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Summary: We show how to estimate potentially waning efficacy of COVID-19 vaccines

against SARS-CoV-2 infection using blood or nasal samples collected periodically from clin-

ical trials with staggered enrollment of participants and crossover of placebo recipients.

Abstract: Although interim results from several large placebo-controlled phase 3 trials

demonstrated high vaccine efficacy (VE) against symptomatic COVID-19, it is unknown

how effective the vaccines are in preventing people from becoming asymptomatically in-

fected and potentially spreading the virus unwittingly. It is more difficult to evaluate VE

against SARS-CoV-2 infection than against symptomatic COVID-19 because infection is not

observed directly but rather is known to occur between two antibody or RT-PCR tests. Ad-

ditional challenges arise as community transmission changes over time and as participants are

vaccinated on different dates because of staggered enrollment or crossover before the end of

the study. Here, we provide valid and efficient statistical methods for estimating potentially

waning VE against SARS-CoV-2 infection with blood or nasal samples under time-varying

community transmission, staggered enrollment, and blinded or unblinded crossover. We

demonstrate the usefulness of the proposed methods through numerical studies mimicking

the BNT162b2 phase 3 trial and the Prevent COVID U study. In addition, we assess how

crossover and the frequency of diagnostic tests affect the precision of VE estimates.
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Introduction

Enormous progress has been made in the development of vaccines against severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2). Within 1 year after the emergence of this

novel infection that caused a global pandemic, vaccine targets were identified, vaccine con-

structs were created, and phase 1 through phase 3 testing was conducted. Interim results

from several large-scale phase 3 randomized, placebo-controlled clinical trials have demon-

strated high vaccine efficacy (VE) against symptomatic COVID-19 [1-4]. However, very little

is known about VE against possibly asymptomatic SARS-CoV-2 infection.

It is critically important to assess VE against SARS-CoV-2 infection because reducing

infection and community transmission is the key to halting the pandemic. Fortunately, most

phase 3 trials have collected blood samples that can be used to identify SARS-CoV-2 sero-

conversion [1-4]. For economic and logistical reasons, however, blood samples can only be

drawn infrequently, such that seroconversion is only known to occur between two clinic visits

that are weeks or months apart. It is more difficult to analyze such interval-censored sero-

conversion data than potentially right-censored symptomatic disease data, especially when

VE changes over time. (An event time is said to be interval-censored if it is only known to lie

in a time interval; an event time is said to be potentially right-censored if it is either observed

exactly or known to be longer than the duration of follow-up [5].) Additional challenges arise

when community transmission varies over time and when participants are vaccinated on dif-

ferent dates because of either staggered enrollment of participants or crossover of placebo

participants to the vaccine arm before the end of the trial.

SARS-CoV-2 infection is commonly diagnosed by reverse transcription polymerase chain

reaction (RT-PCR) on nasal swabs. Most phase 3 trials have collected nasal swabs at the

enrollment and crossover visits [1-2, 4]. However, such infrequent swab samples will miss

many infections, because a person may be RT-PCR positive for only a few days or weeks

after infection [6]. Some phase 3 trials have taken nasal swabs more frequently (e.g., twice

a week) on a subset of participants, and the newly launched Prevent COVID U study takes
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nasal swabs every day; however, frequent RT-PCR testing increases trial cost. How does

the RT-PCR testing schedule affect the estimation of VE against infection (defined as viral

RNA above a minimum threshold)?

In this article, we show how to evaluate potentially waning VE against SARS-CoV-2

infection — defined by seroconversion or detectable viral RNA — using blood or nasal sam-

ples taken at varying levels of frequency under the conditions of time-varying community

transmission, staggered enrollment of participants, and possible crossover of placebo volun-

teers to the vaccine arm before the end of the study. We demonstrate the usefulness of the

proposed methods through extensive simulation studies mimicking the BNT162b2 phase 3

trial [1] and the Prevent COVID U study. In addition, we investigate how the frequency of

diagnostic tests and the characteristics (blinded versus unblinded, priority-dependent versus

priority-independent) of crossover affect the precision of VE estimation.

Methods

Figure 1 shows the blood sampling schedules for several phase 3 vaccine trials. For the three

vaccines that have received FDA’s Emergency Use Authorization (EUA), blood samples are

also taken at the crossover visits [1-2,4].

We are interested in time to SARS-CoV-2 infection assessed by seroconversion, which is

only known to occur between two blood draws and is thus interval-censored. We allow the

risk of infection to vary over the calendar time and to depend on baseline risk factors, such

as age, sex, ethnicity, race, occupation, and health conditions; we allow the effect of vaccine

on infection to depend on the time elapsed since vaccination.

We consider three measures of VE as a function of time elapsed since vaccination: (1)

VEh(t) is the percentage reduction in the hazard rate or instantaneous risk of infection at

time t; (2) VEa(t) is the percentage reduction in the attack rate or cumulative incidence of

infection over the time period (0, t]; and (3) VEa(t1, t2) is the percentage reduction in the

attack rate over the time period (t1, t2]. Note that VEh(t) and VEa(t) pertain to instan-

taneous and cumulative vaccine effects, respectively, and that VEa(t) is a special case of

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 17, 2021. ; https://doi.org/10.1101/2021.04.16.21255614doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.16.21255614


VEa(t1, t2) with t1 = 0 and t2 = t. If the vaccine effect is constant over time, then the three

VE measures are equivalent (provided that the infection rate is low) [7].

