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Abstract 
  
     Diffuse gliomas have been hypothesized to originate from neural stem cells in the 
subventricular zone. Here, we evaluated this hypothesis by mapping independent sources of 
glioma localization and determining their relationships with neurogenic niches, genetic markers, 
and large-scale connectivity networks. Using lesion data from a total of 410 patients with glioma, 
we identified -- and replicated in an independent sample -- three lesion covariance networks 
(LCNs), which reflect clusters of frequent glioma co-localization. Each LCN overlapped with a 
distinct horn of the lateral ventricles. The first LCN, which overlapped with the anterior horn, 
was associated with low-grade, IDH-mutated/1p19q-codeleted tumors, as well as a neural 
transcriptomic signature and improved overall survival. Each LCN significantly corresponded 
with multiple brain networks, with LCN1 bearing an especially strong relationship with 
structural and functional connectivity, consistent with its neural transcriptomic profile. Finally, 
we identified subcortical, periventricular structures with functional connectivity patterns to the 
cortex that significantly matched each LCN. Cumulatively, our findings support a model wherein 
periventricular brain connectivity guides tumor development. 
 
Introduction 
 
     Diffuse gliomas are among the most lethal forms of cancer, yet the etiology and pathogenesis 
of this condition is not well understood. A significant barrier to optimal treatment for gliomas is 
a lack of clarity regarding the anatomical origins and migration patterns of the tumors. In 
contrast to early ideas that gliomas originate from mature glial cells in the same locations where 
they are observed, current theories imply that tumors originate from neurogenic niches in the 
subventricular zone (SVZ), from which they then migrate to populate distributed brain areas 
(Jiang and Uhrbom, 2012; Lee et al., 2018; Sanai et al., 2005). This idea is supported by genomic 
evidence from patients (Lee et al., 2018) as well as the observation of significantly elevated 
glioma frequency surrounding neurogenic niches (Mandal et al., 2020). In parallel, other research 
has indicated that glioma stem cells travel along previously healthy brain structures, including 
blood vessels and white matter tracts, suggesting that large-scale connectivity networks may help 
describe glioma migration (Cuddapah et al., 2014; Gillespie and Monje, 2018). However, the 
pathways by which gliomas could progress from subventricular origins to their final destinations 
remain speculative. 
 
     The natural progression of other neurological diseases, such as frontotemporal dementias, 
Alzheimer’s disease, and Parkinson’s disease, has been most reliably investigated using 
longitudinal brain imaging of large cohorts of patients (Brown et al., 2019; Vogel et al., 2020; 
Yau et al., 2018). This approach is difficult to apply to brain tumors, which are typically treated 
only weeks after initial diagnosis. An alternative method for probing brain development and 
degeneration from cross-sectional data is the use of structural covariance analysis (Alexander-
Bloch et al., 2013a). Structural covariance networks identify correlations in brain size (measured 
by cortical thickness or volume) between brain regions across large cohorts of healthy or 
diseased individuals (Mechelli et al., 2005). These interregional relationships reflect a range of 
shared biological influences, including coordinated development, connectivity, and genetic 
similarity (Alexander-Bloch et al., 2013b; Romero-Garcia et al., 2018; Yee et al., 2018).  
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     Analogously, interregional correlations in brain atrophy within defined neurological 
syndromes have been demonstrated to reflect patterns of coordinated degeneration and network 
spread of pathology (Seeley et al., 2009). Pairs of brain regions which are both consistently 
affected by a neuropathology could have this relationship for a number of informative reasons, 
such as a shared biological vulnerability, or a common pathway along which the disease spreads 
(Vanasse et al., 2021). The latter possibility is supported by studies of Parkinson’s and 
Alzheimer’s disease, which have unveiled networks of brain atrophy and tau accumulation that 
follow intrinsic functional connectivity networks (Ossenkoppele et al., 2019; Zeighami et al., 
2015). The notion that patterns of collateral damage can reveal insights into the etiology of brain 
disease is also supported by the phenomenon of lesion covariance in stroke, which stems from 
the vascular origins of the injury (Mah et al., 2014; Zhao et al., 2020). An analysis of the 
networks of brain regions which tend to be co-affected by glioma tumors, therefore, may reveal 
insights into the possible ventricular origins of these deadly brain cancers, and point to pathways 
by which the tumors spread throughout the brain. 
 
