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ABSTRACT The U.S. needs early warning systems to help it contain the spread of infectious diseases. 

Conventional early warning systems use lab-test results or dynamic records to signal early warning signs. 

New early warning systems can supplement these data with indicators of public awareness like news articles 

and search queries. This study aims to explore the potential of utilizing social media data to enhance early 

warning of the COVID-19 outbreak. To demonstrate the feasibility, this study conducts a retrospective 

analysis and investigates more than 14 million related Twitter postings in the date range from January 20 to 

March 10, 2020. With the aid of natural language processing tools and machine learning classifiers, this study 

classifies each of these tweets into either a signal or a non-signal. In this study, a “signal” tweet implies that 

the user recognized the COVID-19 outbreak risk in the U.S. This study then proposes a parameter “signal 

ratio” to signal warning signs of the COVID-19 pandemic over periods. Results reveal that social media data 

and the signal ratio can detect the hazards ahead of the COVID-19 outbreak. This claim has been validated 

with a leading time of 16 days through the comparison to other referenced methods based on Google trends 

or media news. 

INDEX TERMS COVID-19 outbreak, early warning, machine learning, social media, text classification 

I. INTRODUCTION 

The outbreak of an infectious disease threatens society, 

especially when it evolves into a pandemic in a short period 

[1]. Coronavirus Disease 2019 (COVID-19), an emerging 

infectious disease discovered in December 2019 in Wuhan, 

China [2], has since spread worldwide and engendered an 

ongoing pandemic [3]. The COVID-19 crisis is particularly 

severe across the U.S. states and territories, and more than 26 

million cases have been confirmed as of February, 2021 [4]. 

Subsequent news and reports show that the initial U.S. 

response to the pandemic was slow in terms of preparing the 

healthcare system, stopping other travels, and implementing 

testing and measures [5]–[7]. Even in late February, 2020, a 

Press Briefings from the White House emphasized that the 

risks to the U.S. public remained low  [8]. Due to the delayed 

response and lack of preparation, the U.S. missed the golden 

opportunity to contain the COVID-19 outbreak [9]. Early 

warning systems are critical for controlling this one-in-a-

lifetime pandemic.  

Early warning for infectious diseases involves analyzing 

surveillance data with specialized techniques to detect 

aberrations in the early stages [10]. Surveillance data are the 

cornerstone of disease warning programs and often originate 

from laboratory specimens, surveys, dynamic records, sentinel 

surveillance, and administrative data [10]. Access to these data 

usually relies on third-party organizations or institutions to 

initiate provision and sometimes can be costly and time-

consuming [11]. New early warning systems can supplement 

these data with indicators of public awareness like news 

articles and search queries. The importance of public 

awareness has been recognized in aiding decision-making 

across a broad range of research topics, such as environmental 

conservation [12], health campaigns [13], and emergency 

preparedness [14]. Analysis of the situational awareness 

through public opinions can open up new insights to enhance 

early warning. 

Social media platforms are becoming essential tools for 

decision-makers to communicate information to the 
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stakeholders and harness public opinions from online users. 

The properties of social media enable individuals to spread 

information and knowledge and thus make it possible to evoke 

public awareness on a large scale within a short period [15]. A 

typical example regarding this COVID-19 crisis is that, before 

the COVID-19 outbreak, a Chinese ophthalmologist shared 

the information of a suspected severe respiratory syndrome on 

social media, and his message raised early awareness about the 

severity of COVID-19 infections [16]. Understanding such 

information and opinions created in a particular time and 

location and its dissemination on social media can provide 

invaluable resources to feed into early warning systems.  

Researchers have demonstrated the potential of aggregating 

opinions from social media to enhance early warning in many 

scenarios, such as flood [17], tsunami [18], and pandemic 

expansion [19]. Building on the existing body of knowledge 

related to the utility of social media in aiding early warning, 

this study conducts a retrospective analysis and explores the 

potential of leveraging public awareness through Twitter data 

to signal early warning for the U.S. COVID-19 pandemic. 

While this approach does not establish a response mechanism 

to cope with disease control and prevention, it provides public 

and private sectors a timely and efficient instrument to detect 

the hazards by “crowdsourcing” public opinions, thereby 

enabling them to take early preparedness to contain the 

pandemic. 

II. LITERATURE REVIEW 

A. SOCIAL MEDIA IN EMERGENT EVENTS 

Social media data are often obtained from Twitter, Facebook, 

Instagram, and other web or mobile platforms. Luna and 

Pennock summarized three crucial benefits that social media 

bring in emergency management: increasing situational 

awareness, accelerating information diffusion, and monitoring 

activity and status [15]. Owing to these benefits, researchers 

have demonstrated the potential of utilizing social media data 

to assist the management of emergent events [20]. Multiple 

studies evaluate tweet volume with the target domain words to 

monitor natural hazard events (e.g., flood, earthquake, and 

hurricane) [21], [22]. A typical application is to detect 

worldwide earthquakes through monitoring the intensity of 

earthquake-related messages sent on Twitter [22]. With the 

advancement of natural language processing and machine 

learning techniques, recent studies have combined them with 

social media data to aid the analysis. For example, Chao et al. 

proposed a hybrid machine learning pipeline with named 

entity recognition that leverages relevant tweets to uncover the 

evolution of disaster events across different locations [23]. 

Bhoi et al. proposed a prototype system that integrates word 

embedding with deep learning models to analyze emergency-

related tweets to enhance resource management [24]. 

