A deficiency children/100k/yr             | 9316    | 6877   | 1400    | 28081   | -0.105 | -0.166        | -0.042 | 0.0   |
| Sodium g/d                                    | 3.98    | 0.96   | 2.22    | 6.70    | -0.040 | -0.102        | 0.023  | 0.2   |
| Calcium g/d                                   | 0.645   | 0.129  | 0.353   | 1.044   | 0.396  | 0.342         | 0.448  | <.00  |
| Dietary fiber g/d                             | 10.62   | 1.75   | 6.30    | 18.15   | 0.241  | 0.181         | 0.299  | <.00  |
| Physical activity METs                        | 3523    | 765    | 1781    | 5494    | 0.578  | 0.535         | 0.618  | <.00  |
| Child underweight >2SD                        | 0.015   | 0.013  | 0.004   | 0.058   | -0.197 | -0.257        | -0.136 | <.00  |
| Stop breast feeding <6 months                 | 0.196   | 0.017  | 0.129   | 0.219   | 0.268  | 0.208         | 0.325  | <.00  |
| Ambient pollution PM 0.25                     | 12.67   | 7.13   | 4.38    | 87.22   | 0.005  | -0.058        | 0.068  | 0.8   |
| Smoking rate (0-1)                            | 0.233   | 0.084  | 0.021   | 0.444   | 0.233  | 0.172         | 0.291  | <.00  |
| Secondhand smoking (0-1)                      | 0.309   | 0.070  | 0.201   | 0.586   | -0.306 | -0.362        | -0.248 | <.00  |
| Sublingual tobacco rate (0-1)                 | 0.013   | 0.020  | 0.001   | 0.125   | 0.579  | 0.536         | 0.620  | <.00  |
| Blood lead level mcg/dl                       | 3.93    | 0.77   | 1.22    | 5.72    | 0.451  | 0.400         | 0.500  | <.00  |
| Household air pollution (0-1)                 | 0.012   | 0.026  | 0.000   | 0.201   | -0.011 | -0.073        | 0.052  | 0.74  |
| Kidney disease stage III (0-1)                | 0.036   | 0.012  | 0.016   | 0.109   | -0.028 | -0.090        | 0.035  | 0.3   |
| Type 1 DM early deaths                        | 3.93    | 2.67   | 0.55    | 15.97   | 0.573  | 0.529         | 0.613  | <.00  |
| Type 2 DM early deaths                        | 9.54    | 7.52   | 0.75    | 54.22   | 0.622  | 0.582         | 0.659  | <.00  |
| BMI kg/M <sup>2</sup>                         | 24.87   | 1.78   | 21.40   | 29.39   | 0.022  | 0.382         | 0.530  | <.00  |
| Fasting plasma glucose mmol/L                 | 4.73    | 0.23   | 3.84    | 5.58    | 0.091  | 0.028         | 0.153  | 0.0   |
| Systolic BP mm Hg                             | 133.639 | 4.362  | 126.863 | 142.147 | -0.148 | -0.209        | -0.086 | <.000 |
| Socio-demographic index (0-1)                 | 0.838   | 0.053  | 0.592   | 0.896   | -0.052 | -0.114        | 0.011  | 0.1   |
| Sex male 1 and female 2                       | 1.50    | 0.50   | 1.00    | 2.00    | -0.745 | -0.772        | -0.716 | <.000 |

