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ABSTRACT 1 

As the master regulator in utero, the placenta is core to the Developmental Origins of Health and Disease 2 

(DOHaD) hypothesis but is historically understudied. To identify placental gene-trait associations (GTAs) 3 

across the life course, we performed distal mediator-enriched transcriptome-wide association studies 4 

(TWAS) for 40 traits, integrating placental multi-omics from the Extremely Low Gestational Age Newborn 5 

Study. At � � 2.5 � 10��, we detected 248 GTAs, mostly for neonatal and metabolic traits, across 176 6 

genes, enriched for cell growth and immunological pathways. In aggregate, genetic effects mediated by 7 

placental expression significantly explained 4 early-life traits but no later-in-life traits. 89 GTAs showed 8 

significant mediation through distal genetic variants, identifying hypotheses for distal regulation of GTAs. 9 

Investigation of one hypothesis in human placenta-derived choriocarcinoma cells showed that knockdown 10 

of mediator gene EPS15 upregulated predicted targets SPATA13 and FAM214A, both associated with 11 

waist-hip ratio in TWAS, and multiple genes involved in metabolic pathways. These results suggest 12 

profound health impacts of placental genomic regulation in developmental programming across the life 13 

course. 14 

 15 

KEYWORDS 16 

placental biology, in utero development, developmental origins of health and disease, developmental 17 
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 19 

INTRODUCTION 20 

The placenta serves as the master regulator of the intrauterine environment via nutrient transfer, 21 

metabolism, gas exchange, neuroendocrine signaling, growth hormone production, and immunologic 22 

surveillance1–3. Due to strong influences on postnatal health, the placenta is central to the Developmental 23 

Origins of Health and Disease (DOHaD) hypothesis – that the in utero experience has lifelong impacts on 24 

child health by altering developmental programming and influencing risk of common, noncommunicable 25 

health conditions4. For example, physiological characteristics of the placenta have been linked to 26 

neuropsychiatric, developmental, and metabolic diseases or health traits (collectively referred to as traits) 27 

that manifest throughout the life course, either early- or later-in-life (Figure 1)1,5–8. Despite its long-lasting 28 
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influences on health, the placenta is understudied in large consortia studies of multi-tissue gene 1 

regulation9,10. Studying regulatory mechanisms in the placenta underlying biological processes in 2 

developmental programming could provide novel insight into health and disease etiology. 3 

 4 

The complex interplay between genetics and placental transcriptomics and epigenomics has strong 5 

effects on gene expression that may explain variation in gene-trait associations (GTAs). Quantitative trait 6 

loci (QTL) analyses have identified a strong influence of cis-genetic variants on both placental gene 7 

expression and DNA methylation11. Furthermore, there is growing evidence that the placental epigenome 8 

influences gene regulation, often distally (more than 1-3 Megabases away in the genome)12, and that 9 

placental DNA methylation and microRNA (miRNA) expression are associated with health traits in 10 

children13. Dysfunction of transcription factor regulation in the placenta has also shown profound effects 11 

on childhood traits14. Although combining genetics, transcriptomics, and epigenomics lends insight into 12 

the influence of placental genomics on complex traits15, genome-wide screens for GTAs that integrate 13 

different molecular profiles and generate functional hypotheses require more sophisticated computational 14 

methods. 15 

 16 

To this end, advances in transcriptome-wide association studies (TWAS) have allowed for integration of 17 

genome-wide association studies (GWAS) and eQTL datasets to boost power in identifying GTAs, 18 

specific to a relevant tissue16,17. However, traditional methods for TWAS largely overlook genetic variants 19 

distal to genes of interest, ostensibly mediated through regulatory biomarkers, like transcription factors, 20 

miRNAs, or DNA methylation sites18. Not only may these distal biomarkers explain a significant portion of 21 

both gene expression heritability and trait heritability on the tissue-specific expression level19,20, they may 22 

also influence tissue-specific trait associations for individual genes. Due to the strong interplay of 23 

regulatory elements in placental gene regulation, we sought to systematically characterize portions of 24 

gene expression that are influenced by these distal regulatory elements.  25 

 26 

Here, we set out to identify the following: (1) which genes show associations between their placental 27 

genetically-regulated expression (GReX) and various traits across the life course, (2) which traits along 28 
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the life course can be explained by placental GReX, in aggregate, and (3) which transcription factors, 1 

miRNAs, or CpG sites potentially regulate trait-associated genes in the placenta (Figure 1). We 2 

leveraged multi-omic data from fetal-side placenta tissue from the Extremely Low Gestational Age 3 

Newborn (ELGAN) Cohort Study21 to train predictive models of gene expression enriched for distal SNPs 4 

using MOSTWAS, a recent TWAS extension that integrates multi-omic data22. Using 40 GWAS of 5 

European-ancestry subjects from large consortia23–27, we performed a series of TWAS for non-6 

communicable health traits and disorders that may be influenced by the placenta to identify GTAs and 7 

functional hypotheses for regulation (Figure 2). To our knowledge, this is the first distal mediator-enriched 8 

TWAS of health traits that integrates multi-omic data from the placenta. 9 

 10 

RESULTS 11 

Overview of analytic framework 12 

We conduct a series of distal mediator-enriched transcriptome-wide association studies (TWAS) for a 13 

variety of complex traits by integrating GWAS data with placental eQTL data from ELGAN. First, we use a 14 

recent methodology, MOSTWAS22, to train predictive models of gene expression using both local- and 15 

distal-SNPs to genes (Figure 2A). Next, we employ these models to conduct TWAS for these traits using 16 

GWAS summary statistics to identify genes with placental genetically-regulated expression (GReX) 17 

associated with different traits across the life course (Figure 2B)17. We then estimate the extent to which 18 

placental genetically-regulated expression across all trait-associated genes can explain the variability in a 19 

trait and correlations between traits (Figure 2C)17,28. Next, to provide more biological context, for genes 20 

estimated to have placental GTAs, we run multiple follow-up analyses (Figure 2C): gene ontology 21 

enrichment analyses29, probabilistic fine-mapping of overlapping loci30, phenome-wide analyses for select 22 

genes, and prioritization of functional hypotheses for upstream distal regulation22. Lastly, for one 23 

particular functional hypothesis with strong computational support, we conduct an in-vitro assay in human 24 

placenta-derived cell lines to validate the predicted mediator-TWAS gene relationship and the 25 

transcriptomic consequences of this mediator (Figure 2D). 26 

 27 

Complex traits are genetically heritable and correlated 28 
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We curated GWAS summary statistics from subjects of European ancestry for 40 non-communicable 1 

traits and disorders across five health categories to identify potential links to genetically-regulated 2 

placental expression (traits and cohorts for each GWAS are summarized in Supplemental Table S1, 3 

sample sizes are provided in Supplemental Table S2). These five categories of traits 4 

(autoimmune/autoreactive disorders, metabolic traits, cardiovascular disorders, early childhood outcomes, 5 

and neuropsychiatric traits) have been linked previously to placental and fetal biology and morphology1–
6 

8.These 40 traits, derived from 5 different consortia (Supplemental Table S1), comprise of 3 7 

autoimmune/autoreactive disorders, 8 body size/metabolic traits, 4 cardiovascular disorders, 14 8 

neonatal/early childhood traits, and 11 neuropsychiatric traits/disorders23–27. The 26 traits that are not 9 

categorized as neonatal/early childhood traits are measured exclusively in adults. In addition, these 40 10 

GWAS are not derived from the same samples of patients. 11 

 12 

To quantify the total genetic contribution to each trait and the genetic associations shared between traits, 13 

using linkage disequilibrium (LD) score regression with LD scores generated for individuals of European 14 

ancestry from the 1000 Genomes projects31,32, we estimated the SNP heritability (	�) and genetic 15 

correlation (
�� of these traits, respectively (Supplemental Figure S1 and S2). Of the 40 traits, 37 16 

showed significantly positive SNP heritability and 18 with 	�� 
 0.10 (Supplemental Figure S1, 17 

Supplemental Table S1), with the largest heritability for childhood BMI (	�� � 0.69, �� � 0.064). As 18 

expected, we observed strong, statistically significant genetic correlations between traits of similar 19 

categories (i.e., between neuropsychiatric traits or between metabolic traits) (Supplemental Figure S2; 20 

Supplemental Table S3). At Benjamini-Hochberg FDR-adjusted � � 0.05, we also observed significant 21 

correlations between traits from different categories: diabetes and angina (
̂� � 0.51, FDR-adjusted 22 

� � 6.53 � 10���), Tanner scale (in children) and BMI (
̂� � 0.42, FDR-adjusted � � 1.06 � 10��), and 23 

BMI and obsessive compulsive disorder (
̂� � �0.28, FDR-adjusted � � 1.79 � 10��), for example. Given 24 

strong and potentially shared genetic influences across these traits, we examined whether genetic 25 

associations with these traits are mediated by the placental transcriptome. 26 

 27 

Multiple placental gene-trait associations detected across the life course 28 
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In the first step of our TWAS (Figure 2A), we leveraged MOSTWAS22, a recent TWAS extension that 1 

includes distal variants in transcriptomic prediction, to train predictive models of placental expression. As 2 

large proportions of total heritable gene expression are explained by distal-eQTLs local to regulatory 3 

hotspots18,20, MOSTWAS uses data-driven approaches to identify mediating regulatory biomarkers or 4 

distal-eQTLs mediated through local regulatory biomarkers to increase predictive power for gene 5 

expression and power to detect GTAs (Supplemental Figure S3)22. In this analysis, these regulatory 6 

biomarkers include potential regulatory protein (RP) encoding genes (as curated by TFcheckpoint33), 7 

miRNAs, and CpG methylation sites from the ELGAN Study. we assume that these RP genes, miRNAs, 8 

and genes and other regulatory features local to these CpG methylation sites have distal effects on the 9 

transcription of genes of interest and thus potentially mediate distal-eQTLs to the gene of interest 10 

(Methods). 11 

 12 

Using genotypes from umbilical cord blood34 and mRNA expression, CpG methylation, and miRNA 13 

expression data from fetal-side placenta15 from the ELGAN Study21 for 272 infants born pre-term, we built 14 

genetic models to predict RNA expression levels for genes in the fetal placenta (demographic summary in 15 

Supplemental Table S4). Out of a total of 12,020 genes expressed across all samples in ELGAN, we 16 

successfully built significant models for 2,994 genes, with positive SNP-based expression heritability 17 

(nominal � � 0.05) and five-fold McNemar’s adjusted cross-validation (CV) �� � 0.01 (Figure 3A [Step 18 

1]; Methods). Only these 2,994 models are used in subsequent TWAS steps. Mean SNP heritability for 19 

these genes was 0.39 (25% quantile = 0.253, 75% quantile = 0.511), and mean CV �� was 0.031 20 

(quantiles: 0.014, 0.034). For out-sample validation, we imputed expression into individual-level 21 

genotypes from the Rhode Island Child Health Study (RICHS; � � 149)35,36, showing strong portability 22 

across studies: of 2,005 genes with RNA-seq expression in RICHS, 1,131 genes met adjusted �� � 0.01, 23 

with mean �� � 0.011 (quantiles: 7.71 � 10��, 0.016) (Figure 3B; Supplemental Table S5). Summary 24 

statistics of demographic and clinical variables for the RICHS show similar distributions of race, though 25 

RICHS excluded all pre-term babies, a clear difference in these two cohorts (Supplemental Table S4). 26 