In the field of infectious disease, one primary area focuses 

on emergency communication and cooperation. Perhaps this 

is because social media provide timely channels for 

government agencies to communicate information to 

stakeholders and for individuals to share such information 

with families and friends. This reveals importance in the 

pandemic outbreaks. Yang and Sun investigated the health 

policy under COVID-19 and discussed how the role of public 

voice on social media can help the government to promote 

policy evolution [25]. Abrams and Greenhawt manifested that 

one possible way to ensure appropriate risk communication 

amid the COVID-19 pandemic is using social media channels 

to provide an ongoing and consistent media presence [26]. 

Kim and Hawkins suggested that social media strengthen 

shared awareness and contribute to positive health prevention 

behaviors amid the 2019 U.S. measles outbreak. In particular, 

social media expression and reception can help promote 

preventive hygiene intention [27]. 

B. SOCIAL MEDIA IN EARLY WARNING AND DISEASE 
SURVEILLANCE 

The extensive applications of social media unravel new 

insights into the early warning systems in many scenarios, like 

flood [17], tsunami [18], and pandemic expansion [19]. 

Understanding where the information has been posted and 

analyzing related contents created in a particular time window 

can provide a valuable resource to feed into early warning 

systems [28]. Multiple efforts capitalize on the analysis of 

textual content, information dissemination, or sentiment 

patterns to signal early warning for an emergent event [29]–

[31]. A typical example tracked the sentiment changes based 

on users’ geolocation information, aiming to facilitate a more 

robust early warning system for hurricane disasters [29]. 

Similar to this study, Kitazawa and Hale examined millions of 

tweets during a typhoon crisis occurred in Japan. They found 

that emergency warnings were likely to have people be 

attentive, and the expected shift of public attention on social 

media could serve as indicators for such alarm [32]. 

Early warning for infectious diseases involves analyzing 

surveillance data in the early stages of a pandemic [10]. 

Studies using social media data for surveillance of disease 

outbreaks are closer to this present work. One popular 

approach is to monitor online health-seeking behaviors, such 

as search queries to web search engines [33]–[35], or to detect 

aberrational trends via the volume of related online news [36]. 

For example, Ginsberg et al. specifically discussed how to use 

Google search queries to track influenza-like illness amid the 

epidemic [35]. Other researchers have applied a similar 

method to detect epidemics or pandemics through monitoring 

search queries [33], [34]. A recent article validated the 

credibility of using internet searches and social media data to 

predict COVID-19 outbreak by displaying a strong correlation 

between search indexes with subsequent reported COVID-19 

cases [37]. 

The other common approach leverages textual analysis 

techniques to handle social media data for disease surveillance 

[38]–[40]. The objective of these studies is to establish a real-

time surveillance system or an event detection system to track 
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the infections [41], [42]. The importance of this application is 

evident, and thus the frequency of these applications is 

obvious. For example, Aramaki et al. extracted millions of 

influenza-related tweets and applied machine learning models 

to classify the tweets into either symptom-related or -unrelated 

[38]. Their experiment results displayed a high correlation 

with influenza cases that outperforms the Google search 

method. Rosa et al. adopted topic modeling techniques to 

analyze users’ behavior changes in online social networks 

[43]. They have applied their model to detect the COVID-19 

pandemic in the early stages. Overall, these achievements 

demonstrate the credibility of using social media data to 

predict the hazards of disease outbreak. 

C. RESEARCH GAP AND OBJECTIVE 

With the reviewed studies, it is clear that early warnings based 

on social media data requires the detection of an aberrational 

pattern, such as a shift of people’s thoughts or behaviors in the 

early stages. Most of the attempts combining social media data 

aim to provide real-time surveillance, which mainly relies on 

the classification of symptom-like messages. However, these 

models cannot be used to signal early warnings when the 

symptoms are not widely recognized. While the search 

engine-based methods have demonstrated the possibility to 

predict the hazards, they may not be applicable when 

aberrations are not discernible at the beginning of a crisis. 

More importantly, with the reviewed works, there has been 

minimal focus on how to leverage public opinions via social 

media or how to quantify the awareness level to release 

warning signals to a pandemic.  

To fill this research gap, this study attempts to use social 

media data obtained from the Twitter platform and explore the 

potential of harnessing public opinions to promote early 

warning systems. This study conducts a retrospective analysis 

through reviewing the early stages of the U.S. COVID-19 

pandemic. The remainder of this study is organized as follows. 

Section 3 presents data preparation procedures and introduces 

tools and classifiers to build the pipeline to classify each tweet 

into a “signal” or a “non-signal.” The “signal” tweet implies 

that the user thought the COVID-19 outbreak was likely to 

happen in the U.S., while a “non-signal” tweet implies that the 

user discussed COVID-19 related topics but did not show clear 

concerns regarding the risks of the outbreak.  Section 3 also 

explains the parameter “signal ratio” and the “tipping point” 

concept to deliver warning signs. Section 4 exhibits the results 

from both temporal and spatial dimensions and displays the 

aberrational patterns and concern shifts. Section 5 discusses 

the findings, significance, implications, and limitations. 

III. DATA AND METHODS 

A. DATA PREPARATION 

Twitter data reflect the information that users choose to share 

in public. In this study, we utilized the Twitter Standard Search 

API with the search term “Coronavirus” to download related 

tweets in the date range from January 20 to March 10, 2020. 

We selected this date range before the World Health 

Organization (WHO) announced that COVID-19 was a 

pandemic on March 11, 2020 [44], aiming to illustrate the 

feasibility of using the indicators of social media data to 

deliver early warnings. Since the WHO officially named 

“Coronavirus” as “COVID-19” on February 11, 2020 [44] , 

we did not use “COVID-19” as the search term concerning the 

consistency of data scraping. Although there were other 

terminologies to describe this pandemic, such as “Wuhan 

virus,” “Chinese virus,” and “pneumonia,” we chose not to use 

them either as they contained discrimination meanings or were 

not specific to this disease. Moreover, using the keyword 

“Coronavirus” could generate enough data representative of 

public opinions, and thus we selected this keyword to collect 

tweets.  