473





## 479 Supplementary Table 1. Definitions of GBD risk factors and covariates related to CVD

| Variables                                   | Definition                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alcohol                                     | Any alcohol consumption (g/day)                                                                                                                                                                                                                                                                                                            |
| Ambient particulate matter                  | Annual average daily exposure to outdoor air concentrations of particulate matter with an                                                                                                                                                                                                                                                  |
| pollution                                   | aerodynamic diameter of $\leq 2.5 \ \mu g/m^3$ (PM <sub>2.5</sub> )                                                                                                                                                                                                                                                                        |
| Body-mass index                             | Body mass index (BMI) (kg/m <sup>2</sup> )—the dependent variable of interest                                                                                                                                                                                                                                                              |
| Chewing tobacco                             | Current use of any chewing tobacco product                                                                                                                                                                                                                                                                                                 |
| Child underweight                           | Proportion of children $-3$ SD to $-2$ SD of the WHO 2006 standard weight-for-age curve (0-1)                                                                                                                                                                                                                                              |
| Corn                                        | Corn availability per capita (g/day), a covariate                                                                                                                                                                                                                                                                                          |
| Discontinued breast feeding                 | Proportion of children aged 6-23 months who do not receive any breast milk                                                                                                                                                                                                                                                                 |
| Eggs                                        | Eggs availability per capita (g/day) a covariate                                                                                                                                                                                                                                                                                           |
| Fasting plasma glucose                      | Fasting plasma glucose (mmol/L)                                                                                                                                                                                                                                                                                                            |
| Fish                                        | This variable expressed in g/day was derived by determining the weight of fish in g<br>corresponding to 1 g of omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic<br>acid) by averaging the fish g per 1 g of omega-3 fatty acids 20 species of fish= 117.04<br>g/day fish/1 g/day omega-3 fatty acids (Supplementary Table 3) |
| Fruits                                      | Consumption of fruits (includes fresh, frozen, cooked, canned, or dried fruit but excludes<br>fruit juices and salted or pickled fruits) (g/day)                                                                                                                                                                                           |
| Household air pollution from<br>solid fuels | Individual exposure to PM 2.5 due to use of solid cooking fuel                                                                                                                                                                                                                                                                             |
| Kidney function impaired                    | Proportion of the population with ACR >30 mg/g or GFR <60 mL/min/1.73 m <sup>2</sup> ,<br>excluding end-stage renal disease                                                                                                                                                                                                                |
| Kilocalories available /day                 | The mean number of kilocalories per capita available per day to people in each location (kcal/day available), a covariate                                                                                                                                                                                                                  |
| LDL cholesterol                             | Serum low-density lipoprotein cholesterol (mmol/L)                                                                                                                                                                                                                                                                                         |
| Lead exposure                               | Blood lead levels in $\mu g/dL$ of blood, bone lead levels in $\mu g/g$ of bone                                                                                                                                                                                                                                                            |
| Legumes                                     | Consumption of beans, lentils, pulses (g/day)                                                                                                                                                                                                                                                                                              |
| Milk                                        | Consumption of milk including non-fat, low-fat, and full-fat milk but excluding soy milk                                                                                                                                                                                                                                                   |
|                                             | and other plant derivatives (g/day)                                                                                                                                                                                                                                                                                                        |
| Nuts and seeds                              | Consumption of nuts and seeds (g/day)                                                                                                                                                                                                                                                                                                      |
| Physical activity                           | Average weekly physical activity at work, home, transport-related and recreational measured by MET min per week. Less than 3000 METs per week constitutes low physical activity.                                                                                                                                                           |
| Poultry                                     | Poultry availability per capita (g/day), a covariate                                                                                                                                                                                                                                                                                       |
| Potatoes                                    | Potatoes availability per capita (g/day), a covariate                                                                                                                                                                                                                                                                                      |
| Processed meat                              | Consumption of any processed meat (includes meat preserved by smoking, curing, salting, or addition of chemical preservatives, including bacon, salami, sausages, or deli or luncheon meats like ham, turkey, and pastrami (g/day)                                                                                                         |
| Red meat                                    | Consumption of red meat (includes beef, pork, lamb, and goat but excludes poultry, fish, eggs, and all processed meats) (g/day)                                                                                                                                                                                                            |
| Rice                                        | Rice availability per capita (g/day), a covariate                                                                                                                                                                                                                                                                                          |
| Seafood omega-3 fatty acids                 | Seafood omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in tablet<br>or fish form (g/day)                                                                                                                                                                                                                             |
| Second-hand smoke                           | Average daily exposure to air particulate matter from second-hand smoke with an aerodynamic diameter smaller than $2.5 \ \mu g$ , measured in $\mu g/m^3$ , among non-smokers                                                                                                                                                              |
| Smoking                                     | Prevalence of current use of any smoked tobacco product and prevalence of former use<br>of any smoked tobacco product; among current smokers, cigarette equivalents smoked<br>per smoker per day and cumulative pack-years of exposure; among former smokers,<br>number of years since quitting                                            |
| Socio-demographic index                     | SDI is a composite indicator of development status that was originally constructed for GBD 2015 and is derived from components that correlate strongly with health outcomes.                                                                                                                                                               |

