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Abstract 

Rapid and accurate identification of patients colonised with carbapenemase-producing organisms 
(CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent 
studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time 
digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when 
using synthetic DNA templates. We sought to determine if this novel methodology could be applied 
to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, 
which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical 
applications. 

We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-
plex PCR assay for detection of blaIMP, blaKPC, blaNDM, blaOXA-48 and blaVIM. Combining the recently 
reported ML method ‘Amplification and Melting Curve Analysis’ (AMCA) with the abovementioned 
multiplex assay, we assessed the performance of the AMCA methodology in detecting these genes. 
The improved classification accuracy of AMCA relies on the usage of real-time data from a single-
fluorescent channel and benefits from the kinetic/thermodynamic information encoded in the 
thousands of amplification events produced by high throughput real-time dPCR. 

The 5-plex showed a lower limit of detection of 10 DNA copies per reaction for each primer set and 
no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent 
predictive performance with 99.6% (CI 97.8-99.9%) accuracy (only one misclassified sample out of 
the 253, with a total of 160,041 positive amplification events), which represents a 7.9% increase (p-
value < 0.05) compared to conventional melting curve analysis. 

This work demonstrates the use of the AMCA method to increase the throughput and performance of 
state-of-the-art molecular diagnostic platforms, without hardware modifications and additional costs, 
thus potentially providing substantial clinical utility on screening patients for CPO carriage.   
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1 Introduction 

This paper demonstrates that machine learning (ML) approaches coupled with high throughput real-
time digital PCR (dPCR) can be used to increase detection accuracy of multiplex PCR assays when 
screening clinical isolates for the presence of carbapenemase-producing organisms (CPOs). We used 
a recently reported ML method called Amplification and Melting Curve Analysis (AMCA), which 
leverages the target-specific information encoded in each amplification event (via real-time data), to 
identify the nature of nucleic acid molecules (Moniri et al., 2020a). The AMCA approach is based on 
training supervised machine learning algorithms to extract kinetic and thermodynamic information 
from PCR amplification and melting curves to enhance the classification accuracy in multiplexing. 
Validation of this methodology using clinical isolates has never been reported before; therefore, this 
work represents a step forward towards the implementation of this method into clinical microbiology 
laboratories. Nucleic acid amplification tests (NAATs) that incorporate the AMCA classifier for 
multiple target detection will greatly improve their specificity, sensitivity and turn-around time to 
result, reducing overall resource consumptions and improving diagnostic performance. 

Antimicrobial resistance (AMR) is a serious global threat and poses a challenge for modern 
medicine, compromising effective infectious disease management (Bush and Fisher, 2011; 
Tzouvelekis et al., 2012). One of the most concerning forms of AMR is the rapid spread of CPOs; 
bacteria producing enzymes that inactivate the potent antibiotics, carbapenems. Whilst overall UK 
incidence is low, there are centres nationally facing increasing rates and outbreaks, including 
Imperial College Healthcare NHS Trust (ICHNT), and it is endemic in many other regions worldwide 
(Otter et al., 2017b; Rodriguez-Manzano et al., 2020). CPO infections are associated with higher 
morbidity and mortality than susceptible strains, in part because their resistance can lead to 
ineffective empirical therapy and suboptimal treatment (Neuner et al., 2011; Eliopoulos et al., 2014). 
Therapeutic options are severely restricted, and in many cases clinical management relies on “last 
line” antibiotics that are less effective and have more side effects (Bleumin et al., 2012). 

Patients infected with CPOs present significant challenges for diagnostics and infection control. 
There is an urgent need for accurate and timely diagnosis to improve patient outcomes and prevent 
the spread of AMR. Carbapenemase resistance genes are often co-localised on highly transmissible 
plasmids and are readily shared between bacterial species, providing the ideal conditions for 
multidrug resistant organisms (Johnning et al., 2018). Incorrect diagnosis delays appropriate 
intervention, increases financial burdens for the healthcare system, and complicates antimicrobial 
stewardship efforts (Charani et al., 2021). A local ICHNT economic analysis estimated the cost of a 
large hospital outbreak (~100 infections) of carbapenemase producing Klebsiella pneumoniae to be 
£1M. Some of the increased expenditure was associated with increased screening, bed closures, 
medication and patient bed-days (Otter et al., 2017a); better diagnostics could reduce these costs. 

