- 1 Global Burden of Disease worldwide cohort analysis of
- ² dietary and other risk factors for cardiovascular diseases:
- ³ lipid hypothesis versus fat-soluble vitamin hypothesis
- 4 David K Cundiff (0000-0002-3206-9665), independent researcher,^{1, 3} Chunyi Wu (0000-0002-
- 5 2186-3433), Research Epidemiologist/Statistician,^{2, 3}
- 6 1 Long Beach, California, USA
- 7 2 Area Specialist Lead in Epidemiology and Statistics, Michigan Medicine, Ann Arbor,
- 8 Michigan, USA
- 9 3 Volunteer collaborators with the Institute of Health Metrics and Evaluation, Seattle,
- 10 Washington, USA
- 11 Correspondence to David K Cundiff <u>davidkcundiff@gmail.com</u> Phone: 01-562-438-8805
- 12 Word count: abstract 389, Text: 4574
- 13

15 Abstract

Background Regarding diet's contribution to cardiovascular disease, Ancel Keys, MD proposed
his "lipid hypothesis" in the 1950s. Despite USDA Dietary Guidelines endorsing the lipid
hypothesis, debate about whether dietary saturated fat and cholesterol cause cardiovascular
disease has continued.

20

21 Methods Using Global Burden of Disease (GBD 2017) data on cardiovascular disease

22 deaths/100k/year, ages 15-69 years old in male and female cohorts (CVD) and dietary and other

risk factors, we formatted and population weighted data from 195 countries. Each of the resulting

24 7846 rows of data (cohorts) represented about 1 million people, projected to total about 7.8

billion people in 2020. We correlated CVD with dietary and other risk factors worldwide and in
appropriate subsets.

27

28 Findings All foods were expressed in kilocalories/day (KC/d). We summed the KC/d of processed meat, red meat, fish, milk, poultry, eggs, and added (saturated fatty acid, 29 30 polyunsaturated fatty acid, and trans fatty acid) to create a "fat-soluble vitamins variable" 31 (FSVV) high in vitamins A, D, E, and K2 (menaquinones). Low density lipoprotein cholesterol 32 (LDL-c) correlated positively with LSVV worldwide (r=0.780, 95% CI 0.771 to 0.788, 33 p<0.0001, n=7846 cohorts), so we considered LSVV our marker variable to test the lipid 34 hypothesis as well as our fat-soluble vitamin hypothesis. The FSVV correlated negatively with 35 CVD worldwide (r= -0.329, 95% CI -0.349 to -0.309, p<0.0001), and FSVV correlated 36 positively with CVD in high FSVV cohorts (when FSVV 2567.3 KC/d: r=0.523, 95% CI 0.476 to 37 0.567, p<0.0001, n=974 cohorts). Meat and poultry negatively correlated with CVD worldwide

38	(e.g., red meat mean=50.27 KC/d, r= -0.232, 95% CI -0.253 to -0.211, p <0.0001) and positively
39	with CVD in high FSVV cohorts (e.g., red meat mean=122.2 KC/d, r=0.655, 95% CI 0.618 to
40	0.690, <i>p</i> <0.0001, n=974 cohorts).
41	
42	Interpretation: Since FSVV correlated positively with CVD in high FSVV cohorts
43	(FSVV≥567.3 KC/d, n=974 cohorts), the lipid hypothesis is supported only in GBD cohorts and
44	individuals with high FSVV intake. These data support the fat-soluble vitamins hypothesis
45	because FSVV correlated negatively with CVD worldwide, meaning the more fat-soluble
46	vitamin containing animal foods and fat for gut absorption the less the CVD. In high FSVV
47	countries, reducing meat and poultry intake by at least half would likely reduce CVD
48	significantly. This GBD cohort methodology could supplement prospective observational studies
49	of individuals to be used in developing food policy and education strategies for reducing CVD
50	and improving public health.
51	Funding: None
52	

54 **Research in context**

55 Evidence before this study

In the field of nutritional epidemiology, controversies abound. The lipid hypothesis that dietary
saturated fat and cholesterol promote cardiovascular diseases has been disputed recently with no
scientific consensus on the outcome.

59

60 Added value of this study

61 With worldwide GBD data, we created a fat-soluble vitamins variable (FSVV) with animal 62 63 foods-the primary source of fat-soluble vitamins-and fatty acids-the vehicle for absorption 64 of vitamins A, D, E, and K. We found a strong positive correlation between LDLc and FSVV 65 worldwide. Consequently, we used FSVV to test both the lipid hypothesis and our fat-soluble 66 vitamin hypothesis. CVD correlated negatively with FSVV worldwide, meaning insufficient fat-67 soluble vitamin containing animal food and added fatty acid intake associated with increased 68 CVD. In the subset with high FSVV (FSVV 2567.3, n=974 cohorts), CVD positively correlated 69 with FSVV, suggesting that excessive saturated fat and cholesterol containing food and added 70 fatty acids associates with increased CVD. 71 72 Low poultry and meat intake associated with higher CVD worldwide (i.e., mean processed 73 meat=5.3 KC/d, red meat=50.3 KC/d, poultry=44.3 KC/d). However, in high FSVV countries,

high meat and poultry intakes associated with higher CVD (i.e., with FSVV≥567.3 KC/d, mean

75 processed meat=25.0 KC/d, mean red meat=122.2 KC/d, mean poultry=130.0 KC/d, n=974

cohorts). Eggs, fish, and milk products in any amount associated with lower CVD.

77

The data support the fat-soluble vitamin hypothesis worldwide and the lipid hypothesis only in

78 Implications of all the available evidence

80 high FSVV cohorts and individuals. These findings are plausible because deficiencies of 81 vitamins A, D, E, and K (fat soluble vitamins) and fatty acids, required for gut absorption, have 82 been documented to lead to cardiovascular adverse effects. These findings are consistent with the 83 lipid hypothesis in individuals within high FSVV intake countries (e.g., Seven Country Study 84 and Framingham Heart Study). In high FSVV countries, such as in the USA and Europe, the data 85 suggest that public health strategies should endeavor to promote reduction of animal foods and 86 added fats, particularly meat and poultry consumption. In developing countries with low FSVV 87 intake, supplemental fat-soluble vitamin intake should be studied. This GBD data-based 88 methodology can enhance understanding of the complex interrelationships of dietary and other 89 risk factors with CVD and other health endpoints. 90

91 Introduction

92 The Seven Countries Study, led by Ancel Keys, an epidemiologist from the 93 University of Minnesota and the lipid hypothesis' major proponent, involved 12,763 94 males, 40–59 years of age, in seven countries, in four regions of the world (United States, Northern Europe, Southern Europe, and Japan) beginning in 1958.¹ All these 95 96 regions had relatively high animal food intake compared with the rest of the world. 97 The study concluded that dietary saturated fatty acid leading to hypercholesterolemia was a major cause of coronary artery disease (CAD). Two 98 99 concerns with the lipid hypothesis are that middle-aged males in these countries may 100 not be representative of CAD or overall cardiovascular disease epidemiology 101 worldwide and that tobacco smoking (a major risk factor for CAD) also raises serum 102 cholesterol. Randomized trial data of lipid lowering drug treatment have also been much less than consistently supportive of its efficacy in lowering CVD.² 103 104 105 The scientific validity of the Dietary Guidelines for Americans for 2015-2020, including 106 guidelines based on the lipid hypothesis, was challenged by Journalist Nina Teicholz in the 107 BMJ.³ The Center for Science in the Public Interest called for the BMJ to retract the article. The 108 peer reviewers the BMJ selected to adjudicate the far reaching dispute concluded that,

109 "Teicholz's criticisms of the methods used by Dietary Guidelines for Americans Committee are
110 within the realm of scientific debate."⁴

111

We define the fat-soluble vitamin hypothesis as, "suboptimal dietary intake of fatsoluble vitamins and added fat for gut absorption increases cardiovascular diseases."

114 Fat-soluble vitamins include vitamins A, D, E, and K (K1=phylloquinones and K2= 115 menaquinones). Vitamin A and its beta-carotene precursor are important in preventing congenital heart disease.^{5,6} Vitamin E protects the vasculature against oxidative stress, including lipid 116 117 peroxidation and the production of atherogenic forms of LDLc—a part of the pathogenesis of 118 cardiovascular disease.⁷ Vitamin K2 (menaquinones from animal foods and fermented plant 119 products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and 120 cardiovascular disease.⁸ Regarding vitamin D. a meta-analysis showed an inverse 121 association between cardiovascular disease and circulating 25(OH)-vitamin D ranging from 20 to 60 nmol/L.⁹ The four fat-soluble vitamins come primarily from 122 123 animal foods. Vitamin K2 levels are high in aged cheeses, other fermented dairy products,¹⁰ organ meats (e.g., bovine and pork liver), chicken, and egg yokes.¹¹ The 124 125 highest vitamin K2 levels per 100g serving are in fermented legumes, particularly soy (e.g., natto and miso (Japan),^{12,13} soybean Douchi, soybean Meitauza, and soybean curd 126 (China and Taiwan),¹⁴ and Cheonggukjang, a fermented soybean stew (South Korea)).¹⁵ 127 128 129 This paper will use population weighted, formatted worldwide Global Burden of Disease data 130 from 2017 (GBD 2017) from the Institute of Health Metrics and Evaluation (IHME) to assess the

131 impact of dietary and other risk factors on cardiovascular disease early deaths.

132

133 Methods

134 As volunteer collaborators with the IHME, we utilised raw GBD worldwide ecological data 135 (GBD 2017: 195 countries and 365 subnational locations (n=1120 male and female cohorts). 136 Data consisted of the rate of cardiovascular disease early deaths, metabolic risk factors, dietary 137 risk factors and covariates, and other risk factors of male and female cohorts 15-49 years old and 138 50-69 years old from each year 1990-2017. For cardiovascular disease early deaths and all risk 139 factors, we averaged the values for ages 15-49 years old together with 50-69 years old for each 140 male and female cohort for each year. Finally, for each male and female cohort, data from all 28 141 years (1990-2017) of the means of the rate of cardiovascular disease early deaths and risk factor 142 exposures were averaged using the computer software program R. We defined the rate of 143 cardiovascular disease early deaths as "deaths/100k/year of males and females 15-69 years old": 144 abbreviated CVD. 145

Food risk factors came from IHME as gram/day (g/d) consumed per capita. GBD dietary
covariate data originally came from Food and Agriculture Organization surveys of animal and
plant food commodities available per capita in countries worldwide (potatoes, corn, rice, sweet
potatoes, poultry, and eggs)—as opposed to consumed per capita.¹⁶ Supplementary Table 1 lists
the relevant GBD risk factors, covariates, and other available variables with definitions of those
risk factor exposures.¹⁷