In Supplementary Appendix 1, we formulate the above ideas through an adaptation of the

well-known Cox [8] regression model, in which each participant’s time to infection is measured

from the start of the clinical trial, and the hazard ratio of infection for vaccine versus

placebo depends on the time elapsed since vaccination. Because of staggered enrollment

and staggered crossover, the serum sampling time points are scattered randomly over time,

providing valuable information about the distribution of the infection time. We express VEh

and VEa as appropriate functions of the time-varying hazard ratio. We derive the maximum

likelihood estimator for the time-varying hazard ratio based on the interval-censored infection

time data and provide the corresponding estimators of VEh and VEa.

The above framework also applies to RT-PCR tests of nasal swabs. Because an infected

person is RT-PCR positive for a shorter period of time than they are seropositive (days/weeks

versus months) [6,9-10], nasal swabbing needs to be done more frequently than serum sam-

pling in order to capture the infections defined by detectable viral RNA. With very frequent

RT-PCR, time to detectable viral RNA may be treated as a potentially right-censored event

time. In our framework, potentially right-censored data is a special case of interval-censored

data, with the exactly observed event time lying within an interval of one day.

Results

We conducted a series of simulation studies mimicking the BNT162b2 phase 3 trial [1]

(Supplementary Appendix 2.1). We used a total of 40,000 participants who enter the trial

at a constant rate over a 4-month period and are randomly assigned to vaccine or placebo in

a 1:1 ratio. To reflect the increase of COVID-19 cases since last summer and the downward

trend this spring, we let the risk of infection increase over the first 7 months and decrease

afterward. In addition, we let the risk of infection depend strongly on priority tier.

As in the BNT162b2 phase 3 trial [1], the vaccine in our simulation received an EUA

from FDA at the 5th month, after which placebo participants are sequentially crossed over
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to the vaccine arm. We considered:

Priority-dependent crossover. Crossover starts at month 6, 7, 8, 9, or 10 of the study for

participants with priority tier of 1, 2, 3, 4, or 5, respectively, each participant’s waiting

time for the clinic visit following the exponential distribution with mean of 0.5 month.

Priority-independent crossover. Crossover starts at month 6 of the study for all participants,

with the waiting time following the exponential distribution with mean of 0.5 month.

Note that crossover spreads over a longer time period under priority-dependent crossover

than under priority-independent crossover.

We considered both blinded and unblinded crossover. At blinded crossover, placebo

participants receive the vaccine and vaccine participants receive the placebo; none of them

are aware of the order of their treatments. At unblinded crossover, participants are notified

of their original treatment assignments, and placebo recipients are vaccinated. In both types

of crossover, all participants are followed until the time of analysis, which is 10.5 months

since trial initiation. To avoid bias due to behavioral confounding, we discarded the data

collected after unblinded crossover.

As shown in Figure 1, blood samples were scheduled to be drawn on Day 1, Day 22,

Day 52 and Day 209 (during the first year) in the BNT162b2 phase 3 trial [1]. In our

simulation, we allowed for small random deviations from the schedule. Blood samples were

also drawn at the crossover visits. Because of staggered enrollment and staggered crossover,

serum sampling points were scattered randomly over the study period, making it possible to

estimate time-varying VE.

We also simulated a design under which there is no crossover before the time of analysis.

Without crossover, placebo participants stay on placebo longer than with crossover, provid-

ing more information about long-term placebo-controlled VE. However, because crossover is

one of the serum sampling points, there are fewer sampling points and thus fewer antibody

tests under no crossover than under crossover.

Naturally, VEh equals 0 at the first injection. We let VEh increase from 0 to 80% at 4
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weeks and then either stay constant or decrease gradually over time. We refer to these two

situations as constant VE and waning VE, respectively. (Note that constant versus waning

VE pertains only to the period after the first 4 weeks, when VE is ramping up.)

In our first simulation scenario, we let VEh stay at 80% after 4 weeks, and we analyzed

the resulting interval-censored data using the proposed method with a log hazard ratio that

decreases linearly between weeks 0 and 4 and stays constant after week 4. For comparison,

we fit the same model by treating the time of the first positive antibody test as a potentially

right-censored event time and performing maximum partial likelihood estimation [5,8]; we

refer to this approach as naive Cox regression. (Naive Cox regression estimates the same

VE parameter using the same data as the proposed method, the only difference being that

it converts interval-censored event times to potentially right-censored event times.) For

further comparison, we implemented logistic regression by treating the seroconversion status

at the last blood test before the 10.5 month mark (excluding the blood samples drawn after

unblinded crossover) as a binary outcome and estimating the odds ratio of seroconversion

between the vaccine and the placebo groups by the maximum likelihood estimator.

Table 1 summarizes the results of these simulation studies. Using the proposed method,

the VE estimates are unbiased, the standard errors are accurately estimated, and the confi-

dence intervals have proper coverage probabilities. The standard error is lower under blinded

than unblinded crossover, and lower under priority-dependent than priority-independent

crossover. The standard error is slightly higher under no crossover than under blinded

priority-dependent crossover. (Note that there are fewer sampling points under no crossover

than under crossover.) In comparison, naive Cox regression may under-estimate or over-

estimate the true VE, and logistic regression always under-estimates the true VE.