 27 
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We integrated GWAS summary statistics for 40 traits from European-ancestry subjects with placental 1 

gene expression using our predictive models. Using the weighted burden test with the 1000Genomes 2 

European ancestry LD matrix as a reference17, we detected 932 GTAs (spanning 686 unique genes) at 3 

� � 2.5 � 10��, a transcriptome-wide significance threshold consistent with previous TWAS17,28 (Figure 4 

3A [Step 2]). As many of these loci carry significant signal because of strong SNP-trait associations, we 5 

employed Gusev et al’s permutation test to assess how much signal is added by the SNP-expression 6 

weights and confidently conclude that integration of expression data significantly refines association with 7 

the trait17. At FDR-adjusted � � 0.05 and spanning 176 unique genes, we detected 248 such GTAs, with 8 

11 autoimmune/autoreactive, 136 body size/metabolic, 32 cardiovascular, 39 neonatal/childhood, and 30 9 

neuropsychiatric GTAs (Figure 3A [Step 3], Supplemental Table S2 and S6; Miami plots of TWAS Z-10 

scores in Supplemental Figures S4-S9).  11 

 12 

The 39 GTAs detected with adult BMI included LARS2 (� �  11.4) and CAST (� �  �4.61). These two 13 

GTAs have been detected using cis-only TWAS in different tissues17,28. In addition, one of the 30 genes 14 

identified in association with waist-hip ratio (in adults) was prioritized in other tissues by TWAS: NDUFS1 15 

(� �  �5.38)28. We cross-referenced susceptibility genes with a recent cis-only TWAS of fetal birthweight, 16 

childhood obesity, and childhood BMI by Peng et al using placental expression data from RICHS8. Of the 17 

19 birthweight-associated genes they identified, we could only train significant expression models for two 18 

in ELGAN: PLEKHA1 and PSG8. We only detected a significant association between PSG8 and fetal 19 

birthweight (� �  �7.77). Similarly, of the 6 childhood BMI-associated genes identified by Peng et al, only 20 

1 had a significant model in ELGAN and showed no association with the trait; there were no overlaps with 21 

childhood obesity-associated genes8. We hypothesize that minimal overlap with susceptibility genes 22 

identified by Peng et al is due to differing phenotypes and eQTL architectures in the datasets and 23 

different inclusion criteria for significant gene expression models. 24 

 25 

Next, we tested for horizontal pleiotropic effects of the SNPs employed in the models for TWAS-prioritized 26 

genes; if SNPs affect the outcome through a pathway independent of expression of the gene, the TWAS 27 

association may be biased37,38. Here, using PMR-Summary-Egger38, we test the magnitude of this null 28 
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hypothesis for each of the 248 TWAS-prioritized GTAs. At FDR-adjusted � �  0.05, only three GTAs 1 

showed significant horizontal pleiotropic effects: MOV10, SLC35G2, and HLA-A, all associated with adult 2 

waist-hip ratio (Supplemental Table S6). These three genes may have upwardly biased TWAS 3 

associations, as the SNPs used to construct their GReX may influence the outcome through a different 4 

molecular pathway. 5 

 6 

As these GTAs indicate trait association and do not reflect causality, we used FOCUS30, a Bayesian fine-7 

mapping approach. For TWAS-significant genes with overlapping genetic loci, FOCUS estimates 8 

posterior inclusion probabilities (PIP) in a credible set of genes that explains the association signal at the 9 

locus. We found 8 such overlaps and estimated a 90% credible set of genes explaining the signal for 10 

each locus (Supplemental Table S9). For example, we identified 3 genes associated with triglycerides in 11 

adults at the 12q24.13 chromosomal region (ERP29, RPL6, BRAP), with ERP29 defining the region’s 12 

90% credible set with approximately 95% PIP. Similarly, we detected 3 genes associated with adultBMI at 13 

10q22.2 (AP3M1, SAMD8, MRPS16), with AP3M1 defining the region’s 90% credible set with 14 

approximately 99% PIP. 15 

 16 

We conducted over-representation analysis for biological process, molecular function, and PANTHER 17 

gene pathway ontologies for TWAS-detected susceptibility genes (Figure 3D, Supplemental Table 18 

S7)29. Overall, considering all 176 TWAS-identified genes, we observed enrichments for nucleic acid 19 

binding and immune or cell growth signaling pathways (e.g., B-cell/T-cell activation and EGF receptor, 20 

interleukin, PDGF, and Ras signaling pathways). By trait, we found related pathways (sphingolipid 21 

biosynthesis, cell motility, etc) for TWAS genes for metabolic and morphological traits (e.g., BMI and 22 

childhood BMI); for most traits, we were underpowered to detect ontology enrichments. We also 23 

assessed the overlap of TWAS genes with GWAS signals. A total of 112 TWAS genes did not overlap 24 

with GWAS loci (� � 5 � 10��) within a 500 kilobase interval around any SNPs (local and distal) included 25 

in predictive models (Table 1). 26 

 27 

Genetically-regulated placental expression mediates trait heritability and genetic correlations 28 
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To assess how genetically-regulated placental expression explains trait variance, we computed trait 1 

heritability on the placental expression level (		

� ) using all examined and all TWAS-prioritized 2 

susceptibility genes using a linkage disequilibrium (LD) score regression approach17,31. Overall, we found 3 

4/14 neonatal traits (childhood BMI, head circumference, total puberty growth, and pubertal growth start) 4 

with significant 	�	
� 
 0 (FDR-adjusted � �  0.05 for jack-knife test of significance)28; none of the 26 traits 5 

outside the neonatal category were appreciably explained by placental GReX (Supplemental Figure 6 

S10). Figure 4A shows that mean 	�	
�  is higher in neonatal traits than other groups. In fact, placenta 7 

expression-mediated genetic heritability explains a larger proportion of total SNP heritability of neonatal 8 

traits, compared to traits from other categories (Figure 4B). A comparison of the number of GWAS-9 

significant SNPs and TWAS-significant genes also shows that neonatal traits are enriched for placental 10 

TWAS associations, even though significant genome-wide GWAS architecture cannot be inferred for 11 

these traits (Supplemental Figure S11). These observations suggest that placental GReX affects 12 

neonatal traits more profoundly, as a significantly larger proportion of neonatal traits showed significant 13 

heritability on the placental GReX level than later-in-life traits. 14 

 15 

Using RHOGE28, we assessed genetic correlations (
	
) between traits at the level of placental GReX 16 

(Supplemental Figure S12). We found several known correlations: between cholesterol and 17 

triglycerides, both in adults, (
̂	
 � 0.99, � � 1.44 � 10����) and childhood BMI and adult BMI (
̂	
 �18 

0.55, � � 3.67 � 10��). Interestingly, we found correlations between traits across categories (Figure 4C): 19 

IQ and diastolic blood pressure, both in adults,(� 	
 � �0.55, � � 2.44 � 10��) and age of asthma 20 

diagnosis and adult glucose levels (� 	
 � 0.86, � � 3.05 � 10��). These traits have been linked in 21 

morphological analyses of the placenta, but our results suggest possible genomic contributions39. Overall, 22 

these correlations suggest shared genetic pathways for these pairs of traits or for etiologic antecedents of 23 

these traits; these shared pathways could be either at the susceptibility genes or through shared distal 24 

loci, mediated by RPs, miRNAs, or CpG methylation sites. 25 

 26 

Genes with multiple GTAs have phenome-wide associations in early- and later-life traits  27 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.04.12.21255170doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255170
http://creativecommons.org/licenses/by/4.0/


10 
 

We noticed that multiple genes were identified in GTAs with multiple traits, leading us to examine 1 

potential horizontally pleiotropic genes. Of the 176 TWAS-prioritized genes, we identified 50 genes 2 

associated with multiple traits, many of which are genetically correlated (Table 2). Nine genes showed 3 

more than 3 GTAs across different categories. For example, IDI1, a gene involved in cholesterol 4 

biosynthesis40, showed associations with 3 metabolic and 2 neuropsychiatric traits: body fat percentage 5 

(� �  15.57), HDL (� � 26.48), triglycerides (� �  �7.53), fluid intelligence score (� �  6.37), and 6 

schizophrenia (� �  �5.56), with all five traits measured in adults. A link between cholesterol-related 7 

genes and schizophrenia has been detected previously, potentially due to coregulation of myelin-related 8 

genes41. Mediated by CpG site cg01687878 (found within PITPNM2), predicted expression of IDI1 was 9 

also computed using distal SNPs within Chromosome 12q24.31, a known GWAS risk loci for 10 

hypercholesteremia42; the inclusion of this locus may have contributed to the large TWAS associations. 11 

Similarly, SAMD4A also shows associations with 4 adult body size/metabolic - body fat percentage 12 

(� � 6.70), cholesterol (� � �6.76), HDL (� � �6.78), triglycerides (� � �5.30) - and 1 adult 13 

cardiovascular trait (diastolic blood pressure with � � �5.29). These associations also pick up on variants 14 

in Chromosome 12q24.31 local to CpG sites cg05747134 (within MMS19) and cg04523690 (within 15 

SETD1B). Another gene with multiple trait associations is CMTM4, an angiogenesis regulator43, showing 16 

associations with body fat percentage (� � 6.17), hypertension (� � 5.24), and fetal birthweight (� �17 

8.11). CMTM4 shows evidenced risk of intrauterine growth restriction due to involvement with endothelial 18 

vascularization44, potentially suggesting that CMTM4 has a more direct effect in utero, which mediates its 19 

associations with body fat percentage and hypertension.  20 

 21 

We further studied the 9 genes with 3 or more distinct GTAs across different categories (Figure 5A). 22 

Using UK Biobank23 GWAS summary statistics, we conducted TWAS for a variety of traits, measured in 23 

adults, across 8 groups, defined generally around ICD code blocks (Figure 5A, Supplemental Figure 24 

S13); here, we grouped metabolic and cardiovascular traits into one category for ease of analysis. At 25 

FDR-adjusted � � 0.05, ATPAF2, RPL6, and SEC11A showed GTA enrichments for immune-related 26 

traits, ATAPF2 for neonatal traits, IDI1 for mental disorders, and RPS25 for musculoskeletal traits. Across 27 

these 8 trait groups, RPL6 showed multiple strong associations with circulatory, respiratory, immune-28 
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related, and neonatal traits (Figure 5A). Examining specific GTAs for ATPAF2, IDI1, RPS25, and 1 

SEC11A reveals associations with multiple biomarker traits (Supplemental Figure S13). For example, at 2 

� � 2.5 � 10��, ATPAF2 and IDI1’s immune GTA enrichment includes associations with eosinophil, 3 

monocyte, and lymphocyte count and IGF-1 concentration. ATPAF and RPS25 show multiple 4 

associations with platelet volume and distribution and hematocrit percentage. In addition, IDI1 was 5 

associated with multiple mental disorders (obsessive compulsive disorder, anorexia nervosa, bipolar 6 

disorder, and general mood disorders), consistent with its TWAS associations with fluid intelligence and 7 

schizophrenia (Supplemental Figure S13). As placental GReX of these genes correlates with 8 

biomarkers, these results may not necessarily signify shared genetic associations across multiple traits. 9 

Rather, this may point to more fundamental effects of these TWAS-identified genes that manifest in 10 

complex traits later in life. 11 

 12 

We next examined whether placental GReX of these 9 genes correlate with fundamental traits at birth. 13 