|                           | It is the geometric mean for indices of the total fertility rate among women younger than 25 years, mean education for those aged 15 years or older, and lag-distributed income per capita. The resulting metric ranges from 0 to 1, with higher values corresponding to higher levels of development. |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sugar-sweetened beverages | Consumption of any beverage with ≥50 calories of sugar per one-cup serving, including carbonated beverages, sodas, energy drinks, fruit drinks but excluding 100% fruit and vegetable juices (g/day)                                                                                                   |
| Sweet potatoes            | Sweet potato availability per capita (g/day), a covariate                                                                                                                                                                                                                                              |
| Systolic blood pressure   | Systolic blood pressure (mm Hg)                                                                                                                                                                                                                                                                        |
| Total sugar               | Total sugar availability per capita (g/day), a covariate                                                                                                                                                                                                                                               |
| Vegetables                | Consumption of frozen, cooked, canned, or dried vegetables (including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn) (g/day)                                                                                                        |
| Vitamin A deficiency      | Proportion of children aged 0–5 years with serum retinol concentration $<0.7 \ \mu$ mol/L                                                                                                                                                                                                              |
| Whole grains              | Consumption of whole grains (bran, germ, and endosperm in their natural proportions)<br>from breakfast cereals, bread, rice, pasta, biscuits, muffins, tortillas, pancakes, and others<br>(g/day)                                                                                                      |

480

## 482 Supplementary Table 2. Omega-3 Fatty Acid g to fish g calculation¶

| Fish                                                   | DHA<br>g/3-ounce<br>fish | EPA<br>g/3-<br>ounce<br>fish | Omega-3 Fatty<br>Acids (DHA _<br>EPA) g/3-ounce<br>fish mean | Fish 3<br>ounces =<br>85.02 g | Fish (g) per<br>omega-3 Fatty<br>Acids<br>(g)=85.02 /<br>0.7264 |
|--------------------------------------------------------|--------------------------|------------------------------|--------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|
| Salmon Atlantic farmed                                 | 1.24                     | 0.59                         |                                                              |                               |                                                                 |
| Salmon Atlantic wild                                   | 1.22                     | 0.35                         |                                                              |                               |                                                                 |
| Herring Atlantic                                       | 0.94                     | 0.77                         |                                                              |                               |                                                                 |
| Sardines canned in tomato sauce drained                | 0.74                     | 0.45                         |                                                              |                               |                                                                 |
| Mackerel Atlantic                                      | 0.59                     | 0.43                         |                                                              |                               |                                                                 |
| Salmon pink canned drained                             | 0.63                     | 0.28                         |                                                              |                               |                                                                 |
| Trout rainbow wild                                     | 0.44                     | 0.40                         |                                                              |                               |                                                                 |
| Oysters eastern wild                                   | 0.23                     | 0.30                         |                                                              |                               |                                                                 |
| Sea bass                                               | 0.47                     | 0.18                         |                                                              |                               |                                                                 |
| Shrimp                                                 | 0.12                     | 0.12                         |                                                              |                               |                                                                 |
| Lobster                                                | 0.07                     | 0.10                         |                                                              |                               |                                                                 |
| Tuna light canned in water<br>drained                  | 0.17                     | 0.02                         |                                                              |                               |                                                                 |
| Tilapia                                                | 0.11                     |                              |                                                              |                               |                                                                 |
| Scallops                                               | 0.09                     | 0.06                         |                                                              |                               |                                                                 |
| Cod Pacific                                            | 0.1                      | 0.04                         |                                                              |                               |                                                                 |
| Tuna yellowfin                                         | 0.09                     | 0.01                         |                                                              |                               |                                                                 |
| Mean DHA and EPA Omega-3<br>Fatty Acids g/3 ounce fish | 0.4531                   | 0.2733                       |                                                              |                               |                                                                 |
| Calculations total Omega-3 FA g<br>to fish g           |                          |                              | 0.7264                                                       | 85.02                         | 117.043                                                         |

483 ¶ Data on omega-3 fatty acid content of varieties of fish came from the National Institutes of

