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Abstract 21 

Background: Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an 22 

emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using 23 

normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. 24 

Those studies did not test whether these correlations are clinically predictive, and did not apply cross-25 

validation approaches that are necessary for biomarker development. Further, they did not account for 26 

the possibility of systematic differences between DBS patients and the non-diagnosed controls used in 27 

normative connectomes.  28 

  29 

Methods: We performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for 30 

OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via 31 

VCVS. We then calculated which tracts were likely activated by individual patients’ DBS settings. We fit 32 

multiple statistical models to predict both OCD and depression outcomes from tract activation. We 33 

further attempted to predict hypomania, a VCVS DBS complication. We assessed all models’ 34 

performance on held-out test sets.  35 

  36 

Results: No model predicted OCD response, depression response, or hypomania above chance. 37 

Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate 38 

cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, 39 

tracts connected to STN were not reliably correlated with response.  40 

 41 

Conclusions: Patient-specific imaging and a guideline-adherent analysis were unable to identify a 42 

tractographic target with sufficient effect size to drive clinical decision-making or predict individual 43 

outcomes. These findings suggest caution in interpreting the results of normative connectome studies. 44 

 45 

  46 



 

 

Introduction 47 

Deep brain stimulation (DBS) is an emerging approach to treatment-resistant mental disorders (1–3), 48 

but response rates in formal clinical trials are mixed (1,4–7). More reliable outcomes might be achieved 49 

by improving anatomic targeting. As psychiatric disorders are increasingly understood as network 50 

disorders (8,9), psychiatric DBS is moving away from using a single nucleus/structure as the target and 51 

towards attempts at affecting networks (1,10–12). There is particular enthusiasm for identifying target 52 

networks through diffusion tractography, which may enable DBS electrode placement to be customized 53 

to individual patients’ anatomy. Although there is controversy over how accurately tractography 54 

reconstructs white matter anatomy (13,14), remarkable early results have been reported from DBS 55 

placement based on that imaging (10). Further, there are multiple tools available to model the 56 

interaction of DBS electric fields and targeted tracts (15–17). These tools could replace trial-and-error 57 

DBS programming with a mathematically optimal approach to activating desired pathways while 58 

minimizing off-target effects (18). That could overcome the difficulty of correctly programming 59 

stimulation, a likely driver of inconsistent clinical outcomes (1,4,19). 60 

 61 

To realize that promise, we need to know which tracts should/should not be stimulated. For DBS of the 62 

subcallosal white matter for depression, multiple groups have settled on a specific white matter 63 

confluence and are studying it prospectively (with varying clinical outcomes (10,20)). For obsessive-64 

compulsive disorder (OCD), a consensus may also be emerging. A theory linking OCD to dysfunction in 65 

cortico-striato-thalamic connectivity (21,22) has led to a focus on white matter tracts linking prefrontal 66 

cortex (PFC) to striatum, basal ganglia, and thalamus. Retrospective studies from multiple institutions 67 

have implicated tracts to/from dorsolateral PFC (23,24), ventrolateral PFC (12,25,26), and anterior 68 

cingulate (12,24) as potentially important in response. Recent analyses of patients implanted at two 69 

different targets correlated OCD response with a tract linking the ventral internal capsule/striatum 70 

(VCVS) and the subthalamic nucleus (STN) with the medial PFC (12,26–28). One study further 71 

suggested that capture of tracts from orbitofrontal cortex (OFC) (23) led to non-response, although a 72 



 

 

qualitative synthesis (29) suggests that effective DBS tends to activate OFC-related fibers, and OFC-73 

directed circuits can drive compulsive behaviors in animal models (30–32). 74 

 75 

Although promising, these prior tractographic analyses are also limited. Many used standard atlases or 76 

connectomes derived from healthy controls, comparing these maps against electric fields from patient-77 

specific DBS placements (12,23,27,28). Individual patients, however, show dramatic variation in their 78 

white matter topography compared to atlas standards (33). Targeting maps computed using 79 

“normative” connectomes differ from those computed from patient-specific DTI images (24). Other 80 

studies used simple isotropic field models (25), or distance between electrodes and a target tract (34) 81 

which may not accurately capture the DBS-induced electric field (16,35). 82 

 83 

Most importantly, these analyses focused on tracts that correlate with clinical response. A variable may 84 

correlate strongly with an outcome but not be able to reliably predict that outcome, e.g. if the means are 85 

separate but the tails of two distributions overlap (36–38). Best practices in biomarker research suggest 86 

explicitly building predictive models, testing those models on held-out data, and reporting predictive 87 

performance in addition to correlation (36,37,39,40). Prediction-oriented analyses might better answer 88 

the question of whether a tractographic finding can be used as a programming target, i.e. whether it has 89 

strong predictive accuracy at the single-patient level (41). 90 

 91 

Here, we address these limitations through an explicit attempt to predict single-patient response to DBS 92 

for OCD at the VCVS target, based on more precise field modeling approaches and using patient-93 

specific tractography. We replicate in part prior studies’ findings that cingulate, medial PFC, and lateral 94 

PFC tracts are correlated with clinical response, but we show that these correlations do not provide 95 

strong clinical predictive power, and in some cases we identify correlations that contradict earlier 96 

reports.  97 



 

 