We imputed expression into individual-level ELGAN genotypes (� �  729). Controlling for race, sex, 14 

gestational duration, inflammation of the chorion, and maternal age, as described in Methods and 15 

Materials, we tested for associations for 6 representative traits measured at birth or at 24 months: 16 

neonatal chronic lung disease, birth head circumference Z-score, fetal growth restriction, birth weight Z-17 

score, necrotizing enterocolitis, and Bayley II Mental Development Index (MDI) at 24 months15. Shown in 18 

Figure 5B and Supplemental Table S10, at FDR-adjusted � �  0.05, we detected negative associations 19 

between SEC11A GReX and birthweight Z-score (effect size: -0.248, 95% adjusted CI: [-0.434,-0.063]) 20 

and GReX of ATPAF2 and head circumference Z-score (-0.173, [-0.282,-0.064]). Furthermore, we 21 

detected negative associations between MDI and GReX of RPL6 (-2.636, [-4.251,-1.02]) and ERP29 (-22 

3.332, [-4.987,-1.677]). As many of these genes encode for proteins involved in core processes (i.e., 23 

RPL6 is involved in trans-activation of transcription and translation, and SEC11A has roles in cell 24 

migration and invasion)45,46, understanding how the placental GReX of these genes affects neonatal traits 25 

may elucidate the potential long-lasting impacts of placental dysregulation. 26 

 27 

Body size and metabolic placental GTAs show trait associations in mice 28 
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To further study functional consequences for selected TWAS-identified genes, we evaluated the 109 1 

metabolic trait-associated genes in the Hybrid Mouse Diversity Panel (HMDP) for correlations with 2 

obesity-related traits47. This panel includes 100 inbred mice strains with extensive collection of obesity-3 

related phenotypes from over 12,000 genes, with expression measured in a variety of adult tissues. Of 4 

the 109 genes, 73 were present in the panel and 36 showed significant cis-GReX associations with at 5 

least one obesity-related trait at FDR-adjusted P < 0.10 (Supplemental Table S11). For example, 6 

EPB41L1 (Epb4.1l1 in mice), a gene that mediates interactions in the erythrocyte plasma membrane, was 7 

associated with cholesterol and triglycerides in TWAS and showed 22 GReX associations with 8 

cholesterol, triglycerides, and HDL in mouse liver, adipose, and heart, with �� ranging between 0.09 and 9 

0.31. Similarly, UBC (Ubc in mice), a ubiquitin maintaining gene, was associated with waist-hip ratio in the 10 

placental TWAS and showed 27 GReX associations with glucose in adults, insulin, and cholesterol in 11 

mouse aorta, liver, and adipose tissues in HMDP, with �� ranging between 0.08 and 0.14. Though 12 

generalizing these functional results from non-placental tissue in mice to humans is tenuous, we believe 13 

these 36 individually significant genes in the HMDP are fruitful targets for follow-up studies. 14 

 15 

MOSTWAS reveals functional hypotheses for distal placental regulation of GTAs 16 

An advantage of MOSTWAS’s methodology is in functional hypothesis generation by identifying potential 17 

mediators that affect TWAS-identified genes. Using the distal-SNPs added-last test from MOSTWAS22, 18 

we interrogated distal loci incorporated into expression models for trait associations, beyond the 19 

association at the local locus. For 88 of 248 associations, predicted expression from distal SNPs showed 20 

significant associations at FDR-adjusted � � 0.05 (Figure 3A [Step 4], Supplemental Table S6). For 21 

each significant distal association, we identified a set of biomarkers that potentially affects transcription of 22 

the TWAS gene: a total of 9 regulatory protein-encoding genes (RPs) and 159 CpG sites across all 89 23 

distal associations. Particularly, we detected two RPs, DAB2 (distal mediator for PAPPA and diastolic 24 

blood pressure, distal � �  �3.98) and EPS15, both highly expressed in placenta48,49. Mediated through 25 

EPS15 (overall distal � �  7.11 and 6.33, respectively), distally predicted expression of SPATA13 and 26 

FAM214A showed association with waist-hip ratio. EPS15 itself showed a TWAS association for waist-hip 27 

ratio (Supplemental Table S6), and the direction of the EPS15 GTA was opposite to those of SPATA13 28 
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and FAM214A. Furthermore, RORA, a gene encoding a transcription factor involved in inflammatory 1 

signaling50, showed a negative association with transcription of UBA3, a TWAS gene for fetal birthweight. 2 

Low placental RORA expression was previously shown to be associated with lower birthweight51. Aside 3 

from functions related to transcription regulation, the 9 RPs (CUL5, DAB2, ELL, EPS15, RORA, 4 

SLC2A4RG, SMARCC1, NFKBIA, ZC3H15) detected by MOSTWAS were enriched for several ontologies 5 

(Supplemental Table S12), namely catabolic and metabolic processes, response to lipids, and multiple 6 

nucleic acid-binding processes29.  7 

 8 

As we observed strong correlations between expressions of RP-TWAS gene pairs in ELGAN 9 

(Supplemental Figure S14), we then examined the associations between TWAS-identified genes and 10 

the GReX of any predicted mediating RPs in an external dataset. Using RICHS, we conducted a gene-11 

based trans-eQTL scan using Liu et al’s Gene-Based Association Testing (GBAT) method52 to 12 

computationally validate RP-TWAS gene associations. We predicted GReX of the RPs using cis-variants 13 

through leave-one-out cross-validation and scanned for associations with the respective TWAS genes 14 

(Figure 4C, Supplemental Table S13). We found a significant association between predicted EPS15 and 15 

FAM214A expressions (effect size -0.24, FDR-adjusted � �  0.019). In addition, we detected a significant 16 

association between predicted NFKBIA and HNRNPU (effect size -0.26, FDR-adjusted � � 1.9 � 10��). 17 

We also considered an Egger regression-based Mendelian randomization framework53 in RICHS to 18 

estimate the causal effects of RPs on the associated TWAS genes (Methods and Materials) using, as 19 

instrumental variables, cis-SNPs correlated to the RP and uncorrelated with the TWAS genes. We 20 

estimated significant causal effects for two RP-TWAS gene pairs (Figure 5C, Supplemental Table S14): 21 

EPS15 on FAM214A (causal effect estimate -0.58; 95% CI [0.21, 0.94]) and RORA on UBA3 (0.58; [0.20, 22 

0.96]). These GBAT and MR estimates between EPS15 and FAM214A are in opposite directions of the 23 

simple correlations presented in Supplemental Figure S14. However, as discussed in previous TWAS 24 

and MR studies17,53, correlations between GReX and a phenotype are not equivalent to correlations 25 

between full expression and the phenotype, as full expression is subject multiple post-transcriptional 26 

process, while GReX is not. 27 

 28 
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We also examined the CpG methylation sites MOSTWAS marked as potential mediators for expression of 1 

TWAS genes for overlap with cis-regulatory elements in the placenta from the ENCODE Project Phase 2 

II10, identifying 34 CpG sites (mediating 29 distinct TWAS genes) that fall in cis-regulatory regions 3 

(Supplemental Table S15). Interestingly, one CpG site mediating (cg15733049, Chromosome 4 

1:2334974) FAM214A is found in low-DNase activity sites in placenta samples taken at various 5 

timepoints; additionally, cg15733049 is local to EPS15, the RP predicted to mediate genetic regulation of 6 

FAM214A. Furthermore, expression of LARS2, a TWAS gene for adult BMI, is mediated by cg04097236 7 

(found within ELOVL2), a CpG site found in low DNase or high H3K27 activity regions; LARS2 houses 8 

multiple GWAS risk SNPs for type 2 diabetes54 and has shown adult BMI TWAS associations in other 9 

tissues17,28. Results from these external datasets add more evidence that these mediators play a role in 10 

gene regulation of these TWAS-identified genes and should be investigated experimentally in future 11 

studies. 12 

 13 

In-vitro assays reveal widespread transcriptomic consequences of EPS15 knockdown 14 

Based on our computational results, we experimentally studied whether the inverse relationship between 15 

RP EPS15 and its two prioritized target TWAS genes, SPATA13 and FAM214A, is supported in vitro. We 16 

used a FANA oligonucleotide targeting EPS15 to knock down EPS15 expression in human placenta-17 

derived JEG-3 choriocarcinoma cells and assessed the gene expression of the targets in no-addition 18 

controls, scramble oligo controls, and the knockdown variant via qRT-PCR. JEG-3 cells were selected for 19 

study based on their know first trimester-like phenotypes, including the synthesis and secretion of hCG, 20 

human placenta lactogen, progesterone, estrone, and estradiol55,56. Addition of FANA-EPS15 to JEG-3 21 

cells decreased EPS15 gene expression, while increasing the expression of SPATA13 and FAM214A 22 

(50% decrease in EPS15 expression, 795% and 377% increase in SPATA13 and FAM214A expression, 23 

respectively). At FDR-adjusted � �  0.10, changes in gene expression of EPS15 and downstream targets 24 

from the scramble were statistically significant against the knockdown oligo. Similarly, changes in gene 25 

expression between the control mRNA and RP and target mRNA were statistically significant (Figure 6A).  26 

 27 
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To further investigate the transcriptomic consequences of EPS15 knockdown in vitro, we measured 1 

transcriptome-wide gene expression in the choriocarcinoma cell lines via RNA-seq and conducted 2 

differential gene expression analysis across the knockdown cells and scramble oligo controls57–59. Due to 3 

small sample sizes, we define a differentially expression gene with absolute log2-fold change greater than 4 

0.5 at � �  1.32 � 10��, a Bonferroni correction across all assayed genes (Methods). We detected 650 5 

genes down-regulated and 838 genes up-regulated in the EPS15 knockdown cells, validating the 6 

negative correlations between EPS15 and SPATA13 and FAM214A observed in qRT-PCR (Figure 6B, 7 

Supplemental Table S16-S17). In particular, these down-regulated genes were enriched for cell cycle, 8 

cell proliferation, or replication ontologies, while up-regulated genes were enriched for multiple different 9 

pathways, including lipid-related processes, cell movement, and extracellular organization (Figure 5C, 10 

Supplemental Table S18-S19). Enrichments for cellular, molecular, and disease pathway ontologies 11 

support these enrichments (Supplemental Figure S15, Supplemental Table S18-S19). Though we 12 

could not study the effects of these three genes on body size-related traits, cis-GReX correlation analysis 13 

from the HMDP did reveal a negative cis-GReX correlation (
 �  �0.31, FDR-adjusted P = 0.07) between 14 

Eps15 (mouse analog of human gene EPS15) and free fatty acids in mouse liver (Supplemental Table 15 

S11). These results prioritize EPS15 for further study in larger cell line or animal studies as a potential 16 

regulator for multiple downstream genes, perhaps for genes affecting cell proliferation and replication in 17 

the placenta, like SPATA1360. 18 

 19 

DISCUSSION 20 

The placenta has been understudied in large multi-tissue consortia efforts that study tissue-specific 21 

regulatory mechanisms9,10 relevant to complex trait etiology. To address this gap, we systematically 22 

categorized placental gene-trait associations relevant to the DOHaD hypothesis using MOSTWAS, a 23 

method for enriching TWAS with distal genetic variants22. We detected 176 genes (enriched for cell 24 

growth and immune pathways) with transcriptome-wide significant associations, with the majority of GTAs 25 

linked to metabolic and neonatal/childhood traits. Furthermore, we could only estimate significantly 26 

positive placental GReX-mediated heritability for 4 neonatal traits but not for later-in-life traits. Many of 27 

these TWAS-identified genes, especially those with neonatal GTAs, showed multiple GTAs across trait 28 
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categories (9 genes with 3 or more GTAs). We examined phenome-wide GTAs for these 9 genes in 1 