152

GBD worldwide citations of over 12,000 surveys constituting ecological data inputs for this
analysis are available online from IHME.¹⁶ The main characteristics of IHME GBD data sources,
the protocol for the GBD study, and all risk factor values have been published by IHME GBD

data researchers and discussed elsewhere.¹⁸⁻²¹ These include detailed descriptions of categories 156 157 of input data, potentially important biases, and the methodologies of analysis. We did not clean 158 or pre-process any of the GBD data. GBD cohort risk factor and health outcome data from the 159 IHME had no missing records. Because the GBD data for the study came from IHME, no ethics 160 committee approval or institutional review board review was needed for this post hoc statistical 161 analysis. Once IHME staff time constraints due to COVID-19 data collection and modeling are 162 over, the updated GBD 2019 data with all the variables as the GBD 2017 data we used for this 163 analysis may be obtained by volunteer researchers collaborating with IHME.²² 164 165 To weigh the data according to population, internet searches (mostly Wikipedia) yielded the 166 most recent population estimates for countries and subnational states, provinces, and regions. 167 The 1120 GBD cohorts available were population weighted by a software program in R resulting 168 in an analysis dataset with 7846 population weighted cohorts representing about 7.8 billion 169 people in 2020. Each male or female cohort in the population-weighted analysis dataset 170 represented approximately 1 million people (range: < 100,000 to 1.5 million). For example, India 171 with about 1.234 billion people had 617 rows of the same data for males and 617 rows for 172 females. Maldives, with about 445,000 people, had a single row of data for males and another for 173 females. Without population-weighting the data, cohorts in India and Maldives each would have 174 had one row for males and one row for females in the analysis dataset, invalidating the analysis 175 results. World population data from the World Bank or the Organisation for Economic Co-176 operation and Development could not be used because they did not include all 195 countries or 177 any subnational data. 178

This report followed the STrengthening the Reporting of OBservational studies in Epidemiology
(STROBE) guidelines for reporting global health estimates (Supplementary Table 2).²³

181

182 Supplementary Table 3 detailes how omega-3 fatty acid g/d was converted to fish g/d using data 183 on the omega-3 fatty acid content of frequently eaten fish from the National Institutes of Health Office of Dietary Supplements (USA).²⁴ As shown in Supplementary Table 4, we converted all 184 185 of the animal and plant food data, including alcohol and sugary beverage consumption, from g/d 186 to kilocalories/day (KC/d). For the g/d to KC/d conversions, we used the Nutritionix track app,²⁵ 187 which tracks types and quantities of foods consumed. Saturated fatty acids (0-1 portion of the 188 entire diet) was not available with GBD 2017 data, so GBD saturated fatty acids risk factor data 189 from GBD 2016 was used. Polyunsaturated fatty acid and trans fatty acid GBD risk factor data 190 from 2017 (0-1 portion of the entire diet) were also utilised, but monounsaturated fat data were 191 not available. These fatty acid data expressed as 0-1 portion of the entire diet were converted to 192 KC/d by multiplying by the total KC/d available per capita for each cohort. 193 194 The principal outcome variable, CVD, was a combination variable consisting of the 195 deaths/100k/year from ischemic heart disease, stroke, hypertensive heart disease, rheumatic heart 196 disease, non-rheumatic valvular disease, subarachnoid haematoma, myocarditis, alcoholic 197 cardiomyopathy, endocarditis, aortic aneurysm, and atrial fibrillation. 198 **Statistical methods** 199

To determine the strengths of the risk factor correlations with CVD of population weighted
worldwide cohorts (n=7846 cohorts) or subgroups of cohorts (e.g., highest and lowest CVD

- 202 cohorts, etc.), we utilised Pearson correlation coefficients: r, 95% confidence intervals (CIs), and
- 203 p values.
- 204
- 205 We used SAS and SAS OnDemand for Academics software 9.4 (SAS Institute, Cary, NC) for the
- 206 data analysis.

Table 1 shows the 43 dietary and other risk factors potentially contributing to CVD. See

Supplementary Table 1 for definitions of the risk factor and co-variate variables. LDLc

207 **Results**

208

209

210 negatively correlated with CVD worldwide (r=-0.279, 95% CI -0.299 to -0.258, p<0.0001, Table 211 1), meaning the higher the LDLc mmol/L the lower the CVD. Figure 1 gives the worldwide plot 212 of LDLc versus CVD, showing widely scattered data points. 213 214 To test the fat-soluble vitamin hypothesis, we summed the KC/d of processed meat, red meat, 215 fish, milk (including all dairy products), poultry, eggs, and added fat (saturated fatty acid (SFA), 216 polyunsaturated fatty acid (PUFA), and trans fatty acid (TFA)) to create a fat-soluble vitamins 217 variable (FSVV). In determining the portion of SFA, PUFA, and TFA added in addition to the 218 SFA, PUFA, and TFA in the animal and plant foods, an adjustment factor (fatty acids * 0.46), adapted from the website "Our World in Data," differentiated the fatty acids in individual foods 219 from the added fatty acids (46% of the total).²⁶ This adjustment prevented double counting fatty 220 221 acids KC/d and allowed a reasonably accurate determination of FSVV KC/d. The FSVV 222 negatively correlated with CVD worldwide (r=-0.329, 95% CI -0.349 to -0.309, p<0.0001, Table 223 1), meaning more FSVV KC/d (processed meats KC/d + red meats KC/d + fish and seafood 224 KC/d + milk KC/d + poultry KC/d + eggs KC/d + added fatty acids) associated with reduced CVD. 225 226 227 Table 1 shows that six of the nine plant foods negatively correlated with CVD. Potatoes (KC/d

available, a covariate derived from total potato KC available/population, including highly
processed potatoes) positively correlated with CVD (r=0.050, 95% CI 0.028 to 0.073, p<0.0001).

230	Sugary beverages also correlated positively with CVD (r=0.113, 95% CI 0.091 to 0.135,
231	p<0.0001). Rice and legumes were not significantly correlated with CVD.
232	
233	Child underweight, ambient air pollution, smoking tobacco, sublingual tobacco use, kidney
234	disease, types 1 and 2 diabetes deaths, and systolic blood pressure all positively correlated with
235	CVD. Sex (male 1 and female 2) negatively correlated with CVD, meaning females had less
236	CVD risk than males.
237	
238	Table 2 is a subset of worldwide cohorts that included 500 male and female pairs of cohorts
239	(total=1000 cohorts, an arbitrary number, representing approximately 1 billion people out of
240	about 7.8 billion people worldwide) with the lowest CVD values (CVD≤293.0 compared with
241	mean CVD=543.7 worldwide).
242	
243	Table 3 shows FSVV related risk factors (processed meat, red meat, fish, milk, poultry, eggs, and
244	added (SFA+PUFA+TFA)) for the 34 countries in descending order by CVD. Japan, with the
245	lowest CVD worldwide (CVD=169.2), had the highest KC/d for fish and eggs (fish=260.5 KC/d
246	and eggs=53.2 KC/d) and otherwise relatively low values for meat, milk and poultry. The
247	countries with FSVV< 300 KC/d tended to be clustered at the high CVD end of the Table 3 (i.e.,
248	Guatemala: FSVV=231.1 and CVD=269.9, Kenya: FSVV=150.04 and CVD=270.0, Nicaragua:
249	FSVV=214.2 and CVD=282.0, Tehran (Iran): FSVV=299.7 and CVD=283.3, and Thailand:
250	FSVV=247.4 and CVD=289.9).
251	

252	Table 4 gives all the CVD risk factors for seven representative countries out of the 34 countries
253	in Tables 2 and 3 (CVD \leq 293.0). Japan not only had high FSVV but also had relatively high
254	intake of GBD risk factor plant foods (fruits, vegetables, nuts and seeds, whole grains, and
255	legumes: 350.9 KC/d). France was characteristic of 23 other low CVD countries in that intake of
256	milk products was high (France milk=95.8 KC/d and the other 23 countries' milk>68 KC/d,
257	Table 3). The low CVD of Peru might be attributed to a relatively low smoking rate (7.5%) and
258	good metabolic statistics (mean BMI=23.3 Kg/M ² , mean FPG=4.01 mmol/L, mean LDLc=2.37
259	mmol/L, mean SBP=125.2 mm/Hg). While Mexico had a lower FSVV than most low CVD
260	countries (Mexico FSVV=413.3 KC/d), like Japan it had relatively high intake of important plant
261	foods (fruits, vegetables, nuts and seeds, whole grains, and legumes: totaling 351.7 KC/d).
262	Panama, with FSVV=383.8 KC/d, had relatively high physical activity (Panama physical
263	activity=4935 METs) and low smoking rate (male/female mean smoking=7.3%). While
264	Guatemala had relatively low FSVV (FSVV=231.1 KC/d) and low GBD risk factor plant food
265	intake (fruits, vegetables, nuts and seeds, whole grains, and legumes: 249.5 KC/d), it had
266	relatively high physical activity (physical activity=6142 METs) and a low smoking rate
267	(male/female mean smoking=7.7%). Ecuador had an intermediatory FSVV (FSVV=375.4 KC/d)
268	and relatively low intake of important plant foods (fruits, vegetables, nuts and seeds, whole
269	grains, and legumes: totaling 205.3 KC/d). However, Ecuador had a low rate of smoking
270	(male/female mean smoking=8.0%). and a low SBP (mean SBP=126.9 mm/Hg).

271

Table 5 shows the statistics for countries with FSVV≥567.3 KC/d (i.e., at or above the median
FSVV of Table 2 countries). In this subset of 974 cohorts, of which 500 were included in the low

274 CVD subset (Table 2), FSVV positively correlated with CVD (r=0.523, 95% CI 0.476 to 0.567,
275 p<0.0001).

276

- Although FSVV correlated strongly with LDLc worldwide (r=0.780, 95% CI 0.771 to 0.788,
- 278 p<0.0001, n=7846 cohorts, Table 1), FSVV negatively correlated with LDLc in cohorts with

279 FSVV \geq 567.3 KC/d (r=-0.254, 95% CI -0.312 to -0.194, p<0.0001, n= 974 cohorts). Also with

 $FSVV \ge 567.3 \text{ KC/d}, \text{ LDLc and CVD negatively correlated (r=-0.254, 95\% \text{ CI } -0.312 \text{ to } -0.194, \text{ solution})}$

281 p<0.0001, n= 974 cohorts).

282

283 The average alcohol intake was 81.0 KC/d worldwide, and alcohol KC/d correlated negatively

284 with CVD (r=-0.061, 95% CI -0.083 to -0.039, p<0.0001, Table 1). However, with the higher

285 mean alcohol KC/d intake of 155.0 KC/d in cohorts with FSVV≥567.3 KC/d, alcohol was

286 positively correlated with CVD (r=0.475, 95% CI 0.425 to 0.522, p<0.0001, n=974 cohorts,

287 Table 5).

288

The only fat-soluble vitamin in the GBD database, vitamin A deficiency incidence/100k in children \leq 5 years old, correlated positively with CVD worldwide (r=0.210, 95% CI 0.189 to 0.231, p<0.0001, Table 1). In the cohorts with FSVV \geq 567.3 KC/d who had high intakes of vitamin A presumably from animal foods, vitamin A deficiency rate in children \leq 5 years old was much lower compared with worldwide (Vitamin A deficiency=9316/100k/year, Table 5 versus 23,205/100k/year, Table 1).