     In this study, we applied independent component analysis (ICA) to tumor masks of patients 
with low- and high-grade glioma to identify networks of brain regions co-lesioned by gliomas 
(i.e. lesion covariance networks (LCNs)). Next, we examined associations between these 
networks and clinically relevant patient information, such as tumor grade, molecular genetics, 
transcriptomic signature, and overall survival. Finally, we related the LCNs to large-scale 
functional and structural connectivity networks to identify the potential pathways that underlie 
tumor development. We hypothesized that LCNs would coincide with the three horns of the 
lateral ventricles, and that the connectivity patterns of periventricular brain regions would 
correspond with the observed cortical locations of the tumors. 
 
Results 
 
Lesion covariance networks implicate horns of the lateral ventricles 
 
     We applied ICA to spatially-aligned masks of tumor volume derived from a validated 
imaging processing pipeline applied to presurgical brain MRIs of 242 high-grade and low-grade 
glioma patients (Bakas et al., 2017). ICA identified three independent components with scores 
across patients and voxels (Figure 1A). Given the similarity of the methodological approach to 
functional connectivity and structural covariance analyses, we decided to refer to the resulting 
independent components as lesion covariance networks.  
 
ICA revealed three LCNs which extended into the frontal, parietal, and temporal lobes 
respectively (Figure 1B). Notably, each LCN overlapped with a distinct horn of the lateral 
ventricles, with LCN1 covering the anterior horn, LCN2 covering the posterior horn, and LCN3 
covering the inferior horn. The same LCN locations were replicated in an independent set of 168 
glioma patients (Supplementary Figure 1). 
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Figure 1. Lesion covariance networks of glioma localization revealed by independent component 
analysis. (A) Overview of the study. Lesion masks from 242 glioma patients were mapped to one 
hemisphere then concatenated to form a voxel-wise matrix. This matrix was decomposed via ICA into i) 
IC scores, which were related to clinical variables, and ii) spatial maps (i.e. LCNs), which were cross-
correlated with structural and functional connectivity networks. (B) LCNs are displayed, thresholded to 
include positive voxels with over 50% likelihood of association with the independent component. 
Abbreviations: LCN = lesion covariance network; ICA = independent component analysis; IC = 
independent component; GBM = glioblastoma; LGG = low-grade glioma. 
 
Clinical outcomes associated with LCNs 

     To determine how the LCNs related to important clinical variables such as cellular pathology 
and molecular genetics derived from the same patient sample, we first assigned each patient to 
one of three groups based on the LCN with which their tumor was most associated. Chi-square 
tests indicated significant associations between LCN group and tumor grade (χ2(2) = 11.1; p = 
0.0038), as well as between LCN group and IDH/1p19q-status (χ2(2) =6.7; p = 0.03) (Figure 2A). 
Post-hoc tests with Bonferroni correction indicated that LCN1 was significantly overrepresented 
in low-grade gliomas (LGG; Pearson residuals = 3.29; p = 0.0059) and IDH-mutated/1p19q-
codeleted tumors (residuals = 5.65; p < 1e-6), but underrepresented in glioblastoma (GBM; 
residuals = -3.29; p = 0.0059) and IDH-wildtype tumors (residuals = -4.05; p = 0.00046). LCN2 
was positively associated with IDH-wildtype tumors (residuals = 2.84; p = 0.04), whereas LCN3 
was negatively associated with IDH-mutated/1p19q codeleted tumors (residuals = -3.39; p = 
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0.006). These results implicate LCN1 as a potential radiological signature of IDH-
mutated/1p19q-codeleted status, which is pathognomonic of oligodendroglioma. 

Figure 2. Clinical and genomic correlates of lesion covariance networks. (A) Mosaic plots represent 
the proportion of gliomas within each LCN associated with clinical variables, including tumor grade and 
molecular subtype. (B) Kaplan-Meier curves show overall survival outcomes stratified by LCN group. 
(C) Gene ontology networks associated with differentially-expressed genes for each LCN. Enriched gene 
sets are plotted as nodes, with gene set size proportional to node size, and the similarities between gene 
sets are represented as edges. Network components with the three highest numbers of nodes are 
displayed. 