In our second simulation scenario, we let VEh stay at 80% after 4 weeks or let it decrease

to 0 at 1 year. We implemented the proposed method (for interval-censored data) using a

piecewise linear function for the log hazard ratio, with a change point placed at 4 weeks and

with the two slopes estimated from the data. For comparison, we also implemented naive

Cox regression with the same piecewise linear function for the log hazard ratio.
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Tables 2–3 show the simulation results on the estimation of VEa over successive time

periods under constant VE and waning VE, respectively. The proposed method yields unbi-

ased VEa estimates, with accurate standard error estimates and proper confidence intervals

in virtually all cases. Naive Cox regression yields severely biased VEa estimates.

Figure 2 displays the estimation results produced by the proposed method in one of

the trials simulated under waning VE. The estimated VEh and VEa curves are close to the

truth, and the 95% confidence intervals nearly cover the entire true curves. As expected, the

confidence intervals are the narrowest under blinded priority-dependent crossover and the

widest under unblinded priority-independent crossover. In addition, the confidence intervals

for VEh are wider than the confidence intervals for VEa at the right tail.

We also conducted a series of simulation studies mimicking the Prevent COVID U study

(Supplementary Appendix 2.2). A total of 12,000 participants enter the study at a constant

rate over one month. Half of them are randomly selected to receive the Moderna vaccine at

enrollment, and the other half get their first injection with a 4 month delay. We assumed a

downward trend of infection over time; we adopted the VE patterns from the first series of

simulation studies but placed the change point at 6 weeks instead of 4 weeks.

We explored various swabbing/RT-PCR testing schedules, ranging from every day to

every 2 weeks. Each participant is followed for 4 months, and the study ends at month 5,

when the last enrolled participant has been followed for 4 months. We also considered a

scenario where 50% of the delayed-arm participants receive outside vaccines before the end

of follow-up; in the analysis, we discarded the data collected after outside vaccination.

Table 4 summarizes the simulation results on the estimation of constant VE. The pro-

posed method yields unbiased VE estimates, with accurate standard error estimates and

proper confidence intervals in all cases. The standard error of the VE estimate tends to

increase a little bit as RT-PCR testing becomes less frequent. There is a slight loss of pre-

cision in the VE estimates when the delayed-arm participants are allowed to receive outside

vaccines. In comparison, naive Cox regression shows highly similar results to the proposed

method when RT-PCR testing is performed every day; however, as RT-PCR testing becomes
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less frequent, naive Cox regression becomes more biased, with increasingly larger standard

error than the proposed method. Excluding the events within the first 6 weeks substantially

reduces the precision of VE estimates. (The substantial loss of precision is due to relatively

high incidence in the first 6 weeks under decreasing background incidence over time and high

VE. In the setting of constant background incidence with VE of 0.6 after 4 weeks, excluding

the events within the first 4 weeks incurs about 13% loss of statistical efficiency.)

Table 5 presents the results on the estimation of VEa over successive time periods when

VEh decreases to 0 at 1 year. The proposed method provides unbiased VEa estimates, along

with proper confidence intervals. Naive Cox regression performs well when RT-PCR testing

is done daily but performs poorly when RT-PCR testing is infrequent.

We have assumed that VE ramps to an unknown peak level 4 weeks (or 6 weeks) after

the first injection of the Pfizer/BioNTech vaccine (or the Moderna vaccine). We can allow

uncertainty in this change point by including several change points in the analysis or by

selecting the change point through the Akaike information criterion (AIC). We evaluated

these strategies by extending the simulation studies reported in Table 1. We considered two

scenarios: (a) the true change point is 4 weeks; and (b) the true change point is 6 weeks. In

both scenarios, the true VE increases from 0 at time 0 to 0.8 at the true change point and

stays at 0.8 afterward. We implemented two methods: (1) place 3 change points at weeks 4,

6, and 8 and estimate the corresponding 3 slopes of the log hazard ratio; and (2) calculate

the likelihood with the change point placed at week 4, 6, or 8 and select the time point

that yields the highest likelihood. As shown in Table 6, the first method performs very well,

although the standard error is higher than using a single change point. The second method

correctly selects the change point with high probability.

Discussion

We have demonstrated that it is possible to evaluate time-varying VE against SARS-CoV-2

infection using the blood samples collected in the ongoing phase 3 vaccine trials [1-4] or

using the nasal samples collected in studies like Prevent COVID U. We found that when
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antibody or RT-PCR tests are performed infrequently, the use of standard Cox regression for

potentially right-censored data yields biased and imprecise VE estimates. The new methods

provide valid and efficient estimation of three useful VE measures.

The form of the model considered in this article is essentially the same as that used in

our previous work on evaluating VE against symptomatic COVID-19 [7]. However, here

the estimation approach is different because infection times are interval-censored rather

than potentially right-censored. The proposed methodology is general enough to include

potentially right-censored data as a special case and thus offers an alternative way to assess

VE against symptomatic COVID-19. A major advantage of this new approach is that it

provides a unified framework for studying constant versus waning VE.