295

296 Dietary fiber was not significantly correlated with CVD worldwide (r=0.019, 95% CI -0.003 to 297 0.041, p=0.09, Table 1). Once it was adjusted for FSVV, alcohol, sugary beverages, and 298 potatoes; dietary fiber correlated negatively with CVD (r=-0.052, 95% CI -0.074 to -0.030, 299 p<0.0001). 300 301 Physical activity positively correlated with CVD worldwide (r=0.160, 95% CI 0.139 to 0.182, 302 p<0.0001, Table 1). Once it was adjusted for FSVV, smoking, and sex; physical activity 303 correlated negatively with CVD (r=-0.127, 95% CI -0.149 to -0.104, p<0.0001). 304 305 Discontinuing breast feeding before 6 months negatively correlated with CVD worldwide (r=-306 0.302, 95% CI -0.322 to -0.282, p<0.0001, Table 1). Once we adjusted it for FSVV, child severe 307 underweight, and socio-demographic index, discontinuing breast feeding correlated positively 308 with CVD (r=0.044, 95% CI 0.022 to 0.066, p<0.0001). In cohorts, mostly in developed 309 countries, with FSVV \geq 567.3 KC/d discontinuing breast feeding correlated positively with CVD 310 (r=0.268, 95% CI 0.208 to 0.325, p<0.0001, Table 5). 311 312 Secondhand smoking negatively correlated with CVD worldwide (r=-0.225, 95% CI -0.246 to -313 0.204, p<0.0001, Table 1). Once it was adjusted for smoking, sublingual tobacco use, household 314 smoke, ambient air pollution, and sex; secondhand smoke correlated positively with CVD 315 (r=0.048, 95% CI 0.025 to 0.070, p<0.0001). 316

- 317 The metabolic risk factors, BMI, FPG, and LDLc, all correlated negatively with CVD worldwide
- 318 (r=-0.240, 95% CI -0.261 to -0.219, p<0.0001, r=-0.178, 95% CI -0.200 to -0.157, p<0.0001, and
- 319 r=-0.279, 95% CI -0.299 to -0.258, p<0.0001, respectively, Table 1). Once they were
- 320 adjusted for FSVV, alcohol, sugary beverages, and potatoes; they all correlated positively with
- 321 CVD (r=0.028, 95% CI 0.006 to 0.050, p=0.0144, r=0.076, 95% CI 0.054 to 0.098, p<0.0001,
- 322 r=0.170, 95% CI 0.148 to 0.191, p<0.0001, respectively). In the cohorts with FSVV≥567.3
- 323 KC/d, BMI and FPG positively correlated with CVD (r=0.484, 95% CI 0.434 to 0.530, p<0.0001
- 324 and r=0.091, 95% CI 0.028 to 0.153, p=0.0046, respectively).
- 325

326 **Discussion**

327	Why, in high FSVV cohorts, LDL-c correlated negatively with FSVV (r=-0.254 95% CI -0.312
328	to -0.194, p <0.0001, n=974 cohorts) but positively correlated with LSVV worldwide (r=0.780,
329	95% CI 0.771 to 0.788, p<0.0001) is not entirely clear. However, multiple studies have
330	documented that LDLc may be influenced by genetic, racial, or ethnic differences that do not
331	necessarily correspond with risk of CVD. ^{27,28} Additionally, LDLc lowering medications in wide
332	use especially in high FSVV developed countries may also confound the relationship of LDLc
333	with CVD risk in this subset cohort analysis. Because of this anomaly with LDLc correlated with
334	FSVV in high FSVV cohorts and the strong worldwide correlation of LDLc and FSVV, we
335	considered FSVV positively correlating with CVD as supporting the lipid hypothesis and FSVV
336	negatively correlating with CVD as supporting the fat-soluble vitamin hypothesis.
337	
337 338	With this perspective, in high FSVV cohorts (FSVV≥567.3 KC/d, n=974 cohorts) where FSVV
	With this perspective, in high FSVV cohorts (FSVV \geq 567.3 KC/d, n=974 cohorts) where FSVV positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, <i>p</i> <0.0001, n=974 cohorts), this
338	
338 339	positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, p <0.0001, n=974 cohorts), this
338 339 340	positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, p <0.0001, n=974 cohorts), this analysis strongly supports the lipid hypothesis. Since there are high FSVV and low FSVV people
338339340341	positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, p <0.0001, n=974 cohorts), this analysis strongly supports the lipid hypothesis. Since there are high FSVV and low FSVV people widely distributed worldwide, prospective observational studies of individuals in high FSVV
 338 339 340 341 342 	positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, p <0.0001, n=974 cohorts), this analysis strongly supports the lipid hypothesis. Since there are high FSVV and low FSVV people widely distributed worldwide, prospective observational studies of individuals in high FSVV areas, rather than GBD cohort studies, could better demonstrate positive correlations between
 338 339 340 341 342 343 	positively correlated with CVD (r=0.523 95% CI 0.476 to 0.567, p <0.0001, n=974 cohorts), this analysis strongly supports the lipid hypothesis. Since there are high FSVV and low FSVV people widely distributed worldwide, prospective observational studies of individuals in high FSVV areas, rather than GBD cohort studies, could better demonstrate positive correlations between LDLc (or total cholesterol) and CVD. This may explain why the Seven Countries Study ¹ of

347 income countries appears to be at variance with the lipid hypothesis.³⁰ The PURE Study found

that higher saturated fat intake was associated with lower risk of stroke (quintile 5 vs quintile 1,

349	HR 0.79, (95% CI 0.64 to 0.98), p_{trend} =0.0498). Total fat, saturated fat, and unsaturated fats were
350	not significantly correlated with risk of myocardial infarction or cardiovascular disease mortality.
351	Exclusively high FSVV populations appear necessary for lipid hypothesis validation.
352	
353	This global data analysis supports the fat-soluble vitamin hypothesis or possibly another
354	mechanism that accounts for FSVV KC/d being negatively correlated with CVD worldwide (r=-
355	0.308, 95% CI -0.358 to -0.257, p<0.0001, Table 1). If the fat-soluble vitamins hypothesis is
356	valid and augmentation of fat-soluble vitamins is not widely provided, the worldwide FSVV
357	KC/d mean consumption must increase about 85% to minimise CVD (mean FSVV= 288.1 KC/d
358	worldwide (Table 1) * 1.85~531.4 KC/d (mean FSVV=531.4 KC/d, Table 2)). In the subset of
359	974 cohorts (\approx 1 billion people) with FSVV \geq 692.6 KC/d (Table 5), to minimise CVD, FSVV
360	KC/d mean consumption should be reduced on average by about 23% (692.6 mean KC/d (Table
361	5) * 0.77 \approx 531.4 mean KC/d (presumed optimal FSVV). To minimise CVD in the USA, FSVV
362	KC/d mean consumption should be reduced on average by about 36% (828.8 mean KC/d $*$
363	0.64≈531.4 mean KC/d (presumed optimal FSVV, Table 2).
364	
365	Given the negative correlations of CVD with both fish and eggs in both tables 1 and 5, the
366	reduction in FSVV might best come from meat, poultry, and added fats. Although milk
367	correlated positively with CVD in Table 5 (r=0.185, 95% CI 0.123 to 0.245, p<0.0001), this
368	probably relates to Japan and Peru having the lowest and fifth lowest CVD in Table 3 (Japan:
369	mean CVD=169.2, mean milk=29.0 KC/d, Peru: mean CVD=197.7, mean milk=15.3 KC/d). Of
370	the 34 countries in Table 3, 20 had high milk intakes (mean milk ≥68.8 KC/d versus mean milk
371	worldwide=25.0 KC/d) and these all had relatively high per capita intakes of cheese. ^{31,32}

....

372	Fermented, full-fat dairy products have high levels of vitamin K2, ^{10,11} v	which have	been found to
373	be important in preventing calcification of arteries and atherosclerosis.	33	

374

375 Regarding the Japanese low CVD and low milk KC/d (29.0 KC/d), fish and eggs might be

376 possible sources of vitamin K2. However, relative to fermented cheeses and egg yolks, fish

377 content of vitamin K2 is low to negligible.¹¹ Instead, Japanese consume high quantities of

378 vitamin K2 in the form of fermented soy products like natto and miso.^{12,13} As noted in the

introduction, people in Taiwan and South Korea (also listed among low CVD countries) also

380 have high intakes of fermented legumes.

381

382 Potatoes KC/d available positively correlated with CVD both worldwide (r=0.050, 95% CI 0.028

383 to 0.073, p< 0.0001, Table 1) and in cohorts with FSVV \geq 567.3 KC/d (r=0.109, 95% CI 0.046 to

384 0.170, p< 0.0001, Table 5). Notably, half, or more of the potatoes consumed worldwide are in

the form of highly processed food products.³⁴ Recent large prospective observational studies

have found higher consumption of ultra-processed foods associated with an increased risk of

387 cardiovascular disease incidence and CVD mortality.^{35,36} Data from 79 high- and middle-income

388 countries show that ultra-processed products dominate the food supplies of high-income

389 countries and that their consumption is now rapidly increasing in middle-income countries.³⁷

390

The finding that sodium negatively correlated with CVD worldwide (r=-0.213, 95% CI -0.234 to -0.192, p<0.0001) is contrary to an analysis of sodium intake versus cardiovascular deaths in 66 countries by Mozaffarian, et. al who attributed 9.5% of cardiovascular deaths worldwide to high sodium intake.³⁸ However, O'Donnell and colleagues found the relationship of sodium to

395	cardiovascular disease to be J shaped curve and suggested that the lowest cardiovascular risk is
396	with moderate sodium intake in the 3-5 g/d range. ³⁹ In this IHME GBD database, the Japanese
397	had one of the highest levels of dietary sodium (mean sodium excretion =6.01 g/d versus mean
398	mean sodium excretion worldwide=4.45 g/d) along with high rates of smoking (Japan mean
399	male/female smoking=26.8%, Table 4 versus mean male/female smoking worldwide=20.5%)
400	and SBP (Japan mean male/female SBP=137.6 mm/Hg, Table 4 versus mean male/female SBP
401	worldwide=133.9 mm/Hg, Table 1) but the lowest rate of CVD (mean CVD=169).
402	
403	Calcium is essential to cardiovascular function. Calcium's negative correlation with CVD (r=-
404	0.177, 95% CI -0.031 to -0.155, p<0.0033, Table 1) might have been expected.
405	
406	The positive correlation of physical activity with CVD was surprising (Table 1). However, (1)
407	countries with more CVD reducing FSVV also had less physical activity (FSVV versus physical
408	activity: r=-0.366, 95% CI: -0.385 to -0.347, p< 0.0001), (2) females had less physical activity
409	than males (mean physical activity males=5061 METs/week, mean physical activity
410	females=4356 METs/week), along with less CVD (mean CVD males=656.2, mean CVD
411	females=428.6), and (3) males smoked tobacco more than females (mean smoking (0-1)
412	males=0.339 or 33.9%, mean smoking (0-1) females=0.070 or 7%). When FSVV, sex, and
413	smoking were held constant, physical activity correlated negatively with CVD worldwide (r= -
414	0.126, 95% CI -0.148 to -0.104, p<0.0001).
415	
416	The moderately strong positive correlation of child \leq 5 years old severe underweight (>2 SD

417 below the mean for height) with CVD worldwide (r=0.306, 95% CI 0.285 to 0.325, p<0.0001,