     Next, we related the LCNs to overall survival, first by visualizing Kaplan-Meier curves 
stratified by LCN group (Figure 2B). Patients in the LCN1 group had notably prolonged survival 
compared to patients in the other groups. This association was confirmed statistically and shown 
to be independent of potential confounding demographic variables through a Cox Proportional 
Hazards regression model (Table 1). Interestingly, the effect of LCN1 was no longer significant 
after clinical variables (i.e. tumor grade and IDH/1p19q-status) were included in the model, 
suggesting that the association between LCN group and tumor molecular genetics drove the 
differences in survival outcome.  

Demographic covariates 
only 

OS (n= 232, 
deaths = 145) 

Demographic and 
clinical covariates 

OS (n= 206, 
deaths = 121) 

 HR SE(HR) P HR SE(HR) P 

LCN group 

LCN1  0.58 0.23 0.02 0.82 0.27 0.45 

LCN2 1.04 0.19 0.82 1.06 0.21 0.26 
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LCN3 1 (ref) - - 1 (ref) - - 

Demographics       

Gender is male 1.12 0.17 0.67 0.89 0.20 0.56 

Race is white 0.83 0.29 0.53 1.03 0.34 0.94 

Age at diagnosis 
is above median 

3.02 0.18 1e-9 1.78 0.21 0.0055 

Clinical variables 

GBM - - - 1 (ref) - - 

LGG - - - 0.56 0.31 0.064 

IDH-wt - - - 1 (ref) - - 

IDH-mut/1p19q-
codel 

- - - 0.23 0.54 0.007 

IDH-mut/1p19q-
non-codel 

- - - 0.28 0.38 0.00082 

Table 1. Cox Proportional Hazards models relating LCN group and demographic/clinical 
covariates with overall survival. Abbreviations: OS=overall survival; HR=hazards ratio; 
SE=standard error.  

LCN groups diverge in their expression of neural versus inflammatory genes 

     In a subset of patients for whom bulk RNA-sequencing data were available, we performed 
differential expression analyses to identify genes upregulated among the primary tumors of each 
LCN group relative to the other groups. Gene set enrichment analyses were performed on the 
resulting ranked gene lists, and the enriched ontologies were visualized as a network (Figure 2C). 
LCN1 was positively enriched with a large number of gene sets associated with neurological 
processes, such as synaptic signaling and cognition, as well as ontologies involving synapse 
formation and vesicular transport. The largest network components, comprised of gene sets 
enriched in LCN2 and LCN3, related respectively to T cell proliferation and immunological 
signaling. Given previous reports of synaptic enrichment among low-grade tumors and 
oligodendrogliomas (Ceccarelli et al., 2016; Venkatesh et al., 2019), we performed a follow-up 
gene set enrichment analysis for LCN1 where tumor grade and IDH/1p19q status were included 
as covariates, and found that LCN1 remained enriched for synaptic signaling (Supplementary 
Figure 2). 

LCNs relate to large-scale connectivity networks 
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     Next, we assessed anatomical correspondence between LCNs and large-scale connectivity 
networks, by correlating the three LCNs with 21 functional connectivity networks and 11 white 
matter pathways derived from a large, healthy neuroimaging dataset (Miller et al., 2016). LCN1 
significantly corresponded with four functional connectivity networks each with strong frontal 
components, including the cingulo-opercular, anterior salience, dorsal attention, and 
frontoparietal networks. LCN1 also corresponded to two major white matter pathways: the 
anterior thalamic radiation and the uncinate fasciculus. LCN2 corresponded with two white 
matter pathways and two functional networks, including the posterior default mode network, 
whereas LCN3 corresponded with the auditory network. Effect sizes and p-values for all 
connectivity networks that were statistically significant after correction for multiple comparisons 
are shown in Supplementary Table 3. The strongest correspondences between LCNs and large-
scale connectivity networks are displayed in Figure 3A, with other significant associations are 
shown in Supplementary Figure 3.  

