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ABSTRACT
Careful timing of NPIs (non-pharmaceutical interventions) such as social distancing may
avoid high “second waves” of infections of COVID-19. This paper asks what should be the
timing of a set of k complete-lockdowns of prespecified lengths (such as two weeks) so as to
minimize the peak of the infective compartment. Perhaps surprisingly, it is possible to give an
explicit and easily computable rule for when each lockdown should commence. Simulations
are used to show that the rule remains fairly accurate even if lockdowns are not perfect.
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1 Introduction

The year 2020 will be remembered for the COVID-19 (coronavirus disease 2019) pandemic, which is
an individual-to-individual infection by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2).
An immediate way to stop transmissibility is to establish total lockdowns, as China and Northern Italy
did early on in the outbreak [1]. Lockdowns and other NPIs (non-pharmaceutical interventions) such as
quarantine and social distancing were soon implemented around the world. On the other hand, frustration
with isolation rules and economic costs mean that, in most countries, long lockdowns are not feasible,
nor is it easy to enforce even milder forms of NPIs [2, 3, 4]. However, relaxation of NPIs could lead to
“second waves” of infections when the NPIs are relaxed. This motivates the search for optimally timing
the start of multiple short NPIs so as to minimize the maximum peak of infective individuals. This paper
deals with that problem.

To be precise, we consider an SIR model with strict (no-contact) lockdowns, and assume that policymak-
ers want to decide when to start each one of K of lockdowns, with respective lengths Tk, k = 1, . . . ,K.
For example, the Tk’s may all be equal, say two weeks. We provide an exact and very simple rule, which
says that lockdowns should commence whenever the number of infectious individuals reaches a certain
level, namely Istart = (1 + K − (e−νT1 + . . . + e−νTK ))−1V0, where V0 is a number that can be easily
computed from the infectivity rate, recovery rate (ν), and the initial populations of susceptible and in-
fected individuals. The formula for Istart simplifies in the case in which all Tk’s are equal, Tk = T , to just
(1 +K −Ke−νT )−1V0. In addition, we show that there will be exactly K peaks of infected populations,
all equal to this value. Observe that as the lockdown intervals become larger, T → ∞, the best possible
maximum peak is V0/(1 + K). (Using a larger value of T will lengthen the duration of the pandemic
but, asymptotically, not change the peak value. If there is a hope for a quick cure or vaccines, this is not
necesarily a good strategy.) Obviously, a perfect or near-perfect lockdown is not practical, except in juris-
dictions where complete obedience can be strongly enforced, but this theoretical problem is nonetheless
of interest. Moreover, studying this case also helps understand the problem with non-strict lockdowns, as
we will discuss.
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Infections and mathematical modeling

Infectious agents have critically influenced the history of mankind, with disease-causing pathogens con-
stantly emerging or evolving. From the Plague of Athens (430-428 BC), to the fourteenth century Black
Death that killed about a third of Europe’s population, to the Yellow Fever epidemic in Philadelphia
in 1793, in which a tenth of the population of the city perished, to the 1918 “Spanish flu” pandemic
(which did not originate in Spain) that resulted in about 3-5% of the world population dying, to the
COVID-19 2020-2021 pandemic, infectious diseases have had major impacts on health, psychological
and social well-being, medical advances (mRNA vaccines, for example), economics, politics, military
history, and religious and racial persecution. Different types of pathogens are involved in infectious dis-
eases. Viruses cause the common cold, influenza, measles, West Nile, and COVID-19, while anthrax,
salmonella, chlamydia ,and cholera are caused by bacteria, and protozoa give rise to malaria and try-
panosomiasis (sleeping sickness). There are many mechanisms for transmission, including respiratory
droplets (influenza, colds), body secretions (chlamydia), flies (trypanosomiasis), mosquitoes (malaria),
and food or water (cholera). Control strategies include behavioral and sanitation changes (NPIs), vaccines,
antibiotics, antiviral drugs. Notwithstanding this variety, there is a common mathematical structure.

The modeling of infectious diseases and their spread is an important part of mathematical biology, specif-
ically mathematical epidemiology. Modeling is an important tool for gauging the impact of NPIs such as
social distancing, masking, lock-downs, or school closings, as well as predicting/attenuating magnitude of
peak infections (“flattening the curve” so as not to overwhelm ICU capacities), predicting/delaying peak
infections (until vaccine/treatments available), and devising strategies for vaccination, control, or eradi-
cation of diseases. The social and political use of epidemic models must take into account their degree of
realism. Good models do not incorporate all possible effects, but rather focus on the basic mechanisms in
their simplest possible fashion. Not only it is difficult to model every detail, but the more details the more
the likelihood of making the model sensitive to parameters and assumptions, and the more difficult it is to
understand and interpret the model as well as to play “what-if ” scenarios to compare alternative contain-
ment policies. It turns out that even simple models help pose important questions about the underlying
mechanisms of infection spread and possible means of control of an epidemic.

Most mathematical epidemiology models incorporate some version of the classical SIR model proposed
by Kermack and McKendrick in 1927 [5]. We will restrict attention to this core model, which is suitable
for describing initial stages of an infection in a single city, and also for modeling later stages when com-
munity spread becomes dominant. Mathematical models have long played a central role in epidemiology,
and this has been especially true with the COVID-19 pandemic [6, 7, 8, 9, 10, 11, 12, 13, 14]. This
includes control-theoretic aspects, especially optimal control [15, 16, 17, 18].