Diagnosis of CPOs is often too complicated and time-consuming, as it is normally based upon 
multiple tests which employ a wide range of instruments and diagnostic tests. Phenotypic methods 
typically target carbapenemase production and provide no information on the underlying resistance 
mechanism (Codjoe and Donkor, 2017). These tests represent a low-cost (£2-15 per sample) and 
robust methodology; however, they rely on pure culture which increases turnaround times (12-24h) 
(Moloney et al., 2019). A variety of molecular methods, including amplification (PCR-based), 
microarray and sequencing assays have been developed and are frequently used in microbiology 
laboratories (Matsumura and Pitout, 2016; Reta et al., 2020). Microarray and sequencing are time 
consuming (>12-48h), expensive (>£50K platforms and >£80 per sample), and require bioinformatic 
expertise. Conversely, NAATs are commonly cheaper (£15-30 per sample) and faster (1-2h), whereas 
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instrument price significantly ranges between tens to hundreds of thousands of pounds for 
conventional and digital PCR platforms, respectively (Huggett et al., 2015; Quan et al., 2018). 
Furthermore, the application of sophisticated data processing for its optimisation (as done with 
microarray and sequencing methods) has been largely unexplored (Collins and Moons, 2019; 
Beinhauerova et al., 2020). As a result of all aforementioned limitations, implementation of 
microarrays, sequencing and molecular methods for CPO diagnosis into routine practice is often 
limited. 

Recently, our group has demonstrated that the large volume of data obtained from real-time digital 
PCR (dPCR) instruments can be exploited to perform data-driven multiplexing in a single fluorescent 
channel, reporting a 99.33 ± 0.13% classification accuracy when using synthetic DNA in a 9-plex 
format (Moniri et al., 2020a). This result represented an increase of 10% over using melting curve 
analysis, indicative of the potential benefits of this methodology for diagnostic and screening 
applications. The ML method used (AMCA) leverages kinetic and thermodynamic information 
encoded in the amplification and melting curves to perform target identification in multiplexed 
environments (Moniri et al., 2019, 2020b; Rodriguez-Manzano et al., 2019). Here we evaluate, for 
the first time, the analytical performance of AMCA method compared to Xpert Carba-R Cepheid and 
Resist-3 O.K.N assays when tested on clinical isolates for detection of the most common types of 
serine-beta-lactamases (blaKPC and blaOXA-48) and metallo-beta-lactamases (blaIMP, blaVIM and 
blaNDM) (Maurer et al., 2015; Lim et al., 2018). Results were compared against another ML based 
classifier ‘Melting Curve Analysis’ (MCA), which uses the thermodynamic information contained in 
PCR melting curves for identification of multiple targets in a single well reaction (Athamanolap et 
al., 2014; Moniri et al., 2020a). A 5-plex PCR assay was developed in-silico and validated with 
synthetic DNA templates. The performance of the AMCA method, using this 5-plex, was further 
assessed with 253 clinical isolates provided by the microbiology department at Charing Cross 
Hospital, ICHNT. All samples were analysed in real-time dPCR, using an intercalating dye 
(EvaGreen) in a single-fluorescent channel. This work demonstrates that the AMCA method can be 
integrated with conventional clinical diagnostic workflows in combination with real-time dPCR 
platforms, as it does not require any hardware modification. Increasing multiplexing capabilities 
enables improved workflow efficiency while reducing per sample cost, and it is beneficial to a 
number of application fields beyond clinical diagnostics, such as veterinary and environmental fields, 
where multiple targets need to be analysed simultaneously (e.g., SNP genotyping, forensic studies 
and gene deletion analysis). Figure 1 illustrates the concept of data-driven multiplexing, where 
tailored PCR-based amplification chemistries combined with advance data analytics can be 
seamlessly integrated into existing diagnostics pipelines which utilize real-time platforms. 

2 Experimental Section 

2.1 Synthetic DNA 

Double-stranded synthetic DNA (gBlocks® Gene Fragments) containing the entire coding sequences 
of blaIMP, blaKPC, blaNDM, blaOXA-48 and blaVIM genes was used for quantitative real-time PCR (qPCR) 
experiments when determining the limit-of-detection of the 5-plex PCR assay, and in dPCR 
experiments for generating the digital bulk standards and training the mathematical models. The gene 
fragments (ranging from 900 to 1000 bp) were purchased from Integrated DNA Technologies Ltd 
(IDT) and resuspended in Tris−EDTA buffer to 10 ng/μL stock solutions (stored at −80 °C until 
further use). The DNA stock concentration for all targets was estimated by dPCR using the 
Fluidigm’s Biomark HD system. The following NCBI accession numbers are used as reference for 
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the gBlock synthesis: NG_049172 (blaIMP), NC_016846 (blaKPC), NC_023908 (blaNDM), NG_049762 
(blaOXA-48) and NG_050336 (blaVIM). 