418	Table 1) suggests a relationship of infant/child malnutrition with later CVD. Babies surviving the
419	so called "Dutch famine" toward the end of the second world war (1944-45) have been shown to
420	have higher subsequent heart disease than earlier or later cohorts in Holland. ⁴⁰ The worldwide
421	average rate of severely underweight babies and children from 1990 – 2017 was 18.5% (Table
422	1), suggesting that in utero and early infancy severe malnutrition may subsequently contribute
423	substantially to CVD, especially in developing countries.
424	
425	Prematurely stopping breast feeding positively correlated with CVD in the countries with animal
426	food plus added fatty acids \geq 567.3 KC/d (r=0.268 95% CI: 0.208 to 0.325, p=0.0027, Table 5).
427	In those countries, prematurely stopping breast feeding was quite common relative to developing
428	countries (range (0-1): 0.129 to 0.268, mean=0.196). A review of observational studies, in
429	developed countries, of breast feeding related to metabolic risk factors for CVD suggested that
430	breast feeding was associated with increased insulin sensitivity and decreased systolic blood
431	pressure in later life. Breast feeding also has metabolic benefits for the mother. ⁴¹
432	
433	According to The World Health Organisation, ambient air pollution (particulate
434	matter \leq 2.5 micrometers diameter (PM _{2.5})) causes cardiovascular and respiratory diseases and
435	cancers. ⁴² The WHO considers $\geq 10 \ \mu g/m^3$ of PM _{2.5} particles a health hazard. In this analysis,
436	the ambient air pollution (PM $_{2.5}$) in the countries with FSVV \geq 567.3 KC/d averaged 12.7
437	μ g/m ³ and mean CVD=273.7 from 1990 to 2017 (Table 5). Worldwide, comparable numbers
438	were mean CVD=543.7 and air pollution (PM $_{2.5}$) mean=44.7 μ g/m ³ .
439 440	
441	These IHME GBD data support the link of smoking tobacco to CVD (r=0.298, 95% CI
442	0.278 to 0.318, p<0.0001, Table 1). However, given the multiple dietary and other

443	contributors, the CVD population attributable risk for smoking is probably far below
444	the World Health Organization estimate that tobacco accounts for 20% of coronary
445	artery disease mortality. ⁴³ The mean incidence of smoking worldwide=20.5% (Table
446	1). The mean incidence in the 34 countries with the lowest CVD= 23.3% (n=974
447	cohorts). Smoking is clearly a major risk factor for CVD, but these data suggest that
448	diet is more influential in population attributable risk for CVD.
449	
450	The positive correlation of blood lead levels with CVD worldwide (r=0.180, 95% CI 0.159 to
451	0.201, p<0.0001, Table 1) is consistent with reports that lead toxicity leads to hypertension. ⁴⁴
452	Also, environmental lead exposure has been linked with all-cause mortality,
453	cardiovascular disease mortality, and ischaemic heart disease mortality in the US. 45
454	
455	This analysis showed that kidney disease correlated positively with CVD (r=0.194, 95% CI
456	0.173 to 0.215, p<0.0001, Table 1). A systematic GBD review of kidney disease revealed that
457	chronic kidney disease resulted in 1.2 million deaths in 2017, of which a large portion were from
458	CVD. ⁴⁶ Other CVD risk factors may also lead to kidney disease (e.g., systolic hypertension,
459	types 1 and 2 diabetes).
460	
461	Influential Stanford University meta researcher, Dr. John Ioannidis, called for radical reform of
462	all nutritional epidemiology methodologies used to influence food/agricultural policies and to
463	produce dietary guidelines for clinicians and the public. ⁴⁷ Currently, no methodology for relating

23

cardiovascular disease events to food intake and other risk factors has been generally accepted as

rigorous, replicable, and scientifically valid. This study analysing worldwide data for dietary and

464

other risk factors for cardiovascular disease attempts to answer Dr. Ioannidis' call for a more
rigorous and reliable nutritional epidemiology methodology to base public health policies and
individual dietary guidance.

469

470 Limitations

Our study was subject to all the limitations discussed in previous GBD publications.^{48,49} These 471 472 included gaps, biases, and inconsistencies in data sources as well as limitations in the methods of 473 data processing and estimation. Having comprehensive data on dietary inputs is key to more 474 accurate and reliable analyses. The GBD data on animal foods, plant foods, alcohol, sugary 475 beverages, and fatty acids were not comprehensive and comprised only 1191.4 KC/d per person 476 on average worldwide. Subnational data on all risk factors were available on only four countries. 477 Because the data formatting and statistical methodology were new, this was necessarily a post 478 hoc analysis and no pre-analysis protocol was possible. This GBD data analysis should be 479 repeated with the most recently released GBD 2019 data when it becomes available to volunteer 480 collaborators.

481

482 Generalisability

This new methodology presented for probing the GBD raw data to find correlations between dietary and other risk factors and health outcomes (e.g., CVD) can be applied to any of the risk factors and health outcomes available with the new IHME GBD 2019 data.

487 Conclusion

488	The lipid hypothesis (e.g., SFA from animal foods causing CVD) may well explain the strong
489	positive correlation of FSVV with CVD in high FSVV cohorts but not worldwide. Global data
490	analysis supports the fat-soluble vitamin hypothesis, because FSVV is negatively correlated with
491	CVD worldwide. Defining the optimal FSVV that will reduce CVD risk while not increasing
492	other diseases (e.g., cancers and obesity) will require more research. Supplements of fat-soluble
493	vitamins to reduce the FSVV required to minimise CVD should be studied, especially in
494	developing countries with less access to animal foods. Reducing FSVV KC/d would also
495	decrease the environmental impacts of animal foods. The findings for the non-dietary risk factors
496	are all consistent with the medical literature except for sodium's negative correlation with CVD.
497	
498	This methodology of analysing IHME GBD data should augment systematic literature reviews in
499	developing food and other risk factor policy and education strategies for forming policy
500	recommendations, clinical practice guidelines, and public health recommendations. GBD data
501	analysis can bring more rigor, precision, and consensus to the field of population health,
502	especially in the areas of dietary risk factors.
503	
504	

504

505 **Table 1. Dietary and other risks related to CVD worldwide (n=7846 cohorts)** 506

CVD and CVD risk factors	Mean	SD	Min	Max	r	95% CI low	95% CI high	р
CVD/100k/year ages 15-69	543.66	288.01	73.47	1844				
CVD/100k/year ages 15-69 mean m/f	543.69	246.13	135.46	1727	0.855	0.849	0.860	<.0001
LDL cholesterol mmol/L	2.35	0.40	1.27	3.25	-0.279	-0.299	-0.258	<.0001
Fat-soluble vitamin variable (FSVV)	285.36	193.31	58.78	932.18	-0.329	-0.349	-0.309	<.0001
Processed meat KC/d	5.33	9.72	0.20	68.77	-0.204	-0.226	-0.183	<.0001
Red meat KC/d	50.27	45.13	3.21	235.95	-0.232	-0.253	-0.211	<.0001
Fish KC/d	9.99	36.52	0.40	370.36	-0.203	-0.224	-0.181	<.0001
Milk KC/d	25.04	27.05	1.06	146.82	-0.192	-0.214	-0.171	<.0001
Poultry KC/d available	44.32	50.08	1.06	411.87	-0.289	-0.309	-0.268	<.0001
Eggs KC/d available	19.36	14.71	0.79	69.64	-0.390	-0.408	-0.371	<.0001
Added Saturated fatty acids KC/d	87.67	29.41	32.56	221.29	-0.239	-0.260	-0.219	<.0001
Added PUFAs KC/d	37.30	33.78	1.35	175.40	-0.316	-0.336	-0.296	<.0001
Added Trans fatty acids KC/d	6.09	6.28	0.91	35.77	-0.104	-0.126	-0.082	<.0001
Alcohol KC/d	81.03	57.33	4.25	429.81	-0.061	-0.083	-0.039	<.0001
Sugary beverages KC/d	298.36	152.38	72.91	1472.00	0.113	0.091	0.135	<.0001
Potatoes KC/d available	84.04	74.60	3.07	533.88	0.050	0.028	0.073	<.0001
Corn KC/d available	34.72	48.28	0.16	305.17	-0.062	-0.084	-0.040	<.0001
Fruits KC/d	40.21	22.50	3.58	161.39	-0.355	-0.374	-0.336	<.0001
Vegetables KC/d	79.76	43.12	9.48	304.17	-0.107	-0.128	-0.085	<.0001
Nuts and seeds KC/d	8.41	8.36	0.05	102.99	-0.277	-0.297	-0.256	<.0001
Whole grains KC/d	55.65	30.93	1.14	235.10	-0.194	-0.216	-0.173	<.0001
Legumes KC/d	51.74	32.23	0.51	194.70	-0.024	-0.046	-0.002	0.0319
Rice KC/d available	141.86	116.34	1.42	461.80	0.007	-0.015	0.029	0.5417
Sweet potatoes KC/d available	22.76	35.95	0.02	364.74	-0.167	-0.189	-0.146	<.0001
Total KC/d available	2574	418	1579	3898	-0.203	-0.224	-0.181	<.0001
Vit A deficiency children/100k/yr	23205	10939	1267	50969	0.210	0.189	0.231	<.0001
Sodium g/d	4.45	2.34	1.33	9.21	-0.214	-0.235	-0.193	<.0001
Calcium g/d	0.301	0.179	0.081	1.044	-0.169	-0.191	-0.148	<.0001
Dietary fiber g/d	9.21	3.15	2.72	22.68	0.019	-0.003	0.041	0.0932
Physical activity METs	4714	1368	1609	7669	0.160	0.139	0.182	<.0001
Child underweight >2SD	0.186	0.171	0.004	0.535	0.302	0.282	0.322	<.0001
Stop breast feeding <6 months	0.119	0.055	0.016	0.242	-0.302	-0.322	-0.282	<.0001
Ambient pollution PM 0.25	44.73	26.46	4.38	95.54	0.153	0.131	0.174	<.0001
Smoking rate (0-1)	0.205	0.176	0.003	0.640	0.297	0.277	0.317	<.0001
Secondhand smoking (0-1)	0.376	0.155	0.164	0.796	-0.225	-0.246	-0.204	<.0001
Sublingual tobacco rate (0-1)	0.068	0.095	0.001	0.419	0.284	0.264	0.304	<.0001
Blood lead level mcg/dl	5.01	1.01	1.22	8.37	0.180	0.159	0.201	<.0001
Household air pollution (0-1)	0.482	0.325	0.000	0.996	0.179	0.158	0.201	<.0001
Kidney disease stage III (0-1)	0.056	0.028	0.015	0.154	0.194	0.173	0.215	<.0001
Type 1 DM early deaths	10.37	9.39	0.55	112.49	0.340	0.320	0.359	<.0001
Type 2 DM early deaths	17.50	15.65	0.63	269.67	0.227	0.205	0.247	<.0001
BMI kg/M ²	21.77	2.29	17.95	29.39	-0.240	-0.261	-0.219	<.0001
Fasting plasma glucose mmol/L	4.30	0.35	3.32	5.58	-0.178	-0.200	-0.157	<.0001
Systolic BP mm Hg	133.91	4.32	123.41	147.89	0.195	0.174	0.216	<.0001
Socio-demographic index (0-1)	0.543	0.174	0.112	0.896	-0.337	-0.357	-0.317	<.0001
Sex male 1 and female 2	1.50	0.50	1.00	2.00	-0.395	-0.414	-0.376	<.0001