Mathematical models had a major impact on the political response to the COVID-19 pandemic. To quote
from “Behind the virus report that jarred the U.S. and the U.K. to action” (New York Times, 17 March
2020):

The report [from Imperial College London], which warned that an uncontrolled spread of
the disease could cause as many as 510,000 deaths in Britain, triggered a sudden shift in
the government’s comparatively relaxed response to the virus. American officials said the
report, which projected up to 2.2 million deaths in the United States from such a spread, also
influenced the White House to strengthen its measures to isolate members of the public.

Of course, one should always keep in mind as well the following quote from Dr. Anthony Fauci, Director,
National Institute of Allergy and Infectious Diseases, United States (CNN, 05 May 2020):

I have skepticism about models [of COVID-19], and they are only as good as the assumption-
syou put into them, but they are not completely misleading. They are telling you something
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that is a reality, that when you have mitigation that is containing something, and unless it is
down, in the right direction, and you pull back prematurely, you are going to get a rebound
of cases.

2 Formulation of problem

We consider a standard SIR model for epidemics, which consists of three groups of individuals: those
who are susceptible and can be passed on the pathogen by the infectious individuals, and the removed
individuals, who are have either developed immunity after infection or who have died. In SIR models,
one does not include a flow back from individuals into the susceptible compartment. On longer time-
scales, one may also allow for the fact those individuals in the removed group who are immune may
eventually return to the susceptible population, which would happen if immunity is only temporary or if
a pathogen has evolved substantially. The numbers of individuals in the three classes will be denoted by
S, I , and R respectively, and hence the name “SIR” model. See Figure 1, where we use the symbol “⊗”
to indicate that the number of new infected will depend both on the number of susceptibles and infectious
(specifically, it will be a product in the classical SIR model to be discussed next, with a proportionality
constant β), and ν denotes the flow to the recovered compartment. Observe that the “feedback” term
implicit in the ⊗ effect means that this is not exactly a compartmental system, because for those, the flow
into a compartment does not depend on the number of individuals in that compartment.

Figure 1: Diagram of standard SIR system

Mathematically, assuming that new infections are due to contacts between S and I individuals, and that
the rate at which this happens is proportional to the numbers of such individuals, there results a system of
three coupled ordinary differential equations as follows:

Ṡ = −βSI (1)

İ = βSI − νI (2)

Ṙ = νI . (3)

From now on we will ignore the last equation since it does not affect the number of infectives. The
initial state satisfies S(0) = S0 > 0, I(0) = I0 > 0. The positive parameter β (infectivity/contact
rate) quantifies the transmission rate between the susceptible S and infected I individuals in a well-mixed
population, and ν (recovery/death rate) is the rate of flow into the removed R compartment. We will
assume that R0 := βS0/ν > 1; otherwise, the problem to be discussed is not interesting, as I decreases
monotonically to zero if the condition does not hold. (This and other well known facts about SIR systems
are reviewed in Section 5; see also e.g. [19].)

In the SIR model, NPIs are viewed as reducing the contact rate β. (More sophisticated models of social
distancing have been widely studied, see for example [20, 21, 22, 23, 24, 25, 26].) The reduction of β is
modeled by a time-varying β(t) where

β(t) =

{
β0 t ∈ J
β t /∈ J (4)
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where 0 ≤ β0 < β are two fixed values, and J ⊆ [0,∞). In our work, J will be the union of a number K
of intervals

Jk = [tk, tk + Tk] , k ∈ K

and we will be taking β0 = 0, representing a strict or full lockdown. The lengths Tk of the respective
intervals will be allowed to be arbitrary (but fixed) in our theory, though the most elegant formulas are
obtained when they are all equal (we might have Tk = 14 or 28 days for all k, for instance). The objective
will be to minimize the maximum of I(t) for t ≥ 0 (“flatten the curve”) by appropriately choosing the
start times tk.

As discused in the introduction, even if perfect lockdowns are not completely realistic, studying this case
helps understand the case β0 > 0. Indeed, we show via simulations that the conclusions for β0 = 0 are
very relevant to the case of a small but nonzero β0, even one that is about 20% of the value of β.

Previous work on this and related problems includes [27], which treats an optimal schedule minimizing a
combination of the total number of deaths and the peak of the infected compartment, [17] which shows
that a single interval (K = 1) is optimal if the objective is to minimize the total number of susceptible
individuals at the end of the epidemic, [15] with numerical studies of optimally timing fixed-duration
“one-shot” strategies, and the very nice theoretical paper [16] which showed that the optimal strategy
for minimizing peak infection is a combination of a strict lockdown (“full suppression”) with a feed-
back strategy which keeps R0=1. Also closely related to this work is [28], which studies timing of
lockdowns, including periodic strategies, through a combination of theoretical and numerical methods.
Periodic strategies are also studied in [25, 29, 30, 31] as well as other references.

2.1 Main result

Let
r := ν/β

and consider the “virtual peak” of I(t) if no lockdown were imposed:

V0 := max
t≥0

I(t) = I0 + S0 − r(1− ln(r/S0))

(cf. Section 5). Define this expression:

Istart :=
V0

1 +K − (e−νT1 + . . .+ e−νTK )

The main result is as follows. It considers the optimization problem in which the number of lockdowns is
fixed (K) as well as their respective lengths (Tk’s). The parameters to be optimized over are the times at
which the each lockdown should commence.