2.2 Clinical isolates – bacterial strains and culture condition 

A total of 253 non-duplicated Enterobacteriaceae isolates were collected between 2012-2020 from 
clinical or screening samples routinely processed by Microbiology Department at Charing Cross 
Hospital, ICHNT (Ethics protocol 06/Q0406/20). Species identification was performed using 
MALDI-TOF MS and carbapenemase mechanisms were determined using the Xpert Carba-R 
(Cepheid) or Resist-3 O.K.N assay (Corisbio). The isolates were subcultured on appropriate growth 
media and incubated at 37 °C overnight, and the genomic DNA was extracted using GenElute 
Bacterial Genomic DNA kit (Sigma-Aldrich) following the manufacturer’s instructions. 

2.3 Primer Design 

The genes used in this study belong to (i) class A carbapenemase encoding for blaKPC type, (ii) class 
D oxacillinases encoding blaOXA-48 and (iii) class B metalloenzymes encoding blaNDM, blaIMP and 
blaVIM. The sequences of these genes were downloaded from the GenBank website 
(http://www.ncbi.nlm.nih.gov/genbank/). Based on the comprehensive analyses and alignments of 
each carbapenemase type using the MUSCLE algorithm, primers were specifically designed to 
amplify all alleles of each carbapenemase gene family described above (Edgar, 2004). Design and in-
silico analysis were conducted using GENEious Prime 2020.1.2 (https://www.geneious.com). Primer 
characteristics were analysed through IDT OligoAnalyzer software 
(https://eu.idtdna.com/pages/tools/oligoanalyzer) using the J. SantaLucia thermodynamic table for 
melting temperature (Tm) evaluation, hairpin, self-dimer, and cross-primer formation (multiple-
primer-analyzer @ www.thermofisher.com).  The Tm of the amplification product of each gene was 
determined by Melting Curve Predictions Software (uMELT) package (https://dna-
utah.org/umelt/umelt.html). To confirm the specificity of the real-time digital PCR assays, the 
primers were first evaluated in a singleplex PCR environment to ensure that they correctly amplified 
their respective loci and that the amplicons showed the predicted Tm and after that in multiplex 
format. All primers were synthesised by IDT (Coralville, IA, USA). Primer sequences and amplicon 
information are listed in Table 1. 

2.4 Multiplex real-time digital PCR 

Each amplification mix for dPCR experiments contained the following: 2 μL of SsoFast EvaGreen 
Supermix with Low ROX (BioRad, UK), 0.4 μL of 20X GE Sample Loading Reagent (Fluidigm PN 
85000746), 0.2 μL of PCR grade water, 0.2 μL of 20X multiplex PCR primer mixture containing the 
five primer sets (10 μM of each primer), and 1.2 μL of different concentrations of synthetic DNA, 
samples or controls to bring the final volume to 4 μL. PCR cycling condition consisted of a hot start 
step for 10 min at 95°C, followed by 45 cycles at 95°C for 20 s, 67°C for 45 s, and 72°C for 30 s. 
Melting curve analysis was performed with one cycle at 65°C for 3 s and reading from 65 to 97°C 
with an increment of 0.5°C. We used the integrated fluidic circuit controller to prime and load 
qdPCR 37K digital chips and Fluidigm’s Biomark HD system to perform the dPCR experiments, 
following manufacturer’s instructions. Each digital chip contains 48 inlets, where each inlet is 
connected to a microfluidic panel consisting of 770 partitions or wells (0.85 nL well volume). In this 
study, we used a total of 7 qdPCR 37K digital chips, totalling 336 panels and 189,206 positive 
amplification reactions (29,165 from training and 160,041 from testing experiments).  

2.5 Limit of detection for the 5-plex PCR assay 
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Analytical sensitivity was evaluated with 10-fold dilutions of gBlocks® Gene Fragments containing 
the sequence for the 5 carbapenemase genes, ranging from 101 to 106 DNA copies per reaction.  Each 
experimental condition was run in triplicate. The qPCR assays were performed in a LightCycler 96 
and the data was analysed using LC96 System software version SW1.1. Further details in the 
experimental conditions used for qPCR are provided in Supplementary Data S1. 