Another important contribution of this work is a careful treatment of the ramping VE

after initial vaccination. The prevailing approach is not to count the events that occur

within 4–6 weeks of the first injection [1-2]. Discarding the first 4–6 weeks of follow-up data

causes considerable loss of statistical efficiency, as shown in Table 4. In the case of blinded

crossover, excluding the events that occur within 4–6 weeks of crossover will further reduce

statistical efficiency, whereas including all the events will result in biased VE estimates.

We have not accounted for the measurement errors of antibody or RT-PCR tests in the

analysis. The false-positive rate is negligible for RT-PCR testing and small for antibody

testing. An infected person is seropositive for a longer period of time than they are RT-PCR

positive (several months versus several days or weeks) [6, 9-10]. Thus, infrequent serology

will capture more infections than infrequent RT-PCR. Some asymptomatic infections never

seroconvert or have transient seroconversion that may be missed by infrequent serology

[9-10]. However, those who do not seroconvert tend to be less infectious than those who

do, such that missed seronegative infections may be clinically less important. Likewise, an

asymptomatic infection that is RT-PCR positive for just a day or two is difficult to detect

but may have little public-health relevance.

For the Prevent COVID U study, the main reason for daily swabbing and testing is not

to determine the timing of infection but rather to measure the full course of viral load for
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all infected participants. In particular, investigators wish to capture potential infectiousness

by measuring the peak viral load, the duration of viral shedding, and the area under the

viral load curve. If detecting the presence of viral RNA were the study’s only goal, then less

frequent testing would be needed. The proposed methods (for interval-censored data) may

be warranted in the case that a substantial number of swabs are not collected or are not

usable (due to improper collection or storage).

Blood samples and nasal swabs provide complementary information about SARS-CoV-

2 infection. Viral RNA can be detected sooner after infection than seroconversion, but

antibody lasts longer than viral shedding [6, 9-10]. There is considerable heterogeneity in

the duration of both seropositivity and RT-PCR positivity, with the biggest driving factor

being symptomatic versus asymptomatic infection [6, 9-10]. Many studies collect both blood

and nasal samples. For example, the Moderna phase 3 trial [2] performs RT-PCR testing

at month 1 and at crossover in addition periodic serology. The Prevent COVID U study

performs periodic (every 2 months) serology and frequent RT-PCR testing. The proposed

methods can be applied to the two types of infection data separately or as a combined

endpoint, depending on the objective of the analysis and the frequency of each type of test.

The monitoring times are assumed to be independent of the infection time (conditional on

covariates). This assumption is satisfied for planned diagnostic tests but is unlikely to hold

if SARS-CoV-2 infection is detected through symptom-prompted testing. We can apply the

proposed methods (for interval-censored data) to planned tests and standard Cox regression

with potentially right-censored data to symptom-prompted tests. If the planned RT-PCR

testing is frequent, then the data from planned and symptom-prompted RT-PCR tests can

be combined and standard Cox regression for potentially right-censored data can be adopted.

We have implemented the methods described in this article in an R package, which is

available at https://dlin.web.unc.edu/software/idove/.
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Table 1. Estimation of Constant VE Based on Antibody Tests Under No Crossover

(A), Blinded Priority-Dependent (B) and Priority-Independent (C) Crossover,

and Unblinded Priority-Dependent (B’) and Priority-Independent (C’) Crossover

When VEh Stays at 80% After Week 4

Proposed Method Naive Cox Regression Logistic Regression

Design Mean SE SEE CP Mean SE SEE CP Mean SE SEE CP

A 79.8% 1.33% 1.33% 94% 76.8% 1.42% 1.43% 33% 77.1% 1.37% 1.38% 39%
B 79.9% 1.31% 1.30% 95% 87.3% 0.95% 0.97% 0% 75.2% 1.47% 1.46% 5%
C 79.9% 1.58% 1.54% 93% 89.6% 1.13% 1.12% 0% 70.6% 1.83% 1.80% 0%
B’ 79.8% 1.41% 1.38% 95% 76.9% 1.49% 1.47% 40% 76.9% 1.45% 1.43% 37%
C’ 79.8% 1.67% 1.63% 95% 75.8% 1.80% 1.78% 27% 75.4% 1.76% 1.74% 17%

Note: Mean and SE denote the mean and standard error of the VE estimator, SEE denotes

the mean of the standard error estimator, and CP denotes the coverage probability of the

95% confidence interval.
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Table 2. Estimation of VEa Over Successive Time Periods Based on Antibody

Tests Under No Crossover (A), Blinded Priority-Dependent (B) and Priority-

Independent (C) Crossover, and Unblinded Priority-Dependent (B’) and Priority-

Independent (C’) Crossover When VE Does Not Wane Over Time

True Proposed Method Naive Cox Regression

Design Weeks VEa Mean SE SEE CP Mean SE SEE CP

A 0-4 50.3% 49.9% 3.2% 3.0% 94% 48.5% 4.0% 3.9% 92%
4-16 80.0% 79.7% 2.2% 2.1% 94% 77.6% 3.3% 3.2% 86%
16-28 80.0% 79.9% 1.9% 1.8% 94% 76.9% 1.4% 1.4% 36%
28-40 80.0% 79.7% 4.6% 4.2% 92% 75.8% 3.4% 3.3% 74%