484 Health Office of Dietary Supplements (USA)

485

| Foods                        | Food sub-<br>categories | kcal/serving | g/serving | kcal/g |
|------------------------------|-------------------------|--------------|-----------|--------|
| Milk (2% fat)                | 0                       | 122          | 244       | 0.5    |
| Fish                         |                         | 218          | 170       | 1.28   |
| Eggs                         |                         | 72           | 50        | 1.44   |
| Poultry                      |                         | 187          | 85        | 2.91   |
| Red meat                     |                         | 247          | 85        | 2.91   |
| Processed meat               |                         |              |           |        |
|                              | Salami                  | 222          | 59        | 3.76   |
|                              | Pastrami                | 104          | 71        | 1.46   |
|                              | Ring baloney            | 86           | 28        | 3.07   |
|                              | Pepperoni               | 94           | 100       | 0.94   |
| Average<br>processed meat    |                         | 126.5        | 64.5      | 1.96   |
| Fruits                       |                         | 97           | 162       | 0.60   |
| Vegetables                   |                         | 59           | 91        | 0.65   |
| Legumes                      |                         | 249          | 179       | 1.39   |
| Nuts                         |                         | 172          | 28        | 6.14   |
| Seeds                        |                         |              |           |        |
|                              | Flax seeds              | 55           | 10        | 5.5    |
|                              | Chia seeds              | 58           | 12        | 4.83   |
|                              | Fennel seeds            | 34.5         | 10        | 3.45   |
|                              | Hemp seeds              | 55.3         | 10        | 5.53   |
| Average of seeds             |                         | 50.7         | 10.5      | 4.83   |
| Average of nuts<br>and seeds |                         | 111.4        | 19.25     | 5.78   |
| Corn                         |                         | 99           | 103       | 0.96   |
| Potatoes                     |                         | 161          | 173       | 0.93   |
| Sweet potatoes               |                         | 115          | 151       | 0.76   |
| Rice                         |                         | 205          | 158       | 1.3    |
| Whole grains                 |                         | 120          | 52        | 2.31   |

## 487 Supplementary Table 3. Calculations of KC/d from g/day of animal and plant foods¶

¶ Source: NutritionIX app[20]

### 490• Contributors

- 491• DKC acts as guarantor; conceived and designed the study, acquired and analysed the GBD data
- 492 form IHME, interpreted the study findings, drafted the manuscript, critically reviewed and edited
- 493 the manuscript and tables, and approved the final version for publication.

494

- 495 CW designed software programs in R to format and population weighted the data,
- 496 aided with the SAS statistical analysis, critically reviewed the manuscript, and
- 497 approved the final version for publication.

498

499 The lead author (DKC) affirms the manuscript is an honest, accurate, and transparent account of

500 the study being reported; that no important aspects of the study have been omitted; and that any

501 discrepancies from the study as planned (and, if relevant, registered) have been explained.

502

503 Author access to data: As volunteer collaborators with the Institute of Health Metrics and

504 Evaluation, we received about 1.4 gigabytes of raw data on noncommunicable disease deaths and505 43 relevant risk factors.

506

## 507• Data sharing

- 508 **Data sharing statement:** The formatted database on which this analysis is based is posted on the 509 Mendeley data repository (https://data.mendeley.com/):
- 510 Cundiff, David and Wu, Chunyi (2021), "IHME GBD CVD risk factors", Mendeley Data, V2,
- 511 doi: 10.17632/g6b39zxck4.1 http://dx.doi.org/10.17632/g6b39zxck4.1

## 513 **Declaration of interests**

514 The authors declare no competing interests.

515•

| 516• | Competing interests' statement: Both authors have completed the ICMJE uniform disclosure         |
|------|--------------------------------------------------------------------------------------------------|
| 517  | form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the   |
| 518  | submitted work; no financial relationships with any organisations that might have an interest in |
| 519  | the submitted work in the previous three years; no other relationships or activities that could  |
| 520  | appear to have influenced the submitted work.                                                    |
| 521  |                                                                                                  |
| 522  | Acknowledgments                                                                                  |
| 523  | We thank Scott Glenn and Brent Bell from IHME who supplied us with the GBD risk factor           |
| 524  | exposure data.                                                                                   |
| 525  |                                                                                                  |
| 526• | Funding: This research received no grant from any funding agency in the public, commercial or    |
| 527  | not-for-profit sectors. The Bill and Melinda Gates Foundation funded the acquisition of the data |
| 528  | for this analysis by the IHME. The data were provided to the authors as volunteer collaborators  |
| 529  | with IHME.                                                                                       |
| 530  |                                                                                                  |
| 531  | Ethical approval: Studies based solely on data from IHME GBD database do not need approval       |
| 532  | from any bioethics committee or other agency.                                                    |
| 533  |                                                                                                  |
| 534  |                                                                                                  |