2.6 Quantification of clinical isolates 

Clinical isolates were quantified by real-time dPCR following the methodology proposed by Moniri 
et al 2020b. Thus, using Poisson statistics when the microfluidic panel occupancy was ≤ 85% (a 
maximum of 665 positive amplification events for a given panel) and quantification cycle (Cq) 
interpolation from digital bulk standards when panel occupancy was >85%. Digital bulk standards 
were generated by serial dilutions of the gBlocks® Gene Fragments containing the sequence for the 5 
carbapenemase genes ranging from reaction 101 to 105 DNA copies per panel. The Cq values are 
calculated by the Fluidigm Digital PCR Analysis software 2.1.1. 

2.7 Machine learning-based methods 

The proposed method, AMCA, trains a supervised machine learning model in which the best fit 
linear line and the optimal value of intercept and coefficient are calculated to minimize error when 
combining the predictions of amplification curve analysis (ACA) and MCA, as previously reported in 
Moniri et al (Moniri et al., 2020a, 2020b). In this study, the ACA consists of applying a k-nearest 
neighbors (KNN) model (with parameter k=10) to the entire real-time curve from each amplification 
event, whereas the MCA method consists of applying a logistic regression model to Tm values 
extracted from each melting curve (Cunningham and Delany, 2020). Both ACA and MCA output 5 
probabilities associated with each target in the 5-plex. Therefore, as showed in the flowchart in the 
Supplementary Figure S1, these probabilities are concatenated into 10 values which are the input to 
the AMCA method. It is important to note that this classifier is tuned with its own cross-validation 
step to avoid overfitting. The classifier threshold for positive samples has been set at 5% of panel 
occupancy, Further details of the AMCA linear regression model are described in Supplementary 
Data S2. 

2.8 Statistical Analysis 

(i) Sample size: A sufficient number of samples was determined to provide statistically significant 
results via the binomial proportion confidence interval method (Mercaldo ND, Lau KF, 2007). Under 
the assumption that the test has a sensitivity and specificity of 95% with a 5% margin of error, the 
number of samples were determined as 72 (which is significantly smaller than 221 used in this 
study). (ii) AMCA cross-validation performance: Prior to evaluating the in-sample performance of 
the model, by using the 221 clinical isolates, the out-of-sample classification accuracy was estimated 
by 10-fold cross-validation on the training data (using stratified splits). (iii) AMCA accuracy: The 
two-sided t-test with unknown variances was used to determine statistical significance for comparing 
the classification accuracy of AMCA against MCA. Prior to this test, a Lilliefors test was used to 
determine normality of the distributions and the Bartlett test for equal/unequal variances. A p-value 
of 0.05 was used as a threshold for statistical significance for all tests. 

3 Results 

3.1 Primer characterisation for optimal multiplex PCR assay performance 
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3.1.1 in-silico analysis 

To test the inclusivity and exclusivity of the 5-plex PCR assay, primers were subjected to a general 
NCBI BlastN search against more than 500 sequences per target. Inclusivity results showed over 99% 
identity coverage for each target (inclusivity alignments are provided in Supplementary Figure S2-
S6). For exclusivity analysis, BlastN hits with an identity score lower than 80% were regarded as 
negative. No cross-reactivity was observed with other sequences deposited in the database. 

3.1.2 Experimental results in qPCR 

The 5-plex PCR assay has been validated using a conventional qPCR platform with synthetic DNA 
templates at concentrations ranging from 101 to 106 DNA copies/reaction. Supplementary Figure S7 
shows the real-time amplification, melting and standard curves obtained from analytical sensitivity 
experiments. The amplification and melting curves have distinct shape and Tm value distribution for 
each target, respectively, which is beneficial for AMCA classification. Observed Tm values for 
blaIMP, blaKPC, blaNDM, blaOXA-48 and blaVIM are 81.4, 89.5, 90.2, 83.8 and 87.9°C, respectively. 
Moreover, each primer set (in a multiplex environment) shows an excellent limit-of-detection (LOD) 
of 10 DNA copies/reaction. Corresponding standard curves, illustrating the Cq value as a function of 
the target concentration, yield an assay efficiency of 87.3, 103.5, 105.7, 98.7, 88.1%, respectively. 
PCR products were absent in all the negative controls. 