Methods 98 

Study Population and Clinical Treatment 99 

Participants were 6 patients who enrolled in a clinical trial (NCT00640133) of VCVS DBS for OCD (42), 100 

plus 2 who received VCVS DBS for OCD under a Humanitarian Device Exemption. All patients 101 

received Medtronic model 3387 DBS leads, with the most ventral contact targeted to the ventral striatal 102 

grey matter. The Institutional Review Boards of Massachusetts General Hospital and Butler Hospital 103 

approved the protocols and provided ethical oversight. All participants gave informed consent, explicitly 104 

including separate consent for DBS and for neuroimaging. We report here all patients who agreed to 105 

undergo imaging. We analyzed both the Yale-Brown Obsessive-Compulsive Scale (YBOCS) and 106 

Montgomery-Asberg Depression Rating Scale (MADRS), collected at visits approximately 2-4 weeks 107 

apart by a trained rater.  108 

Imaging and Patient-Specific Tractography 109 

Pre-operative MRI data were acquired on a 3T Siemens TimTrio scanner. Diffusion MRI (dMRI) scans 110 

had a spatial resolution of 2 mm (isotropic) with 10 non-diffusion weighted volumes and 60 diffusion 111 

weighted volumes, with gradient directions spread uniformly on the sphere with a b-value of 700 s/mm2. 112 

dMRI data were registered to pre-operative T1- and T2-weighted MRI images and post-operative CT 113 

scans using a published pipeline (43) available at https://github.com/pnlbwh/. We then performed whole 114 

brain tractography from the dMRI data, using a multi-tensor unscented Kalman filter (UKF) (44,45). The 115 

UKF fits a mixture model of two tensors to the dMRI data, providing a highly sensitive fiber tracking 116 

ability in the presence of crossing fibers (46–49). The UKF method guides each fiber’s current tracking 117 

estimate by the previous one. This recursive estimation helps stabilize model fitting, making tracking 118 

more robust to imaging artifact/noise. Another benefit of UKF is that fiber tracking orientation is 119 

controlled by a probabilistic prior about the rate of change of fiber orientation, producing more accurate 120 

tracking than the hard limits on curvature used in typical tractography algorithms. We combined the 121 

UKF with a fiber clustering algorithm to create an anatomically curated and annotated white matter 122 



 

 

atlas (48). The clustering method groups the streamlines from each patient using a spectral embedding 123 

algorithm. Each fiber cluster is matched to a tract from an a priori labelled atlas of the white matter 124 

derived from known connections in monkey and human brains. Fiber clustering was performed only on 125 

streamlines longer than 40 mm to annotate medium and long range tracts.  126 

 127 

Tract Activation Modeling 128 

For each clinical DBS setting used in each patient, we calculated the volume of tissue activated (VTA) 129 

using a modified version of StimVision (15). Briefly, the VTAs were calculated using artificial neural 130 

network predictor functions, which were based on the response of multi-compartment cable models of 131 

axons coupled to finite element models of the DBS electric field (50). The VTAs used in this study were 132 

designed to estimate the spatial extent of activation for large diameter (5.7 µm) myelinated axons near 133 

the DBS electrode  (51).  134 

 135 

Based on theories that VCVS DBS acts by modulating circuits that run primarily in the internal capsule 136 

(14,22,29), we estimated activation of pathways linking thalamus with anterior cingulate and 137 

pericingulate cortex (ACC-PAC), dorsolateral PFC (dlPFC), ventrolateral PFC (vlPFC), dorsomedial 138 

PFC (DMPFC), medial orbitofrontal cortex (MOFC) and lateral OFC (LOFC). Pericingulate cortex 139 

includes rostral pre-cingulate cortex, but not the dorsal prefrontal cortex (such as the supplementary 140 

motor area). The atlas-guided fiber clustering algorithm (48) and a fiber clustering pipeline (52,53) 141 

guided manual delineation of fiber bundles connecting these regions to thalamus. All pathway labelings 142 

were performed by an expert neuroanatomist (Dr. Makris). Examples of the traced bundles and their 143 

intersections with DBS VTAs are shown in Figure 1A. Recent reports found that a tract connecting 144 

subthalamic nucleus (STN) to medial prefrontal cortex was strongly associated with clinical response to 145 

DBS in OCD (12,26–28). Therefore, we manually segmented the STN in each subject and extracted all 146 

fiber tracts connecting the STN with the prefrontal cortex (Figure 1B). 147 

 148 



 

 

[Figure 1 about here] 149 

 150 

Data Analysis - Independent/Predictor Variables 151 

It is unclear whether the important “dose” of DBS is activation of a sufficient number of fibers (“total 152 

fiber” model), vs. the degree to which a sub-circuit is influenced (i.e., the fraction of the overall 153 

streamlines in a tract that are within the VTA, or a “percentage” model). We calculated both and fit them 154 

as two separate models for each dependent clinical outcome (see below). We also considered the 155 

possibility that DBS response is not determined by any individual tract/pathway, but instead requires 156 

capture of multiple pathways simultaneously. We therefore added a “total activation” variable to each 157 

prediction model. For total fiber models, this variable represented the total number of streamlines 158 

activated for all tracts. For percentage models, it represented the mean percentage activation across all 159 

reconstructed tracts. We standardized all input variables to the 0-1 interval to ensure that regression 160 

coefficients were comparable between independent variables. 161 

 162 

All models were fit and evaluated using scikit-learn (0.24.1) in Python (3.8.5). With the exception of a 163 

necessary condition analysis described below, variables were coded at the single-visit level. That is, we 164 

predicted the clinical outcome at visit T from the DBS settings programmed at visit T-1. 165 

 166 

Data Analysis - OCD Response 167 

White matter pathway activation might relate tightly to the degree of clinical improvement (YBOCS as a 168 

continuous variable) or to patients’ overall well being (dichotomous responder/non-responder analysis). 169 