Theorem 1 Suppose that I(0) < Istart. Then, in order to minimize the maximum of I(t), t ≥ 0,
lockdowns should start whenever

I(tk) = Istart .

Moreover, under this policy, the maximum Imax of I(t) will equal Istart.

In other words, any time that the infective population level reaches the value Istart, the next time-Tk
lockdown interval Ik should start.

For example, if Tk = T for i = 1, . . . ,K then the formula is

Imax =
V0

1 +K −Ke−νT
.

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.04.11.21255289doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.11.21255289


Note that as T →∞ the best possible maximum peak is

V0
1 +K

.

Proof of Theorem 1: For mathematical elegance, we will include the theoretical possibility of a lockdown
starting at time exactly t0 = 0 (and later make T0 = 0, so that there is in effect no initial lockdown).

For any initial population (σ, ι), we introduce the following function:

V(σ, ι) := ι+ σ − r + r ln r − r lnσ

which gives the peak value of I(t) if we start at the initial population (σ, ι) and there would be no further
lockdowns, and let:

tk := time when kth lockdown starts

Ik := I(tk)

Sk := S(tk)

Vk := V(S(tk + Tk), I(tk + Tk))

Tk := length of kth lockdown

pk := e−νTk

ak := 1− pk .

(so t0 = 0 and (S0, I0) is the state at the start of the epidemic). Observe that, for all k,

I(tk + Tk) = pkIk

S(tk + Tk) = Sk .

Consider these equalities:

Vk + r − r ln r = pkIk + Sk − r lnSk (5)

Vk−1 + r − r ln r = pk−1Ik−1 + Sk−1 − r lnSk−1 (6)

Ik + Sk − r lnSk = pk−1Ik−1 + Sk−1 − r lnSk−1 (7)

where the last equality follows from the conservation law I(t) + S(t)− r lnS(t) ≡ constant, applied to
a solution that starts at ι = pkIk and σ = Sk. Adding (5) to (7) and subtracting (6), we obtain:

Vk + Ik + Sk − r lnSk − Vk−1 = = pkIk + Sk − r lnSk

from which we conclude the following recursion:

Vk = −akIk + Vk−1 .

Applying this formula recursively, we conclude:

VK = V0 − (a0I0 + . . .+ aKIK) . (8)

The largest value of I(t) will occur at the maximum of the peaks occurring at the start of each kth
lockdown, or the last “virtual peak” (which is then a real local maximum). In other words, the maximum
of I is

Imax = max {I0, I1, . . . , IK , VK} .
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Under the epidemic assumptionR0 > 1, İ(0) > 0, so we can drop I0 from the list. We replace the value
for VK from formula (8). Letting T0 = 0 means that a0 = 1− p0 = 0, so we conclude that

Imax = max {I1, . . . , IK , V0 − (a1I1 + . . .+ aKIK)} . (9)

To minimize the peak, we need to pick non-negative I1, . . . , IK in such a way that this expression is
minimized. This is achieved at a unique global minimum, at which

Imax = I1 = . . . = IK = V0 − (a1I1 + . . .+ aKIK) for all k

(see Lemma 1 below), namely

Ik =
V0

1 + (a1 + . . .+ aK)
=

V0
1 +K − (e−νT1 + . . .+ e−νTK )

for all k .

This completes the proof of Theorem 1.

Lemma 1 For any a1 ≥ 0, . . . , aK ≥ 0 and b > 0, define

ξ :=
b

1 +
K∑
k=1

ak

.

Consider the following function, defined on (x1, . . . , xK) ∈ RK≥0:

g(x1, . . . , xK) := max

{
x1 , . . . , xK , b−

K∑
k=1

akxk

}
.

Then, the minimum value of g is ξ, and it is achieved at the unique point where all xk = ξ.

Proof of Lemma 1: Define A :=
∑K

k=1 ak, so that ξ = b
1+A , and note these properties:

1. g(ξ, . . . , ξ) = ξ.

To prove this, note that, when all xk = ξ,

b−
K∑
k=1

akxk = b−

(
K∑
k=1

ak

)
ξ = b−Aξ = b−A b

1 +A
= ξ ,

so all terms in the max are the same.

2. If g(x1, . . . , xK) ≤ ξ then xk = ξ for all k.

Notice first that xk ≤ max {x1 , . . . , xK} ≤ g(x1, . . . , xK) ≤ ξ for all k.

If for some k this inequality were strict, then −xk ≥ −ξ for all k, and −xk > −ξ for some k, so

b−
K∑
k=1

akxk > b−

(
K∑
k=1

ak

)
ξ = b−Aξ = b−A b

1 +A
= ξ

but and this would contradict b−
∑K

k=1 akxk ≤ g(x1, . . . , xK) ≤ ξ.

Property 2 shows that g(x1, . . . , xK) > ξ unless all xk = ξ, and Property 1 shows that the minimum is
achieved when all xk = ξ.