- 535 This report followed the STrengthening the Reporting of OBservational studies in Epidemiology
- 536 (STROBE) guidelines for reporting global health estimates.[46]

537

## 539 **References**

| 540 | 1. Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins early in  |
|-----|------------------------------------------------------------------------------------------------|
| 541 | embryogenesis. Nutrients 2010;2(5):532-50.                                                     |
| 542 | 2. Xing X, Tao F. [Advance of study on vitamin A deficiency and excess associatied with        |
| 543 | congenital heart disease]. Wei Sheng Yan Jiu 2008;37(6):754-6.                                 |
| 544 | 3. Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther 2010;17(3):e56-65.       |
| 545 | 4. Beulens JWJ, Booth SL, van den Heuvel EGHM, et al. The role of menaquinones (vitamin        |
| 546 | K2) in human health. British Journal of Nutrition 2013;110:1357–68.                            |
| 547 | https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/the-role-of-      |
| 548 | menaquinones-vitamin-k2-in-human-health/5B9F317B526629D8BA77B6435F1E5509                       |
| 549 | 5. Wang L, Song Y, Manson JE, et al. Circulating 25-Hydroxy-Vitamin D and Risk of              |
| 550 | Cardiovascular Disease: A Meta-Analysis of Prospective Studies. Circulation:                   |
| 551 | Cardiovascular Quality and Outcomes 2012;5(6):819-29.                                          |
| 552 | http://circoutcomes.ahajournals.org/content/5/6/819.abstract                                   |
| 553 | 6. Fu X, Harshman SG, Shen X, et al. Multiple Vitamin K Forms Exist in Dairy Foods. Curr Dev   |
| 554 | Nutr 2017;1(6):e000638-e38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998353/              |
| 555 | 7. Walther B, Chollet M. Vitamin K2 - Vital for Health and Wellbeing. In: Gordeladze JO, ed.   |
| 556 | Menaquinones, Bacteria, and Foods: Vitamin K2 in the Die: IntechOpen, 2017.                    |
| 557 | 8. Kamao M, Suhara Y, Tsugawa N, et al. Vitamin K content of foods and dietary vitamin K       |
| 558 | intake in Japanese young women. J Nutr Sci Vitaminol (Tokyo) 2007;53(6):464-70.                |
| 559 | https://pubmed.ncbi.nlm.nih.gov/18202532/                                                      |
| 560 | 9. Kaneki M HS, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M,       |
| 561 | Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orimo             |
| 562 | H. Japanese fermented soybean food as the major determinant of the large geographic            |
| 563 | difference in circulating levels of vitamin K2: possible implications for hip-fracture risk.   |
| 564 | Nutrition 2001;17(4):315-21. https://pubmed.ncbi.nlm.nih.gov/11369171/                         |
| 565 | 10. Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets West.     |
| 566 | Comprehensive Reviews in Food Science and Food Safety 2020;19(1):184-217.                      |
| 567 | https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12520                               |
| 568 | 11. Joseph M. Fermented Soy Products: A Guide To 12 Traditional Foods. Nutrition Advance       |
| 569 | 2020                                                                                           |
| 570 | 12. Global Burden of Disease Study 2017 (GBD 2017) Data Input Sources Tool. Seattle,           |
| 571 | WashingtonInstitute of Health Metrics and Evaluation 2019                                      |
| 572 | http://ghdx.healthdata.org/gbd-2017/data-input-sources                                         |
| 573 | 13. PROTOCOL FOR THE GLOBAL BURDEN OF DISEASES, INJURIES, AND RISK                             |
| 574 | FACTORS STUDY (GBD) Version 3.0; Issue 26. Seattle, WashingtonInstitute for                    |
| 575 | Health Metrics and Evaluation February 2018                                                    |
| 576 | http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBD_Protocol.pdf              |
| 577 | 14. Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific |
| 578 | mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global             |
| 579 | Burden of Disease Study 2016. The Lancet 2017;390 (10100):1151-210.                            |
| 580 | https://doi.org/10.1016/S0140-6736(17)32152-9                                                  |
| 581 | 15. Flaxman AD, Lee YY, Vos T, et al. An Integrative Metaregression Framework for              |
| 582 | Descriptive Epidemiology. Seattle, WA: University of Washington Press, 2015.                   |