B 0-4 50.3% 50.1% 2.2% 2.2% 94% 59.9% 1.7% 1.7% 0%
4-16 80.0% 79.8% 1.7% 1.6% 93% 88.5% 1.2% 1.2% 0%
16-28 80.0% 80.0% 1.6% 1.6% 95% 87.0% 1.0% 1.0% 0%
28-40 80.0% 80.0% 3.1% 3.0% 95% 85.3% 1.5% 1.5% 14%

C 0-4 50.3% 50.1% 2.1% 2.0% 94% 61.1% 1.8% 1.7% 0%
4-16 80.0% 79.9% 1.7% 1.7% 94% 89.9% 1.2% 1.2% 0%
16-28 80.0% 80.0% 2.0% 2.0% 95% 89.3% 1.2% 1.2% 0%
28-40 80.0% 79.9% 3.6% 3.5% 95% 88.7% 1.7% 1.7% 2%

B’ 0-4 50.3% 49.7% 2.6% 2.5% 95% 39.6% 3.2% 3.4% 6%
4-16 80.0% 79.6% 1.8% 1.8% 95% 70.8% 2.8% 2.9% 5%
16-28 80.0% 80.1% 1.9% 1.8% 94% 77.3% 1.5% 1.5% 51%
28-40 80.0% 80.2% 3.9% 3.8% 94% 82.3% 2.1% 2.1% 82%

C’ 0-4 50.3% 49.6% 2.9% 2.8% 94% 37.8% 3.9% 3.9% 7%
4-16 80.0% 79.6% 1.8% 1.8% 94% 70.8% 2.9% 2.9% 4%
16-28 80.0% 80.2% 3.3% 3.2% 95% 80.2% 2.2% 2.2% 96%
28-40 80.0% 80.1% 6.9% 6.5% 94% 86.2% 3.4% 3.3% 62%

Note: See Note to Table 1.
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Table 3. Estimation of VEa Over Successive Time Periods Based on Antibody

Tests Under No Crossover (A), Blinded Priority-Dependent (B) and Priority-

Independent (C) Crossover, and Unblinded Priority-Dependent (B’) and Priority-

Independent (C’) Crossover When VE Wanes Over Time

True Proposed Method Naive Cox Regression

Design Weeks VEa Mean SE SEE CP Mean SE SEE CP

A 0-4 50.3% 50.3% 3.1% 2.7% 91% 58.3% 3.6% 3.5% 42%
4-16 75.3% 75.3% 2.6% 2.3% 92% 82.9% 3.0% 2.9% 39%
16-28 62.9% 62.9% 2.7% 2.9% 96% 68.0% 1.9% 1.9% 27%
28-40 44.3% 43.2% 10.8% 10.3% 93% 38.6% 8.4% 8.2% 91%

B 0-4 50.3% 50.1% 2.1% 2.0% 95% 61.4% 1.6% 1.5% 0%
4-16 75.3% 75.2% 1.9% 1.9% 94% 87.6% 1.2% 1.2% 0%
16-28 62.9% 63.1% 2.3% 2.3% 96% 79.8% 1.3% 1.3% 0%
28-40 44.3% 44.7% 6.6% 6.5% 94% 66.8% 2.8% 2.8% 0%

C 0-4 50.3% 50.2% 1.9% 1.9% 94% 62.5% 1.6% 1.6% 0%
4-16 75.3% 75.3% 1.9% 1.9% 95% 88.8% 1.2% 1.3% 0%
16-28 62.9% 63.0% 3.1% 3.0% 95% 82.1% 1.7% 1.7% 0%
28-40 44.3% 44.1% 8.0% 7.9% 95% 71.4% 3.6% 3.6% 0%

B’ 0-4 50.3% 49.9% 2.3% 2.3% 95% 43.5% 2.7% 2.9% 28%
4-16 75.3% 75.0% 2.0% 2.0% 96% 70.2% 2.7% 2.8% 50%
16-28 62.9% 62.9% 2.6% 2.5% 95% 66.3% 1.8% 1.9% 56%
28-40 44.3% 44.5% 8.1% 7.9% 95% 61.8% 3.5% 3.5% 1%

C’ 0-4 50.3% 49.7% 2.6% 2.6% 95% 41.7% 3.4% 3.4% 22%
4-16 75.3% 74.9% 2.0% 2.1% 95% 69.3% 2.9% 2.9% 37%
16-28 62.9% 63.1% 4.8% 4.8% 94% 68.4% 2.7% 2.8% 56%
28-40 44.3% 44.5% 15.1% 14.8% 94% 67.0% 6.4% 6.5% 19%

Note: See the Note to Table 1.
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Table 4. Estimation of Constant VE Under Different RT-PCR Testing

Schedules When VEh Stays at 80% After Week 6

Outside Frequency Proposed Method Naive Cox Regression

Vaccines of Tests Mean SE SEE CP RE Mean SE SEE CP

No Every day 79.5% 3.44% 3.49% 95% 1.36 79.5% 3.44% 3.46% 95%
Every 2 days 79.4% 3.52% 3.51% 95% 1.35 79.1% 3.54% 3.50% 94%
Every 4 days 79.5% 3.49% 3.52% 95% 1.38 78.7% 3.53% 3.53% 93%
Every week 79.5% 3.50% 3.49% 95% 1.33 77.7% 3.59% 3.55% 90%
Every 2 weeks 79.5% 3.58% 3.60% 95% 1.35 75.4% 3.81% 3.80% 74%