We next show some illustrations of the use of the formula for several lengths of lockdowns as well as
simulations for various scenarios of 1, 2, 3, or 4 lockdowns. We use reasonable parameters in each case.
Finally, we will show computationally that a small positive β0 does not change conclusions much, at least
for the case of a single lockdown.
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2.2 Equal lengths are optimal

The formula derived in this paper allows one to prove the following result. Suppose that we are given a
total “lockdown time budget” T > 0, and wish to find K lockdown times Tk, such that

∑K
k=1 Tk = T

so as to minimize Imax = (1 + K − (e−νT1 + . . . + e−νTK ))−1V0. Minimizing Imax over the Tk’s is
equivalent to minimizing

e−νT1 + . . .+ e−νTK

subject to
K∑
k=1

Tk = T .

The functions e−νTk are strictly convex, the objective function is separable, and the constraint is affine, so
it follows that there is a unique solution to this optimization problem (see Example 5.4 in [32]). Consider
the Lagrangian:

L(T1, . . . , TK , λ) := e−νT1 + . . .+ e−νTK + λ

(
K∑
k=1

Tk − T

)

and set the K partial derivatives with respect to the Tk’s to zero. This gives:

e−νTk =
λ

ν
, k = 1, . . . ,K

which implies T1 = . . . = TK . From
∑K

k=1 Tk = T it follows that

Tk =
T

K
,

i.e. equal lengths are optimal.

We now prove that the more intervals, the better. Indeed, suppose that we compare the optimal solution
with K intervals to the optimal solution with K+1 intervals. Let us think of the optimal solution with K
intervals as a particular solution with K+1 intervals, in which the last interval is zero (and the first K are
equal to T/K). Clearly, this last solution is not optimal, since the (unique) optimal solution to the problem
with K+1 intervals has all intervals nonzero (and equal to T/(K+1)). In other words, having one more
interval is always better. Of course, this ignores the social, economic, and psychological problems of
imposing multiple lockdowns.

A variation of the “total budget” problem is as follows. Suppose that the “cost” of a second lockdown is
different from (and presumably larger than) the cost of the first lockdown. This may represent “lockdown
fatigue” or lack of political will. More generally, each subsequent lockdown could have an associated cost
ck > 0. In this case, the interesting mathematical problem would be to again minimize e−νT1+. . .+e−νTK

but this time subject to a general affine constraint

K∑
k=1

ckTk = T .

The Lagrangian is now

L(T1, . . . , TK , λ) := e−νT1 + . . .+ e−νTK + λ

(
K∑
k=1

ckTk − T

)
.
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We normalize the problem by asking
∑K

k=1 ck = K, so that the equal-cost case is that when all ck = 1.
Proceeding as before, we arrive at the equations:

e−νTk =
λck
ν
, k = 1, . . . ,K .

Pick any index k 6= 1. Then

e−νTkeνT1 =

(
λck
ν

)(
λc1
ν

)−1
=

ck
c1

or e−ν(Tk−T1) = ck/c1 from which we derive the formulas

Tk = T1 −
1

ν
ln ck +

1

ν
ln c1 , k = 2, . . . ,K .

Thus:

T =
K∑
k=1

ckTk

= c1T1 +

K∑
k=2

ck

(
T1 −

1

ν
ln ck +

1

ν
ln c1

)

=

(
K∑
k=1

ck

)
T1 −

1

ν

(
K∑
k=2

ck ln ck

)
+

1

ν

(
K∑
k=2

ck

)
ln c1

=

(
K∑
k=1

ck

)
T1 −

1

ν

(
K∑
k=1

ck ln ck

)
+

1

ν

(
K∑
k=1

ck

)
ln c1

= KT1 −
1

ν

(
K∑
k=1

ck ln ck

)
+
K

ν
ln c1

(using that
∑K

k=1 ck = K). We conclude:

T1 =
T

K
+

1

νK

(
K∑
k=1

ck ln ck

)
− 1

ν
ln c1 .

It follows that, for each i ≥ 2, we have an analogous formula:

Ti = T1 −
1

ν
ln ci +

1

ν
ln c1 =

T

K
+

1

νK

(
K∑
k=1

ck ln ck

)
− 1

ν
ln ci .

Note the common entropy-like term as well as the last term that makes intervals shorter when their “cost”
is higher. In the special case that all ck = 1, the logarithms are zero and we recover the previous case
Ti = T/K.

2.3 Sensitivity to parameters

The recovery rate ν is relatively easy to estimate, wince it is largely a function of the physiology of the
pathogen. However, the parameter β depends on behavioral characteristics, population density, and so
forth, so it is much harder to know accurately. A natural question to ask if: how much worse does a policy
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based on an incorrect value perform, relative to the optimal policy that would have been used if β were
perfectly known? We study this sensitivity question here, restricting for simplicity to the case of a single
(perfect) lockdown, i.e. K = 1, T1 = T .

Suppose that the population value I1 at which the lockdown starts was optimized based on a “wrong”
value β̃:

Ĩ1 =
Ṽ0

2− e−νT
,

where
Ṽ0 = I0 + S0 − r̃(1− ln(r̃/S0)) , r̃ = ν/β̃ .

The maximum value of I(t) is:
Imax = V0 if Ĩ1 ≥ V0

(because the maximum with no lockdowns is V0, so the lockdown will never be triggered in the case
Ĩ1 ≥ V0) and

Imax = max
{
Ĩ1, V0 − (1− e−νT )Ĩ1

}
if Ĩ1 < V0

(formula 9), where
V0 = I0 + S0 − r(1− ln(r/S0)) , r = ν/β .