However, Twitter data, with limitations on contents, are 

currently and unlimitedly available without fee for one-week 

following their postings with Twitter Standard Search API. To 

ensure the consistency of the data associated with the target 

topic, we used the API to collect related tweets daily from the 

beginning of the study period. These daily scraped data were 

stored in simple JavaScript Object Notation (.json) formats 

and converted to Excel (.xlsx) files for subsequent processing. 

This scraping process resulted in an original dataset with 

83,773,379 records. Since the original data included the tweets 

containing “Coronavirus” from worldwide, we filtered in 

records with users’ registration locations only implying a 

location in the U.S. For example, registration locations like 

“USA,” “Washington DC,” “NYC,” “California,” and “Los 

Angeles” all indicate locations in the U.S. This filtering 

process reduced the dataset to a total of 14,702,253 records 

with 3,598,708 unique tweets given that retweets are of the 

same textual content.  

Twitter provides four types of tweets that people can post 

on its platform: general tweets, mentions (i.e., quotes), replies, 

and retweets [45]. A general tweet is a message posted on 

Twitter containing text, photos, a GIF, or a video. A mentioned 

tweet quotes another account’s Twitter username, and a reply 

is a user’s responding text to another user’s tweet [45]. These 

three types of tweets contained a user’s original texts and 

attributions and were considered as original tweets in this 

study. Unlike these three types of tweets, a retweet is a 

reposting of another user’s tweet [45]. For the present study, 

we did not remove retweets, given that a user who reposted 

another user’s tweet could hold the same opinion or recognize 

the same risks regarding the COVID-19 outbreak. A tweet 

with more retweets could also indicate that its described 

information was recognized by more people on Twitter. 
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TABLE 1. Three major types of tweets that were classified as “signals” 

for sensing hazards. 

To establish the training dataset, we selected the top 5,000 

most frequently retweeted tweets and manually classified each 

tweet into a “signal” or a “non-signal” class. In this study, a 

“signal” tweet implies that the user thought the COVID-19 

outbreak was likely to happen in the U.S. possibly due to the 

lack of preparation to contain the transmissibility of the virus. 

A “non-signal” tweet implies that the user discussed COVID-

19 related topics in the tweet but did not show any concern 

regarding the risks of the outbreak. Based upon our review on 

the factors to control disease outbreak [46]–[48], subsequent 

news and reports [5]–[7], and manual inspection for the 5,000 

tweets, we summarized three major types of tweets that could 

be used to signal the risk of COVID-19 outbreak, as exhibited 

in Table 1. For example, according to the news published in 

the Associated Press on April 13, it attributed the U.S. 

COVID-19 outbreak to slow responses, in terms of preparing 

the healthcare equipment and testing kits, and underestimation 

of the threat [5]. These “signal” tweets reflect how the public 

awareness emerged from Twitter can be used as “human-

sensors” to signal the early warnings of COVID-19 outbreak. 

In addition, we selected the top 5,000 most frequently 

retweeted tweets rather than a random subset to build the 

training dataset based upon two considerations. First, these 

5,000 tweets are most likely to be reflective of impactful 

twitter data on the dataset as they received most retweets. 

More importantly, labeling these 5,000 tweets could ensure 

more accurate classifications on the whole dataset. It was 

worth noting that they comprised 5,931,904 (40.3%) of the full 

dataset (retweets were considered as the same content in this 

study). In other words, once the trained model got a training 

accuracy of 99%, retweets of these top 5,000 tweets could be 

almost correctly classified. Therefore, this treatment could 

ensure a higher classification accuracy on the whole dataset. 

Fig. 1 presents the framework to implement the text 

classification model on the dataset. We divided the dataset into 

two domains: 1) those 5,000 human labeled tweets comprised 

40.3% of the full dataset and were used to train the 

classification model, and 2) the rest 59.7% tweets were 

automatically labeled by the trained classification model. We 

developed the text classification pipeline following four major 

steps: text labeling, text augmentation, text vectorization, and 

classification.

FIGURE 1. Research framework for the implementation of the classification method.

Type Description Tweet Example 

1 Suggest that the U.S. 

was not prepared, such 

as lack of testing kits 
or equipment. 

Is this a secret? As of a week ago, 

only 500 people were tested. The 

lack of testing allowed the 
coronavirus to spread within the 

US undetected. 

 
2 Hold the opinion that 

the risk of the 

pandemic was 
downplayed, and the 

real hazard was hidden 

I’m sure some people think there is 

a lot of talk about Coronavirus. 

I’m frankly surprised there’s not 
more. Italy sounds completely 

overwhelmed. That’s looking like 

us I two weeks. The President is 

continuing to downplay the threat, 

which will get more people sick. 
 

3 Show worries for 

disease spreading 

based on daily 
observation or 

personal experience. 

I just landed at JFK after reporting 

on #coronavirus in Milan and 

Lombardy —the epicenter of 
Italy’s outbreak— for @vicenews. 