UKBB and found enrichments for traits affecting in immune and circulatory system (e.g., immune cell, 2 

erythrocyte, and platelet counts). We followed up with selected early-life traits in ELGAN and found 3 

associations with neonatal body size and infant cognitive development. These results suggest that 4 

placental expression, mediated by fetal genetics, is most likely to have large effects on early-life traits, but 5 

these effects may persist later-in-life as etiologic antecedents for complex traits.  6 

 7 

MOSTWAS also generates hypotheses for regulation of TWAS-detected genes, through distal mediating 8 

biomarkers, like transcription factors, miRNAs, or products downstream of CpG methylation islands22. Our 9 

computational results prioritized 89 GTAs with strong distal associations. We interrogated one such 10 

functional hypothesis: EPS15, a predicted RP-encoding gene in the EGFR pathway, regulates two TWAS 11 

genes positively associated with waist-hip ratio - FAM214A, a gene of unknown function, and SPATA13, 12 

a gene that regulates cell migration and adhesion60–62. In fact, EPS15 itself showed a negative TWAS 13 

association with waist-hip ratio. In particular, EPS15, mainly involved in endocytosis, is a maternally 14 

imprinted gene and predicted to promote offspring health49,63–65. There is ample literature that implicates 15 

the protein product of EPS15 as a direct or indirect transcription regulator. The protein Eps15 is an 16 

adaptor protein that regulates intracellular trafficking and has been detected in the nucleus of mammalian 17 

cells66. Once in the nucleus, Eps15 has shown to positively modulate transcription in a GAL4 18 

transactivation assay67. Furthermore, Eps15 and its binding partner intersectin activate the Elk-1 19 

transcription factor, pointing to Eps15’s function in regulating gene expression in the nucleus68. Specific to 20 

the placenta, it has been proposed, through mouse models, that Eps15’s interactions with multiple 21 

proteins suggest a role in cell adhesion of trophoblast to endothelial cells through biogenesis of 22 

exosomes and extracellular vesicles, a critical part of placental and fetal development69–71. 23 

 24 

In placental-derived choriocarcinoma epithelial cells, knockdown of EPS15 showed increased expression 25 

of both FAM214A and SPATA13, as well as multiple genes involved in metabolic and hormone-related 26 

pathways. Though not implicating a direct causal effect, EPS15’s inverse association with SPATA13 and 27 

FAM214A could provide more context to its full influence in placental developmental programming, 28 
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perhaps by affecting cell proliferation or adhesion pathways. In vivo animal experiments, albeit limited in 1 

scope and generalizability, can be employed to further investigate GTAs, building off results from the 2 

HMDP showing cis-GReX correlations between EPS15 mouse analog and fatty acid levels. Although 3 

these cis-GReX correlations from HMDP cannot be generalized from mice to humans, our in vitro assay 4 

provides valuable evidence for EPS15 genomic regulation in the placenta. Our results also support the 5 

potential of MOSTWAS to build mechanistic hypotheses for upstream regulation of TWAS genes that hold 6 

up to experimental rigor. 7 

 8 

We conclude with limitations of this study and future directions. First, our analysis considers only 9 

placental tissue. Though many of our GTAs leverage distal-eQTL architecture which tend to be tissue-10 

specific, the QTLs we leverage in TWAS may not be placenta-specific. A similar analysis across 11 

developmental and adult tissues could reveal more widespread genetic signals associated with these 12 

traits. Second, the ELGAN Study gathered molecular data from infants born extremely pre-term. If 13 

unmeasured confounders affect both prematurity and a trait of interest, GTAs could be subject to 14 

backdoor collider confounding72. However, significant TWAS genes did not show associations for 15 

gestational duration, suggesting minimal bias from this collider effect. An extensive comparison of 16 

genome-wide eQTL architecture between ELGAN and RICHS, highlighting differences in genetic effects 17 

on gene expression across pre-term status, could be of particular scientific importance. An interesting 18 

future endeavor could include negative control variables to account for unmeasured confounders in 19 

predictive models to allow for more generalizability of predictive models73,74. Fourth, though we did scan 20 

neonatal traits in ELGAN using individual-level genotypes, as the sample size is small, larger GWAS with 21 

longitudinal traits could allow for rigorous Mendelian randomization studies that investigate relationships 22 

between traits across the life course, in the context of placental regulation. Fifth, we curated a list of 23 

regulatory proteins to include as potential mediators but use RNA expression of the genes that code for 24 

these proteins as a proxy for abundance. We contend that RNA abundance of the gene is a noisy 25 

estimate of the protein abundance. An interesting extension of this analysis could consider a proteome-26 

wide association study, using the MOSTWAS framework to identify protein interactions that are disease-27 

related. Lastly, due to small sample sizes of other ancestry groups in ELGAN, we could only credibly 28 
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impute expression into samples from European ancestry and our TWAS only considers GWAS in 1 

populations of European ancestry75. We emphasize acquisition of larger genetic and genomic datasets 2 

from understudied and underserved populations, especially related to early-in-life traits. 3 

 4 

Our findings reveal functional evidence for the fundamental influence of placental genetic and genomic 5 

regulation on developmental programming of early- and later-in-life traits, identifying placental gene-trait 6 

associations and testable functional hypotheses for upstream placental regulation of these genes. Future 7 

large-scale tissue-wide studies should emphasize the placenta as a core tissue for learning about the 8 

developmental origins of health and disease. 9 

 10 

ONLINE METHODS 11 

Data acquisition and quality control 12 

Genotype data 13 

Genomic DNA was isolated from umbilical cord blood and genotyping was performed using Illumina 1 14 

Million Quad and Human OmniExpression-12 v1.0 arrays34,76. Prior to imputation, from the original set of 15 

731,442 markers, we removed SNPs with call rate < 90% and MAF < 1%. We only consider genetic 16 

variants on autosomes. We did not use deviation from Hardy-Weinberg equilibrium as an exclusion 17 

criterion since ELGAN is an admixed population. This resulted in 700,845 SNPs. We removed 4 18 

individuals out of 733 with sample-level missingness > 10% using PLINK77. We first performed strand-19 

flipping according to the TOPMed Freeze 5 reference panel and using eagle and minimac4 for phasing 20 

and imputation78–80. Genotypes were coded as dosages, representing 0, 1, and 2 copies of the minor 21 

allele. The minor allele was coded in accordance with the NCBI Database of Genetic Variation81. Overall, 22 

after QC and normalization, we considered a total of 6,567,190 SNPs. We obtained processed genetic 23 

data from the Rhode Island Children's Health Study, as described before36. 24 

 25 

Expression data 26 

mRNA expression was determined using the Illumina QuantSeq 3' mRNA-Seq Library Prep Kit, a method 27 

with high strand specificity82. mRNA-sequencing libraries were pooled and sequenced (single-end 50 bp) 28 
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on one lane of the Illumina HiSeq 2500. mRNA were quantified through pseudo-alignment with salmon57 1 

mapped to the GENCODE Release 31 (GRCh37) reference transcriptome. miRNA expression profiles 2 

were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG Molecular 3 

Diagnostics, Tucson, AZ). miRNA were aligned to probe sequences and quantified using the HTG 4 

EdgeSeq System83.  5 

 6 

Genes and miRNAs with less than 5 counts for each sample were filtered, resulting in 12,020 genes and 7 

2,047 miRNAs for downstream analysis. We only consider autosomal genes and miRNAs. Distributional 8 

differences between lanes were first upper-quartile normalized84,85. Unwanted technical and biological 9 

variation (e.g. tissue heterogeneity) was then estimated using RUVSeq86, where we empirically defined 10 

transcripts not associated with outcomes of interest as negative control housekeeping probes87. One 11 

dimension of unwanted variation was removed from the variance-stabilized transformation of the gene 12 

expression data using the limma package59,86–88. We obtained pre-processed RNA expression data from 13 

the Rhode Island Children's Health Study, as described before36. Pre-processing steps for RNA 14 

expression data from the RICHS are different from those employed here in the ELGAN study. 15 

 16 

Methylation data 17 

Extracted DNA sequences were bisulfate-converted using the EZ DNA methylation kit (Zymo Research, 18 

Irvine, CA) and followed by quantification using the Infinium MethylationEPIC BeadChip (Illumina, San 19 

Diego, CA), which measures CpG loci at a single nucleotide resolution, as previously described89–92. 20 

Quality control and normalization were performed resulting in 856,832 CpG probes from downstream 21 

analysis, with methylation represented as the average methylation level at a single CpG site (!-22 

value)90,93–96. DNA methylation data was imported into R for pre-processing using the minfi package94,95. 23 

Quality control was performed at the sample level, excluding samples that failed and technical duplicates; 24 

411 samples were retained for subsequent analyses.  25 

 26 

Functional normalization was performed with a preliminary step of normal-exponential out-of band (noob) 27 

correction method97 for background subtraction and dye normalization, followed by the typical functional 28 
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normalization method with the top two principal components of the control matrix94,95. Quality control was 1 

performed on individual probes by computing a detection P-value and excluded 806 (0.09%) probes with 2 

non-significant detection (P > 0.01) for 5% or more of the samples. A total of 856,832 CpG sites were 3 

included in the final analyses. Lastly, the ComBat function was used from the sva package to adjust for 4 

batch effects from sample plate98. In addition, to account for cell-type heterogeneity, 5 surrogate values 5 

were estimated and removed from the data to account using the sva package, as previously 6 

described15,90,98. The data were visualized using density distributions at all processing steps. Each probe 7 

measured the average methylation level at a single CpG site. Methylation levels were calculated and 8 

expressed as ! values, with 9 

! � "
# $ " $ 100, 

where "is the intensity of the methylated allele and # is the intensity of the unmethylated allele. !-values 10 

were logit transformed to " values for statistical analyses99. Overall, after QC and normalization, we 11 

considered 846,233 CpG sites, only on autosomes. 12 

 13 

GWAS summary statistics 14 

Summary statistics were downloaded from the following consortia: the UK Biobank23, Early Growth 15 

Genetics Consortium24, Genetic Investigation of Anthropometric Traits25, Psychiatric Genomics 16 

Consortium26, and the Complex Trait Genetics Lab27 (Supplemental Table 1). Genomic coordinates were 17 

transformed to the hg38 reference genome using liftOver100,101. SNP heritability for each trait and genetic 18 

correlations for all pairwise combinations of traits were estimated using LD score regression with the 19 

European ancestry sample from the 1000 Genomes Project as a reference for LD scores31,32. 20 

 21 

QTL mapping 22 

The first step in the MOSTWAS pipeline is to scan for associations between SNPs and genes (genome-23 

wide eQTL analysis) and between mediators and genes. We conducted genome-wide eQTL mapping 24 

between all genotypes and all genes in the transcriptome using a standard linear regression in 25 

MatrixeQTL102. Here, we ran an additive model with gene expression as the outcome, SNP dosage as the 26 

primary predictor of interest, with covariate adjustments for 20 genotype PCs (for population stratification), 27 
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sex, gestational duration, maternal age, maternal smoking status, and 10 expression PEER factors103. 1 