In contrast, the optimal solution would have been to pick

Iopt =
V0

2− e−νT
.

Since this is optimal, of course Imax ≥ Iopt. Let us consider the relative penalty (in terms of maximum
infectives) incurred by using the wrong β:

∆ :=
Imax − Iopt

Iopt
.

Let is write p := e−νT to simplify notations. When Ĩ1 ≥ V0 (that is, if Ṽ0 ≥ (2− p)V0):

∆ =
V0 − Iopt
Iopt

=
V0 − V0

2−p
V0
2−p

= 1− p .

When Ĩ1 < V0 (that is, if Ṽ0 < (2− p)V0):

∆ =
max

{
Ṽ0
2−p , V0 − (1− p) Ṽ0

2−p

}
− V0

2−p
V0
2−p

=
max

{
Ṽ0 − V0, (1− p)(V0 − Ṽ0)

}
V0

.

In this maximum, the terms have opposite sign, so the max is achieved at the non-negative one.

A formula for ∆ can be most conveniently derived when thinking of ∆ as a function of Ṽ0 (with β, and
therefore also V0, fixed). We conclude:

Theorem 2

∆(Ṽ0) =


(1− p) Ṽ0 − V0

V0
if Ṽ0 ∈ (0, V0)

V0 − Ṽ0
V0

if Ṽ0 ∈ [V0, (2− p)V0)

1− p if Ṽ0 ∈ [(2− p)V0,∞) .

9
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From this formula, one can immediately compute sensitivity to β̃. Observe that Ṽ0 is a strictly increasing
function of β̃, because the derivative of the function Ṽ0 with respect to β̃ is:

ν

β̃2
ln

(
β̃S0
ν

)
> 0

as long as we are in the epidemic parameter rangeR0 := βS0/ν > 1.

Note that ∆ is continuous on Ṽ0; it is zero (no penalty) when β = β̃, i.e. V0 = Ṽ0, and 1 − p when
substituting Ṽ0 = (2 − p)V0 into (V0 − Ṽ0)/V0. In the limit that p → 1 (that is, if the lockdown interval
T → 0, the middle case becomes vacuous and the sensitivity is zero (as expected).

3 Some numerical explorations

3.1 Optimal reduction of “virtual peak” with K perfect lockdowns

The use of a even a small number of lockdowns results in a drastic reduction of the peak that would
occur (the “virtual peak”) if there were no lockdowns. The marginal benefit of additional lockdowns is
relatively minor, after a certain number of them, as is the benefit of longer lockdowns. We plot here the
fraction

(
1 +K(1− e−νT )

)−1 for ν = 0.05 and T = 7, 14, 21, 28 days.

Figure 2: Percentage of virtual peak when using K lockdowns (horizontal axis) each of them 7 (red), 14
(blue), 21 (green), or 28 (magenta) days long.
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4 Simulations

4.1 Simulations using optimal formula

We simulate various lockdown lengths using our optimal formulas. Parameters are, β = 0.00025, ν =
0.05 (so R0 = 5), initial conditions are S0 = 1000, I0 = 1, and the peak if there are no lockdowns is
I = 479. The maximum from the formula coincides with the maximum in simulations, up to numerical
error.

4.1.1 Lockdown length is T = 14 days, perfect lockdown

Figure 3: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 1, peak I from formula:
318.682808, maximum of I on last (no lockdown) period: 318.601530. Lockdown start time(s): 32.42.

Figure 4: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 2, peak I from formula:
238.740981, maximum of I on last (no lockdown) period: 238.755779. Lockdown start time(s): 29.73,
50.69.
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Figure 5: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 3, peak I from formula:
190.862880, maximum of I on last (no lockdown) period: 191.019085. Lockdown start time(s): 28.01,
47.71, 69.80.

Figure 6: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 4, peak I from formula:
158.980313, maximum of I on last (no lockdown) period: 159.342577. Lockdown start time(s): 26.74,
45.87, 66.33, 89.44.
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4.1.2 Lockdown length is T = 28 days, perfect lockdown

Figure 7: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 1, peak I from formula:
273.247170, maximum of I on last (no lockdown) period: 273.286548. Lockdown start time(s): 30.9.

Figure 8: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 2, peak I from formula:
191.124644, maximum of I on last (no lockdown) period: 191.048654. Lockdown start time(s): 28.02,
68.02.
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Figure 9: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 3, peak I from formula:
146.957573, maximum of I on last (no lockdown) period: 146.913773. Lockdown start time(s): 26.22,
64.39, 106.74.

Figure 10: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 4, peak I from
formula: 119.371878, maximum of I on last (no lockdown) period: 119.395364. Lockdown start time(s):
24.91, 62.23, 101.98, 146.47.
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4.2 Comparing multiple vs. single lockdowns

We proved that more lockdowns are always better, if the total lockdown “budget” is fixed. Here we show
the following comparisons: one 28-day compared to two 14-day lockdowns, and two 28-day compared
to four 14-day lockdowns (Figures 11 and 12 respectively). Observe that the peaks when using repeated
lockdowns are lower, as theory predicts. Interestingly, the timings of the last peak and asymptotic behav-
iors look identical in the respective left and right plots.

Figure 11: Left: one 28-day lockdown. Right: two 14-day lockdowns. Parameters as earlier.