I walked right through US 

customs. They didn’t ask me where 
in Italy I went or if I came into 

contact with sick people. They 

didn’t ask me anything. 
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B. HUMAN TEXT LABELING 

The authors manually reviewed the 5,000 tweets and 

categorized each tweet into a “signal” (class 1) or a “non-

signal” (class 0) through three rounds of labeling (Fig. 1). In 

the first round, two handlers formed a group, and each group 

was responsible for labeling half of the 5,000 tweets. The label 

criteria were based on our reviews on the factors to control 

disease outbreak and subsequent news and reports, as Table 1 

exhibits. When a tweet received the same label from both 

handlers, it was considered as the final label for this tweet. 

When there was disagreement on the labels, another two 

handlers in the research team came to label this same tweet. 

The class of this re-labeled tweet was determined following 

the majority of the four views. However, when this tweet again 

received two same labels for both class 0 and class 1, it was 

put on the discussion board and determined by all participated 

handlers. As a result, 4,315 out of 5,000 tweets were classified 

as “non-signal” (class 0) and 685 tweets as “signal” (class 1), 

in which 198 tweets were put on the discussion board that were 

decided by all the handlers.  

C. TEXT AUGMENTATION 

Before text augmentation, we applied several steps to clean the 

tweets, as presented in the box “Text Cleaning” in Fig. 1. First, 

short URLs, @username, RT @username, digits, emojis, and 

stop words, punctuations were removed in a tweet. Next, each 

tweet was tokenized into a list of separate words and 

characters. Since the words in a tweet were written in different 

forms, the tokenized words were converted to their stemming 

forms. This process is known as lemmatization. We employed 

the Natural Language Toolkit (NLTK) python package to 

complete this text cleaning process [49].  

Among the 5,000 tweets, 13.7% of them (685 out of 5,000) 

were classified as “signal” tweets, while 86.3% (4,315 out of 

5,000) were classified as “non-signal” tweets. Such severe 

imbalance in the training dataset posed an issue for text 

classification. That is, the trained a model could produce 

reduced performance for the minority class. Specifically, the 

trained model could achieve as high as 85% accuracy even 

though all outputs were predicted as “non-signal” tweets (class 

0). As a consequence, the trained model failed to detect a tweet 

as a “signal.” There are two practical methods to tackle this 

issue, namely downsampling and upsampling. Downsampling 

balances classes by training on a proportionately small subset 

of the majority class samples, while upsampling balances 

classes by increasing the size of the minority class samples. 

Since downsampling might result in a significant loss of 

information for the model to capture the “non-signal” cases in 

this research context, we determined to select upsampling as 

the text augmentation method to ease the imbalance and 

increase training size.  

Among all the upsampling techniques, we adopted a 

straightforward technique called Easy Data Augmentation 

(EDA). This technique requires no model to be pre-trained on 

external datasets and is capable of substantially improving the 

performance, especially on a training set with less than 500 

samples [50]. The EDA model uses four operations to increase 

the data volume [50], as exhibited in Table 2. We followed the 

recommendations in their article and set the ratio as 0.1 for 

each operation. Based on the imbalance ratio ((4,315-

685)/685=5.3) in the 5,000 labeled samples, we set the times 

for augmentation of the minor class to 5. This process 

generated a training dataset with “signal” and “non-signal” 

tweets approximately equivalent, including the original 

labeled 4,385 “non-signal” tweets and the augmented 4,110 

“signal” tweets. 

 

TABLE 2. Text augmentation operators and examples.

  

Operator Ratio Description Tweet Example 

Original tweet: I just landed at JFK after reporting on #coronavirus in Milan and Lombardy —the epicenter of Italy’s outbreak— for @vicenews. I walked 

right through US customs. They didn’t ask me where in Italy I went or if I came into contact with sick people. They didn’t ask me anything. 

Cleaned tweet: land jfk report coronavirus milan lombardy epicenter italy outbreak walk right us custom didnt ask italy go come contact sick people didnt ask 

anything 

Synonym 

Replacement 

(SR) 
0.1 

Randomly choose n words from the sentence. Replace 

each of these words with one of its synonyms. 

 

land jfk report coronavirus milan lombardy epicenter italy 

eruption walk right us custom didnt ask italy go come contact 

sick people didnt ask anything. 
 

Random 

Insertion 
(RI) 

0.1 

Find a random synonym of a random word in the 

sentence. Insert that synonym into an arbitrary position 
in the sentence. Do this n times. 

 

land jfk report coronavirus milan lombardy news report 

epicenter italy outbreak walk right us custom didnt ask italy 
go tangency come contact sick people didnt ask anything. 
 

Random Swap 
(RS) 

0.1 

Show worries for disease spreading based on daily 
observation or personal experience. 

land jfk report coronavirus come lombardy epicenter italy 
outbreak walk right us custom didnt ask italy go milan contact 

sick people didnt ask anything. 

 
Random 

Deletion 

(RD) 

0.1 

For each word in the sentence, randomly remove it with 

the probability p 

land jfk report coronavirus milan lombardy epicenter italy 

outbreak walk right us didnt ask italy go come contact sick 

people didnt ask anything 
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D. TEXT VECTORIZATION  

Term Frequency-Inverse Document Frequency (TF-IDF) was 

utilized in this study to convert each tweet into a vector of 

features. TF-IDF is an efficient and effective term weighting 

method widely applied in the fields of text similarity, text 

classification, and information retrieval [51]. TF-IDF defines 

the importance of key terms as [51], 

𝑤(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡, 𝐷) = 𝑓𝑡,𝑑 ∙ 𝑙𝑜𝑔⁡(
𝐷

𝑑𝑡
) (1) 

in which, 𝑤(𝑡, 𝑑) represents the weight of word 𝑡 in tweet 𝑑; 

𝑓𝑡,𝑑 denotes the frequency of word 𝑡 in tweet 𝑑; 𝐷 is the total 

number of tweets; and 𝑑𝑡 is the number of tweets that word 𝑡 
appears. Words with high TF-IDF value imply strong 

relationships with the tweets where they appear. Although TF-

IDF does not capture word positions or semantic similarities 

in a sentence, it is an efficient and simple algorithm for 

matching words in a query to documents [52]. Due to its 

robustness and fast computation, TF-IDF is especially useful 

when dealing with a large set of Twitter data in different text 

lengths. In this research context, all words in a tweet were 

represented with numerical information, and each tweet was 

mapped into a numerical vector for classification. 