Yes Every day 79.4% 3.50% 3.52% 95% 1.35 79.4% 3.50% 3.49% 95%
Every 2 days 79.5% 3.48% 3.53% 95% 1.36 79.2% 3.49% 3.51% 95%
Every 4 days 79.5% 3.58% 3.56% 95% 1.35 78.7% 3.60% 3.56% 93%
Every week 79.5% 3.53% 3.52% 95% 1.34 77.9% 3.59% 3.56% 91%
Every 2 weeks 79.4% 3.69% 3.64% 95% 1.35 75.7% 3.85% 3.79% 76%

Note: Mean and SE denote the mean and standard error of the VE estimator, SEE denotes

the mean of the standard error estimator, CP denotes the coverage probability of the 95%

confidence interval, and RE is the variance of the VE estimator excluding the infections of

the first 6 weeks divided by the variance of the VE estimator using all infections.
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Table 5. Estimation of VEa Over Successive Time Periods Under Different

RT-PCR Testing Schedules When VE Wanes Over Time

Outside Freq. True Proposed Method Naive Cox Regression

Vaccines of Tests Weeks VEa Mean SE SEE CP Mean SE SEE CP

No Daily 0-6 50.3% 49.3% 4.60% 4.61% 95% 49.3% 4.60% 4.56% 95%
6-12 77.7% 77.0% 3.81% 3.84% 95% 77.0% 3.81% 3.81% 95%
12-18 72.4% 72.1% 7.69% 7.57% 95% 72.1% 7.69% 7.57% 95%

Every 0-6 50.3% 49.4% 4.61% 4.66% 95% 48.0% 4.68% 4.68% 92%
4 days 6-12 77.7% 77.2% 3.82% 3.84% 94% 76.2% 3.89% 3.88% 93%

12-18 72.4% 72.3% 8.21% 7.99% 95% 72.9% 7.86% 7.65% 95%

Weekly 0-6 50.3% 49.4% 4.44% 4.61% 96% 46.5% 4.61% 4.73% 88%
6-12 77.7% 77.1% 3.70% 3.83% 95% 75.1% 3.85% 3.95% 90%
12-18 72.4% 72.2% 7.61% 7.50% 96% 73.3% 7.05% 6.99% 96%

Yes Daily 0-6 50.3% 49.3% 4.52% 4.62% 95% 49.3% 4.52% 4.56% 95%
6-12 77.7% 77.0% 3.85% 3.86% 95% 77.0% 3.85% 3.83% 95%
12-18 72.4% 72.0% 7.90% 7.81% 95% 72.0% 7.90% 7.80% 95%

Every 0-6 50.3% 49.4% 4.67% 4.65% 94% 47.9% 4.73% 4.67% 92%
4 days 6-12 77.7% 77.0% 3.84% 3.87% 96% 76.2% 3.89% 3.89% 94%

12-18 72.4% 71.8% 8.41% 8.34% 95% 72.8% 7.94% 7.89% 95%

Weekly 0-6 50.3% 49.4% 4.56% 4.61% 96% 46.5% 4.70% 4.73% 88%
6-12 77.7% 77.1% 3.93% 3.86% 95% 75.2% 4.05% 3.95% 89%
12-18 72.4% 72.0% 7.82% 7.84% 96% 73.6% 7.10% 7.11% 96%

Note: See the Note to Table 4.
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Table 6. Estimation of Constant VE With Unknown Change Points Under No

Crossover (A), Blinded Priority-Dependent (B) and Priority-Independent (C)

Crossover, and Unblinded Priority-Dependent (B’) and Priority-Independent

(C’) Crossover When VEh Stays at 80% After the Change Point

(a) True change point = 4 weeks (b) True change point = 6 weeks

Design Mean SE SEE CP Correct Mean SE SEE CP Correct

A 79.9% 1.50% 1.47% 94% 73% 79.9% 1.46% 1.47% 94% 65%
B 80.0% 1.42% 1.42% 95% 80% 79.9% 1.43% 1.42% 95% 73%
C 79.9% 1.78% 1.70% 94% 82% 79.9% 1.73% 1.69% 95% 78%
B’ 79.9% 1.58% 1.52% 94% 72% 79.9% 1.60% 1.53% 94% 67%
C’ 79.9% 1.96% 1.90% 94% 70% 79.9% 1.91% 1.91% 95% 67%

Note: Mean and SE denote the mean and standard error of the VE estimator, SEE denotes

the mean of the standard error estimator, and CP denotes the coverage probability of the

95% confidence interval, when VE may reach its peak level at one of three change points.