Mediators here are defined as RNA expression of genes that code for regulatory proteins (curated in 2 

TFcheckpoint33), miRNAs, and monomorphic CpG methylation sites. In sum, we call the expression or 3 

methylation of a mediator its intensity. We also conducted genome-wide mediator-QTL mapping with the 4 

intensity of mediators as the outcome with the same predictors as in the eQTL mapping. Lastly, we also 5 

assessed associations between mediators and gene expression using the same linear models, with 6 

mediator intensity as the main predictor. All intensities were scaled to zero mean and unit variance. 7 

 8 

Estimation of SNP heritability of gene expression 9 

An important step in a TWAS pipeline is estimation of SNP heritability of expression, as SNP heritability is 10 

a strong determinant of TWAS study power17,104. Heritability using genotypes within 1 Megabase of the 11 

gene of interest and any prioritized distal loci was estimated using the GREML-LDMS method, proposed 12 

to estimate heritability by correction for bias in LD in estimated SNP-based heritability105. Analysis was 13 

conducted using GCTA v1.93.1106. Briefly, Yang et al shows that estimates of heritability are often biased 14 

if causal variants have a different minor allele frequency (MAF) spectrums or LD structures from variants 15 

used in analysis. They proposed an LD and MAF-stratified GREML analysis, where variants are stratified 16 

into groups by MAF and LD, and genetic relationship matrices (GRMs) from these variants in each group 17 

are jointly fit in a multi-component GREML analysis. 18 

 19 

Gene expression models 20 

We used MOSTWAS to train predictive models of gene expression from germline genetics, including 21 

distal variants that were either close to associated mediators (transcription factors, miRNAs, CpG sites) or 22 

had large indirect effects on gene expression22 (Supplemental Figure S1). Our assumption here is that 23 

distal-eQTLs of a gene that are local to transcription factor-encoding genes, miRNAs, or regulatory 24 

features local to CpG methylation sites may be potentially mediated by cis-QTLs to these local features. 25 

This assumption has been employed by multiple studies previously to identify trans-eQTLs in multiple 26 

tissues107–110. For CpG methylation sites, we used the maxprobes R package to filter out cross-reactive or 27 

polymorphic probes, which may induce bias111–113. MOSTWAS contains two methods of predicting 28 
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expression: (1) mediator-enriched TWAS (MeTWAS) and (2) distal-eQTL prioritization via mediation 1 

analysis. For MeTWAS, we first identified mediators strongly associated with genes through correlation 2 

analyses between all genes of interest and a set of distal mediators (FDR-adjusted � �  0.05). We then 3 

trained local predictive models (using SNPs within 1 Mb) of each mediator using either elastic net or 4 

linear mixed model, used these models to impute the mediator in the training sample, and included the 5 

imputed values for mediators as fixed effects in a regularized regression of the gene of interest. For 6 

DePMA, we first conducted distal eQTL analysis to identify all distal-eQTLs at � � 10�� and then local 7 

mediator-QTL analysis to identify all mediator-QTLs for these distal-eQTLs at FDR-adjusted � � 0.05. We 8 

tested each distal-eQTL for their absolute total mediation effect on the gene of interest through a 9 

permutation test and included eQTLs with significantly large effects in the final expression model. Full 10 

mathematical details are provided in Bhattacharya et al 22. We considered only genes with significantly 11 

positive heritability at nominal � � 0.05 using a likelihood ratio test and five-fold McNemar’s adjusted 12 

cross-validation �� � 0.01, a cross-validation cutoff used by many previous TWAS 13 

analyses16,17,28,36,75,114,115. McNemar’s adjustment to the traditional �� is computed as 14 

�
�������
� � 1 � %1 � ��� & � 1

& � ' � 1, 

where & is the sample size and ' is the number of predictors in this linear model. Since this �� is 15 

computed only between the observed and predicted expression values, ' � 1. 16 

 17 

TWAS tests of association 18 

Overall TWAS test 19 

In an external GWAS panel, if individual SNPs are available, model weights from either MeTWAS or 20 

DePMA can be multiplied by their corresponding SNP dosages to construct the Genetically Regulated 21 

eXpression (GReX) for a given gene. This value represents the portion of expression (in the given tissue) 22 

that is directly predicted or regulated by germline genetics. We run a linear model or test of association 23 

with phenotype using this GReX value for the eventual TWAS test of association. 24 

 25 

If individual SNPs are not available, then the weighted burden Z-test, proposed by Gusev et al, can be 26 

employed using summary statistics17. Briefly, we compute 27 
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�( �  )	�
*)	+�,�)	

�,�/�
. 

Here, � is the vector of Z-scores of SNP-trait associations for SNPs used in predicting expression. The 1 

vector )	 represents the vector of SNP-gene effects from MeTWAS or DePMA and +�,� is the LD matrix 2 

(correlation matrix between genotypes) between the SNPs represented in )	. The test statistic �( can be 3 

compared to the standard Normal distribution for inference. 4 

 5 

Permutation test 6 

We implement a permutation test, condition on the GWAS effect sizes, to assess whether the same 7 

distribution of SNP-gene effect sizes could yield a significant associations by chance17. We permute )	 8 

1,000 times without replacement and recompute the weighted burden test to generate a null distribution 9 

for �(. This permutation test is only conducted for overall associations at � � 2.5 � 10��. 10 

 11 

Distal-SNPs added-last test 12 

Lastly, we also implement a test to assess the information added from distal-eSNPs in the weighted 13 

burden test beyond what we find from local SNPs. This test is analogous to a group added-last test in 14 

regression analysis, applied here to GWAS summary statistics. Let �� and �� be the vector of Z-scores 15 

from GWAS summary statistics from local and distal-SNPs identified by a MOSTWAS model. The local 16 

and distal-SNP effects from the MOSTWAS model are represented in )� and )�. Formally, we test 17 

whether the weighted Z-score �(� � )��� from distal-SNPs is significantly larger than 0 given the 18 

observed weighted Z-score from local SNPs �(� � )���. We draw from the assumption that %�(�, �(�� follow a 19 

bivariate Normal distribution. Namely, we conduct a two-sided Wald-type test for the null hypothesis: 20 

 21 

-�: )���|)��� � �(� � 0. 22 

 23 

We can derive a null distribution using conditional of bivariate Normal distributions; see Bhattacharya et 24 

al22. 25 

 26 
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Genetic heritability and correlation estimation 1 

At the genome-wide genetic level, we estimated the heritability of and genetic correlation between traits 2 

via summary statistics using LD score regression31. On the predicted expression level, we adopted 3 

approaches from Gusev et al and Mancuso et al to quantify the heritability (		

� ) of and genetic 4 

correlations (�	
) between traits at the predicted placental expression level17,28. We assume that the 5 

expected 0� statistic under a complex trait is a linear function of the LD score31. The effect size of the LD 6 

score on the 0� is proportional to 		

� : 7 

�10�2 � 1 $ 3���

" 4 		

� $ ��5, 

where �� is the GWAS sample size, " is the number of genes, 6 is the LD scores for genes, and 5 is the 8 

effect of population structure. We estimated the LD scores of each gene by predicting expression in 9 

European samples of 1000 Genomes and computing the sample correlations and inferred 		

�  using 10 

ordinary least squares. We employed RHOGE to estimate and test for significant genetic correlations 11 

between traits at the predicted expression level28. 12 

 13 

Multi-trait scans in UKBB and ELGAN 14 

For 9 genes with 3 or more associations across traits of different categories, we conducted multi-trait 15 

TWAS scans in UK Biobank. Here, we used the weighted burden test in UKBB GWAS summary statistics 16 

from samples of European ancestry for 296 traits grouped by ICD code blocks (circulatory, congenital 17 

malformations, immune, mental disorders, musculoskeletal, neonatal, neurological, and respiratory). We 18 

also imputed expression for these genes in ELGAN using 729 samples with individual genotypes and 19 

conducted a multi-trait scan for 6 neonatal traits: neonatal chronic lung disease, head circumference Z-20 

score, fetal growth restriction, birth weight Z-score, necrotizing enterocolitis, and Bayley II Mental 21 

Development Index (MDI) at 24 months. For continuous traits (head circumference Z-score, birth weight 22 

Z-score, and mental development index), we used a simple linear regression with the GReX of the gene 23 

as the main predictor, adjusting for race, sex, gestational duration (in days), inflammation of the chorion, 24 

and maternal age. For binary traits, we used a logistic regression with the same predictors and 25 

covariates. These covariates have been previously used in placental genomic studies of neonatal traits 26 
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because of their strong correlations with the outcomes and with placental transcriptomics and 1 

methylomics15,90,116. 2 

 3 

Validation analyses in RICHS 4 

Using genotype and RNA-seq expression data from RICHS36, we attempted to validate RP-TWAS gene 5 

associations prioritized from the distal-SNPs added last test in MOSTWAS. We first ran GBAT, a trans-6 

eQTL mapping method from Liu et al52 to assess associations between the loci around RPs and the 7 

expression of TWAS genes in RICHS. GBAT tests the association between the predicted expression of a 8 

RP with the expression of a TWAS gene, improving power of trans-eQTL mapping117. We also conduct 9 

directional Egger regression-based Mendelian randomization to estimate and test the causal effects of 10 

the expression of the RP on the expression of the TWAS gene118. 11 

 12 

Human Mouse Diversity Panel 13 

To provide some functional evidence of gene associations with metabolic traits, we evaluated the 109 14 

metabolic trait-associated genes from our human placental TWAS in the Hybrid Mouse Diversity Panel 15 

(HMDP) for correlations with obesity-related traits in mice47. This panel includes 100 inbred mice strains 16 

with extensive collection of obesity-related phenotypes (e.g., cholesterol, body fat percentage, insulin, 17 

etc) from over 12,000 genes, with expression measured in a variety of adult tissues (liver, adipose, aorta). 18 

We note that the HMDP only considers adult tissues and does not include placental gene expression. In 19 

the HMDP, we consider both trait correlation to tissue-specific gene expression and cis-GReX 20 

(genetically-regulated expression controlled by cis-eQTLs). 21 

 22 

In-vitro functional assays 23 

Cell culture and treatment 24 

The JEG-3 choriocarcinoma cells were purchased from the American Type Culture Collection (Manassas, 25 

VA). Cells were grown in Gibco RMPI 1640, supplemented with 10% fetal bovine serum (FBS), and 1% 26 

penicillin/streptomycin at 37°C in 5% CO2. Cells were plated at 2.1 x 106 cells per 75 cm3 flask and 27 

incubated under standard conditions until achieving roughly 90% confluence. To investigate the effects of 28 
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gene silencing, we used AUMsilence FANA oligonucleotides for mRNA knockdown of EPS15 (AUM Bio 1 

Tech, Philadelphia, PA) and subsequent analysis of predicted downstream target genes SPATA13 and 2 

FAM214A. On the day of treatment, cells were seeded in a 24-well culture plate at 0.05 x 106 cells per 3 

well. Cells were plated in biological duplicate. FANA oligos were dissolved in nuclease-free water to a 4 

concentration of 500µM, added to cell culture medium to reach a final concentration of 20µM and 5 

incubated for 24 hours at 37°C in 5% CO2. 6 

 7 

mRNA expression by quantitative Real-Time Polymerase Chain Reaction and RNA Sequencing 8 