507 Table 2. CVD lowest and highest 1000 cohorts (~1 billion people)

	CVD lowest ≈1 billion people (n=1000 cohorts)			CVD highest ≈1 billion people (n=1000 cohorts)				
CVD and risk factors	Mean	SD	Min	Max	Mean	SD	Min	Max
Cardiovascular Disease deaths/100k/year	227.81	95.25	73.47	422.36	1045	356.90	430.20	1844
CVD male/female mean	227.81	42.52	135.46	292.97	1045	200.47	802.24	1727
LDL cholesterol mmol/L	2.808	0.256	1.598	3.247	2.376	0.380	1.35	3.20
Fat-soluble vitamin variable (FSVV)	531.4	180.20	143.63	912.69	235.66	99.68	80.53	503.98
Processed meat KC/d	15.30	12.20	0.61	61.09	3.70	4.95	0.22	18.12
Red meat KC/d	90.72	48.06	12.03	235.95	36.82	29.40	7.07	172.00
Fish KC/d	49.54	92.63	2.85	370.36	4.56	2.69	0.78	12.97
Milk KC/d	55.64	35.39	7.70	146.82	25.61	16.78	1.06	75.87
Poultry KC/d available	90.44	47.27	4.74	240.56	30.23	22.39	2.78	100.04
Eggs KC/d available	36.63	11.25	4.77	69.64	14.73	13.63	1.51	46.81
Added Saturated fatty acids KC/d	113.40	36.53	59.52	221.29	87.22	24.03	33.03	205.85
Added PUFAs KC/d	69.80	35.78	15.77	175.40	25.48	14.54	2.73	84.90
Added Trans fatty acids KC/d	9.91	9.25	1.65	34.90 296.70	7.31	8.62	1.21	35.77 340.37
Alcohol KC/d Sugary beverages KC/d	119.72 320.29	66.67 251.94	4.25 72.91	296.70 1472.00	45.83 303.30	46.24 63.68	5.77 180.80	685.42
Potatoes KC/d available	81.34	51.14	9.50	1472.00	98.34	96.77	3.94	533.88
Corn KC/d available	48.19	75.26	1.79	287.14	31.77	37.30	0.20	305.17
Fruits KC/d	64.84	16.49	23.05	128.61	31.23	13.93	3.58	70.11
Vegetables KC/d	108.02	44.60	9.48	214.26	83.83	56.67	14.43	198.51
Nuts and seeds KC/d	15.90	10.50	0.66	39.80	4.81	2.91	0.05	17.91
Whole grains KC/d	64.71	38.62	1.61	173.46	28.30	33.01	1.14	156.75
Legumes KC/d	47.88	25.99	2.95	133.26	31.55	18.93	0.51	103.17
Rice KC/d available	78.10	97.95	7.58	349.08	75.93	107.38	1.42	461.80
Sweet potatoes KC/d available	3.92	5.14	0.04	27.51	5.84	20.20	0.02	364.74
-								
Total KC/d available	2972	409	1948	3572	2627	409	1579	3254
Vit A deficiency children/100k/yr	14181	8723	1400	44100	20559	11395	1722	50969
Sodium g/d	3.92	1.22	1.33	6.70	3.30	0.76	1.33	5.96
Calcium g/d	0.506	0.189	0.183	1.044	0.321	0.150	0.089	0.792
Dietary fiber g/d	10.58	2.90	5.15	17.95	9.53	3.32	3.87	18.83
Physical activity METs	3802	1164	2162	7607	4273	1497	1838	7607
Child underweight >2SD	0.038	0.043	0.004	0.242	0.186	0.141	0.011	0.411
Stop breast feeding <6 mo	0.176	0.032	0.071	0.218	0.116	0.044	0.036	0.208
Ambient pollution PM 0.25	17.60	8.27	4.38	38.42	40.81	22.19	7.90	77.69
Smoking rate (0-1)	0.217	0.121	0.012	0.448	0.212	0.190	0.005	0.627
Secondhand smoking (0-1)	0.328	0.097	0.164	0.569	0.397	0.158	0.164	0.780
Sublingual tobacco rate (0-1)	0.010	0.015	0.001	0.111	0.060	0.072	0.001	0.238
Blood lead level mcg/dl	4.08	1.00	1.22	6.85	4.74	1.28	1.92	8.37
0								
Household air pollution (0-1)	0.103	0.182	0.001	0.839	0.404	0.353	0.002	0.993
Kidney disease stage III (0-1)	0.042	0.020	0.015	0.111	0.078	0.024	0.035	0.139
Type 1 DM early deaths	4.79	3.88	0.59	20.65	16.38	15.31	2.62	112.49
Type 2 DM early deaths	15.69	18.23	0.75	87.92	23.65	24.88	0.89	269.67
BMI kg/M ²	23.74	1.60	19.61	27.06	22.46	2.15	17.95	26.08
Fasting plasma glucose mmol/L	4.56	0.25	3.54	5.12	4.28	0.42	3.38	5.18
Systolic BP mm Hg	133.26	4.41	123.41	142.15	136.86	4.39	124.59	147.89
Socio-demographic index (0-1)	0.757	0.125	0.351	0.896	0.497	0.183	0.186	0.824
Sex male 1 and female 2	1.50	0.50	1.00	2.00	1.50	0.50	1.00	2.00

Jub Table 5. C v D related to fat-soluble vitalini related risk factors in low C v D countries	508	Table 3. CVD related to fat-soluble vitamin related risk factors in low CVD countries
--	-----	---

CVD lowest Countries	n co-	CVD ascending	FSVV	Processed	Red	Fish	Milk	Poultry	Eggs	Added SFA
(n=1000)	horts	order		meat	meat					+PUFA
cohorts),	nons	oruci								+TOPA +TFA
Table 3										11171
Japan	158	169.19	618.69	19.19	58.72	260.54	29.04	63.93	52.23	135.04
France	64	174.00	644.78	13.59	135.07	11.17	95.75	99.86	43.30	246.04
Switzerland	8	175.04	558.41	11.50	129.01	6.75	110.90	55.57	31.20	213.47
Andorra	2	185.55	763.18	16.58	150.84	16.44	99.23	189.92	47.55	242.62
Peru	32	197.74	183.12	1.01	16.92	3.82	15.34	35.04	12.03	98.95
Spain	46	206.25	597.93	11.65	139.92	10.28	82.99	113.88	43.35	195.86
Italy	60	206.44	587.57	15.78	126.36	9.15	89.54	84.16	36.39	226.20
Iceland	2	206.51	609.62	11.97	112.73	11.67	85.37	63.57	29.51	294.81
Australia	24	208.03	698.26	9.79	164.14	14.15	97.05	153.33	24.92	234.89
Canada	36	222.11	624.98	25.31	126.28	18.48	76.13	147.46	34.94	196.39
Israel South Korea	8	228.32	662.00	5.95	59.50	15.35	68.79	240.56	40.54	231.30
	50 12	232.63 235.98	357.23 636.39	5.97 12.28	82.88 122.36	5.96 11.19	15.72 93.44	43.10 85.00	26.89 33.28	176.71 278.86
Belgium Netherlands	12	235.98	629.56	12.28	122.36	8.66	114.16	72.70	41.67	243.59
Taiwan	24	230.01	587.36	3.01	106.58	9.15	15.95	132.38	34.87	243.39
Mexico	108	237.57	413.25	11.29	63.03	8.69	34.29	85.85	39.92	170.19
Panama	4	244.31	383.83	2.75	61.32	9.44	20.72	95.43	12.96	181.23
Sweden	10	247.21	563.83	29.31	119.77	11.80	124.13	45.42	35.04	198.37
New Zealand non Mauri	4	247.32	699.81	9.31	158.86	11.56	88.74	128.14	40.24	262.95
Norway	32	248.72	605.30	48.14	109.37	10.10	100.96	41.65	31.52	263.56
England	20	253.09	534.56	19.21	96.29	10.70	87.80	89.30	32.90	198.36
Costa Rica	4	260.73	408.42	2.63	51.74	8.12	46.55	78.05	28.17	193.14
Luxembourg	2	262.53	578.00	14.65	163.17	11.79	91.99	71.48	27.60	197.32
Chile	18	267.50	404.12	19.11	90.33	9.65	31.93	97.29	19.70	136.10
Guatemala	16	269.85	231.05	1.89	20.05	5.28	13.32	53.94	30.46	106.12
Kenya	12	270.04	150.04	1.41	25.83	3.09	18.89	4.74	4.77	91.31
Ecuador	16	270.64	375.35	6.87	56.88	7.34	35.51	59.92	14.66	194.16
USA	94	274.00	825.54	36.45	136.35	15.79	90.90	190.90	41.10	314.05
Denmark	6	275.10	600.48	14.46	137.75	13.38	98.01	74.42	45.96	216.51
Austria	8	277.67	621.00	8.95	194.65	9.26	98.68	70.00	39.96	199.50
Portugal	10	278.50	524.81	5.16	124.77	8.77	79.43	94.26	24.18	188.25
Nicaragua	6	282.04	214.24	1.52	14.93	4.07	20.66	41.76	17.41	113.90
Tehran (Iran)	16	283.29	299.65	1.23	22.63	5.36	19.23	65.90	18.89	166.41
Thailand	70	289.91	247.43	0.70	32.01	6.95	7.85	57.07	31.10	111.75
Total cohorts	1000									