Figure 12: Left: two 28-day lockdowns. Right: four 14-day lockdowns. Parameters as earlier.
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4.3 Testing β0 6= 0 with formula derived for β0 = 0

We simulate the use of the formula derived for β0 = 0, under the lockdown value β0 = 0.00005, which
represents a 20% value of the normal contact rate. Again, β = 0.00025, ν = 0.05 (so R0 = 5), initial
conditions are S0 = 1000, I0 = 1, and the peak if there are no lockdowns is I = 479.

4.3.1 Lockdown length is T = 28 days, β0 = 0.00005

Figure 13: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 1, peak I from
formula: 273.247170, maximum of I on last (no lockdown) period: 248.383407. Lockdown start time(s):
30.90.

Figure 14: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 2, peak I from
formula: 191.124644, maximum of I on last (no lockdown) period: 154.387915. Lockdown start time(s):
28.02, 61.2.
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Figure 15: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 3, peak I from
formula: 146.957573, maximum of I on last (no lockdown) period: 103.506053. Lockdown start time(s):
26.22, 57.43, 94.30.

Figure 16: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 4, peak I from
formula: 119.371878, maximum of I on last (no lockdown) period: 71.792718. Lockdown start time(s):
24.91, 55.24, 88.63, 129.63.
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4.3.2 Lockdown length is T = 14 days, β0 = 0.00005

Figure 17: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 1, peak I from
formula: 318.682808, maximum of I on last (no lockdown) period: 326.846639. Lockdown start time(s):
32.4.

Figure 18: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 2, peak I from
formula: 238.740981, maximum of I on last (no lockdown) period: 248.153424. Lockdown start time(s):
29.73, 46.6.

4.4 Comparison with optimal strategy for β0 6= 0

For comparison with the use of the optimal formulas derived for β0 = 0, we show here numerically
the optimal solution when β0 6= 0, specifically β0 = 0.00005 as above. As earlier, parameters are
β = 0.00025, ν = 0.05 (so R0 = 5), initial conditions are S0 = 1000, I0 = 1, and the peak if there
are no lockdowns is I = 479. We take only the case of a single lockdown, for simplicity, and lockdown
lengths of 14 or 28 days.
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Figure 19: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 3, peak I from
formula: 190.862880, maximum of I on last (no lockdown) period: 200.218534. Lockdown start time(s):
28.01, 43.86, 61.6.

We find that the formula predicts the optimal timing extremely well for 14-day lockdowns (error less than
1% in maximum infectives), and is fairly good for 28-day lockdowns as well (about 5% error).

4.4.1 Lockdown length is T = 14 days, β0 = 0.00005

For 14-day lockdowns, the plot in Figure 17 suggests that the formula derived for β0 = 0 triggered the
first lockdown too early, so we explored by what fraction > 1 to increase the trigger point, from which
the optimal strategy is clear.
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Figure 20: Plots of S(t) and I(t) (horizontal axis is time). Number of lockdowns: 4, peak I from
formula: 158.980313, maximum of I on last (no lockdown) period: 167.977200. Lockdown start time(s):
26.74, 42.11, 58.60, 77.22.

Figure 21: Left: Magnitude of first and second peak, with the lockdown time parametrized (x axis) by
the percentage of the ideal (perfect lockdown) formula. ; 14 day lockdown. Note that the second peak
decreases as the first peak happens later, so the minimum of the maximum among them will occur when
the curves intersect. Right: The maximum between the curves; minimum is around fraction 1.018 of the
optimal for perfect lockdowns, so trigger should occur later.
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Figure 22: Simulation with an imperfect lockdown. Using now the optimal fraction 1.018 of the optimal
for perfect lockdowns, obtained by minimizing the plot in Figure 21 (right). The optimal peak value is
now approximately 324, which can be compared with the suboptimal plot (using the formula that assumed
perfect lockdowns) shown in Figure 17, which had a peak of approximately 327. Observe how the two
peaks are now balanced. The optimal result is not that different from the one obtained from our formulas,
and the lockdown start is at time 30.39.
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4.4.2 Lockdown length is T = 14 days, β0 = 0.00005

In contrast, for 28-day lockdowns the plot in Figure 13 suggests that the formula derived for β0 = 0
waited too long for the first lockdown, so we first explore by what fraction < 1 to decrease the trigger
point, from which the optimal strategy is clear.

Figure 23: Left: Magnitude of first and second peak, with the lockdown time parametrized (x axis) by
the percentage of the ideal (perfect lockdown) formula; 14 day lockdown. Note that the second peak
decreases as the first peak happens later, so the minimum of the maximum among them will occur when
the curves intersect. Right: The maximum between the curves; minimum is around fraction 0.944 of the
optimal for perfect lockdowns, so trigger should occur earlier.
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Figure 24: Simulation with an imperfect lockdown. Using now the optimal fraction 0.944 of the optimal
for perfect lockdowns, obtained by minimizing the plot in Figure 23 (right). The optimal peak value is
now approximately 258, which can be compared with the suboptimal plot (using the formula that assumed
perfect lockdowns) shown in Figure 13, which had a peak of approximately 273. Observe how the two
peaks are now balanced. The optimal result is very close to the one obtained from our formulas.
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5 Review of SIR model

To make this paper self-contained, we review here some facts about SIR models, see e.g. [19] or math-
ematical epidemiology texts for more details. We wish to analyze solutions, from initial conditions
S(0) = S0, I(0) = I0.