Treated and untreated JEG-3 cells were harvested in 350µL of buffer RLT plus. Successive RNA 9 

extraction was performed using the AllPrep DNA/RNA/miRNA Universal Kit according to the 10 

manufacturer’s protocol. RNA was quantified using a NanoDrop 1000 spectrophotometer (Thermo 11 

Scientific, Waltham, MA). RNA was then converted to cDNA, the next step toward analyzing gene 12 

expression. Next, mRNA expression was measured for EPS15, SPATA13, and FAM214A using real-time 13 

qRT-PCR and previously validated primers. Samples were run in technical duplicate. Real-time qRT-PCR 14 

Ct values were normalized against the housekeeping gene B-actin (ACTB), and fold changes in 15 

expression were calculated based on the ΔΔCT method119. Each sample was prepared in biological 16 

duplicate and technical duplicate. These samples were pooled together for sequencing to yield data 17 

representing four samples per exposure group. Fold change calculations using the Delta Delta CT 18 

method was calculated for each sample individually:  19 

Delta CTtreated = CTGOI, treated – CTHouse, treated. 20 

 21 

Treated and untreated samples of JEG-3 RNA previously extracted using the AllPrep DNA/RNA/miRNA 22 

Universal Kit were submitted to the High Throughput Sequencing Facility at UNC Chapel Hill for RNA 23 

sequencing. Total RNA samples were submitted for sequencing using the HS4000 HO platform. Samples 24 

were sequenced in duplicate, and libraries were prepped with the Kapa Stranded mRNA-Seq kit from 25 

Illumina Platforms. Sequencing was performed after all samples passed QAQC, with a paired-end read 26 

type, with a read length of 2x75.  27 

 28 
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Statistical analysis 1 

Statistical analysis was performed using a one-way ANOVA (with nominal significance level 7 � 0.05). 2 

Post-hoc pairwise t-tests (3 degrees of freedom for biological and technical duplicate) were utilized to 3 

investigate direct comparisons within sample groups. 4 

 5 

Differential expression analysis 6 

RNA-seq quantified counts (transcripts per kilobase million) were imported using tximeta58 and 7 

summarized to the gene-level. Differential expression analysis between EPS15 knockdown samples and 8 

scramble oligo controls was conducted using DESeq259. Although false positive rates are well-controlled 9 

even at low sample sizes120, true positive rates at such a low sample size are low for smaller thresholds of 10 

log-transformed fold changes. Thus, guided by Schurch et al’s analysis, due to very limited sample size, 11 

we considered a gene to be differentially expressed if the absolute log2-fold change is greater than 1 and 12 

P < 0.05/37,788 = 1.32 � 10��. This P-value threshold is a strict Bonferroni threshold across 37,788 13 

quantified genes. 14 
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MOSTWAS software is accessible at https://bhattacharya-a-18 

bt.github.io/MOSTWAS/articles/MOSTWAS_vignette.html. 19 

 20 

DATA AVAILABILITY 21 

ELGAN mRNA, miRNA, and CpG methylation data can be accessed from the NCBI Gene Expression 22 

Omnibus GSE154829 and GSE167885. ELGAN genotype data is protected, as subjects are still enrolled 23 

in the study; any inquiries or data requests must be made to RCF and HPS. GWAS summary statistics 24 

can be accessed at the following links: UK Biobank (http://www.nealelab.is/uk-biobank), GIANT 25 
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 18 

FIGURE LEGENDS 19 

Figure 1: Overview of the DOHaD Hypothesis and study scheme. The placenta facilitates important 20 

functions in utero, including nutrient transfer, metabolism, gas exchange, neuroendocrine signaling, 21 

growth hormone production, and immunologic control. Accordingly, it is a master regulator of the 22 

intrauterine environment and is core to the Developmental Origins of Health and Disease (DOHaD) 23 

hypothesis. Placental genomic regulation is influenced by both genetic and environmental factors and 24 

affects placental developmental programming. In turn, this programming has been shown to have 25 

profound impacts on a variety of disorders and traits, both early- and later-in-life. 26 

 27 
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Figure 2: Overview of analytic pipeline. (A) Predictive models of placental expression are trained from 1 

germline genetics, enriched for mediating biomarkers using MOSTWAS22 and externally validated in 2 

RICHS36 eQTL data. (B) Predictive models are integrated with GWAS for 40 traits to detect placental 3 

gene-trait associations (GTAs). (C) GTAs are followed up with gene ontology analyses, probabilistic fine-4 

mapping, and phenome-wide scans of genes with multiple GTAs. Relationships between identified distal 5 

mediators and TWAS genes are investigated further in RICHS and ENCODE10. Expression-mediated 6 

genetic heritability of and correlations between traits are estimated. (D) In-vitro validation of prioritized 7 

transcription factor-TWAS gene pairs are conducted using placenta-derived choriocarcinoma cells by 8 

gene silencing and qRT-PCR to measure TWAS-gene expression. 9 

 10 

Figure 3: Placental MOSTWAS prediction and association test results. (A) Overview of TWAS 11 

association testing pipeline with number of gene-trait associations (GTAs) across unique genes over 12 

various levels of TWAS tests. (B) Kernel density plots of in- (through cross-validation in ELGAN, red) and 13 

out-sample (external validation in RICHS, blue) McNemar’s adjusted �� between predicted and observed 14 

expression. Dotted and solid lines represent the mean and median of the respective distribution, 15 

respectively. (C) Bar graph of numbers of TWAS GTAs at overall TWAS � � 2.5 � 10�� and permutation 16 

FDR-adjusted � � 0.05 (X-axis) across traits (Y-axis). The total number of GTAs per trait are labeled, 17 

colored by the category of each trait. The bar is broken down by numbers of GTAs with (orange) and 18 

without (green) significant distal expression-mediated associations, as indicated by FDR-adjusted 19 

� � 0.05 for the distal-SNPs added-last test. (D) Enrichment plot of over-representation in 176 TWAS 20 

genes of PANTHER pathways (Y-axis) with -log10 FDR-adjusted P-value (X-axis). The size of the point 21 

gives the relative enrichment ratio for the given pathway. 22 

 23 

Figure 4: Trait genetic heritability and correlations mediated by placental expression. (A) Box plot 24 

of expression-mediated trait heritability (		

� ) (Y-axis) by category (X-axis), with labels if 	�	
�  is significantly 25 

greater than 0 using jack-knife test of significance. (B) Box plot of expression-mediated trait heritability 26 

(		

� ) standardized by SNP heritability (	�) (Y-axis) by category (X-axis), with labels if 	�	
�  is significantly 27 
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greater than 0 using jack-knife test of significance. (C) Forest plot of significant placenta expression-1 

mediated genetic correlations and 95% FDR-adjusted confidence intervals between traits from different 2 

categories. 3 

 4 

Figure 5: Computational follow-up analyses of TWAS-prioritized genes. (A) Boxplot of -log10 FDR-5 

adjusted P-value of multi-trait scans of GTAs in UKBB, grouped by 8 ICD code blocks across 9 genes 6 

with multiple TWAS GTAs across different trait categories. The red dotted line represents FDR-adjusted P 7 

= 0.05. (B) Forest plot of GTA association estimates and 95% FDR-adjusted confidence intervals for 6 8 

neonatal traits in ELGAN for 9 genes with multiple TWAS GTAs across categories. The red line shows a 9 

null effect size of 0, and associations are colored blue for associations at FDR-adjusted P < 0.05. (C) 10 

Follow-up GBAT and Mendelian randomization (MR) analysis results using RICHS data. On the left, effect 11 

size and 95% adjusted confidence intervals from GBAT (X-axis) between GReX of RP-encoding genes 12 

and TWAS gene associations (pairs given on Y-axis). On the right, MR effect size and 95% adjusted 13 

confidence interval (X-axis) of RP-gene on TWAS gene (pairs on Y-axis). The red line shows a null effect 14 

size of 0, and associations are colored blue for associations at FDR-adjusted P < 0.05. 15 

 16 

Figure 6: In vitro experiments in EPS15-knockdown human placenta-derived choriocarcinoma 17 

epithelial cells. (A) Bar graph of the gene expression fold-changes from the qRT-PCR from JEG-3 RNA. 18 

Nominal P-values of pairwise t-tests are shown, with an asterisk if Benjamini-Hochberg FDR-adjusted 19 

� �  0.10. Note differences in Y-axis scales. (B) Volcano plot of log2 fold change (X-axis) of differential 20 

expression across EP15 knockdown cells and scramble oligo nucleotide against -log10 FDR-adjusted P-21 

value (Y-axis). Up-regulated genes are in red and down-regulated genes in blue. Top up- and down-22 

regulated genes by P-value are labeled, as well as EPS15, SPATA13, and FAM214A. (C) Enrichment 23 

plot of over-representation of down- (blue) and up-regulated (red) genes of PANTHER and KEGG 24 

pathways (Y-axis) with -log10 FDR-adjusted P-value (X-axis). The size of the point gives the enrichment 25 

ratio.26 
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Figure 1: Overview of the DOHaD Hypothesis and study scheme. (A) The placenta facilitates 
important functions in utero, including nutrient transfer, metabolism, gas exchange, neuroendocrine 
signaling, growth hormone production, and immunologic control. Accordingly, it is a master regulator of 
the intrauterine environment and is core to the Developmental Origins of Health and Disease (DOHaD) 
hypothesis. Placental genomic regulation is influenced by both genetic and environmental factors and 
affects placental developmental programming. In turn, this programming has been shown to have 
profound impacts on a variety of disorders and traits, both early- and later-in-life. 
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Figure 2: Overview of analytic pipeline. (A) Predictive models of placental expression are trained from 
germline genetics, enriched for mediating biomarkers using MOSTWAS22 and externally validated in 
RICHS36 eQTL data. (B) Predictive models are integrated with GWAS for 40 traits to detect placental 
gene-trait associations (GTAs). (C) GTAs are followed up with gene ontology analyses, probabilistic fine-
mapping, and phenome-wide scans of genes with multiple GTAs. Relationships between identified distal 
mediators and TWAS genes are investigated further in RICHS and ENCODE10. Expression-mediated 
genetic heritability of and correlations between traits are estimated. (D) In-vitro validation of prioritized 
transcription factor-TWAS gene pairs are conducted using placenta-derived choriocarcinoma cells by 
gene silencing and qRT-PCR to measure TWAS-gene expression.
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Figure 3: Placental MOSTWAS prediction and association test results. (A) Overview of TWAS 
association testing pipeline with number of gene-trait associations (GTAs) across unique genes over 
various levels of TWAS tests. (B) Kernel density plots of in- (through cross-validation in ELGAN, red) and 
out-sample (external validation in RICHS, blue) McNemar’s adjusted  between predicted and observed 
expression. Dotted and solid lines represent the mean and median of the respective distribution, 
respectively. (C) Bar graph of numbers of TWAS GTAs at overall TWAS  and permutation 
FDR-adjusted  (X-axis) across traits (Y-axis). The total number of GTAs per trait are labeled, 
colored by the category of each trait. The bar is broken down by numbers of GTAs with (orange) and 
without (green) significant distal expression-mediated associations, as indicated by FDR-adjusted 