E. TEXT CLASSIFICATION 

After each tweet was converted to a vector of features using 

TF-IDF, we applied several machine learning classifiers 

provided by Scikit-learn Python library [53], including 

Random Forest (RF), Logistic Regression (LR), Support 

Vector Machine (SVM), and Naïve Bayes (NB) to build the 

pipeline for text classification. Given that LR achieved the 

highest testing accuracy as shown in Table 3, we specifically 

explained this algorithm in this section. LR is a well-

developed machine learning technique borrowed from 

statistics, which is intended for binary classification. Logistic 

regression is characterized by a logistic function to model the 

conditional probability of the label Y given independent 

variable X, 𝑃(𝑌|𝑋) [54]. Given a tweet vector, the conditional 

probability of a tweet classified as class 1 or class 0 can be 

modeled using the sigmoid function [54]:  

𝑝(𝑌|𝑋) =
1

1+𝑒−(𝜃0+𝜃1𝑥1+𝜃2𝑥2+⋯+𝜃𝑛𝑥𝑛)
= ℎ𝜃(𝑥

(𝑖)) (2) 

where 𝑌⁡𝜖⁡{0,1},  𝑌 = 0 denotes “non-signal” (class 0) and 

𝑌 = 1  denotes “signal” (class 1); 𝑥(𝑖) = (𝑥1, 𝑥2, … , 𝑥𝑛) 
denotes the converted vector of the ith tweets using TF-IDF 

method; 𝜃 = (𝜃0, 𝜃1, 𝜃2, … 𝜃𝑛) denotes the model parameters 

that need to be trained. The sigmoid function is the core of 

logistic regression that maps the vectors of tweets to one of the 

binary classes. The loss function 𝐽(𝜃)⁡applied in this study is 

cross-entropy loss, and its mathematic formula is presented 

below.  

𝐽(𝜃) = −
1

𝑀
∑[ 𝑦(𝑖)𝑙𝑜𝑔⁡(ℎ𝜃(𝑥

(𝑖))) +

(1 − 𝑦(𝑖))𝑙𝑜𝑔⁡(1 − ℎ𝜃(𝑥
(𝑖)))]

 (3) 

where ℎ𝜃(𝑥
(𝑖)) is the probability value computed by sigmoid 

function, 𝑖 denotes the ith data point (i.e., tweet) in the dataset, 

𝜃  is the model parameters, and 𝑀⁡ is the total number of 

samples. This cross-entropy loss increases when the predicted 

probability deviates from the actual labels. This built pipeline 

classifies a tweet with the value of sigmoid function > 0.5 

implying 𝑌 = 1 (“signal”) and <0.5 implying 𝑌 = 0 (“non-

signal”). To implement the text classification, we split the 

training and testing size into 70% and 30% of the augmented 

dataset. According to Gholamy et al., empirical studies show 

that the best results are often obtained when using 20~30% 

data for testing, and the remaining 70~80% for training [55]. 

The 70/30 split in this study made the classification pipeline 

trained with enough data whilst more testing data made the 

error estimate more accurate.  

F. PERFORMANCE MEASURES 

Precision, Recall, and F1-score were applied to assess the 

classification performance since these indexes could better 

reflect the performance on unbalanced classes. Precision 

measures the fraction of true positive cases over the retrieved 

cases that a model predicts, while recall is the fraction of true 

positive cases over all the relevant cases that are actually 

identified. The F1-score is a rating of test accuracy, 

representing a combination of Recall and Precision [56]. 

Higher F1-score implies higher testing accuracy [56]. The 

formulas of Precision, Recall, and F1-score are presented in 

(4), (5), and (6), respectively. Performance on the testing set 

of these classification pipelines is exhibited in Table 3. The 

LR classifier outperformed the other three classifiers and thus 

was selected for the following investigation, demonstrated by 

higher F1-scores and testing accuracy. It is apparent that other 

classifiers could easily have been applied once their 

performance warranted their choice in other cases. 

TABLE 3. Performance measurement of different models. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑡𝑖𝑣𝑒
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑡𝑖𝑣𝑒
 (5) 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =
2⁡⁡𝑅𝑒𝑐𝑎𝑙𝑙⁡×⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6) 

Type 
RF + 

TF-IDF 

LR + 

TF-IDF 

SVM + 

TF-IDF 

NB + 

TF-IDF 

Precision 

Class 1 

Class 0 

 

0.89 

0.87 

 

0.89 

0.98 

 

0.87 

0.86 

 

0.81 

0.97 
Recall 

Class 1 

    Class 0 

 

0.86 

0.90 

 

0.98 

0.87 

 

0.86 

0.87 

 

0.97 

0.78 
F1-score 

Class 1 

    Class 0 

 

0.88 

0.88 

 

0.93 

0.92 

 

0.86 

0.87 

 

0.89 

0.86 
 

Training 

 

0.93 

 

0.99 

 

0.90 

 

0.93 

Testing 0.88 0.93 0.86 0.88 
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G. WARNING LEVEL CALIBRATION 

In this study, we propose a parameter, “signal ratio” to 

quantify the public awareness of the COVID-19 outbreak over 

periods. The signal ratio is measured as a fraction of the 

number of “signal” tweets divided by the sum of both “signal” 

and “non-signal” tweets (7). We then adopted the concept of 

“tipping point” from sociology to signal the warning signs. 