| 583        | 16. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk        |
|------------|------------------------------------------------------------------------------------------------|
| 584        | assessment of 84 behavioural, environmental and occupational, and metabolic risks or           |
| 585        | clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the  |
| 586        | Global Burden of Disease Study 2017 The Lancet 2018;392(10159):1923-94.                        |
| 587        | https://doi.org/10.1016/S0140-6736(18)32225-6                                                  |
| 588        | 17. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk        |
| 589        | assessment of 84 behavioural, environmental and occupational, and metabolic risks or           |
| 590        | clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the  |
| 591        | Global Burden of Disease Study 2017: Table of risk factor definitions. The Lancet              |
| 592        | 2018;392(10159):1923-94.                                                                       |
| 593        | https://www.thelancet.com/action/showFullTableHTML?isHtml=true&tableId=tbl1&pii=               |
| 594        | <u>S0140-6736%2818%2932225-6</u>                                                               |
| 595        | 18. Call for Collaborators Seattle, Washington Institute for Health Metrics and Evaluation at  |
| 596        | the University of Washington 2019 2019 http://www.healthdata.org/gbd/call-for-                 |
| 597        | <u>collaborators</u>                                                                           |
| 598        | 19. Omega 3 Fatty Acids: Fact Sheet for Health Professionals. National Institutes of Health US |
| 599        | Department of Health and Human Services, 2018 The Office of Dietary Supplements.               |
| 600        | https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ Accessed                |
| 601        | September 1, 2018                                                                              |
| 602        | 20. Nutritionix Track App. Syndigo LLC 2019 https://www.nutritionix.com/                       |
| 603        | 21. Ritchie H, Roser M. Diet Compositions. Our World in Data 2017.                             |
| 604        | https://ourworldindata.org/diet-compositions                                                   |
| 605        | 22. Pu J, Romanelli R, Zhao B, et al. Dyslipidemia in special ethnic populations. Cardiol Clin |
| 606        | 2015;33(2):325-33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421090/                       |
| 607        | 23. Frank ATH, Zhao B, Jose PO, et al. Racial/ethnic differences in dyslipidemia patterns.     |
| 608        | <i>Circulation</i> 2014;129(5):570-79: [11/05].                                                |
| 609        | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212818/                                          |
| 610        | 24. Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven        |
| 611        | countries study. Am J Epidemiol 1986;124(6):903-15.                                            |
| 612        | https://academic.oup.com/aje/article-abstract/124/6/903/174332?redirectedFrom=fulltext         |
| 613        | 25. Mahmood SS, Levy D, Vasan RS, et al. The Framingham Heart Study and the epidemiology       |
| 614        | of cardiovascular disease: a historical perspective. Lancet (London, England)                  |
| 615        | 2014;383(9921):999-1008: [09/29].                                                              |
| 616        | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159698/                                          |
| 617        | 26. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with      |
| 618        | cardiovascular disease and mortality in 18 countries from five continents (PURE): a            |
| 619        | prospective cohort study. <i>The Lancet</i> 2017;390(10107):2050-62.                           |
| 620        | https://doi.org/10.1016/S0140-6736(17)32252-3                                                  |
| 621        | 27. Countries Who Eat The Most Cheese. World Atlas 2021 2021                                   |
| 622        | https://www.worldatlas.com/articles/countries-who-consume-the-most-                            |
| 623        | cheese.html#:~:text=The%20top%20cheese%20consumer%20is,kilograms%20of%20che                    |
| 624<br>625 | ese%20per%20capita.                                                                            |
| 625<br>626 | 28. Cheese Consumption Per Capita in New Zealand. Czech RepublicHelgi Library, Source:         |
| 626        | Faostat Oct. 18, 2018 <u>https://www.helgilibrary.com/indicators/cheese-consumption-per-</u>   |
| 627        | <u>capita/new-zealand/</u>                                                                     |