We thus modeled each separately. We analyzed continuous YBOCS as percentage decrease from 170 

baseline. Distribution fitting via the ‘fitdist’ package verified that YBOCS values were most compatible 171 

with a gamma distribution. We therefore predicted YBOCS improvement via an L1-regularized 172 

generalized linear regression (gamma distribution with identity link, Python package ‘pyglmnet’) and via 173 



 

 

a random forest regression with 100 trees. The dependent variable was percentage improvement in 174 

YBOCS. We compared these two approaches to assess whether conclusions might be sensitive to the 175 

model formulation. Regularized regression emphasizes selection of a small number of highly leveraged 176 

variables, which may be more helpful in defining clinical decision rules. Random forests can outperform 177 

generalized linear regression in at least some cases (54), particularly where there are nonlinearities 178 

better captured by thresholding.  179 

 180 

We further analyzed categorical (non)response, defined as a 35% or greater YBOCS decrease from 181 

baseline (42). For these, we compared an L1-regularized logistic regression and a random forest 182 

classifier with 100 trees. A minority of visits represented clinical response (29 visits out of 165, although 183 

5 of 8 patients were in clinical response during at least one visit). To compensate for this imbalance, we 184 

applied the Synthetic Minority Oversampling Technique (SMOTE, (55)) with 3 nearest-neighbor 185 

examples. We chose L1 regularization for both regressions because dominant models of OCD argue 186 

that dysfunction in specific cortico-striatal loops leads to symptoms (21,22) and/or that a relatively small 187 

number of fiber bundles can explain response (12,26–28). This should be reflected in clinical response 188 

being driven a small subset of tracts. 189 

 190 

Data Analysis - Depression Response 191 

VCVS may have more effects on mood than on compulsivity (56), which would be reflected in better 192 

prediction of mood (MADRS) than of YBOCS. We applied the modeling pipeline used for categorical 193 

YBOCS response to categorical MADRS response, defined as a 50% or greater MADRS decrease 194 

from pre-surgical baseline. 7 out of the 165 visits met MADRS response criteria, although this again 195 

represented 5 of 8 patients. 196 

 197 

We further assessed tractographic models’ prediction of hypomania, a known and voltage-dependent 198 

complication of VCVS DBS (57,68); details are in the Supplement. 199 



 

 

 200 

Data Analysis - Model Evaluation 201 

All categorical data sets were unbalanced, and the outcome of clinical interest was always the minority 202 

class. We therefore report balanced accuracy and recall (performance for the minority class) for the 203 

categorical dependent variables. Further, we report the area under the receiver operator curve (AUC), 204 

which is suggested to be the best summary of a categorical biomarker’s performance (36,39). For 205 

continuous YBOCS prediction, we report the fraction of variance explained and the coefficient of 206 

determination (R2). We emphasize that R2 here is not the square of a correlation coefficient (36).  207 

 208 

All metrics were calculated on a held-out test set (36,37,39,40). For each model, we held out 2 random 209 

patients from the dataset (effectively 4-fold cross-validation with resampling). This improves over leave-210 

one-out approaches, which can overstate predictive performance (58). We left out 25% of patients, 211 

rather than visits, because data were highly autocorrelated visit-to-visit, which also falsely inflates 212 

performance (36). We then fit the predictive model on the remaining 6 patients, and we report the 213 

performance on the visit-level data from the held out patients. To prevent data leakage, the SMOTE 214 

upsampling was performed on the training set only, after the split. We obtained confidence intervals for 215 

all metrics by repeating this process over all 28 possible leave-two-out combinations, then calculating 216 

the range of performance falling within 2 standard deviations of the median performance.  217 

 218 

We fit 16 models (4 outcomes x 2 types of model x 2 ways of expressing activation), cross-validating 219 

within each model. We interpreted the outcomes using an uncorrected 95% confidence interval to 220 

maximize power. 221 

 222 



 

 

Data Analysis - Predictor Importance 223 

To detect potentially relevant tracts, we performed importance scoring on all models, regardless of 224 

whether they correctly predicted the clinical outcomes. For regression models, we computed the 225 

median and standard deviation of the regression coefficient for each tract, across all the train-test splits. 226 

For random forests, we applied permutation importance as implemented in scikit-learn. We permuted 227 

each independent variable 5 times for each of the train-test splits. 228 

 229 

Data Analysis - Alternative Univariate Approach 230 

Recent papers (12,26–28) used a different approach, based on comparison of VTAs to population-231 

scale tractography. As an additional analysis (not pre planned), we attempted a similar approach on 232 

this dataset. We calculated all linear correlations between YBOCS improvement (continuous variable) 233 

and the activation of each individual tract (either as a total fiber or percentage activation). These 234 

correlations were performed on the training set after holding out 2 random patients, consistent with 235 

(12). To test whether this approach produced more generalizable predictors of DBS response, we used 236 

the same data to fit a univariate linear regression for each independent variable, then evaluated the 237 

model performance (coefficient of determination, R2) on the 2 held out patients.  238 

 239 

In a further exploratory analysis (see Supplement), we considered whether DBS outcomes depended 240 

not on the tracts activated, but the integrity of those tracts. 241 

Results 242 

Clinical Outcomes - YBOCS 243 

The mean YBOCS improvement (considering each patient’s best time point) was 46.6%, and 5 of the 8 244 

patients (62.5%) were clinical responders (≥35% YBOCS drop) for at least one visit. 245 

 246 



 

 