The concept of “tipping point” refers to the moment when an 

idea, trend, or social behavior crosses a threshold and spreads 

like wildfire [57]. The idea of using “tipping point” as the 

warning signal is broadly applied in monitoring climate 

change [58] as well as identifying social issues [59], [60]. 

Previous studies have put this “tipping point” threshold 

anywhere from 0.10 to 0.40, according to a report published in 

Science [61], which demonstrated that when the committed 

fraction grows beyond a critical value of 0.10, there is a 

dramatic decrease in the time for the entire population to adopt 

the committed opinion [62]. That is to say, when the number 

of committed opinion holders is about 10 percent of the 

population, their belief is likely to be adopted by the majority 

of the society [62]. Although the committed fraction in their 

study referred to the committed agents in a network (e.g., 

Twitter users in our study) and was calculated based on 

modeled networks rather than real networks (e.g., Twitter 

network), we considered the fraction of “signal tweets” to 

approximately reflect the fraction of “opinion holders” in the 

Twitter network. At this point, previous studies have also used 

the tweet volume to represent the public opinions in terms of 

political and social issues [63]–[65], and these studies support 

the feasibility of our assumption. Moreover, we set 0.1 as the 

critical value to signal the warning based on multiple attempts 

to explore the results-oriented performance with respect to the 

warning patterns. Fig. 2 shows a “scattered” warning pattern 

at the beginning of our study period and a “continuous” 

warning pattern later, and this evident pattern shift could 

suggest an aberration for early warning systems.  

    For these considerations, this study uses 0.10 as the 

threshold to signal warning signs in this specific research 

context. That being said, the signal ratio delivers a warning 

when “signal” tweets occupy a proportion of 0.10 of all 

COVID-19 related tweets. To further differentiate the warning 

levels, we treated a signal ratio > 0.20 as warning level 2 and 

> 0.25 as warning level 3. This warning calibration can signal 

warning signs even with low tweet volume in the early stages.  

𝑠𝑖𝑔𝑛𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 =
𝑁(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑁(𝑠𝑖𝑔𝑛𝑎𝑙)+𝑁(𝑛𝑜𝑛_𝑠𝑖𝑔𝑛𝑎𝑙)
 (7) 

 

 

FIGURE 2. Daily signal ratio and warning level for each state. 
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IV. RESULTS ANALYSIS 

A. TEMPORAL AND SPATIAL RESULTS 

We computed the daily signal ratio based on (7) and presented 

it in Fig. 2a. To calculate the state-level signal ratio, we firstly 

grouped the data based on the users’ registration locations. For 

example, tweets with the following registration locations, 

“California, USA,” “Los Angeles,” “California,” and “Santa 

Monica CA,” all indicate California State. We then created a 

heatmap to track warning levels for each state, as shown in 

Fig. 2b.  

At the beginning of the study period, when the Chinese 

government announced a national-wide emergency, people on 

Twitter started to sense the risks of COVID-19 transmission. 

Correspondingly, the signal ratio delivered a few early 

warning signs even though the tweet volume remained low at 

this time. The signal ratio reached 0.15 and delivered a second 

clear warning signal on January 29, and this warning sign was 

captured by most states, according to Fig. 2b. From February 

11 to February 13, the signal ratio crossed 0.10 in three 

consecutive days. Until late February, only a few cases were 

officially confirmed in the U.S. that were all imported 

overseas, and the government emphasized that the risks to the 

U.S. public remained low at that time [8]. However, these 

signs that emerged from public awareness, although scattered, 

provided early warning information that could assist the 

decision-makers in containing the disease outbreak. 

After the first community transmission reported on 

February 20, the volume of “signal” tweets dramatically 

increased and spiked on February 28. The risk of COVID-19 

outbreaks was extensively recognized in the Twitter 

community. The signal ratio appeared to show a continuous 

warning pattern, as presented in Fig. 2. The signal ratio 

reached the highest level for the entire U.S. on February 25, 

showing warning level 3 for some states and level 2 for most 

U.S. states. The Europe’s outbreak in Italy enabled U.S. 

people to recognize the high risks. However, President Trump 

remained publicly optimistic about the virus [66], which raised 

wide concern regarding the U.S. preparation for the outbreak. 

Although the signal ratio subsided somewhat the next day, its 

value fluctuated around 0.15 over the following days. One 

possible explanation was that people were aware that the 

COVID-19 situation was far worse than previous estimations. 

This continuous warning pattern reflected public’s constant 

worries concerning that the U.S. might not be prepared to 

respond to the COVID-19 outbreak. It also released a danger 

signal for the decision-makers that the disease was about to 

leap out of control.  

In addition to temporal analysis, we plotted the average 

state-level signal ratio on geography, as exhibited in Fig. 3. 

The state-level signal ratio was computed based on the 

classified tweets with the same state registration information. 

Overall, the signal ratio ranges from 0.10 to 0.17 across states, 

among which Vermont (0.17), Oregon (0.16), Minnesota 

(0.15), Delaware (0.15), Wisconsin (0.15), and Wyoming 

(0.15) have a higher signal ratio than other U.S. states. Twitter 

users from states with higher signal ratio were more aware of 

the COVID-19 risks. According to Fig. 3, states located in the 

West, Midwest (especially East North Middle), and the 

Northeast region displayed a higher signal ratio when 

compared to states located in the South and Middle areas. 