509

511 Table 4. Representative examples of low CVD countries (n=1000 cohorts) including all risk

512 factors

CVD and CVD risk factors	Japan	France	Peru	Mexico	Panama	Guatemala	Ecuador
n cohorts	158	64	32	108	4	16	16
CVD/100k/year ages 15-69	169.19	174.00	197.74	237.55	244.31	269.85	270.64
Fat-soluble vitamin variable	618.69	644.78	183.12	413.25	383.83	231.05	375.35
LDL cholesterol mmol/L	2.81	3.08	2.37	2.59	2.61	2.20	2.46
Processed meat KC/d	19.19	13.59	1.01	11.29	2.75	1.89	6.87
Red meat KC/d	58.72	135.07	16.92	63.03	61.32	20.05	56.88
Fish KC/d	260.54	11.17	3.82	8.69	9.44	5.28	7.34
Milk KC/d	29.04	95.75	15.34	34.29	20.72	13.32	35.51
Poultry KC/d available	63.93	99.86	35.04	85.85	95.43	53.94	59.92
Eggs KC/d available	52.23	43.30	12.03	39.92	12.96	30.46	14.66
Added Saturated fatty acids KC/d	77.73	172.79	68.34	89.13	12.90	60.62	133.54
Added PUFAs KC/d	53.78	67.38	24.47	52.14	72.29	41.90	51.69
Added Trans fatty acids KC/d	3.54	5.88	6.13	28.92	7.62	3.60	8.93
Alcohol KC/d	183.16	118.64	55.79	58.39	27.44	28.79	59.77
Sugary beverages KC/d	94.78	323.88	284.76	847.81	921.54	964.08	283.57
Potatoes KC/d available	42.29	126.40	142.55	25.79	32.01	16.68	67.56
Corn KC/d available	27.58	23.85	33.54	242.41	50.86	206.19	11.76
Fruits KC/d	44.43	23.83 59.56	52.27	65.68	52.92	39.61	107.07
Vegetables KC/d	149.32	101.07	46.17	60.72	27.81	54.98	31.79
0						12.72	
Nuts and seeds KC/d	9.26	16.94	1.02	6.27	1.92		0.68
Whole grains KC/d	76.05	16.16	58.94	142.06	83.46	68.32	43.78
Legumes KC/d	71.84	17.07	45.78	76.99	38.35	73.84	21.99
Rice KC/d available	124.52	12.09	93.09	14.07	141.66	13.46	118.02
Sweet potatoes KC/d available	12.09	0.04	7.94	0.69	8.67	1.71	0.49
Total KC/d available	2590	3406	1948	3015	2288	2330	2273
Vit A deficiency children/100k/yr	8151	1643	19372	23939	11463	17947	20185
Sodium g/d	6.01	3.21	3.14	2.62	2.97	1.83	3.16
Calcium g/d	0.425	0.707	0.299	0.370	0.293	0.220	0.314
Dietary fiber g/d	13.43	8.68	9.44	15.51	5.90	12.54	6.25
Physical activity METs	3460	2795	3774	3833	4935	6142	3740
Child underweight >2SD	0.045	0.012	0.069	0.050	0.042	0.193	0.096
Stop breast feeding <6 months	0.171	0.208	0.108	0.171	0.140	0.087	0.130
Ambient pollution PM 0.25	13.10	13.87	28.99	24.28	13.24	28.61	17.86
Smoking rate (0-1)	0.268	0.289	0.075	0.149	0.073	0.077	0.080
Secondhand smoking (0-1)	0.353	0.320	0.238	0.344	0.178	0.224	0.206
Sublingual tobacco rate (0-1)	0.012	0.003	0.004	0.002	0.002	0.001	0.004
Blood lead level mcg/dl	2.65	3.86	5.17	5.34	4.80	5.89	4.51
Household air pollution (0-1)	0.002	0.010	0.454	0.213	0.193	0.627	0.080
Kidney disease stage III (0-1)	0.038	0.028	0.050	0.078	0.068	0.075	0.055
Type 1 DM early deaths	1.25	2.91	4.84	12.64	7.71	12.03	6.92
Type 2 DM early deaths	2.03	3.70	11.37	60.97	18.07	40.38	27.44
BMI kg/M ²	21.89	23.47	23.29	24.82	22.98	21.97	25.04
Fasting plasma glucose mmol/L	4.77	4.46	4.01	4.53	4.31	4.12	4.26
Systolic BP mm Hg	137.56	135.11	125.19	130.31	133.66	131.15	126.85
Socio-demographic index	0.828	0.822	0.590	0.608	0.644	0.431	0.575
Likely mechanism of low CVD	FSVV	FSVV	Low	FSVV	FSVV PA	PA Low	FSVV
	Plants		smoking	Plants	Low	smoking	Low
			metabolic		smoking		smoking

513

515 Table 5. CVD and risk factors for countries with FSVV ≥567.27 KC/d (n=974 cohorts)

CVD and CVD risk factors	Mean	SD	Min	Max	r	95% CI low	95% CI high	р
Cardiovascular deaths/100k/year ages 15-69	273.72	143.95	73.47	913.18				
LDL cholesterol mmol/L	2.91	0.14	2.36	3.20	-0.254	-0.312	-0.194	<.0001
Fat-soluble vitamin variable	692.58	111.88	527.67	932.18	0.523	0.476	0.567	<.0001
Processed meat KC/d	25.01	15.30	2.16	68.77	0.325	0.408	0.507	<.0001
Red meat KC/d	122.16	41.41	43.65	235.95	0.655	0.618	0.690	<.0001
Fish KC/d	49.08	89.24	7.60	370.36	-0.259	-0.317	-0.199	<.0001
Milk KC/d	78.58	26.14	14.60	146.82	0.185	0.123	0.245	<.0001
Poultry KC/d available	129.97	60.21	41.65	411.87	0.366	0.123	0.245	<.0001
Eggs KC/d available	40.80	7.25	14.59	69.64	-0.242	-0.301	-0.182	<.0001
Saturated fatty acids KC/d	299.88	66.83	129.39	481.07	0.193	0.132	0.253	<.0001
PUFAs KC/d	299.88	83.06	80.53	381.31	0.193	0.132	0.233	<.0001
		17.82	4.23	66.89	0.382	0.327	0.433	<.0001
Trans fatty acids KC/d Alcohol KC/d	25.17							
	155.02	65.23	11.92	429.81	0.475	0.425	0.522	<.0001
Sugary beverages KC/d	231.66	121.92	72.91	769.89	0.332	0.274	0.386	<.0001
Potatoes KC/d available	106.39	40.47	9.50	224.86	0.109	0.046	0.170	0.00
Corn KC/d available	19.45	9.41	1.79	47.39	0.086	0.024	0.148	0.01
Fruits KC/d	66.91	15.93	34.83	161.39	-0.014	-0.077	0.049	0.66
Vegetables KC/d	117.42	34.24	42.27	304.17	-0.127	-0.188	-0.064	<.0001
Nuts and seeds KC/d	21.98	8.91	0.85	102.99	0.177	0.115	0.237	<.0001
Whole grains KC/d	52.11	20.93	1.61	92.45	0.121	0.059	0.183	0.00
Legumes KC/d	40.76	25.29	2.95	133.26	0.040	-0.023	0.102	0.21
Rice KC/d available	38.82	46.75	6.50	179.63	-0.138	-0.199	-0.076	<.0001
Sweet potatoes KC/d available	3.63	3.99	0.04	17.63	-0.128	-0.189	-0.066	<.0001
Total KC/d available	3219	292	2516	3898	0.249	0.189	0.307	<.0001
Vit A deficiency children/100k/yr	9316	6877	1400	28081	-0.105	-0.166	-0.042	0.00
Sodium g/d	3.98	0.96	2.22	6.70	-0.040	-0.102	0.023	0.21
Calcium g/d	0.645	0.129	0.353	1.044	0.396	0.342	0.448	<.0001
Dietary fiber g/d	10.62	1.75	6.30	18.15	0.241	0.181	0.299	<.0001
Physical activity METs	3523	765	1781	5494	0.578	0.535	0.618	<.0001
Child underweight >2SD	0.015	0.013	0.004	0.058	-0.197	-0.257	-0.136	<.0001
Stop breast feeding <6 months	0.196	0.017	0.129	0.219	0.268	0.208	0.325	<.0001
Ambient pollution PM 0.25	12.67	7.13	4.38	87.22	0.005	-0.058	0.068	0.87
Smoking rate (0-1)	0.233	0.084	0.021	0.444	0.233	0.172	0.291	<.0001
Secondhand smoking (0-1)	0.309	0.070	0.201	0.586	-0.306	-0.362	-0.248	<.0001
Sublingual tobacco rate (0-1)	0.013	0.020	0.001	0.125	0.579	0.536	0.620	<.0001
Blood lead level mcg/dl	3.93	0.77	1.22	5.72	0.451	0.400	0.500	<.0001
Household air pollution (0-1)	0.012	0.026	0.000	0.201	-0.011	-0.073	0.052	0.74
Kidney disease stage III (0-1)	0.036	0.012	0.016	0.109	-0.028	-0.090	0.035	0.39
Type 1 DM early deaths	3.93	2.67	0.55	15.97	0.573	0.529	0.613	<.0001
Type 2 DM early deaths	9.54	7.52	0.75	54.22	0.622	0.582	0.659	<.0001
BMI kg/M ²	24.87	1.78	21.40	29.39	0.484	0.302	0.530	<.0001
Fasting plasma glucose mmol/L	4.73	0.23	3.84	5.58	0.091	0.028	0.153	0.00
Systolic BP mm Hg	133.639	4.362	126.863	142.147	-0.148	-0.209	-0.086	<.0001
	0.838	0.053	0.592	0.896	-0.052	-0.207	0.011	0.11
Socio-demographic index (0-1)								

516 517

518 Figure 1. LDLc versus CVD scatter plot

520 Supplementary Table 1. Definitions of GBD risk factors and covariates related to CVD

Variables	Definition
Alcohol	Any alcohol consumption (g/day)
Ambient particulate matter	Annual average daily exposure to outdoor air concentrations of particulate matter with an
pollution	aerodynamic diameter of $\leq 2.5 \ \mu g/m^3$ (PM _{2.5})
Body-mass index	Body mass index (BMI) (kg/m ²)—the dependent variable of interest
Chewing tobacco	Current use of any chewing tobacco product
Child underweight	Proportion of children -3 SD to -2 SD of the WHO 2006 standard weight-for-age curve (0-1)
Corn	Corn availability per capita (g/day), a covariate
Discontinued breast feeding	Proportion of children aged 6-23 months who do not receive any breast milk
Eggs	Eggs availability per capita (g/day) a covariate
Fasting plasma glucose	Fasting plasma glucose (mmol/L)
Fish	This variable expressed in g/day was derived by determining the weight of fish in g corresponding to 1 g of omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) by averaging the fish g per 1 g of omega-3 fatty acids 20 species of fish= 117.04 g/day fish/1 g/day omega-3 fatty acids (Supplementary Table 3)
Fruits	Consumption of fruits (includes fresh, frozen, cooked, canned, or dried fruit but excludes fruit juices and salted or pickled fruits) (g/day)
Household air pollution from solid fuels	Individual exposure to PM 2.5 due to use of solid cooking fuel
Kidney function impaired	Proportion of the population with ACR >30 mg/g or GFR <60 mL/min/1.73 m ² , excluding end-stage renal disease
Kilocalories available /day	The mean number of kilocalories per capita available per day to people in each location (kcal/day available), a covariate
LDL cholesterol	Serum low-density lipoprotein cholesterol (mmol/L)
Lead exposure	Blood lead levels in $\mu g/dL$ of blood, bone lead levels in $\mu g/g$ of bone
Legumes	Consumption of beans, lentils, pulses (g/day)
Milk	Consumption of milk including non-fat, low-fat, and full-fat milk but excluding soy milk
	and other plant derivatives (g/day)
Nuts and seeds	Consumption of nuts and seeds (g/day)
Physical activity	Average weekly physical activity at work, home, transport-related and recreational measured by MET min per week. Less than 3000 METs per week constitutes low physical activity.
Poultry	Poultry availability per capita (g/day), a covariate
Potatoes	Potatoes availability per capita (g/day), a covariate
Processed meat	Consumption of any processed meat (includes meat preserved by smoking, curing, salting, or addition of chemical preservatives, including bacon, salami, sausages, or deli or luncheon meats like ham, turkey, and pastrami (g/day)
Red meat	Consumption of red meat (includes beef, pork, lamb, and goat but excludes poultry, fish, eggs, and all processed meats) (g/day)
Rice	Rice availability per capita (g/day), a covariate
Seafood omega-3 fatty acids	Seafood omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in tablet or fish form (g/day)
Second-hand smoke	Average daily exposure to air particulate matter from second-hand smoke with an aerodynamic diameter smaller than 2.5 μ g, measured in μ g/m ³ , among non-smokers
Smoking	Prevalence of current use of any smoked tobacco product and prevalence of former use of any smoked tobacco product; among current smokers, cigarette equivalents smoked per smoker per day and cumulative pack-years of exposure; among former smokers, number of years since quitting
Socio-demographic index	SDI is a composite indicator of development status that was originally constructed for GBD 2015 and is derived from components that correlate strongly with health outcomes.