No tract reliably predicted continuous YBOCS improvement. By all metrics, model performance was 247 

worse than chance on the held-out test set (Table 1), for both total-activation and percentage-activation 248 

models. Consistent with this, no coefficients in the regression models were above zero (i.e., the dataset 249 

mean was more reliable than any tractographic predictor). In the random forest models, the highest 250 

importance was percentage activation of fibers connecting thalamus to left OFC, but this was at chance 251 

level (change in R2 across models: mean 0.09, SD 0.24).  252 

 253 

[Table 1 about here] 254 

 255 

Similarly, no model exceeded chance for response/nonresponse prediction (Table 2). In the logistic 256 

regression, highly weighted features across models were the number (but not percentage) of activated 257 

streamlines connecting thalamus to left cingulate, lateral OFC, medial OFC, and vlPFC. Cingulate and 258 

lateral OFC streamline activation were positively associated with response, whereas medial OFC and 259 

vlPFC activation were negatively associated (Figure 2). For all of these tracts, the confidence interval 260 

for the coefficient estimated across all train-test splits included 0. These findings were sensitive to the 261 

modeling approach; the same tracts did not show median importance scores different from 0 in the 262 

random forest models. The ACC-PAC findings were corroborated by a Necessary Condition Analysis 263 

on white matter integrity (Supplementary Results). 264 

 265 

[Table 2 and Figure 2 about here]  266 

 267 

The alternate mass-univariate approach also did not reliably predict response on the held-out test sets 268 

(Table 3). It was concordant with the categorical response analysis in that it identified streamlines 269 

connecting the left cingulate to thalamus as correlated with response, and similarly streamlines from 270 

bilateral vlPFC as correlated with non-response. There was more discordance than similarity, however. 271 

The medial OFC tracts identified by regression were not selected in the mass univariate approach, and 272 

conversely, the mass univariate approach predicted nonresponse if tracts projecting to dlPFC were 273 



 

 

within the VTA. Further, the mass univariate approach emphasized percentage capture, while the 274 

logistic regression emphasized total fibers within a VTA. We note that tracts from STN to PFC were 275 

negatively correlated with clinical outcomes, whereas prior reports identify them as positively correlated 276 

(12,27,28). 277 

 278 

Clinical Outcomes - MADRS 279 

The mean MADRS improvement (considering each patient’s best time point) was 55.69%, and 5 of the 280 

8 (62.5%) were responders (≥50% MADRS drop) at some point. Mood and OCD response were not 281 

linked (r=0.13 for correlation between response status on YBOCS and MADRS). Consistent with other 282 

reports (56), there were more observations of MADRS response without YBOCS than of YBOCS 283 

response without MADRS (22 vs. 4). 284 

 285 

No model reliably predicted MADRS response above chance (Table 4). For comparison with the 286 

YBOCS analysis, we further examined the non-zero coefficients of the total-fiber regression. Capture of 287 

streamlines between right cingulate and thalamus was correlated with MADRS response, and the 288 

confidence interval for this coefficient excluded zero (Figure 3). This was not true of any other tract. Left 289 

vlPFC was associated with non-response (as it was in the categorical YBOCS analysis), but the 290 

distribution of coefficients across analyses included zero. Random forest importance scores were 291 

centered around zero. 292 

 293 

[Table 4 and Figure 3 about here] 294 

 295 

Discussion 296 

Our results are both concordant and discordant with prior efforts to predict clinical OCD DBS response 297 

from tractographic modeling of cortico-striatal and cortico-basal circuits. Critically, we implemented 298 



 

 

multiple analytic steps beyond prior studies: individualized, patient-specific tracts registered to 299 

individual lead placements, activation volume calculation beyond simple electric field assumptions, 300 

consideration of multiple clinical timepoints for each patient, and formal evaluation of predictive power 301 

(as compared to measurement of correlations between activation and response or group mean 302 

differences). With this more guideline-adherent approach, we found that no tract could reliably predict 303 

clinical response or complications, whether those were considered in a continuous or categorical 304 

approach. This is likely not a surprise – we and others have highlighted that group-level significant 305 

correlations/separations often do not have clinical predictive power (36–39). In this sense, our results 306 

support calls for caution regarding the clinical role of tractography (16,41). We also showed that 307 

outcomes can be sensitive to the analytic approach – our random forest and regularized regression 308 

approaches produced very different results, even though both are commonly used approaches to 309 

prediction and variable selection. 310 

 311 

Model inspection may offer some insight into variables for further investigation, even if pathway 312 

activation modeling approaches are not yet able to strongly predict response. Numerically, predictive 313 

power was greater (more non-zero regression coefficients after regularization) when predicting 314 

categorical rather than continuous outcomes. This may be because categorical outcomes effectively 315 

smooth out small fluctuations in continuous rating scales, fluctuations that may be primarily due to inter-316 

rater variability or disease-unrelated variables rather than to DBS settings. The YBOCS in particular 317 

shows non-linear behavior at high scores that may exacerbate this (59). We obtained non-zero 318 

regression coefficients for models using activated fiber counts, but not for percentage-activated models, 319 

implying that it is more important to get at least a portion of a key tract within the VTA. These results 320 

also make sense in the context of our finding that the integrity (traceability) of these tracts varies greatly 321 

between patients with OCD -- a tract where response depends on tract integrity will have a large 322 

coefficient in a total-fibers model, but not in a percentage-activation model. 323 

 324 



 

 

Our results in part support and in part diverge from a series of recent papers implicating pathways 325 

between PFC and basal ganglia as critical for OCD DBS (12,26–28). Consistent with that work, the 326 