| 628        | 29. Khalil Z, Alam B, Akbari AR, et al. The Medical Benefits of Vitamin K(2) on Calcium-        |
|------------|-------------------------------------------------------------------------------------------------|
| 629        | Related Disorders. Nutrients 2021;13(2):691.                                                    |
| 630        | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926526/                                           |
| 631        | 30. POTATO PROCESSING AND USES. Lima, PeruInternational Potato Center 2020                      |
| 632        | https://cipotato.org/potato/potato-processing-uses/                                             |
| 633        | 31. Juul F, Vaidean G, Lin Y, et al. Ultra-Processed Foods and Incident Cardiovascular Disease  |
| 634        | in the Framingham Offspring Study. Journal of the American College of Cardiology                |
| 635        | 2021;77(12):1520-31. https://doi.org/10.1016/j.jacc.2021.01.047                                 |
| 636        | 32. Srour B, Fezeu LK, Kesse-Guyot E, et al. Ultra-processed food intake and risk of            |
| 637        | cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 2019;365:11451.          |
| 638        | https://www.bmj.com/content/bmj/365/bmj.11451.full.pdf                                          |
| 639        | 33. Monteiro CA, Moubarac JC, Cannon G, et al. Ultra-processed products are becoming            |
| 640        | dominant in the global food system. Obes Rev 2013;14 Suppl 2:21-8.                              |
| 641        | 34. Mozaffarian D, Fahimi S, Singh GM, et al. Global Sodium Consumption and Death from          |
| 642        | Cardiovascular Causes. New England Journal of Medicine 2014;371(7):624-34.                      |
| 643        | https://www.nejm.org/doi/full/10.1056/NEJMoa1304127                                             |
| 644        | 35. O'Donnell M, Mente A, Yusuf S. Sodium Intake and Cardiovascular Health. Circ Res            |
| 645        | 2015;116(6):1046-57.                                                                            |
| 646        | https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.116.303771                               |
| 647        | 36. Roseboom T, van der Meulen JHP, Osmond C, et al. Coronary heart disease after prenatal      |
| 648        | exposure to the Dutch famine, 1944-45. <i>Heart</i> 2000;84(6):595-98.                          |
| 649        | https://www.heart.bmj.com/content/84/6/595                                                      |
| 650        | 37. Dieterich CM, Felice JP, O'Sullivan E, et al. Breastfeeding and health outcomes for the     |
| 651        | mother-infant dyad. Pediatric clinics of North America 2013;60(1):31-48: [11/03].               |
| 652        | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508512/                                           |
| 653        | 38. Ambient (outdoor) air pollution. Geneva, SwitzerlandWorld Health Organization 2018          |
| 654        | https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-             |
| 655        | health                                                                                          |
| 656        | 39. Tobacco responsible for 20% of deaths from coronary heart disease Geneva,                   |
| 657        | SwitzerlandWorld Health Organization 2020 https://www.who.int/news/item/22-09-                  |
| 658        | 2020-tobacco-responsible-for-20-of-deaths-from-coronary-heart-disease                           |
| 659        | 40. Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. American     |
| 660        | Journal of Physiology-Heart and Circulatory Physiology 2008;295(2):H454-H65.                    |
| 661        | https://journals.physiology.org/doi/abs/10.1152/ajpheart.00158.2008                             |
| 662        | 41. Lanphear BP, Rauch S, Auinger P, et al. Low-level lead exposure and mortality in US adults: |
| 663        | a population-based cohort study. <i>The Lancet Public Health</i> 2018;3(4):e177-e84.            |
| 664        | https://doi.org/10.1016/S2468-2667(18)30025-2                                                   |
| 665        | 42. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic     |
| 666        | kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study         |
| 667        | 2017. The Lancet 2020;395(10225):709-33. <u>https://doi.org/10.1016/S0140-</u>                  |
| 668        | $\frac{6736(20)30045-3}{10}$                                                                    |
| 669<br>670 | 43. Ioannidis JA. The challenge of reforming nutritional epidemiologic research. <i>JAMA</i>    |
| 670        | 2018;320(10):969-70. <u>http://dx.doi.org/10.1001/jama.2018.11025</u>                           |
| 671<br>672 | 44. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195    |
| 672        | countries and territories, 1980-2017: a systematic analysis for the Global Burden of            |

- 673 Disease Study 2017. Lancet 2018;392(10159):1736-88. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32203-7/fulltext 674 675 45. Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990-2017: a 676 systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2019;393(10184):1958-72. https://doi.org/10.1016/S0140-6736(19)30041-8 677 678 46. Stevens GA, Alkema L, Black PRE, et al. Guidelines for Accurate and Transparent Health 679 Estimates Reporting: the GATHER statement. The Lancet 2016;388(10062):e19-e23. 680 https://doi.org/10.1016/S0140-6736(16)30388-9
- 681