Infections always die-out in SIR model

Note that if I0 = 0, then S(t) ≡ S0 and I(t) ≡ 0; in other words, every point of the form (S, 0) is an
equilibrium. Similarly, if S0 = 0, then S(t) ≡ 0 and I(t) = e−νtI0 → 0, so the case S0 = 0 is not
interesting either. So we study the only interesting cases, I0 > 0 and S0 > 0.

Since Ṡ ≤ 0, S(t) is a nonincreasing function of time, and thus S(t) ↘ S∞ for some S∞ ≥ 0. A most
important result is this one:

S∞ > 0 and I(t)→ 0 as t→∞.

This says that the infection will end (asymptotically), and there will remain a number of “naive” individ-
uals at the end.

We will show that I(t)→ 0 and defer the proof that S∞ > 0 to later.

To prove this result, we will use this theorem: if x(t) is a solution of a system of ODEs ẋ = f(x), and
if the solution converges, x(t) → x∗, then x∗ must be an equilibrium point, i.e. f(x∗) = 0. This is
true because the omega-limit set of a trajectory is an invariant set, the LaSalle Invariance Principle (see
e.g. [33]).

We apply this theorem as follows. First we define V (t) := S(t) + I(t), and notice that V̇ = −νI ≤ 0,
which means that V (t) is nonincreasing, and thus there is a limit V (t) ↘ V∞ as t → ∞. Therefore
I(t) = V (t) − S(t) → V∞ − S∞ =: I∞ also has a limit. So the state x(t) = (S(t), I(t)) converges to
x∗ := (S∞, I∞). It follows that f(x∗) = 0, which means that

βS∞I∞ = 0

βS∞I∞ − νI∞ = 0

and from there we conclude that I∞ = 0 because ν 6= 0.

We still have to show that S∞ > 0; we will in fact provide a formula for S∞ .

R0 and epidemics

A central role in epidemiology is played by the “intrinsic reproductive rate”

R0 :=
βS0
ν

.

The epidemiological (and non-mathematically rigorous) definition of R0 is “the average number of sec-
ondary cases produced by one infected individual introduced into a population of susceptible individuals,”
where by a susceptible individual one means one who can acquire the disease. This can be made precise
with a stochastic model, but an intuitive argument can be found in [19]. We remark R0 has a generaliza-
tion to more complex epidemics models, and it characterizes the local stability of the set of “disease-free”
steady states (DFSS) (those for there are no infectives). One may compute R0 using the so-called “next
generation matrix” built from the differential equations. which was introduced in [34] (see e.g [35] and
also the worked examples in [19]).
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We discuss R0 below in more detail, but for now note the following fact. From the ODE for I , we have
that

İ(0) = (βS0 − ν)I0 = ν (R0 − 1)I0 .

This means that an epidemic will happen, meaning that I(t) will increase when starting from any I(0) >
0, if and only ifR0 > 1.

Moreover, the initial growth of I(t) will be exponential, with rate λ = ν (R0 − 1). (For small times and
a large susceptible population S0, we may assume that S(t) remains roughly constant.) Logarithmically
plotting infections, we can estimate λ, and from there we may estimate

R0 = 1 +
λ

ν

(assuming that we know ν, the recovery/death rate of infecteds), and

β =
λ+ ν

S0
.

WhenR0 ≤ 1 and t > 0,

İ(t) = (βS(t)− ν)I(t) < (βS0 − ν)I = ν (R0 − 1)I ≤ 0

(because S(t) < S0) and so I(t) monotonically decreases to zero.

From now on, when discussing the SIR model, we assume thatR0 > 1.

Peak infection time tp and susceptibles at that time

The derivative İ = (βS − ν)I is positive for small t, because at zero it equals ν (R0 − 1)I > 0.

On the other hand, since I(t) → 0 as t → ∞, the derivative must eventually become negative, which
means that there is some time tp (p for “peak” infectivity) at which İ(tp) = 0. Since S(t) decreases
monotonically, the derivative of I can only change sign from positive to negative at exactly one such time
tp. So tp is the point at which I(t) attains is maximum.

From İ = 0 at tp, we have that
S(tp) = r ,

where we define for convenience
r :=

ν

β
.

Thus, at the peak infection time, there is a precise formula for the number of susceptibles.

A formula for the final number S∞ > 0 of susceptibles

Let us know derive an (implicit) equation for the limit S∞ of the susceptible population. We introduce
the following function, along a given solution:

H(t) := I(t) + S(t)− r lnS(t) .

Taking derivatives,

Ḣ = βSI − νI − βSI − r (−βSI)

S
= 0
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which means that H is constant along trajectories (a conserved quantity):

I(t) + S(t)− r lnS(t) = I0 + S0 − r lnS0

for all t > 0. It follows, in particular, that

r lnS(t) = I(t) + S(t)− I0 − S0 + r lnS0 ≥ −I0 − S0 + r lnS0 =: p

and therefore S(t) ≥ epβ/ν for all t, so taking limits S∞ ≥ epβ/ν > 0 as claimed.

Even better, we can obtain an equation for S∞ by passing to the limit in the conservation law, which gives
(taking into account that I∞ = 0):

S∞ − r lnS∞ + r lnS0 = I0 + S0 .