ACC/PAC to thalamus tracts were implicated in both YBOCS and MADRS response, and were the 327 

most positively weighted in our mass-univariate approach. Our white matter integrity analysis identified 328 

the same tracts as having the largest effect size (necessity). Also similar to that prior work, we found 329 

that activation of connections to medial OFC produced numerically worse outcomes. Inconsistent with 330 

the prior work (12,26–28), we found negative correlations (in the mass univariate analysis) or null 331 

effects (in the predictive models) specifically for tracts connecting PFC to STN or vlPFC to thalamus. 332 

This again may reflect the importance of patient-specific imaging. Given that we have previously shown 333 

these tracts to have substantial inter-individual variability in their position within the internal capsule 334 

(33), and that here we note them to have similar variability in their overall integrity, a normative 335 

connectomic analysis may not reflect the actual fibers being successfully modulated in DBS cases. 336 

Alternatively, our results may highlight programming and surgical differences. These patients were 337 

implanted and programmed following the approach in (60), which emphasizes an initial search for a 338 

positive affective response. Other centers have reported very different programming algorithms (61), 339 

based more on standard anatomic positions. If response correlates with, e.g., the quality of concomitant 340 

therapy (26,62) or general clinical expertise (63), those factors will likely be strongly correlated with the 341 

programming clinician, and thus will spuriously load onto the tracts and implant locations that clinician 342 

happens to prefer. Most importantly, our results highlight the importance of applying analyses designed 343 

specifically to identify clinical predictors (36). Interestingly, we found that OFC engagement predicted 344 

worse OCD clinical response. OFC-originating components of cortico-striato-thalamic circuits are 345 

heavily emphasized in theoretical (21,22,29) and animal (30,32,64) models of OCD, and these findings 346 

may contribute to an ongoing debate over those models. 347 

 348 

These results are tempered by three limitations. First, our sample size is small, consistent with the rarity 349 

of these patients (65). Second, imaging was not performed on a connectome-optimized scanner, and 350 

scanning at 7 Tesla (as has now become more common (66)) might identify more tracts. Third, we used 351 



 

 

relatively simple models of DBS activation. All of these add noise, reducing our ability to detect subtle 352 

correlations, particularly given DTI’s susceptibility to false positives (14). Practically, however, these 353 

limitations may not affect the clinical importance of our findings. We mitigated the lower resolution of 354 

these scans by use of an algorithm that is specifically designed to perform well in the presence of noise 355 

(45) and ensuring that our extracted tracts matched known, anatomically verified fiber bundles (48). 356 

Further, small sample sizes tend to inflate effect sizes and bias towards positive conclusions (67), not 357 

the negative result we report. Most importantly, for a tractographic result to be sufficiently reliable to 358 

inform clinical targeting/programming, it would need to have a large and clear influence on outcomes, 359 

with robustness to minor variations in analytic or clinical technique. Such a large effect would be clearly 360 

detectable and consistent across studies even at small sample sizes, like the clinical effect of VCVS 361 

DBS, which shows consistent 60-70% response rates across many small to medium cohorts (56,68–362 

71). In that context, failure to identify a significant predictor in this small sample is relevant to both 363 

clinical practice and future study design. 364 

 365 

Overall, our results support a growing argument that circuits linking ACC to thalamus and basal ganglia 366 

are important to VCVS DBS response. They dovetail with other work linking modulation of those circuits 367 

to increased cognitive control (72,73), a construct that is thought to be deficient in OCD (74,75). At the 368 

same time, they highlight that the current level of tractographic understanding does not have strong 369 

clinical predictive power, and that multiple confounds remain to be controlled/addressed. With multiple 370 

technologies emerging to better verify target engagement and address patient heterogeneity (1,16), 371 

that understanding will likely grow in coming years. 372 

 373 

Data/Code Availability 374 

De-identified data tables and analysis code used to produce all exhibits in this manuscript will be 375 

available at the time of publication at https://github.com/tne-lab . 376 
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 818 

Figure 1: Patient-specific tractographic mapping of OCD DBS response. (A), Tract tracing and 819 

activation modeling examples. Shown are left/right oblique and axial views from one non-responder and 820 

one responder, with cortico-thalamic and cortico-STN tracts indicated by different colors. DBS leads are 821 

shown in teal and VTAs in red. In this panel, we show only tracts intersecting the VTAs for clarity. (B), 822 

Tracing of tracts between STN and frontal cortex, in the same responder as (A). To ensure capture of 823 

the tract reported in (12), we broadly traced all streamlines originating in a seed around STN and 824 

extending anterior to the central sulcus. This includes fibers coursing dorsally to motor regions, and 825 



 

 

tracts as in (12) connecting STN to ACC and medial PFC. Very few of these intersect the VTA in this 826 

patient, despite the good clinical response (YBOCS drop of 61% from baseline). To emphasize that 827 

point, this panel shows all fibers traced from the STN seed in this patient, regardless of VTA 828 

intersection.   829 



 

 

 830 

Figure 2: Non-zero regression coefficients across exhaustive leave-two-out cross-validation of 831 

regularized logistic regression to predict YBOCS response. All confidence intervals include 0, with left 832 

medial OFC (non-response) and left ACC (response) coming closest to significance. All reported results 833 

are for total fiber capture; percentage capture did not have non-zero coefficients in this analysis. Data 834 

are coded such that positive regression coefficients represent clinical improvement. 835 

 836 
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 838 

Figure 3: Non-zero regression coefficients across exhaustive leave-two-out cross-validation of 839 

regularized logistic regression to predict MADRS response. All confidence intervals include 0, except 840 

for the right cingulate cortex. All reported results are for total fiber capture; percentage capture did not 841 

have non-zero coefficients in this analysis. 842 
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 R2 Explained Variance 

 Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound 

L1 Regression (Percentage) -0.194 -1.743 1.355 0 0 0 

L1 Regression (Total Fibers) -0.196 -1.747 1.356 0 0 0 

Random Forest (Percentage) -0.792 -3.794 2.21 -0.023 -0.902 0.857 

Random Forest (Total Fibers) -1.389 -4.934 2.156 -0.222 -1.249 0.805 
 844 

Table 1: Modeling outcomes for YBOCS improvement as a continuous variable. All confidence 845 

intervals include 0. Negative coefficients of determination (R2) imply a model that performs worse than 846 

chance. 847 

 848 
 849 
 850 

 Balanced Accuracy Recall AUC 

 Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound 

L1 Logistic (Percentage) 0.5 0.5 0.5 0 0 0 0.5 0.5 0.5 

L1 Logistic (Total Fibers) 0.5 0.093 0.907 0.571 -0.24 1.383 0.572 0.281 0.864 

Random Forest (Percentage) 0.46 0.192 0.728 0 -0.582 0.582 0.58 0.368 0.793 

Random Forest (Total Fibers) 0.421 0.193 0.65 0 -0.527 0.527 0.588 0.374 0.802 
 851 

Table 2: Modeling outcomes for YBOCS improvement as a categorical response. All confidence 852 

intervals include chance (0.5 for Balanced Accuracy and AUC, 0 for Recall of the minority class). 853 
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 855 

 Training Set R Test Set R2 

Tract Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound 

L dlPFC (Percentage) -0.405 -0.607 -0.203 -0.139 -1.842 1.564 

L vlPFC (Total Fibers) -0.389 -0.591 -0.187 -0.268 -2.813 2.277 

R vlPFC (Percentage) -0.384 -0.504 -0.263 -0.162 -1.622 1.297 

L STN (Percentage) -0.373 -0.62 -0.125 -0.301 -3.189 2.587 

L vlPFC (Percentage) -0.366 -0.603 -0.129 -0.411 -27.119 26.297 

R dmPFC (Percentage) -0.359 -0.481 -0.237 -0.275 -2.182 1.633 

R dlPFC (Percentage) -0.356 -0.542 -0.17 -0.14 -1.706 1.426 

All Regions (Percentage) -0.347 -0.555 -0.138 -0.35 -1.598 0.897 

L dlPFC (Total Fibers) -0.332 -0.594 -0.07 -0.275 -2.149 1.6 

R STN (Percentage) -0.321 -0.525 -0.118 -0.315 -2.149 1.519 

L dmPFC (Percentage) -0.315 -0.567 -0.063 -0.434 -22.196 21.329 

All Regions (Total Fibers) -0.311 -0.553 -0.069 -0.421 -1.868 1.026 

R dmPFC (Total Fibers) -0.266 -0.471 -0.062 -0.35 -1.832 1.132 

R vlPFC (Total Fibers) -0.266 -0.461 -0.071 -0.182 -2.991 2.626 

L ACC-PAC (Total Fibers) 0.268 0.067 0.469 -0.33 -1.959 1.298 

R OFC-Lateral (Percentage) 0.319 0.07 0.567 -0.315 -1.771 1.141 
 856 

Table 3: Correlations between individual fiber tracts and YBOCS response, in the style of (12), filtered 857 

to tracts whose confidence interval excludes 0 on the training sets. No such tract has clinical predictive 858 

power on held-out test sets (all R2 values less than 0). 859 
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 Balanced Accuracy Recall AUC 

 Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound 

L1 Logistic (Percentage) 0.5 0.5 0.5 0 0 0 0.5 0.5 0.5 

L1 Logistic (Total Fibers) 0.5 0.093 0.907 0.571 0 1 0.572 0.281 0.864 

Random Forest (Percentage) 0.46 0.192 0.728 0 0 0.582 0.58 0.368 0.793 

Random Forest (Total Fibers) 0.421 0.193 0.65 0 0 0.527 0.588 0.374 0.802 
 863 

Table 4: Leave-two-out prediction outcomes for categorical depression response (MADRS). No model 864 

exceeded chance accuracy on the test set (all confidence intervals include a balanced accuracy/AUC of 865 

0.5 or recall of 0). 866 
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Patient-Specific Connectomic Models Correlate With, But Do Not Predict, Outcomes in 868 

Deep Brain Stimulation for Obsessive-Compulsive Disorder  869 

Supplemental Methods 870 

Study Population and Clinical Treatment 871 

In all cases, DBS implantation and programming followed the protocols described in (60). 2 patients 872 

were implanted and followed at Butler Hospital/Brown University Medical School; the other 6 were 873 

implanted and followed at Massachusetts General Hospital. All patients received Medtronic model 3387 874 

DBS leads, with the most ventral contact targeted to the ventral striatal grey matter. All participants 875 

gave informed consent after multiple meetings with the site study teams, which explicitly included 876 

separate consent for neuroimaging.  877 

 878 

One patient, reported in (76), declined rating visits with the study team after her first several months of 879 

treatment, due to being substantially improved and not desiring further programming. She had a series 880 

of telephone notes captured in the electronic medical record over the course of a year documenting that 881 

she was doing well with no DBS setting changes from her last programming visit. We carried her 882 

YBOCS and MADRS forward from the last available rating, despite suggestions in the clinical record 883 

that she was doing better than these scores reflect. 884 

 885 

Imaging Details 886 

Pre-operative MRI data were acquired on a 3T Siemens TimTrio scanner. T1-weighted and T2-887 

weighted images were acquired with a 1.2 mm isotropic voxel size; diffusion MRI (dMRI) scans had a 888 

spatial resolution of 2 mm (isotropic) with 10 non-diffusion weighted volumes and 60 diffusion weighted 889 

volumes, with gradient directions spread uniformly on the sphere with a b-value of 700 s/mm2. After 890 