	It is the geometric mean for indices of the total fertility rate among women younger than 25 years, mean education for those aged 15 years or older, and lag-distributed income per capita. The resulting metric ranges from 0 to 1, with higher values corresponding to higher levels of development.
Sugar-sweetened beverages	Consumption of any beverage with ≥50 calories of sugar per one-cup serving, including carbonated beverages, sodas, energy drinks, fruit drinks but excluding 100% fruit and vegetable juices (g/day)
Sweet potatoes	Sweet potato availability per capita (g/day), a covariate
Systolic blood pressure	Systolic blood pressure (mm Hg)
Total sugar	Total sugar availability per capita (g/day), a covariate
Vegetables	Consumption of frozen, cooked, canned, or dried vegetables (including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn) (g/day)
Vitamin A deficiency	Proportion of children aged 0–5 years with serum retinol concentration <0.7 μ mol/L
Whole grains	Consumption of whole grains (bran, germ, and endosperm in their natural proportions) from breakfast cereals, bread, rice, pasta, biscuits, muffins, tortillas, pancakes, and others (g/day)

522 Supplementary Table 2. STROBE 2007 (v4) Statement—Checklist of items that should be

523 included in reports of cohort studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and	1	(a) Indicate the study's design with a commonly used term in the	1
abstract		title or the abstract	
		(b) Provide in the abstract an informative and balanced summary	2-3
		of what was done and what was found	
Introduction			
Background/ratio	2	Explain the scientific background and rationale for the	4-7
nale		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7-9
Setting	5	Describe the setting, locations, and relevant dates, including	7-9
C		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	7-9
		selection of participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of	NA
		exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	10 and
		confounders, and effect modifiers. Give diagnostic criteria, if	Supplemen
		applicable	tary Table
			1
Data sources/	8	For each variable of interest, give sources of data and details of	8-9,
measurement		methods of assessment (measurement). Describe comparability	Supplemen
		of assessment methods if there is more than one group	tary Tables
Bias	9	Describe any efforts to address potential sources of bias	2-3 9
Study size	10	Explain how the study size was arrived at	9
Quantitative	10	Explain how due study size was arrived at Explain how quantitative variables were handled in the analyses.	10
variables	11	If applicable, describe which groupings were chosen and why	10
Statistical	12	(<i>a</i>) Describe all statistical methods, including those used to	10-11
methods		control for confounding	10 11
		(b) Describe any methods used to examine subgroups and	10-11
		interactions	
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	NA
Results			
Ecological data \downarrow	13	(a) Report numbers of individuals at each stage of study—e.g.,	8-9
8_		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14	(a) Give characteristics of study participants (e.g., demographic,	91
		clinical, social) and information on exposures and potential	
		confounders	
		(b) Indicate number of participants with missing data for each	NA
		variable of interest	

		(c) Summarise follow-up time (e.g., average and total amount)	NA
Outcome data	15	Report numbers of outcome events or summary measures over	Tables 1-5,
		time	26-30
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	15-17,
		adjusted estimates and their precision (eg, 95% confidence	Tables 1-5,
		interval). Make clear which confounders were adjusted for and	26-30,
		why they were included	
		(b) Report category boundaries when continuous variables were	NA
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-e.g., analyses of subgroups and	13-15
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarize key results with reference to study objectives	18-23
Limitations			23
Interpretation	20	Give a cautious overall interpretation of results considering	24-25
-		objectives, limitations, multiplicity of analyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study	24
		results	
Other		Data availability statement	41
information			
Funding	22	Give the source of funding and the role of the funders for the	40
C		present study and, if applicable, for the original study on which	
		the present article is based	

524 525 526

5 JGlobal Burden of Disease ecological data on worldwide male and female cohorts from IHME is the data source

526 rather than individual participants

528 Supplementary Table 3. Omega-3 Fatty Acid g to fish g calculation¶

Fish	DHA g/3- ounce fish	EPA g/3- ounce fish	Omega-3 Fatty Acids (DHA _ EPA) g/3-ounce fish mean	Fish 3 ounces = 85.02 g	Fish (g) per omega-3 Fatty Acids (g)=85.02 / 0.7264
Salmon Atlantic farmed	1.24	0.59			
Salmon Atlantic wild	1.22	0.35			
Herring Atlantic	0.94	0.77			
Sardines canned in tomato sauce drained	0.74	0.45			
Mackerel Atlantic	0.59	0.43			
Salmon pink canned drained	0.63	0.28			
Trout rainbow wild	0.44	0.40			
Oysters eastern wild	0.23	0.30			
Sea bass	0.47	0.18			
Shrimp	0.12	0.12			
Lobster	0.07	0.10			
Tuna light canned in water drained	0.17	0.02			
Tilapia	0.11				
Scallops	0.09	0.06			
Cod Pacific	0.1	0.04			
Tuna yellowfin	0.09	0.01			
Mean DHA and EPA Omega-3 Fatty Acids g/3 ounce fish	0.4531	0.2733			
Calculations total Omega-3 FA g to fish g			0.7264	85.02	117.043

529 ¶ Data on omega-3 fatty acid content of varieties of fish came from the National Institutes of

530 Health Office of Dietary Supplements (USA)

531

532

Foods	Food sub- categories	kcal/serving	g/serving	kcal/g
Milk (2% fat)		122	244	0.5
Fish		218	170	1.28
Eggs		72	50	1.44
Poultry		187	85	2.91
Red meat		247	85	2.91
Processed				
meat				
	Salami	222	59	3.76
	Pastrami	104	71	1.46
	Ring baloney	86	28	3.07
	Pepperoni	94	100	0.94
Average processed		126.5	64.5	1.96
meat				
Fruits		97	162	0.60
Vegetables		59	91	0.65
Legumes		249	179	1.39
Nuts		172	28	6.14
Seeds				
	Flax seeds	55	10	5.5
	Chia seeds	58	12	4.83
	Fennel seeds	34.5	10	3.45
	Hemp seeds	55.3	10	5.53
Average of seeds		50.7	10.5	4.83
Average of nuts and seeds		111.4	19.25	5.78
Corn		99	103	0.96
Potatoes		161	173	0.93
Sweet potatoes		115	151	0.76
Rice		205	158	1.3
Whole grains		120	52	2.31

534 Supplementary Table 4. Calculations of KC/d from g/day of animal and plant foods¶

¶ Source: NutritionIX app²⁵

535 536

538 Acknowledgments

539•	Authors'	contributions:	DKC acts as	guarantor;	conceived	and de	esigned	the study	, acqu	uired

- 540 and analysed the data, interpreted the study findings, drafted the manuscript, critically reviewed
- and edited the manuscript and tables, and approved the final version for publication.

542

- 543 CW designed software programs in R to format and population weight the data,
- aided with the SAS statistical analysis, critically reviewed the manuscript, and
- 545 approved the final version for publication.

546

547 The corresponding author attests that all listed authors meet authorship criteria and that no others

548 meeting the criteria have been omitted.

549

- 550 *Copyright:* The authors retain the copyright to the paper
- 551

552 **The Patient and Public Involvement**

• When and how were patients/public first involved in the research?

554 IHME acquired, catalogued and extracted information from over 12,000 surveys from

- 555 government and non-government agencies to compile the GBD database.
- How were the research question(s) developed and informed by their priorities,
- 557 experience, and preferences?
- 558 The diverse surveys contributing to the GBD database had many different priorities and
- intentions unrelated to this post hoc analysis. The current analysis research questions have been

- 560 developed to give researchers, policymakers, and the public the methodological tool to quantify
- the impacts of dietary and other risk factor patterns.
- How were patients/public involved in
- 563 (a) the design and conduct of the study?
- 564 The way patients/public were involved in the collection of the surveys has not been
- 565 systematically studied and reported on. Patients/public are the intended beneficiaries of
- 566 this analysis of the GBD data.
- 567 (b) choice of outcome measures?
- 568 The outcome measures chosen all relate to human health.
- 569 (c) recruitment to the study?
- 570 The recruitment methods vary by the survey.
- How were (or will) patients/ public be involved in choosing the methods and agreeing
- 572 plans for dissemination of the study results to participants and linked communities?
- 573 IHME and all the health surveyors that contributed will make these decisions. This analysis of
- 574 the data will be available to all by open access.

575

576• **Competing interests statement:** Both authors have completed the ICMJE uniform disclosure 577 form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the 578 submitted work; no financial relationships with any organisations that might have an interest in 579 the submitted work in the previous three years; no other relationships or activities that could 580 appear to have influenced the submitted work.

581

582	Transparency declaration: The manuscript is an honest, accurate, and transparent account of
583	the study being reported. No important aspects of the study have been omitted. Any
584	discrepancies from the study as planned have been explained.
585	
586	Ethics: Studies based solely on data from IHME GBD database do not need approval from any
587	bioethics committee.
588	
589•	Funding: This research received no grant from any funding agency in the public, commercial or
590	not-for-profit sectors. The Bill and Melinda Gates Foundation funded the acquisition of the data
591	for this analysis by the IHME. The data were provided to the authors as volunteer collaborators
592	with IHME.
593•	
594	Details of the role of the study sponsors: While IHME GBD faculty and staff by virtue of
595	Gates Foundation grants provided the raw data for this analysis, they did not vet the analysis or
596	sponsor the manuscript.
597 598	Statement of independence of researchers from funders: The researchers have received no
599	funding. Gates Foundation funded IHME to collect or analyse the GBD data.
600	
601	Dissemination declaration: Dissemination of this manuscript to the participants of the more
602	than 12,000 surveys is not possible individually, but the information will become in the public
603	domain.
604	

605	Disclosures: We thank Scott Glenn and Brent Bell from IHME who supplied us with the GBD
606	risk factor exposure data for the risk factors and for noncommunicable disease death data.
607•	
608	Ethics: Studies were based solely on data from the IHME GBD database and do not need
609	approval from any bioethics committee.
610	
611	Participant informed consents: Not applicable.
612	
613	Author access to data: As volunteer collaborators with the Institute of Health Metrics and
614	Evaluation, we received about 1.4 gigabytes of raw data on noncommunicable disease deaths and
615	32 relevant risk factors.
616	
617	Data sharing statement: On acceptance for publication by the Lancet, our dataset and SAS
618	codes will be posted on the Mendeley data repository (https://data.mendeley.com/).
619	
620	Protocol, submitted as a supplementary file: Not applicable.
621	
622	STROBE checklist: Submitted.
623	
624	Patient consent: Not applicable.
625	
626	