Correct denotes the probability of correctly selecting the change point by the AIC.
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Figure 1. Serum sampling schedules in 6 phase 3 COVID-19 vaccine trials. The sampling

time points are measured from the day of enrollment.
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Figure 2. Estimation of VEa and VEh in a clinical trial under blinded priority-dependent

(B) and priority-independent (C) crossover and under unblinded priority-dependent (B’) and

priority-independent (C’) crossover: the black curve pertains to the true value, the red curve

to the proposed estimate, and the green curves to the 95% confidence intervals.
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Supplementary Appendix

1. Statistical Methods

Let S denote the time when the participant is vaccinated, and T denote the time when the

participant acquires SARS-CoV-2 infection (as defined by seroconversion or detectable viral

RNA), with both times measured in days from the start of the clinical trial. In addition, let

X denote baseline risk factors (e.g., age, occupation, race, health conditions). We specify

that the hazard function of T is related to S and X through the Cox [1] regression model

λ(t|S,X) = λ0(t)e
βTX+η(t−S)A(t), (1)

where A(t) = I(S < t), I(·) is the indicator function, λ0(·) is an arbitrary baseline hazard

function, β is a set of regression parameters representing the effects of baseline risk factors,

and η(·) is the log hazard ratio characterizing the time-varying effect of vaccination. Under

this formulation, the baseline hazard function varies over the calendar time, and the effect

of vaccine on the risk of infection depends on the time elapsed since vaccination.

We can define the vaccine efficacy at day t as the proportionate reduction in the hazard

rate of infection at day t for individuals who were vaccinated t days ago compared with

those who have not been vaccinated, i.e., V Eh(t) = 1 − eη(t). In addition, we can define

the t-day vaccine efficacy as the proportionate reduction in the attack rate or cumulative

incidence of infection by day t for individuals who were vaccinated t days ago compared with

the non-vaccinated individuals:

V Ea(t) = 1− Pr(T ≤ t|S = 0, X)

Pr(T ≤ t|S ≥ t,X)
,

which is approximately 1 −
∫ t
0
eη(u)λ0(u)du/

∫ t
0
λ0(u)du when the infection rate is low. If

λ0(·) is approximately constant, then V Ea(t) = 1−V (t)/t, where V (t) =
∫ t
0
eη(u)du. Finally,

we consider the vaccine efficacy in reducing the attack rate over a certain time period, say

(t1, t2]:

V Ea(t1, t2) = 1− V (t2)− V (t1)

t2 − t1
.
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Clearly, all three VE measures are simple functions of the log hazard ratio η(·).

For economic and logistical reasons, antibody (or RT-PCR) tests can only be performed

infrequently for each participant. Thus, SARS-CoV-2 infection, as defined by seroconversion

or detectable viral RNA, is only known to occur over a broad time interval, such that T

must be treated as an interval-censored event time. Let L be the time of the last negative

test, and R be the time of the first positive test, such that T is known to lie in the time

interval (L,R]. (To be more precise, L is the last seronegative test date minus 7 days and R

is the first seropositive test date minus 7 days, because it takes approximately 7 days after

initial SARS-CoV-2 acquisition for the antibody test to register positive.) In addition, let E

be the time when the participant enters the clinical trial. Like T and S, the time variables

E, L, and R are measured from the start of the clinical trial. We assume that E, L, R, and

S are independent of T conditional on X.

For a clinical trial with a total of n participants, the data consist of (Ei, Li, Ri, Si, Xi)

(i = 1, . . . , n). The likelihood takes the form
n∏
i=1

[
exp

{
−
∫ Li

Ei

eβ
TXi+η(t−Si)Ai(t)dΛ0(t)

}
− exp

{
−
∫ Ri

Ei

eβ
TXi+η(t−Si)Ai(t)dΛ0(t)

}]
,

where Λ0(t) =
∫ t
0
λ0(s)ds.

This likelihood involves two infinite-dimensional functions Λ0(·) and η(·), which are not

identifiable if both are unrestricted. We let Λ0(·) be completely nonparametric and estimate

it by a step function with non-negative jumps at the unique values of Li > 0 and Ri <

∞ (i = 1, . . . , n). We approximate η(·) by a sequence of B-splines functions, denoted by

B1(t), . . . , BK(t), such that η(t) =
∑K

k=1 γkBk(t). Write γ = (γ1, . . . , γK)T, and Zi(t) =

(B1(t− Si)Ai(t), . . . , BK(t− Si)Ai(t))T. Then the likelihood becomes
n∏
i=1

[
exp

{
−
∫ Li

Ei

eβ
TXi+γ

TZi(t)dΛ0(t)

}
− exp

{
−
∫ Ri

Ei

eβ
TXi+γ

TZi(t)dΛ0(t)

}]
.

This is the interval-censored data likelihood for the standard Cox model with time-

independent covariates X and time-dependent covariates Z [2], except that the event time

is measured from the start of the study rather than the participant’s entry time. We com-

pute the nonparametric maximum likelihood estimator for (β, γ,Λ0), denoted by (β̂, γ̂, Λ̂0),
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through an EM algorithm based on latent Poisson random variables [2]. We then estimate

η(t) and V (t) by η̂(t) =
∑K

k=1 γ̂kBk(t) and V̂ (t) =
∫ t
0
eη̂(u)du, respectively.

By appealing to modern empirical process theory [3], we can show that β̂, γ̂, and Λ̂0(·)

are consistent. In addition, β̂ and γ̂ are asymptotically normal and their covariance matrix

can be consistently estimated by the Hessian matrix [2,4] of the profile log-likelihood for

(β, γ), where the log-likelihood is maximized with respect to Λ0 for fixed β and γ via the

EM algorithm. These results allow us to estimate V Eh(t), V Ea(t), and V Ea(t1, t2), construct

confidence intervals, and perform hypothesis testing.