 

 

DBS implantation, a postoperative CT scan was acquired at a spatial resolution of 0.43 x 0.43 x 0.63 891 

mm3.  892 

 893 

All MRI data was processed using a published pipeline (43) available at https://github.com/pnlbwh/. We 894 

applied axis alignment to the T1-weighted and T2-weighted images, and performed eddy current and 895 

motion correction for the dMRI images. T1-weighted images were skull-stripped using the Brain 896 

Extraction Toolkit (BET) (77,78). These masks were then manually checked and edited to ensure 897 

accurate brain extraction. In a similar manner, the CT scans were also masked to only retain the brain. 898 

The ANTS registration software (79) was then used to coregister the CT images to the T1-weighted 899 

images as well as the dMRI scans. Further, Freesurfer (v6.1) was run on the T1-weighted images to 900 

parcellate the brain (both cortex and subcortical structures) using the Desikan-Killiany atlas. Next, we 901 

registered the Freesurfer segmentation to the diffusion weighted images using pipeline scripts. All 902 

registrations (CT to T1-weighted, CT to dMRI, Freesurfer) were manually checked for accuracy.  903 

 904 

During the tract tracing and annotation, fibers terminating in ACC vs. PAC could not be reliably 905 

distinguished across all subjects. We thus treated these adjacent regions as a single terminus. 906 

 907 

We defined the STN-PFC tracts as all streamlines connecting the STN with the following Freesurfer 908 

segmented regions: caudal anterior cingulate, caudal middle frontal, lateral orbitofrontal, medial 909 

orbitofrontal, parsopercularis, parsorbitalis, rostral anterior cingulate, rostral middle frontal, superior 910 

frontal, and frontal pole. To ensure that we captured the relevant bundles, we dilated the STN by 1 911 

voxel (~ 2mm) in all directions (from our hand drawn segmentations) to include more tracts that might 912 

be close to the STN.  These streamlines were analyzed identically to the cortico-thalamic tracts.  913 

 914 



 

 

Data Analysis - Hypomania 915 

We considered the possibility that pathway modeling might be more useful for minimizing off-target 916 

effects than for determining response (23,80). The most common complication of VCVS DBS is a 917 

hypomanic-impulsive syndrome that may affect up to 50% of patients (57,68). (We refer to this as 918 

“hypomania” for conciseness, but acknowledge the substantial debate (61) over the naming and nature 919 

of this complication.) We ascertained hypomania by chart review of visit notes and case report forms. 3 920 

patients experienced at least one hypomanic episode, over 50 total visits. We again compared L1-921 

regularized logistic regression and random forest classification on this restricted dataset. It was not 922 

possible to perform this analysis on the full dataset, because the rarity of the complication meant that 923 

cross-validation strategies would produce training/test sets without sufficient examples. Further, it 924 

would likely be possible to achieve above-chance classification by identifying which patient contributed 925 

a given data point, which would be subtly reflected in the overall pattern of activation (i.e., there is a 926 

strong potential for data leakage). 927 

 928 

Data Analysis - Model Evaluation 929 

We altered the cross-validation process for the hypomania model, because restricting the dataset to the 930 

3 patients who experienced at least one hypomanic event made leave-2-out infeasible. We therefore 931 

cross-validated at the level of individual visits. We split the dataset with 80% of the data points as 932 

training and 20% as test set data, stratifying the split so that hypomanic events occurred in each 933 

dataset. We repeated this splitting process 1,000 times to obtain confidence intervals, and again 934 

performed all oversampling after the split. 935 

Data Analysis - Overall White Matter Integrity 936 

In a further exploration, we noted that some tracts had very few streamlines in non-responders. We 937 

considered that white matter integrity might affect our results, such that patients could only respond if a 938 

given tract were sufficiently intact. For every tract in the previous analyses, we defined its integrity as 939 



 

 

the total number of streamlines traced, divided by the overall intracranial volume (to ensure that we did 940 

not simply trace more fibers in larger brains). Following the total/percentage fiber analyses above, we 941 

also created a predictor from the mean integrity across all tracked bundles. We could not correlate 942 

integrity against response at the visit level, since tract integrity does not change with DBS settings. 943 

Instead, we classified patients as overall responders if a plurality (40% or more) of their clinical visits 944 

had YBOCS scores below the 35% response threshold; 3 of the 8 met this criterion. We did not 945 

consider the first three months of the clinical course in determining this response, in order to emphasize 946 

response from DBS as opposed to lesion effect. We did not SMOTE this analysis, as the dataset was 947 

too small. 948 

 949 

To test for a “threshold” level of integrity for DBS efficacy, we performed a Necessary Condition 950 

Analysis (NCA, (81)), as implemented in R package “NCA” (82), using the free disposal hull (CE-FDH) 951 

ceiling calculation. We separately tested the necessity of each tract and of overall (mean) integrity. We 952 

assessed significance of the resulting NCA effect sizes by 1000-fold permutation (shuffling 953 

responder/non-responder labels), with Benjamini-Hochberg false discovery rate correction. 954 

 955 
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Supplemental Results 957 