 for the distal-SNPs added-last test. (D) Enrichment plot of over-representation in 176 TWAS 
genes of PANTHER pathways (Y-axis) with -log10 FDR-adjusted P-value (X-axis). The size of the point 
gives the relative enrichment ratio for the given pathway. 
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Figure 4: Trait genetic heritability and correlations mediated by placental expression. (A) Box plot 
of expression-mediated trait heritability ( ) (Y-axis) by category (X-axis), with labels if  is significantly
greater than 0 using jack-knife test of significance. (B) Box plot of expression-mediated trait heritability 
( ) standardized by SNP heritability ( ) (Y-axis) by category (X-axis), with labels if  is significantly 
greater than 0 using jack-knife test of significance. (C) Forest plot of significant placenta expression-
mediated genetic correlations and 95% FDR-adjusted confidence intervals between traits from different 
categories. 
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Figure 5: Computational follow-up analyses of TWAS-prioritized genes. (A) Boxplot of -log10 FDR-
adjusted P-value of multi-trait scans of GTAs in UKBB, grouped by 8 ICD code blocks across 9 genes 
with multiple TWAS GTAs across different trait categories. The red dotted line represents FDR-adjusted P
= 0.05. (B) Forest plot of GTA association estimates and 95% FDR-adjusted confidence intervals for 6 
neonatal traits in ELGAN for 9 genes with multiple TWAS GTAs across categories. The red line shows a 
null effect size of 0, and associations are colored blue for associations at FDR-adjusted P < 0.05. (C) 
Follow-up GBAT and Mendelian randomization (MR) analysis results using RICHS data. On the left, effect
size and 95% adjusted confidence intervals from GBAT (X-axis) between GReX of RP-encoding genes 
and TWAS gene associations (pairs given on Y-axis). On the right, MR effect size and 95% adjusted 
confidence interval (X-axis) of RP-gene on TWAS gene (pairs on Y-axis). The red line shows a null effect 
size of 0, and associations are colored blue for associations at FDR-adjusted P < 0.05.
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Figure 6: In vitro experiments in EPS15-knockdown human placenta-derived choriocarcinoma 
epithelial cells (A) Bar graph of the gene expression fold-changes from the qRT-PCR from JEG-3 RNA. 
Nominal P-values of pairwise t-tests are shown, with an asterisk if Benjamini-Hochberg FDR-adjusted 

. Note differences in Y-axis scales. (B) Volcano plot of log2 fold change (X-axis) of differential 
expression across EP15 knockdown cells and scramble oligo nucleotide against -log10 FDR-adjusted P-
value (Y-axis). Up-regulated genes are in red and down-regulated genes in blue, with absolute log2-fold 
change  and . Top up- and down-regulated genes by P-value are labeled, as well 
as EPS15, SPATA13, and FAM214A. (C) Enrichment plot of over-representation of down- (blue) and up-
regulated (red) genes of biological process ontologies (Y-axis) with -log10 FDR-adjusted P-value (X-axis). 
The size of the point gives the enrichment ratio. 
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MAIN TABLES 

Table 1: TWAS-significant genes that do not overlap significant GWAS loci (within 500 kB) 
 

Category Trait Gene 

Autoimmune/autoreactive Adult-onset asthma NBPF19, ZC3H15, SAR1B, PPP3CB-AS1 

Allergic disease PLA2G2A, NUSAP1, EIF4ENIF1 

Body size/metabolic BMI FCRL2, NDUFS1, ANO10, NISCH, 
SLC35G2, TSPAN5, IL15, RPS23, NT5E, 
CD274, DENND1A, ZER1, MRPS16, 
SAMD8, MUS81, C12orf45, OGFOD2, 
SYT16, DNAL1, ARPIN-AP3S2, SENP3, 
NSRP1, COPRS, WDR62 

Body fat percentage ZC3H15, CMTM4, ZNF443 

Cholesterol KYAT3, NDUFA2, SAMD4A, FNTB, 
TMEM97, SIN3B 

Diabetes IMMP2L 

Glucose NBPF19, IMMP2L 

HDL CAMK1D, FNTB, PLEKHG4, C22orf39 

Triglycerides NDUFA2, SAMD4A, SIN3B 

Waist-hip ratio, BMI-
adjusted 

TTC4, GBP1, MOV10, ADAM15, NDUFS1, 
SLC35G2, RPS23, CCDC69, POLR2J3, 
TMEM168, GTF2E2, CREM, DDB2, ITGB3, 
CD37 

Cardiovascular Diastolic blood pressure ANKRD36B, ING2, SHARPIN, PAPPA, 
TMEM106C, SAMD4A, SIPA1L1, ZNF431, 
APMAP 

Heart attack RO60, ATPAF2 

Hypertension SPATS2, CMTM4, ATPAF2, ITGB3, CBX4, 
APMAP, C22orf39 

Neonatal/childhood traits Age of asthma diagnosis B3GNT9 

Age of diabetes 
diagnosis 

ATPAF2 

Childhood BMI EXOSC10, AP3M1 

Childhood-onset asthma SAR1B, RNF146, RPS25 

Fetal birthweight DUSP12, UBA3, FAM114A1, CMTM4 

Gestational weight gain ISG15, GBP1, CXCL1, GFM2, HARS2 

Head circumference PLA2G2A, LAMTOR5, PRRC2A, 
DENND1A, CPXM2 

Late puberty growth HP1BP3, ZNF264 

Pubertal growth start PRPF31, CSNK1G2, LZTR1 

Tanner scale CXCL1, TPRN 

 Total puberty growth PAN3, NSRP1, ZNF750, PMM1 

Neuropsychiatric Alcohol dependence ZNF134 

 Anorexia nervosa DPYD, RO60, AAK1, MRPS27, PPP3CB-
AS1, NPLOC4 

 Autism spectrum 
disorder 

ZC3H15 

 Bipolar disorder COQ10B, SEC11A 
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 Fluid intelligence score ECSCR, IDI1, ACER3 

 IQ FAM228B, HMGN3, DDB2, NAPA, 
GATD3A 

 Schizophrenia RNU6-469P, IDI1, SIAE, VPS29, SNUPN, 
SEC11A 

 Tourette’s syndrome SLC26A7 
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Table 2: Susceptibility genes associated with multiple traits. TWAS gene, chromosomal location, and 
associated trait are provided with genetic correlations between traits at SNP level are provided if 
significant FDR-adjusted � �  0.05. 
 

Gene (Location) Traits Genetic Correlation 

AP3M1 (10:74120256-74151085) BMI, Childhood BMI 0.68 

APMAP (20:24962943-24992789) Diastolic blood pressure, Hypertension 0.80 

ATPAF2 (17:18018019-18039166) 
Heart attack, Hypertension, Age of diabetes 
diagnosis HA/HT: 0.53 

C22orf39 (22:19443149-19448232) 
Cholesterol, HDL, Triglycerides, 
Hypertension 

All pairs significantly 
correlated 

C2orf92 (2:97669742-97703066) HDL, IQ 0.11 

CLIP1 (12:122271433-122422569) Body fat percentage, HDL -0.38 

CMTM4 (16:66614749-66696707) 
Body fat percentage, Hypertension, Fetal 
birthweight 

All pairs significantly 
correlated, except BFP/FB 

COQ10B (2:197453422-197475309) Bipolar disorder, Schizophrenia 0.73 

CSNK1G2 (19:1941161-1981337) Waist-hip ratio, Pubertal growth start No significant correlation 

CXCL1 (4:73869391-73871302) Gestational weight gain, Tanner Scale No significant correlation 

DDB2 (11:47214941-47239218) Waist-hip ratio, Diastolic blood pressure, IQ 
WHR/DBP: -0.10; WHR/IQ: 
0.13 

DENND1A (9:123401590-
123930138) BMI, Head circumference 0.12 

ECSCR (5:139448553-139462743) Body fat percentage, Fluid intelligence score -0.20 

EPB41L1 (20:36092709-36232799) Cholesterol, Triglycerides 0.95 

ERP29 (12:112013347-112023220) 
Cholesterol, Triglycerides, Hypertension, 
Fetal birthweight 

All pairs significantly 
correlated, expect those with 
FB 

FNTB (14:64986788-65062652) BMI, Cholesterol, HDL 
All pairs significantly 
correlated 

GBP1 (1:89052303-89065360) Waist-hip ratio, Gestational weight gain No significant correlation 

GFM2 (5:74736343-74767371) BMI, Gestational weight gain No significant correlation 

GTF2E2 (8:30578317-30658241) BMI, Waist-hip ratio 0.04 

HMGN3 (6:79201244-79234738) Diastolic blood pressure, IQ -0.08 

IDI1 (10:1039419-1056716) 
Body fat percentage, HDL, Triglycerides, 
Fluid intelligence score, Schizophrenia 

All pairs significantly 
correlated 

IMMP2L (7:111480816-111562517) BMI, Diabetes, Glucose, Bipolar disorder 

All pairs significantly 
correlated, expect those with 
BPD 

ITGB3 (17:47253827-47313743) Waist-hip ratio, Hypertension -0.13 

NAPA (19:47487633-47515258) Diastolic blood pressure, IQ -0.08 

NBPF19 (1:149475897-149556361) Adult-onset asthma, Glucose 0.08 

NDUFA2 (5:140645362-140647785) Cholesterol, Triglycerides 0.95 

NDUFS1 (2:206123078-206159519) BMI, Waist-hip ratio 0.04 

NSRP1 (17:30116806-30186475) BMI, Total puberty growth -0.30 
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NUSAP1 (15:41332693-41381050) Allergic disease, Childhood-onset asthma 0.87 

PLA2G2A (1:19975430-19980439) Allergic disease, Head circumference No significant correlation 

PNPO (17:47941522-47949308) Cholesterol, Triglycerides 0.95 
PPP3CB-AS1 (10:73495525-
73520070) Adult-onset asthma, Anorexia nervosa 0.22 

PUM2 (2:20248690-20350850) Cholesterol, Triglycerides 0.95 

RAB7A (3:128726135-128814798) 
Adult-onset asthma, Childhood-onset 
asthma 0.88 

RO60 (1:193059421-193085985) Heart attack, Anorexia nervosa No significant correlation 

RPL6 (12:112405180-112409641) Cholesterol, Triglycerides, Hypertension 
All pairs significantly 
correlated 

RPS23 (5:82273319-82278416) BMI, Waist-hip ratio 0.04 

RPS25 (11:119015712-119018347) 
BMI, Body fat percentage, HDL, Childhood-
onset asthma 

All pairs significantly 
correlated, expect those with 
COA 

SAMD4A (14:54567611-54793315) 
Body fat percentage, Cholesterol, HDL, 
Triglycerides, Diastolic blood pressure 

All pairs significantly 
correlated 

SAMD8 (10:75111634-75182123) BMI, Waist-hip ratio 0.04 

SAR1B (5:134601148-134632843) 
Adult-onset asthma, Childhood-onset 
asthma 0.88 

SEC11A (15:84669536-84716460) 
Adult-onset asthma, Body fat percentage, 
Bipolar disorder, Schizophrenia 

AOA/BFP: 0.16; AOA/BPD: 
0.15; BFP/BPD: -0.08; 
BPD/SCZ: 0.73 

SENP3 (17:7561991-7571969) BMI, Waist-hip ratio 0.04 
SERPING1 (11:57597553-
57614853) HDL, Hypertension -0.26 

SHMT2 (12:57229573-57234935) HDL, IQ 0.11 

SIN3B (19:16829386-16880353) Cholesterol, Triglycerides 0.95 
SLC35G2 (3:136819018-
136855892) BMI, Waist-hip ratio 0.04 