Remark. In our previous work on (potentially right-censored) symptomatic disease, we

approximate log λ0(·) by B-spline functions while letting η(·) be completely nonparametric

[5]. With interval-censored data, a completely nonparametric function cannot be estimated

at the parametric rate, making it difficult to construct confidence intervals. Thus, we let λ0(·)

be completely nonparametric and approximate η(·), which is the parameter of main interest,

by B-spline functions. One benefit of this approach is that it provides a unified framework

to study constant versus time-varying VE (by choosing appropriate B-spline functions).

This framework also unifies the analysis of symptomatic disease and asymptomatic infection

because potentially right-censored data can be treated as a special case of interval-censored

data. For potentially right-censored data, we can adopt very flexible B-spline functions for

η(·); for truly interval-censored data, we have to be more rigid unless the sample size is very

large, the infection rate is high, or antibody/RT-PCR tests are performed frequently.

2. Simulation Studies

2.1. Antibody Tests

We designed the first series of simulation studies to mimic the BNT162b2 phase 3 trial [6].

We assumed that 40,000 participants entered the study at a constant rate over four months,

i.e., E ∼ Uniform(0, 4) months. (In the actual trial, the number of participants was slightly

below 40,000, after exclusion of those who were seropositive at baseline.) We created a

23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 17, 2021. ; https://doi.org/10.1101/2021.04.16.21255614doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.16.21255614


composite baseline risk score X, which takes values 1, 2, 3, 4, and 5 with equal probability.

We randomly assigned half of the participants at study entry to vaccine and half to placebo.

We generated the infection time T from model (1) with β = 0.2 and

log λ0(t) = −5.5 + 0.1t− 0.3(t− 7)+,

where t+ = t if t > 0 and 0 otherwise. We assumed that V Eh starts at 0 at t = 0, increases

to some maximum value at t = tm, and then stays constant or decreases gradually over time.

Specifically, we set η(t) = b1t (0 ≤ t < tm) and η(t) = b1tm + b2(t− tm) (t ≥ tm), where tm =

4 weeks, and b1 and b2 were chosen such that V Eh(tm) = 0.8 and V Eh(1 year) = 0.8 or 0.

In the BNT162b2 phase 3 trial [6], serum samples were scheduled to be drawn on Day 1,

Day 22, Day 52, and Day 209 (as measured from the participant’s entry time) [6]. To allow

for small random departures from the schedule, we used Day 1, Day 22 + Uniform(–1,3)

days, Day 52 + Uniform(–2, 8) days, and Day 209 + Uniform(–5,10) days.

Serum samples were also drawn at the crossover visits. We considered:

Priority-dependent crossover: Crossover occurs at month (11−X +G) of the study, where

G follows the exponential distribution with mean of 0.5 month.

Priority-independent crossover: Crossover occurs at month 6 + G of the study, where G

follows the exponential distribution with mean of 0.5 month.

We assumed that the analysis is performed at 10.5 months after the start of the study,

such that only the blood samples that were drawn before the 10.5 month mark can be

included. We considered both blinded and unblinded crossover designs. Under blinded

crossover, participants receive the opposite of their original assignments, and we used all

the data that are collected before the time of analysis. At the point of unblinded crossover,

participants are notified of their original assignments, and placebo participants receive the

vaccine; we disregarded any data collected after unblinded crossover in order to avoid bias

due to behavioral confounding.
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We applied the proposed methods to each simulated dataset by setting η(t) in model (1)

to be piecewise linear with a change point placed at tm and with the slope after tm fixed at 0 or

estimated from data. For comparison, we performed maximum partial likelihood estimation

of the same model with the same data by treating the time of the first positive antibody test

as a potentially right-censored event time. We also performed the logistic regression of the

infection status at the last antibody test before the 10.5 month mark (excluding the blood

samples drawn after unblinded crossover) on the randomization assignment and baseline

covariates X, and we estimated VE by 1 minus the odds ratio of infection for vaccine versus

placebo.

2.2. RT-PCR Tests

We conducted a second series of simulation studies to mimic the Prevent COVID U study.

In our simulation, a total of 12,000 participants enter the study at a constant rate over

one month; half of them receive the Moderna vaccine at enrollment and the other half

4 months later. We generated the infection time T from model (1) without X and with

log λ0(t) = −4.0−0.2t. We assumed the same VE patterns as in the first series of simulation

studies, but the change point was set at 6 weeks instead of 4 weeks.

We investigated various swabbing/RT-PCR testing schedules, ranging from every day to

every 2 weeks. All participants are followed for 4 months, and the study ends at month 5. In

addition, we considered a scenario in which placebo participants may receive vaccines outside

of the study 1 month after enrollment. We assumed that the time to outside vaccination

follows the Weibull distribution with shape parameter of 3 and scale parameter of 4, such

that the cumulative probability of outside vaccination is approximately 50%.

For each simulated dataset, we analyzed the data in the same way as in the first series

of simulation studies. Specifically, we implemented both the proposed method and its right-

censored data counterpart, to be referred to as naive Cox regression. We discarded the data

collected on placebo participants after they received outside vaccines.
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