3.1.3 Experimental results in real-time dPCR 

The 5-plex PCR assay was further validated in the dPCR platform with synthetic DNA templates at 
concentrations ranging from 101 to 105 DNA copies per panel, which were chosen such that we 
observe amplification events in both-single and bulk regions to capture kinetic information in both 
domains. Figure 2A shows end-point photographs (cycle 45) of panels at increasing amount of DNA. 
A total of 29,165 positive amplification reactions were performed. As shown in Figure 2B, a digital 
bulk standard curve for each target was build using the real-time dPCR instrument. As this 
microfluidic platform is capable of real-time data collection, quantification cycle values were used to 
generate the standard curves by plotting the Cq values against log[quantity] of a ten-fold serial 
dilution of each DNA target. It can be observed that there is a clear separation between the single-
molecule (101 to 102 copies/panel) and the bulk regions (104 to 105 copies/panel) based on Cq value 
ranges, where 103 copies/panel acts as a transition region across all the targets. In the none-saturated 
panels we can observed a digital pattern (number of ONs and OFFs) at the end of the reaction and the 
amount input molecules can be calculated using binomial and Poisson statistics (Quan et al., 2018), 
whereas in the saturated panels the amount input molecules can be quantified using the digital bulk 
standard curve (as in qPCR). Digital bulk standard curves yield an assay efficiency of 118.1, 98.7, 
86.2, 100.8 and 90.2% efficiency for blaIMP, blaKPC, blaNDM, blaOXA-48 and blaVIM assays, 
respectively. Table 2 reports the standard curve parameters for each assay, digital count and panel 
occupancy. Figures 3A and 3B, respectively, show the amplification and melting curves for the five 
carbapenem-resistant genes and the average characteristic sigmoidal shape for each target (black 
solid line) in real-time dPCR. Figure 3C represents the distribution of melting temperature, where the 
Tm range for each target is computed as: blaIMP (81.3, 83.2˚C), blaKPC (89.0, 91.5˚C), blaNDM (90.0, 
92.7˚C), blaOXA-48 (83.7, 86.6˚C) and blaVIM (87.7, 90.8˚C). After peak detection, negative reactions 
can be confirmed by identifying curves with no peak. 

3.2 Clinical isolates 
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As depicted in Table 3, the 253 pure bacterial strains were identified from MALDI-TOF MS as 
Acinetobacter spp. (n = 2), Citrobacter spp. (n = 16), Enterobacter spp. (n = 37), Escherichia spp. (n 
= 57), Klebsiella sp. (n = 133), Proteus sp. (n = 1), Pseudomonas sp. (n = 5) and Serratia sp. (n = 2). 
Carbapenemase genes were determined as a single enzyme in 220 strains (blaIMP = 45; blaKPC = 9; 
blaNDM = 74; blaOXA-48 = 84; blaVIM = 8) and as a combination in one isolate (blaNDM & blaOXA-48). 
Thirty-two isolates were confirmed as negative for the five carbapenemase genes. A more detailed 
description of each isolate, including bacterial species, date of sampling, specimen type, antibiotic 
resistance mechanisms and concentration (copies/µl of extracted DNA) can be found in 
Supplementary Table S1. 

3.3 The AMCA model: training and cross-validation 

Our study aims to validate the performance of the AMCA method for detection of carbapenem-
resistant genes in clinical isolates compared with the MCA approach. To train both models, a total of 
99,860 amplification events were generated using synthetic DNA templates, of which 29,165 were 
positive: blaIMP (N=4,941), blaKPC (N=5,940), blaNDM (N=5,870), blaOXA-48 (N=4,333) and blaVIM 
(N=8,081). Observed overall classification performance of training dataset for the MCA and AMCA 
methods was 94.9 ± 21.99% and 99.2% ± 8.86%, respectively. Supplementary Figure S8 shows the 
confusion matrices comparing the true and predicted targets for both methods. It can be observed that 
the blaNDM and blaKPC targets are misclassified by the MCA methods, whereas the AMCA 
considerably improves the prediction of both targets: from 804 to 52 amplification events for blaNDM, 
and from 511 to 46 for blaKPC. No other target was misclassified more than 1.26% for either method. 

3.4 The AMCA model: clinical validation 

A total of 253 clinical isolates, including 221 positives, and 224,840 amplification events (of which 
160,041 positives) were used for the clinical validation. Compare to results obtained with the Xpert 
Carba-R Cepheid and Resist-3 O.K.N assays, the overall observed accuracy for MCA was 91.7% (CI 
87.59 to 94.79%) and 99.6% (CI 97.82% to 99.99%) for AMCA, which represent a 7.9% increase (p-
value < 0.01) (Supplementary Figure S9). A total of 21 clinical isolates were misclassified for the 
MCA method and considered false positives (FP) as shown in Table 4, whereas the AMCA reduced 
the number of misclassified samples to 1 (Table 5). All the false positive samples were identified as 
double infection because of the overlapping distribution in the Tm, as shown in Figure 3. Performance 
improvement in the AMCA method is due to the addition of real-time amplification data, contrary to 
the MCA approach that only takes into account the melting curve distribution. Further details on 
AMCA coefficient contributions (i.e., ACA and MCA weights) are shown in Supplementary Figure 
S10. Moreover, 32 bacterial isolates not carrying the five carbapenemase genes were used to evaluate 
the assay specificity. The 5-plex PCR assay showed negative results in the absence of the specific 
target. 