627 **References**

628	1.	Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven
629		countries study. Am J Epidemiol. 1986; 124 (6): 903-15.
630		https://academic.oup.com/aje/article-abstract/124/6/903/174332?redirectedFrom=fulltext
631	2.	DuBroff R. A Reappraisal of the Lipid Hypothesis. The American Journal of
632		Medicine. 2018; 131 (9): 993-997. https://doi.org/10.1016/j.amjmed.2018.04.027
633	3.	Teicholz N. The scientific report guiding the US dietary guidelines: is it scientific?
634		BMJ. 2015; 351. http://www.bmj.com/bmj/351/bmj.h4962.full.pdf
635	4.	Outcome of Post-publication review of article by Nina Teicholz. BMJ. 2015; 351:
636		h4962. https://www.bmj.com/content/351/bmj.h4962/rr-48
637	5.	Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins
638		early in embryogenesis. Nutrients. 2010; 2 (5): 532-50.
639	6.	Xing X, Tao F. [Advance of study on vitamin A deficiency and excess associatied
640		with congenital heart disease]. Wei Sheng Yan Jiu. 2008; 37 (6): 754-6.
641	7.	Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther. 2010; 17 (3):
642		e56-65.
643	8.	Beulens JWJ, Booth SL, van den Heuvel EGHM, Stoecklin E, Baka A, Vermeer C. The
644		role of menaquinones (vitamin K2) in human health. British Journal of Nutrition.
645		2013; 110: 1357–1368. https://www.cambridge.org/core/journals/british-journal-of-
646		nutrition/article/the-role-of-menaquinones-vitamin-k2-in-human-
647		health/5B9F317B526629D8BA77B6435F1E5509
648	9.	Wang L, Song Y, Manson JE, et al. Circulating 25-Hydroxy-Vitamin D and Risk of
649		Cardiovascular Disease: A Meta-Analysis of Prospective Studies. Circulation:
650		Cardiovascular Quality and Outcomes. 2012; 5 (6): 819-829.
651		http://circoutcomes.ahajournals.org/content/5/6/819.abstract
652	10.	Fu X, Harshman SG, Shen X, et al. Multiple Vitamin K Forms Exist in Dairy Foods.
653		<i>Current developments in nutrition.</i> 2017; 1 (6): e000638-e000638.
654		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998353/
655	11.	Walther B, Chollet M. Vitamin K2 - Vital for Health and Wellbeing. In: Gordeladze JO,
656		ed. Menaquinones, Bacteria, and Foods: Vitamin K2 in the Die: IntechOpen, 2017.
657	12.	Kamao M, Suhara Y, Tsugawa N, et al. Vitamin K content of foods and dietary
658		vitamin K intake in Japanese young women. J Nutr Sci Vitaminol (Tokyo). 2007; 53
659		(6): 464-70. https://pubmed.ncbi.nlm.nih.gov/18202532/
660	13.	Kaneki M HS, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi
661		M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y,
662		Orimo H. Japanese fermented soybean food as the major determinant of the large
663		geographic difference in circulating levels of vitamin K2: possible implications for
664		hip-fracture risk. Nutrition. 2001; 17 (4): 315-21.
665		https://pubmed.ncbi.nlm.nih.gov/11369171/
666	14.	Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets
667		West. Comprehensive Reviews in Food Science and Food Safety. 2020; 19 (1): 184-217.
668		https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12520
669	15.	Joseph M. Fermented Soy Products: A Guide To 12 Traditional Foods. Nutrition
670		Advance 2020; Accessed April 11, 2021.

	1.4	
671	16.	Global Burden of Disease Study 2017 (GBD 2017) Data Input Sources Tool. Seattle,
672		Washington: Institute of Health Metrics and Evaluation Accessed August 10, 2019.
673	17	http://ghdx.healthdata.org/gbd-2017/data-input-sources
674	17.	GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative
675		risk assessment of 84 behavioural, environmental and occupational, and metabolic
676		risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic
677		analysis for the Global Burden of Disease Study 2017: Table of risk factor
678		definitions. The Lancet. 2018; 392 (10159): 1923-94.
679		https://www.thelancet.com/action/showFullTableHTML?isHtml=true&tableId=tbl1&pii=
680		<u>S0140-6736%2818%2932225-6</u>
681	18.	PROTOCOL FOR THE GLOBAL BURDEN OF DISEASES, INJURIES, AND RISK
682		FACTORS STUDY (GBD) Version 3.0; Issue 26. Seattle, Washington: Institute for
683		Health Metrics and Evaluation Accessed August 2, 2019.
684		http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBD_Protocol.pdf
685	19.	Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex
686		specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the
687		Global Burden of Disease Study 2016. The Lancet. 2017; 390 (10100): 1151-1210.
688		https://doi.org/10.1016/S0140-6736(17)32152-9
689	20.	Flaxman AD, Lee YY, Vos T, et al. An Integrative Metaregression Framework for
690		Descriptive Epidemiology. Seattle, WA: University of Washington Press, 2015.
691	21.	GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk
692		assessment of 84 behavioural, environmental and occupational, and metabolic risks
693		or clusters of risks for 195 countries and territories, 1990–2017: a systematic
694		analysis for the Global Burden of Disease Study 2017 The Lancet. 2018; 392
695		(10159): 1923-94. https://doi.org/10.1016/S0140-6736(18)32225-6
696	22.	Call for Collaborators Seattle, Washington: Institute for Health Metrics and Evaluation
697		at the University of Washington 2019; Accessed April 25, 2019.
698		http://www.healthdata.org/gbd/call-for-collaborators
699	23.	Stevens GA, Alkema L, Black PRE, et al. Guidelines for Accurate and Transparent
700		Health Estimates Reporting: the GATHER statement. The Lancet. 2016; 388
701		(10062): e19-e23. https://doi.org/10.1016/S0140-6736(16)30388-9
702	24.	Omega 3 Fatty Acids: Fact Sheet for Health Professionals. The Office of Dietary
703		Supplements 2018; Accessed September 1, 2018.
704		https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/
705	25.	Nutritionix Track App. Syndigo LLC Accessed April 25, 2019.
706		https://www.nutritionix.com/
707	26.	Ritchie H, Roser M. Diet Compositions. Our World in Data. 2017.
708		https://ourworldindata.org/diet-compositions
709	27.	Pu J, Romanelli R, Zhao B, et al. Dyslipidemia in special ethnic populations.
710		<i>Cardiology clinics.</i> 2015; 33 (2): 325-333.
711		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421090/
712	28.	Frank ATH, Zhao B, Jose PO, Azar KMJ, Fortmann SP, Palaniappan LP. Racial/ethnic
713		differences in dyslipidemia patterns. Circulation. 2014; 129 (5): 570-579.
714		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212818/
715	29.	Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the
716		epidemiology of cardiovascular disease: a historical perspective. Lancet (London,

717		<i>England</i>). 2014; 383 (9921): 999-1008.
718		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159698/
719	30.	Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake
720		with cardiovascular disease and mortality in 18 countries from five continents
721		(PURE): a prospective cohort study. The Lancet. 2017; 390 (10107): 2050-2062.
722		https://doi.org/10.1016/S0140-6736(17)32252-3
723	31.	Countries Who Eat The Most Cheese. World Atlas 2021; Accessed March 28, 2021.
724		https://www.worldatlas.com/articles/countries-who-consume-the-most-
725		cheese.html#:~:text=The%20top%20cheese%20consumer%20is,kilograms%20of%20che
726		ese%20per%20capita.
727	32.	Cheese Consumption Per Capita in New Zealand. Czech Republic: Helgi Library,
728		Source: Faostat Accessed April 9, 2021. https://www.helgilibrary.com/indicators/cheese-
729		consumption-per-capita/new-zealand/
730	33.	Khalil Z, Alam B, Akbari AR, Sharma H. The Medical Benefits of Vitamin K(2) on
731		Calcium-Related Disorders. Nutrients. 2021; 13 (2): 691.
732		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926526/
733	34.	POTATO PROCESSING AND USES. Lima, Peru: International Potato Center
734		Accessed May 28, 2020. https://cipotato.org/potato/potato-processing-uses/
735	35.	Juul F, Vaidean G, Lin Y, Deierlein Andrea L, Parekh N. Ultra-Processed Foods and
736		Incident Cardiovascular Disease in the Framingham Offspring Study. Journal of the
737		American College of Cardiology. 2021; 77 (12): 1520-1531.
738		https://doi.org/10.1016/j.jacc.2021.01.047
739	36.	Srour B, Fezeu LK, Kesse-Guyot E, et al. Ultra-processed food intake and risk of
740		cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ. 2019; 365:
741		11451. https://www.bmj.com/content/bmj/365/bmj.11451.full.pdf
742	37.	Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products
743		are becoming dominant in the global food system. Obes Rev. 2013; 14 Suppl 2: 21-8.
744	38.	Mozaffarian D, Fahimi S, Singh GM, et al. Global Sodium Consumption and Death
745		from Cardiovascular Causes. New England Journal of Medicine. 2014; 371 (7): 624-
746		634. https://www.nejm.org/doi/full/10.1056/NEJMoa1304127
747	39.	O'Donnell M, Mente A, Yusuf S. Sodium Intake and Cardiovascular Health.
748		<i>Circulation Research.</i> 2015; 116 (6): 1046-1057.
749		https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.116.303771
750	40.	Roseboom T, van der Meulen JHP, Osmond C, et al. Coronary heart disease after
751		prenatal exposure to the Dutch famine, 1944-45. Heart. 2000; 84 (6): 595-598.
752		https://www.heart.bmj.com/content/84/6/595
753	41.	Dieterich CM, Felice JP, O'Sullivan E, Rasmussen KM. Breastfeeding and health
754		outcomes for the mother-infant dyad. Pediatric clinics of North America. 2013; 60 (1):
755		31-48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508512/
756	42.	Ambient (outdoor) air pollution. Geneva, Switzerland: World Health Organization 2018;
757		Accessed March 24, 2021. https://www.who.int/news-room/fact-sheets/detail/ambient-
758		(outdoor)-air-quality-and-health
759	43.	Tobacco responsible for 20% of deaths from coronary heart disease Geneva,
760		Switzerland: World Health Organization 2020; Accessed March 2, 2021.
761		https://www.who.int/news/item/22-09-2020-tobacco-responsible-for-20-of-deaths-from-
762		coronary-heart-disease

763	44.	Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease.
764		American Journal of Physiology-Heart and Circulatory Physiology. 2008; 295 (2):
765		H454-H465. https://journals.physiology.org/doi/abs/10.1152/ajpheart.00158.2008
766	45.	Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW. Low-level lead exposure
767		and mortality in US adults: a population-based cohort study. The Lancet Public
768		Health. 2018; 3 (4): e177-e184. https://doi.org/10.1016/S2468-2667(18)30025-2
769	46.	Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of
770		chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of
771		Disease Study 2017. The Lancet. 2020; 395 (10225): 709-733.
772		https://doi.org/10.1016/S0140-6736(20)30045-3
773	47.	Ioannidis JA. The challenge of reforming nutritional epidemiologic research. JAMA.
774		2018; 320 (10): 969-970. <u>http://dx.doi.org/10.1001/jama.2018.11025</u>
775	48.	Global, regional, and national age-sex-specific mortality for 282 causes of death in
776		195 countries and territories, 1980-2017: a systematic analysis for the Global
777		Burden of Disease Study 2017. Lancet. 2018; 392 (10159): 1736-1788.
778		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32203-7/fulltext
779	49.	Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990-
780		2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet.
781		2019; 393 (10184): 1958-1972. https://doi.org/10.1016/S0140-6736(19)30041-8
782		
783		