Hypomania 958 

3 patients (37.5%) experienced hypomania (6 total episodes) in this dataset. This is somewhat below 959 

the rate we reported from a different VCVS dataset (57), but consistent with the largest published 960 

cohort of this target in OCD (68). 961 

 962 

No model was able to predict hypomania with better than chance performance (Table S5). Further, all 963 

fitted models had 0 median recall, i.e. predictive power was generally achieved by always predicting the 964 

majority (non-hypomanic) outcome. The percentage-capture regression model assigned all coefficients 965 

to 0, whereas the total-fiber model had some nonzero coefficients (Figure S4). Specifically, the left-966 

sided PFC-STN connection was protective against hypomania. The left DLFPC-thalamus fibers had a 967 

similar but non-significant effect. Activation of right lateral OFC and STN fibers, on the other hand, 968 

predisposed towards hypomania, consistent with a prior analysis that found an association between 969 

right-sided monopolar stimulation and hypomania (57). The random forest model had no importance 970 

scores that systematically differed from zero.  971 

 972 
 973 

 Balanced Accuracy Recall AUC 

 Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound Median 
CI Lower 

Bound 
CI Upper 

Bound 

L1 Logistic (Percentage) 0.5 0.5 0.5 0 0 0 0.5 0.5 0.5 

L1 Logistic (Total Fibers) 0.4 0 0.84 0 0 0.899 0.7 0.486 0.914 

Random Forest (Percentage) 0.5 0.043 0.957 0 0 0.912 0.55 0.152 0.948 

Random Forest (Total Fibers) 0.5 0.003 0.997 0 0 0.988 0.55 0.109 0.991 
 974 

Table S5: Prediction outcomes for hypomania, on a test set composed of 20% of visits from the 3 975 

patients who had hypomanic episodes. No model consistently achieves recall > 0 or better than chance 976 

accuracy/AUC. 977 



 

 

 978 

 979 
Figure S4: Non-zero regression coefficients for regularized logistic regression to predict hypomania. 980 

The only tract whose confidence interval excludes 0 connected left PFC to STN, and was protective 981 

against hypomania. All reported results are for total fiber capture; percentage capture did not have non-982 

zero coefficients in this analysis. Here, positive coefficients signify greater risk of hypomania. 983 

 984 

White Matter Integrity 985 

There was substantial variability in white matter integrity among individual patients and tracts (Table 986 

S2). Overall (mean) white matter integrity had a moderate effect size in the NCA (0.62). Consistent with 987 

the regression analyses, the left and right cingulo-thalamic tracts had the highest effect size of any 988 

individual tract. None of these effects reached significance even at the uncorrected level (Table S3).989 



 

 

 990 

Subj 
L 
ACC-PAC 

L  
dlPFC 

L 
dmPFC 

L  
OFC-
Lateral 

L  
OFC-
Medial 

L 
vlPFC 

L 
STN 

R  
ACC-PAC 

R  
dlPFC 

R 
dmPFC 

R 
OFC-
Lateral 

R 
OFC-
Medial 

R  
vlPFC 

R 
STN 

Mean 
Integrity Responder 

A 0.064 0.280 0.306 0.017 0.029 0.414 0.220 0.155 0.331 1.083 0.016 0.010 0.691 0.115 0.278 N 

B 0.187 0.506 1.076 0.012 0.055 0.279 0.025 0.160 0.319 1.718 0.013 0.033 0.713 0.025 0.392 Y 

C 0.003 0.063 0.117 0.000 0.002 0.075 0.005 0.002 0.167 0.239 0.000 0.000 0.041 0.005 0.055 N 

D 0.280 0.364 0.669 0.081 0.080 0.473 0.093 0.210 0.342 0.588 0.057 0.023 0.169 0.102 0.264 Y 

E 0.148 0.470 0.834 0.043 0.089 0.057 0.105 0.296 1.079 0.993 0.008 0.011 0.418 0.104 0.350 N 

F 0.194 0.398 0.871 0.038 0.092 0.226 0.054 0.263 0.302 1.206 0.051 0.126 0.688 0.074 0.347 N 

G 0.311 0.655 1.327 0.018 0.042 0.145 0.567 0.156 0.413 0.589 0.016 0.056 0.149 0.166 0.342 Y 

H 0.098 0.309 0.806 0.100 0.308 0.084 0.103 0.128 0.257 1.283 0.043 0.116 0.198 0.176 0.295 N 
 991 

Table S6: White matter integrity. Each cell represents the number of traced streamlines within a given tract, divided by each subject’s 992 

intracranial volume. Responder/nonresponder status is determined by the fraction of clinical visits where the YBOCS had improved 35% or 993 

more from baseline. 994 
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 1 

 998 
 999 

Name Effect Size p p(FDR) 
Mean Integrity 0.620 0.635 0.635 
L ACC-PAC 0.595 0.077 0.475 
R ACC-PAC 0.526 0.190 0.475 
L dlPFC 0.509 0.190 0.475 
L dmPFC 0.456 0.373 0.622 
R dmPFC 0.236 0.635 0.635 
R OFC-Lateral 0.225 0.335 0.622 
L vlPFC 0.211 0.170 0.475 
R OFC-Medial 0.182 0.178 0.475 
R dlPFC 0.167 0.187 0.475 
R vlPFC 0.160 0.635 0.635 
L OFC-Medial 0.130 0.373 0.622 
L OFC-Lateral 0.123 0.635 0.635 
R STN 0.113 0.635 0.635 
L STN 0.036 0.635 0.635 

 1000 

Table S3: Necessary Condition Analysis for white matter integrity predicting YBOCS response, with p-1001 

values from 1000-fold bootstrap resampling, both raw and False Discovery Rate corrected. No variable 1002 

reaches corrected or uncorrected significance.  1003 

 1004 