4 Discussion 

In the last decade, novel pandemic outbreaks and the continued threats of emerging multi-drug 
resistant microorganisms have significantly increased the demand for molecular tests, in particular 
PCR-based methods (Nishizawa and Suzuki, 2014; Vasala et al., 2020). To respond to this need, the 
AMCA technology has been designed to increase the throughput of real-time molecular platforms. 
Seamlessly integrated with conventional diagnostic workflows, this machine learning based approach 
can enhance multiplexing capabilities of traditional qPCR and state-of-the art dPCR instruments, 
increasing the number of nucleic acid targets that can be identified in a single fluorescent channel 
without hardware modifications. Individual primer sets produce amplification products at a sequence-
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specific amplification rate and efficiency, which generate unique amplification and melting curves 
for different target concentrations. Such curves can be capture as time-series data by real-time 
instruments, feed into machine learning models and used to identify multidimensional patterns (or 
signatures) specific to each primer set. Therefore, enabling the identification of multiple DNA targets 
per fluorescent channel using only real-time data (i.e., data-driven multiplexing). In this paper, we 
performed a clinical validation on diagnostic accuracy of the AMCA methodology by targeting the 
“big five” carbapenem-resistant genes (blaVIM, blaOXA-48, blaNDM, blaIMP and blaKPC) in multiplex 
PCR. A 5-plex PCR assay was developed and characterised in both real-time qPCR and dPCR 
instruments, and the AMCA performance investigated through the identification of 253 clinical 
isolates from patients’ samples. The MCA was used as a reference method to compare results.   

We successfully show a 99.2% accuracy for identifying the five carbapenem-resistant genes in the 
clinical isolates. The AMCA method was shown to enhance the classification performance by 7.9% 
compared to MCA. The AMCA takes advantage of the volume of raw data extracted from 
amplification and melting curves, whereas the MCA only considers melting curves. It is interesting to 
observe that the overlapping melting curve distribution in Figure 3B (e.g. blaNDM and blaKPC) 
represents a misclassification of 1303 reactions (509 blaKPC as blaNDM, and 804 blaNDM as blaKPC) and 
21 clinical isolates (20 blaNDM and 1 blaKPC as coinfections) when using the MCA, but it only 
represents a misclassification of 99 reactions and 1 clinical isolates for the AMCA method. As 
described in previous publications (Moniri et al., 2020a), these results support the hypothesis that the 
underlaying biological factors driving these methods for target identification are fundamentally 
different. As observed in Supplementary Figure S10, machine learning methods can be used to 
exploit the distinctive information contained on the amplification and melting curves by weighting 
the predictions from the ACA and MCA to optimally combine them and maximize the AMCA 
performance. 

Although dPCR is not likely to replace all qPCR assays in the clinical laboratory due to associated 
instrument costs and greater complexity, it has several specific advantages over qPCR. The vast 
number of partitions reduce the likelihood of coamplification and inhibitors in a single reaction, 
facilitating accurate detection of multiple analytes; and the large amount of data enables the use of 
advance machine learning algorithms to detect subtle kinetic and thermodynamic differences encoded 
in the real-time amplification data. On the other hand, real-time dPCR platforms enable the use of 
digital bulk standards and offer a valuable solution for absolute quantification of clinical isolates 
(equivalently to conventional qPCR standards) even when the panels are saturated, expanding the 
dynamic range of quantification of the microfluidic chips and eliminating the need of testing the 
samples at multiple dilutions to ensure that at least one of them falls within the conventional dPCR 
range (i.e. panels at occupancy <85%). As shown in Figure 2, it is possible to create a standard curve 
in real-time dPCR by extracting Cq values as a function of the target concentration because there is a 
clear separation between the single-molecule and the bulk regions. We envision that coupling real-
time dPCR instruments with data-driven multiplexing will expand the use of these platforms in 
clinical microbiology laboratories. 