FIGURE 3. Average state-level signal ratio in the 48 contiguous U.S. states 

B. DEPICTION OF PUBLIC CONCERNS 

In this section, we conducted an exploratory analysis to shed 

light upon how the public concerned about the COVID-19 

outbreak and how the patterns shifted during the study period. 

To do so, we manually reviewed the top 20 tweets that were 

most frequently reposted from each of the “warning” days. 

After that, we summarized the major concerns and presented 

a cluster analysis to depict the shifts of public awareness, as 

shown in Fig. 4.  
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FIGURE 4. Shared situational awareness emerged from “signal” tweets. 

 

In late January, the COVID-19 outbreak in China raised 

early concerns about the risk. People on Twitter suggested the 

government to take precautionary measures until the severity 

and nature of COVID-19 was understood. Another two events 

also raised early awareness: 1) Italy scanned passengers, but 

the U.S. did not, and 2) citizens came back to the U.S. from 

Wuhan, China, the center of the outbreak. In early February, 

as more details of COVID-19 were reported, people showed 

anxiety that the virus was far more contagious and could be 

extremely harmful to the society. During this period, the signal 

ratio presented a “scattered” warning pattern. The public 

awareness focused on the virus mechanism (e.g., viral 

transmission) and the outbreak in other countries and the U.S. 

connections with them (e.g., travel restrictions).  

Nevertheless, starting from February 20, the signal ratio 

presented a “continuous” warning pattern. We probed into 

those “signal” tweets and discovered that the public awareness 

recognized four major hazardous phenomena: 1) supply 

shortages, such as lack of testing kits and health equipment; 2) 

late response and insufficient preparation, such as late 

information updates and inadequate funding for supporting 

preparation; 3) downplayed risks and hidden facts; 4) reports 

of the first case in many states. In early March, many people 

posted pessimistic messages stating that the U.S. had already 

lost the opportunity to contain the outbreak. Meanwhile, 

people were worried about that the U.S. would experience an 

exponential acceleration of reported cases, and the U.S. 

economy would crack. This observation reflected that the 

public awareness emerged on social media might recognize 

the hazards considerably earlier than the government official 

statements. Apart from the shift of the warning patterns, the 

focus of public awareness shifted from the concerns about the 

COVID-19 outbreak in other countries to the fear of the viral 

transmission, followed the distrust of government capabilities 

to deeply pessimistic views of the U.S. situation. It was further 

noted that such pattern shifted from the focuses on external 

factors (e.g., outbreaks in other countries and virus 

mechanism) to the focuses on internal factors (e.g., lack of 

testing kits and equipment, distrust of government, and the 

prospect of economy and society).  

There are a couple of possible reasons to explain such 

observations. First, social media gave U.S. citizens visibility 

to news and opinions concerning COVID-19 from other 

countries. For example, the COVID-19 outbreak in China 

raised significant concerns about the situation in the U.S. as 

people were aware that the virus was contagious and could be 

easily transmitted among communities. Second, people on 

social media might project U.S. situations based on their own 

observations or traveling experience. A typical example was 

that, a Twitter user expressed her concern about the U.S. 

preparedness after landing the JFK airport from Italy, since the 

airports took no anti-epidemic measures (e.g., temperature 

scanning and social distance) for passengers. As a result, her 

concern raised an extensive discussion on Twitter regarding 

the U.S. preparation for the outbreak. Third, many opinions 

that emerged on social media came from epidemiologists, 

clinicians, statisticians, survey specialists, and government 

officials. Their thoughts could provide useful insights to 

understand the risks of COVID-19 in the early stages. For 

example, an infectious disease expert, Michael Osterholm, 

warned in early March that the U.S. was ill-prepared to combat 

the COVID-19 and would face a pandemic [67]. The 
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properties of social media enabled these opinions to spread 

quickly through the internet and thus made it possible to evoke 

public awareness within a short period. These explanations 

further unravel the rationality of using indicators of public 

awareness through social media to enhance early warning. 

C. COMPARISON TO OTHER RESOURCES 

This section attempts to check the credibility of this proposed 

approach by examining the signal ratio with other referenced 

methods. The first referenced method was proposed by [68], 

with an assumption made that the number of related news 

posts from media could reflect the warning level to a certain 

extent. In their study, a news post was counted as long as its 

title contains at least one word related to COVID-19, such as 

pneumonia, coronavirus, and SARS. Their data resource 

comes from the Global Database of Events, Language, and 

Tone (GDELT), which stores metadata for international news 

[69]. We followed their approach to retrieve related index 

information and presented it in Fig. 5a (solid blue line). The 

second method follows the approach based on the search 

queries to Google [35]. The data resource was extracted from 

the Search Volume Index of Google Trends. To visualize these 

indexes in the same range, we normalized the Index of Google 

Trends into the range between 0 and 1 and plotted it in Fig. 5a 

(dotted blue line). 

Upon initial inspection, the relations between signal ratio 

and the referenced indexes might not be evident. Therefore, 

we computed the time-lagged cross-correlations and presented 

the relations in Fig. 5b. The time-lagged correlation can help 

quantify the synchrony between two sets of time series data 

and unfold a clearer view of the connections. In Fig. 5b, the 

leading time represents how long the signal ratio is ahead of 

the other two referenced indexes. A higher correlation 

suggests a higher alignment under a specific lagging date. 