Dividing by S0 and using thatR0 = βS0/ν, and definining for convenience q := 1
R0

, we obtain:

S∞
S0
− q ln

(
S∞
S0

)
= 1 +

I0
S0

or, letting x := S∞/S0 and c := 1 + I0
S0
> 1:

f(x) := x− q lnx = c .

Observe that, since S(t) is decreasing, x < 1. We claim that there is exactly one solution of the equation
f(x) = c with x ∈ (0, 1). By computing this solution, we can retrieve the final value of the susceptibles,
S∞ = xS0. To prove that there is a solution x and it is unique, note that limx→0+ f(x) = +∞ and
f(1) = 1, and f ′(x) = 1 − q 1x is an increasing function of x, with limx→0+ f

′(x) = −∞ and f ′(1) =
1− q > 0 (because we assumed R0 > 1). Therefore, f decreases until some x∗ and then increases back
to 1. Since c > 1, it follows that f(x) = c has a unique solution, as we wanted to prove.

There is in fact a solution of this equation that employs a classical function. For simplicity let us write
s := q−1 = R0. Multiplying by −s, we write the equation as lnx − sx = −sc. Taking exponentials
and multiplying again by −s results in wew = y, where w := −sx and y := −se−sc. Note that, since
s > 1 and c > 1, y ∈ (−1/e, 0). The function w 7→ wew has an inverse, defined on (−1/e, 0), called
the Lambert W function (MATLAB command lambertw). So, w = W (y), and since x = −w/s, we
conclude that

x = −1

s
W
(
−se−sc

)
,

or, after multiplying by S0:
S∞ = −rW

(
−R0e

−R0c
)
.

Typically, I0 ≈ 0 (one individual is enough to cause an epidemic), so c ≈ 1 and in that case

S∞ ≈ −rW
(
−R0e

−R0
)
.

If one can measure the proportion of people who did not get sick compared to the total initial population,
then one can solve forR0. This is one way to computeR0 from historical data.

A formula for the peak value I(tp) of infectives

Determining the peak value I(tp) is of critical importance in practice. If a proportion θ of infected
individuals will need hospital care, one can then predict, early on in an infection (and assuming that the
SIR model is correct), the maximum number θI(tp) of people who will require hospital beds (or intensive
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care treatment) at any given time, and thus enforce a more stringent NPI policy if this number is projected
to overwhelm hospital capacity.

Let us take again the conservation law

I(t) + S(t)− r lnS(t) = I0 + S0 − r lnS0 ,

and now specialize at t = tp, using that S(tp) = r. Then,

max
t≥0

I(t) = I(tp) = I0 + S0 − r + r ln r − r lnS0 = I0 + S0 − r(1− ln(r/S0)) .

Another way to write this is to use that r/S0 = 1/R0, so

I(tp) = I0 + S0 − r(1 + lnR0) .

5.0.1 Alternative definitions ofR0

There are alternative definitions of R0 (for the SIR model) that one often encounters in the literature:
R0 = βN/ν, where N is the total population size, or even R0 = β/ν. Let us quickly explain how these
relate to what we are doing here. As alluded to earlier, the general definition of R0 is given in terms of
what is called a “disease-free steady state” (DFSS), meaning a steady state in which there are no infected
individuals. For the specific case of the SIR model, this would mean any steady state of the form S = S0,
I = 0, and R = N − S0. With this definition,R0 = βS0/ν, but there are many possibleR0’s depending
on what is the number or removed individuals at the initial time. In particular, for the equilibrium with
R = 0,R0 = βN/ν.

What about the definitionR0 = β/ν? It is often the case that one normalizes the population to fractions:
Sf := S/N , If := I/N , R̃f := R/N . In this case, Ṡ = (1/N)(−βSI) = −(βN)(SfIf ) and İf =
(1/N)(βS − ν)I = ((βN)Sf − ν)If , so

Ṡf = −β̃SfIf
İf = (β̃Sf − ν)If

with β̃ := βN/ν. NowR0 = βN/ν = β̃/ν in terms of this new β. Note that Sf and If are dimensionless
and that β̃ has units of (1/time), while the original β had units of 1/(time×individuals), so β̃ is perhaps
more elegant.

We prefer not to perform this normalization because, when there are “vital dynamics” such as immigra-
tion, emigration, births, and/or deaths, the total population N would not be constant.

6 Discussion

In this paper we discussed an SIR model with strict (no-contact) lockdowns. We studied the problem of
deciding when to start each one of K of lockdowns, with respective lengths Tk, k = 1, . . . ,K, so as to
minimize the maximum number of infected individuals at any given time, and provided an exact formula
in which lockdowns should start whenever the number of infectious individuals reaches (1+K−(e−νT1 +
. . .+ e−νTK ))−1V0, where V0 is the “virtual peak” that would have resulted from no lockdowns.

As we discussed, a perfect or near-perfect lockdown is not practical, but the ideal case helps understand the
problem with non-strict lockdowns, and we presented numerical evidence that the formula is reasonable
accurate even in the not totally (but still reasonably) strict case. The fellow-up paper [36] has recently
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started the study of the same optimization problem in the non-strict case, showing that in the optimal case
the subsequent peak after release from one lockdown coincides with the infective population at the start
of the lockdown. Much further work remains, including the extension of the perfect-lockdown problem
to models such as the ones presented in [20, 25, 26].

We also presented results showing that equal-length lockdowns are optimal, and we quantified the sensi-
tivity to poorly known contagion rates.
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