The results presented in this study represent a step forward in the use of PCR-based data-driven 
diagnostics for clinical applications. However, there are several aspects that need to be further 
investigated. Firstly, in this paper we evaluated the performance of AMCA method in clinical isolates 
using pure bacterial cultures, therefore a follow-up study needs to be conducted to evaluate the 
performance of the method directly from clinical samples. Secondly, it is important to identify co-
presence of infections for patient treatment, however in this paper we address only one sample with a 
double infection; a larger study will be required to test the effectiveness of the AMCA in double 
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pathogen identification. Depending on the sample concentration, this might not limit multiplexing 
capabilities in dPCR, but it could represent a challenge when qPCR instruments are used.  

This work suggests that the AMCA approach provides a versatile solution for the accurate detection 
of AMR genes, representing a cost-effective interaction as it does not require hardware 
modifications. This study highlights the importance of integrating artificial intelligence for diagnosis 
and how effectively it increases result reliability of state-of-the-art dPCR instruments. Moreover, the 
AMCA methodology has the potential for further application in point-of-care devices and isothermal 
chemistries, as a solution to leverage identification accuracy and enable faster detection of multiple 
pathogens. 
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Table 1. Primer sets developed in this study for the 5-plex PCR assay. 

CPE 
target 

Forward primer 

sequence (5’—3’) 

Reverse primer 

sequence (5’—3’) 

Amplicon 
size (bp) 

Amplicon 
Tm (oC) 

blaIMP CAGCAGAGYCTTTGCCAGATT GCCACGYTCCACAAACCAA 203 86.5 

blaKPC GGCTCAGGCGCAACTGTAA GCCCAACTCCTTCAGCAACAA 273 95.5 

blaNDM CGCGTGCTGKTGGTCGATA GGCGAAAGTCAGGCTGTGTTG 240 96 

blaOXA-48 CGATTTGGGCGTGGTTAAGGAT GTCGAGCCARAAACTGTCTAC 235 88.5 

blaVIM CGAGGYAGAGGGGARCGAGATT CTSTGCTTCCGGGTAGTGTT 275 94 
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 Table 2. Standard curve parameter in real-time digital PCR. 

     Single-molecule region 
Transition 

region 
Bulk region 

 Target Slope Constant Rsqra 
Eff. 
(%)b 

101 cp/pnl 
(occ.) c 

102 cp/pnl 
(occ.)c 

103 cp/pnl 
(occ.) c 

104 cp/pnl 
(occ.) c 

105 cp/pnl 
(occ.) c 

blaIMP -2.953 37.875 0.978 118.111 
7 
(0.9%) 

51 
(6.6%) 

519 
(67.4%) 

770 
(100.0%) 

768 
(99.7%) 

blaKPC -3.354 38.275 0.993 98.661 
5 
(0.6%) 

56 
(7.3%) 

398 
(51.7%) 

769 
(99.9%) 

770 
(100.0%) 

blaNDM -3.705 40.62 0.996 86.174 
4 
(0.5%) 

21 
(2.7%) 

190 
(24.7%) 

767 
(99.6%) 

769 
(99.9%) 

blaOXA-48 -3.304 38.01 0.998 100.77 
3 
(0.4%) 

25 
(3.2%) 

321 
(41.7%) 

769 
(99.9%) 

768 
(99.7%) 

blaVIM -3.582 39.96 0.994 90.169 
6 
(0.8%) 

59 
(7.7%) 

659 
(85.6%) 

770 
(100.0%) 

770 
(100.0%) 

 

a R-squared 

b Efficiency (%) 

c copies/panel (% occupancy in digital PCR). The occupancy is calculated by counting the number of 
amplification reaction occurring per each panel and diving it by the total number of wells (N=770). 
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Table 3. Clinical Enterobacteriaceae isolates used in this study. 

Species (MALDI-TOF MS)  Carbapenemase gene Number of isolates 

Citrobacter spp. 

blaIMP 1 

blaKPC 2 

blaNDM 1 

blaOXA-48 10 

blaVIM 1 

Enterobacter spp. 

blaIMP 20 

blaNDM 7 

blaOXA-48 2 

blaVIM 2 

Escherichia spp. 

blaIMP 7 

blaNDM 14 

blaNDM & blaOXA-48 1 

blaOXA-48 26 

Klebsiella pneumoniae 

blaIMP 15 

blaKPC 6 

blaNDM 51 

blaOXA-48 45 

blaVIM 3 

Proteus mirabilis blaNDM 1 

Pseudomonas aeruginosa  
blaIMP 2 

blaVIM 2 

Serratia marcescens 
blaKPC 1 

blaOXA-48 1 

Multiple species* negative 32 

 