SNUPN (15:75598082-75626105) IQ, Schizophrenia -0.20 

TMEM97 (17:28319094-28328685) Cholesterol, Triglycerides 0.95 

ZC3H15 (2:186486157-186509360) 
Adult-onset asthma, Body fat percentage, 
Autism spectrum disorder AOA/BFP: 0.16 
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SUPPLEMENTAL FIGURE LEGENDS 1 

Figure S1: SNP heritability of 40 traits. Estimates of SNP heritability with 95% confidence interval (X-2 

axis), grouped and colored by trait category (Y-axis). 3 

 4 

Figure S2: SNP-based genetic correlation between 40 traits. Heatmap of estimates of SNP-based 5 

genetic correlated between traits, grouped and colored by trait category. Correlations are marked with an 6 

asterisk are significantly non-zero with FDR-adjusted � �  0.05. 7 

 8 

Figure S3: Example of a biological mechanism MOSTWAS leverages in its predictive models. Here, 9 

assume a SNP (in green) within a regulatory element affects the transcription of gene X (A) or the hyper- 10 

or hypomethylation of a CpG island upstream of gene X (B) that codes for a transcription factor or a 11 

microRNA hairpin. Transcription factor or microRNA X then binds to a distal regulatory region and affects 12 

the transcription of gene G. The association between the expression of gene X and gene G is leveraged 13 

in the first step of MeTWAS. A distal-eQTL association is also conferred between this distal-SNP and the 14 

eGene G, which is leveraged in the DePMA training process. 15 

 16 

Figure S4: TWAS Miami plots for autoimmune/autoreactive disorders. Weighted Z-scores for TWAS 17 

associations (Y-axis) over genomic location of genes (X-axis). Red lines show Z-scores corresponding to 18 

P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, nominal permutation P <0.05, and genes in green 19 

showed Benjamini-Hochberg FDR-adjusted P < 0.05 for the distal-SNPs added-last test. 20 

 21 

Figure S5: TWAS Miami plots for cardiovascular disorders. Weighted Z-scores for TWAS 22 

associations (Y-axis) over genomic location of genes (X-axis). Red lines show Z-scores corresponding to 23 

P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, nominal permutation P <0.05, and genes in green 24 

showed Benjamini-Hochberg FDR-adjusted P < 0.05 for the distal-SNPs added-last test. 25 

 26 

Figure S6: TWAS Miami plots for neonatal/childhood outcomes. Weighted Z-scores for TWAS 27 

associations (Y-axis) over genomic location of genes (X-axis). Red lines show Z-scores corresponding to 28 
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P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, nominal permutation P <0.05, and genes in green 1 

showed Benjamini-Hochberg FDR-adjusted P < 0.05 for the distal-SNPs added-last test. 2 

 3 

Figure S7: TWAS Miami plots for neuropsychiatric outcomes. Weighted Z-scores for TWAS 4 

associations (Y-axis) over genomic location of genes (X-axis). Red lines show Z-scores corresponding to 5 

P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, nominal permutation P <0.05, and genes in green 6 

showed Benjamini-Hochberg FDR-adjusted P < 0.05 for the distal-SNPs added-last test. 7 

 8 

Figure S8: TWAS Miami plots for BMI and BMI-adjusted waist-hip ratio. Weighted Z-scores for 9 

TWAS associations (Y-axis) over genomic location of genes (X-axis). Red lines show Z-scores 10 

corresponding to P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, nominal permutation P <0.05, and 11 

genes in green showed Benjamini-Hochberg FDR-adjusted P < 0.05 for the distal-SNPs added-last test. 12 

 13 

Figure S9: TWAS Miami plots for body size/metabolic traits, excluding BMI and BMI-adjusted 14 

waist-hip ratio. Weighted Z-scores for TWAS associations (Y-axis) over genomic location of genes (X-15 

axis). Red lines show Z-scores corresponding to P < 2.5 � 10��. Genes labelled have P < 2.5 � 10��, 16 

nominal permutation P <0.05, and genes in green showed Benjamini-Hochberg FDR-adjusted P < 0.05 17 

for the distal-SNPs added-last test. 18 

 19 

Figure S10: Placental expression-mediated genetic heritability of traits. Caterpillar plot of placental 20 

expression-mediated genetic heritability of traits, colored by trait category. Wald-type 95% confidence 21 

intervals are provided for reference. Trait is labelled if the confidence interval does not intersect the null of 22 

hGE
2 � 0. 23 

 24 

Figure S11: Comparison of GWAS and TWAS results across all 40 traits. Scatterplot of number of 25 

TWAS-significant  genes (Y-axis) and number of GWAS-significant SNPs (X-axis) across all 40 traits, 26 

colored by category of the trait. The size of the point shows the log10 sample size of the GWAS. The red 27 
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line and gray band provide a regression line and 95% confidence band for the fitted values. Points are 1 

labelled if the point falls outside the confidence band. 2 

 3 

Figure S12: Heatmap of genetic correlations on the heritable gene expression level between 40 4 

traits considered in TWAS analysis. Genetic correlations between traits at the level of the predicted 5 

expression of heritable genes. Correlations at FDR-adjusted P < 0.05 are marked with an asterisk. 6 

Autoimmune/autoreactive traits are colored in yellow, body size/metabolic in purple, cardiovascular in 7 

green, neonatal/childhood outcomes in blue, and neuropsychiatric in red. 8 

 9 

Figure S13: Miami plot of representative phenome-wide scans of GTAs in UKBB. Weighted burden 10 

Z-score (Y-axis) of GTA across all traits (X-axis), grouped and colored by ICD code block. 11 

 12 

Figure S14: Heatmap  of  correlations  between  select  transcription  factor  and  TWAS-identified 13 

genes in RICHS. Correlations between the RICHS expression of RPs (Y-axis) and associated TWAS 14 

genes identified by MOSTWAS in ELGAN (X-axis). 15 

 16 

Figure S15: Over-representation enrichments of differentially expressed genes in EPS15 17 

knockdown. Enrichment plot of over-representation of biological process, cellular component, and 18 

molecular function ontologies (Y-axis) with -log10 FDR-adjusted P-value (X-axis). The size of the point 19 

gives the relative enrichment ratio for the given pathway. 20 
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SUPPLEMENTAL TABLE LEGENDS 1 

Table S1: Overview of 40 traits and GWAS consider in analysis. The consortium, trait category, trait, 2 

URL for summary statistics, sample size, number of cases (if binary trait), SNP heritability estimate and 3 

standard error, Lambda GC, mean χ2 statistic, reference DOI for GWAS, and expression mediated 4 

heritability and standard errors (using all and all TWAS-significant genes) are provided in order. 5 

 6 

Table S2: Comparison of GWAS and TWAS associations. The category, trait, GWAS sample size, 7 

number of cases, number of significant GWAS SNPs (P < 5 � 10��), and number of significant total and 8 

GWAS-overlapping TWAS associations (P < 2.5 � 10��) are provided in order. 9 

 10 

Table S3: Genetic correlations between traits at SNP- and placenta-expression mediated levels. 11 

Genetic correlations, standard errors, Z-test statistic, P-value, FDR-adjusted P-value, and genetic 12 

covariance and standard errors are provided for all pairs of traits.  13 

 14 

Table S4: Demographic and clinical covariates summary statistics of ELGAN and RICHS samples. 15 

 16 

Table S5: Summary of in- and out-sample predictive performance of MOSTWAS placental 17 

expression models. Mean, standard deviation, 25% quantile, median, and 75% quantile of gene 18 

expression heritability, in-sample cross-validation R2 in ELGAN, and out-sample R2 in RICHS. 19 

 20 

Table S6: Summary of 248 significant TWAS gene-trait associations. For each gene and trait, the 21 

trait category, chromosomal position of the gene, expression heritability and associated likelihood ratio 22 

test P-value, cross-validation predictive performance for gene model, TWAS Z-score and P-value, 23 

permutation P-value, top SNP and P-value in GWAS among SNPs used in the gene model, distal Z-score 24 

and P-value, and identified mediators are provided, in order. 25 

 26 
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Table S7: Over-representation analysis of TWAS genes.  Biological process, molecular function, and 1 

PANTHER pathway ontologies enriched for TWAS-identified genes associated with each trait at FDR-2 

adjusted P < 0.05. 3 

 4 

Table S8: Genetic correlations between traits at placental expression-mediated level. For each pair 5 

of traits, the genetic correlation, standard error, t-statistic and associated degrees of freedom and P-value 6 

is provided. 7 

 8 

Table S9: Results of fine-mapping of overlapped TWAS genes using FOCUS. Overlapping genes are 9 

provided, with the associated trait, chromosomal positions, TWAS Z-scores, P-values, top GWAS SNP 10 

information, posterior inclusion probability, and whether they are included in the credible set for the 11 

region. The distal Z-score is also provided. 12 

 13 

Table S10: Results of ELGAN phenome-wide scan of neonatal outcomes. For each gene and 14 

ELGAN phenotype, the effect size, standard error, adjusted 95% confidence interval, Z-score, P-value, 15 

and FDR-adjusted P-value are provided. 16 

 17 

Table S11: Cis-GReX correlations of TWAS-identified genes with metabolic traits in the Hybrid 18 

Mouse Diversity Panel. For each correlation at FDR-adjusted P < 0.10, the dataset, gene (mouse 19 

analog), trait, correlation, and P-value are provided. 20 

 21 

Table S12: Over-representation analysis of transcription factors identified as mediators. For the 22 

transcription-factor encoding genes identified as mediators, functional categories, ontologies, FDR-23 

adjusted P-value of enrichment, number of overlapping genes in the ontology, and the total number of 24 

genes in the ontology is given. 25 

 26 
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Table S13: Trans-eQTL scan using GBAT in RICHS between genetic loci local to MOSTWAS-1 

identified transcription factors and the expression of the target TWAS gene. The effect size, P-2 

value, and FDR-adjusted P-value are provided. 3 

 4 

Table S14: Results from MR-Egger to assess causal effects of transcription factors on targeted 5 

TWAS genes. For each RP-TWAS pair, the causal estimate, confidence interval, P-value, residual 6 

standard error, heterogeneity statistic, and heterogeneity P-value are provided. 7 

 8 

Table S15: MOSTWAS-identified CpG site mediators found within ENCODE-identified placenta cis-9 

regulatory sites. For each CpG site mediator that overlaps with a placental cis-regulatory stie, the 10 

chromosomal location of the regulatory site, the classification of the regulatory site, tissue, gestational 11 

time, sex, and accession number are provided. 12 

 13 

Table S16: Summary statistics of down-regulated differentially expressed genes in EPS15 14 

knockdown cells. For each gene with FDR-adjusted P < 0.01, we provide the gene name, log2 fold 15 

change, standard error, and P-values. 16 

 17 

Table S17: Summary statistics of up-regulated differentially expressed genes in EPS15 18 

knockdown cells. For each gene with FDR-adjusted P < 0.01, we provide the gene name, log2 fold 19 

change, standard error, and P-values. 20 

 21 

Table S18: Over-representation analysis of down-regulated genes.  Biological process, molecular 22 

function, and PANTHER and KEGG pathway ontologies enriched for down-regulated genes in EPS15 23 

knockdown cells associated with each trait at FDR-adjusted P < 0.05. 24 

 25 

Table S19: Over-representation analysis of up-regulated genes.  Biological process, molecular 26 

function, and PANTHER and KEGG pathway ontologies enriched for up-regulated genes in EPS15 27 

knockdown cells associated with each trait at FDR-adjusted P < 0.05. 28 
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