According to Fig. 5b, the signal ratio displays a moderate to 

strong correlation with other referenced indexes when it leads 

the time lag. In particular, the correlation rises to 0.7 when the 

signal ratio leads 17 days ahead of the referenced method 

based on media news and 0.8 when the signal ratio leads 16 

days ahead of the Google Trends. While the referenced 

methods based on Google Trends or media news provide 

quantitative information to support early warnings, their 

applications may be limited to the situations where the 

monitored trends (e.g., banner headlines, news subscriptions, 

and search queries) show clear aberrations. Moreover, the 

time-lagged cross-correlations shown in Fig. 5 demonstrate 

that the signal ratio can lead the warnings ahead of time 

compared to the referenced methods, which further warrants 

the feasibility of adding signal ratio to current warning 

systems.

 

FIGURE 5. Validation through comparison with the multiple information resources.  

 

 

V. CONCLUSIONS 
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A disease outbreak can affect a large population and spread 

over multiple countries or continents in a short period, posing 

significant health threats to humanity [10]. Early warning is 

critical for government agencies to contain the disease 

outbreak. The extensive application of social media opens up 

new insights to promote early warning in many scenarios, and 

understanding the online information created from particular 

times and places can provide valuable resources that can be 

incorporated into early warning systems. Previous studies 

have demonstrated the potential of using social media data to 

signal early warning by analyzing symptoms-related postings 

or tracking online search queries. While those attempts based 

on classifying symptoms-related postings can provide real-

time surveillance, they may be limited to the situation where 

the symptoms are widely reported in the communities. While 

tracking online search queries can predict the risks ahead of 

the outbreak, they may provide limited insights when the 

aberrations are not discernible at the beginning of a crisis. 

Further, with our reviewed studies, there has been limited 

discussion on how to quantitatively analyze public awareness 

through social media data to enhance early warning.  

To explore the potential of social media data, this study 

conducts a retrospective analysis of the U.S. COVID-19 

pandemic and investigates more than 14 million related tweets 

from January 20 to March 10, 2020. With the aid of natural 

language processing and machine learning techniques, this 

study classifies each related tweet into either a signal or a non-

signal and further proposed a parameter “signal ratio” to detect 

the warning signs in the early stages. Following are the 

highlighted findings. The signal ratio presented an aberrational 

pattern of “continuous warning signs” since February 20, 

which unfolded the crisis much earlier than the official 

statement. In particular, the signal ratio exhibited a peak value 

on February 25 (about 0.25), indicating that a large number of 

Twitter users had already been aware of the hazards. Even 

from late January to early February, when the topic was not 

widely discussed online, the exposure to other countries’ news 

on social media enabled a proportion of users to realize the 

COVID-19 crisis and its potential threats to the U.S. public. 

Moreover, the emerged pattern on Twitter shifted from 

concerns about external situation (e.g., virus mechanism, other 

countries’ outbreaks) in early February to an extremely 

pessimistic mood about internal situation (e.g., lack of testing 

kits and equipment, underestimated risks) in early March. 

Last, through the validation with other referenced methods 

based on media news, this study demonstrated that the signal 

ratio could detect the outbreak hazards 16 days earlier.  

The contribution of this study mainly lies in two aspects. 

From a methodological perspective, this study presents a 

quantification process of dealing with social media data and 

offers an approach to quantitively estimate the awareness 

based on the classifications of signal and non-signal tweets. 

Unlike the methods based on frequency count (e.g., tracking 

search queries, identifying behavior changes based on word 

patterns), this study applies machine learning methods to 

identify the signals from textual contents on social media. 

Thus, the signal ratio reflects people’s awareness of the crisis 

and can detect warning signs even with low discussion volume 

in the early stages.  
From a practical perspective, this study demonstrates the 

potential of aggregating public opinions via social media to 

signal early warning. Some useful information on social media 

can serve as the whistles for the disease outbreak in a broader 

sense. A typical case is that, before the COVID-19 outbreak, 

a Chinese doctor shared the information of a suspected 

respiratory syndrome on social media, which raised early 

awareness about COVID-19 infections [16]. This study also 

illustrates a case where public opinions are of importance for 

government agencies to take early measures when facing an 

unprecedented disease outbreak. Overall, this approach has the 

advantages of rapidity, quantity, spatial converge, and certain 

foresight in unfolding the crisis, and it can feed into current 

warning systems that can help government agencies enhance 

early warning in a timely manner. 

Limitations to this study need to be addressed in future 

applications. First, this signal ratio may not be applicable for 

long-term use, especially when a place has witnessed the 

outbreak. This is because people’s discussion on social media 

may switch to other aspects of the pandemic, and the topic 

regarding the risks (i.e., warning signals) of the pandemic may 

not be actively discussed. Second, this study sets 0.1 as the 

critical value of the signal ratio (i.e., the fraction of “signal” 

tweet volume) for a warning sign. As there is no firm reference 

to support this setting in the social media context, the 

credibility of the warning level calibration may require 

discussions in a more general case. Third, given that this 

proposed signal ratio is discussed in the COVID-19 context, 

the training dataset may need to be adjusted when the model 

is applied to signal warnings for other pandemics. Last, the 

TF-IDF technique may not be suitable for the situation where 

the tweet data are very different from the training tweet data 

since this method does not take the semantics or positions of 

words into account.  

    Ongoing and future work will assess other text classification 

models by using advanced techniques (e.g., deep learning 

classifiers, word embedding methods) to build the pipelines. 

Other potential study direction will focus on evaluating the 

tipping point regarding public awareness and social media 

context. From the angle of application, we will collect tweets 

relative to other types of pandemics or epidemics (e.g., 

measles, swine influenza) and apply the model to detect early 

warnings in other health crises. This proposed model can 

supplement current early warning systems and further aid the 

public, the healthcare professionals, and government agencies 

to prepare for future health crises.  
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