*CPO-negative species: Acinetobacter baumannii, Citrobacter freundii, Enterobacter spp., 
Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa.  
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Table 4. Classification of clinical isolates when using the ML-based MCA method 

Target N TP TNa FP FN SEN SPE Accuracy (CI) 

blaIMP 45 45 32 0 0 100.0% 100.0% 100.0% (95.32 to 100.00%) 

blaKPC 9 8 32 1b 0 100.0% 96.97% 97.56% (87.14 to 99.94%) 

blaNDM 74 54 32 20c 0 100.0% 61.54% 81.13% (72.38 to 88.08%) 

blaOXA-48 84 84 32 0 0 100.0% 100.0% 100.0% (96.87 to 100.00%) 

blaVIM 8 8 32 0 0 100.0% 100.0% 100.0% (91.19 to 100.00%) 

blaOXA-48 & blaNDM 1 1 32 0 0 100.0% 100.0% 100.0% (97.24 to 100.00) 

Total 221 200 32 21 0 100.0% 60.38% 91.70% (87.59 to 94.79%) 

Abbreviations - N: number of samples; TP: True Positive TN: True Negative; FP: False Positive, FN: 
False Negative, SEN: Sensitivity, SPE: Specificity, CI: Confidence Interval. 

aA total 32 negatives samples are considered across all the groups for sensitivity, specificity and 
accuracy calculation 

bThis isolate was misclassified as blaNDM and blaKPC double infection 

cThese isolates were misclassified as blaNDM and blaKPC double infections 
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Table 5. Classification of clinical isolates based on ML-based AMCA method 

Target N TP TNa FP FN SEN SPE Accuracy (CI) 

blaIMP 45 45 32 0 0 100.0% 100.0% 100.0% (95.32 to 100.00%) 

blaKPC 9 9 32 0 0 100.0% 100.0% 100.0% (91.40 to 100.00%) 

blaNDM 74 73 32 1b 0 100.0% 96.97% 99.06% (94.86% to 99.98%) 

blaOXA-48 84 84 32 0 0 100.0% 100.0% 100.0% (96.87 to 100.00%) 

blaVIM 8 8 32 0 0 100.0% 100.0% 100.0% (91.19 to 100.00%) 

blaOXA-48 & blaNDM 1 1 32 0 0 100.0% 100.0% 100.0% (97.24 to 100.00) 

Total 221 220 32 1 0 100.0% 96.97% 99.60% (97.82 to 99.99%) 

Abbreviations - N: number of samples; TP: True Positive TN: True Negative; FP: False Positive, FN: 
False Negative, SEN: Sensitivity, SPE: Specificity, CI: Confidence Interval. 

aA total 32 negatives samples are considered across all the groups for sensitivity, specificity and 
accuracy calculation 

bThis isolate was misclassified as blaNDM and blaKPC double infection 
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Figure 1. Integration of data-driven approaches to standard diagnostic workflows. The blue arro
indicates the conventional diagnosis pipeline from patient to result, where patient sample is collect
from different sources (e.g., eye swab, nasopharyngeal swab, throat swab, urine, or rectal swa
Subsequently, samples are cultured, and nucleic acids are extracted in a microbiology lab. Followi
this, the most suitable genetic test is developed in-silico, comprising of specialised assays capable 
multi target detection in a single reaction (first grey arrow). The test is performed in the dPC
instrument, outputting large amounts of data, which are analysed by a machine learning support
algorithm to ensure reliable and accurate results (second grey arrow). This is where the AMC
methodology is applied. 
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Figure 2. Standard Curve in real-time digital PCR. (A) Digital patterns for each microfluidic panel
at increasing concentrations (770 reaction chambers per panel; 0.85 nL volume per chamber). (B) 
Standard curves correlating the Cq values with the concentration of each target; shaded blue area 
indicates the single-molecule region; shaded orange shows the bulk region; and the middle area 
displays the theoretical transition between the single-molecule and bulk. 
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Figure 3. Real-time amplification and melting curves obtained from the dPCR instrument. (A) Ra
amplification curves at different concentrations from synthetic DNA templates; the black li
represents the average trend of the kinetic information based on each specific target-prim
interaction. (B) Melting curves across the five different CPO; the black line represents the avera
trend of the thermodynamic information based on each specific target-primer interaction. (C) Melti
peak (Tm) distribution from the dPCR instrument, showing the probability density function (PDF) 
each target. 
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