 

Figure 3. Lesion covariance networks of glioma relate to periventricular brain connectivity. (A) 
Structural and functional connectivity networks with the strongest correlation with each LCN. 
Significance of correspondence was assessed by comparison with spatial-autocorrelation-preserving 
surrogate LCN maps (Burt et al., 2020). LCNs are colored with the same scale as in Figure 1. Structural 
connectivity networks (where streamline density is represented by a winter color scale) and functional 
connectivity networks (where connectivity strength is represented by a hot color scale) are displayed on 
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the opposite hemisphere of the LCN for visualization in axial and coronal slices. See Supplementary 
Figure 3 for other significantly associated connectivity networks. (B) Subcortical voxels are colored based 
on the significance of the association between their seed-based functional connectivity map and the 
cortical values of each LCN map (voxel-wise P < .001; cluster-level P < .05). The LCNs are also shown 
with the same color scale as in Figure 1. (C) Scatterplots illustrate subcortical structures with both high 
functional correspondence and involvement with each LCN, found in the upper right quadrant of each 
plot. Abbreviations: ATR = anterior thalamic radiation, pDMN = posterior default mode network, UNC = 
uncinate fasciculus.       

Cortical LCN locations match functional connectivity with periventricular brain areas 

     Finally, to identify subcortical structures that may drive the correspondence between 
connectivity and cortical lesion location, we performed seed-based functional connectivity 
analyses with all subcortical gray matter voxels and correlated the resulting maps with each 
LCN. We identified subcortical, periventricular clusters of voxels with cortical functional 
connectivity patterns that significantly matched each LCN (voxel-wise P < 0.001, cluster-level P 
< 0.05; Figure 3B). To determine the particular structures driving the observed relationships, we 
generated a scatterplot to highlight subcortical structures with both high functional 
correspondence and involvement with the three LCNs (Figure 3C), implicating the caudate, 
thalamus, and amygdala respectively. 
 
Discussion 
 
     In this study, we demonstrated replicable patterns of glioma localization with clinical 
relevance and spatial correspondence with large-scale functional and structural connectivity 
networks. Our findings provide evidence for the subventricular origins of glioma, delineate an 
imaging signature linked to tumor genetics, and contribute to a growing literature on the 
bidirectional relationship between gliomas and their neural microenvironment. 
 
Subventricular origins of glioma 
 
     Contact with the lateral ventricles is a known prognostic factor for gliomas, predicting poorer 
overall survival (Chaichana et al., 2008; Jafri et al., 2013; Mistry et al., 2017a, 2017b) and tumor 
recurrence (Adeberg et al., 2014; Chen et al., 2015). These observations have motivated the 
popular notion that neurogenic niches of the SVZ act as a tumor reservoir, contributing to the 
therapeutic resistance of diffuse gliomas (Altmann et al., 2019). However, there remains a point 
of debate as to whether gliomas spread to the SVZ or if the tumor originates in this area. Our 
findings inform this debate by establishing: (1) that gliomas cluster around the horns of the 
lateral ventricles; and (2) that connectivity with periventricular regions corresponds significantly 
with cortical tumor locations. Our results are most consistent with a model where gliomas 
originate in any of the three horns of the lateral ventricles, then migrate along neural pathways to 
arrive at their cortical destinations. The results also suggest that for cases of glioma that appear 
from radiological imaging to spare the SVZ, the SVZ may nevertheless harbor oncogenic stem 
cells. This conclusion is consistent with a recent study that found cancer-driving mutations in 
radiologically tumor-free SVZ tissue in glioblastoma patients (Lee et al., 2018). 
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     While our statistical decomposition of glioma distribution captures the lesion locations 
common to the majority of these tumors, it is worth noting that there are gliomas which do not fit 
the patterns of any of the lesion covariance networks described in this study. For example, none 
of the LCNs substantially covered the supplementary or primary motor areas, where gliomas are 
sometimes observed. These tumors are often positioned directly above the central body of the 
lateral ventricles, so one could speculate that the gliomas originate there. Future work could 
decompose glioma distribution with a higher dimensionality in order to more comprehensively 
characterize glioma location patterns and identify their sources. 
 
A radiological signature for oligodendrogliomas 
 
     The accurate prediction of molecular genetic subtype from tumor imaging is a crucial goal of 
the burgeoning field of radiogenomics (Ellingson, 2015; Fathi Kazerooni et al., 2019) and a 
potentially transformative clinical tool to aid early and precise glioma diagnosis. Research in this 
area has illustrated important associations between tumor location and molecular genetic 
signatures, the most robust of these being a propensity for IDH-mutated gliomas to localize to 
the rostral end of lateral ventricles (Tejada Neyra et al., 2018; Wang et al., 2015). However, the 
previous studies in this area used voxel-based lesion symptom mapping, an approach that 
necessitates stringent multiple comparisons correction (Mirman et al., 2018), thereby reducing 
their power to detect localization differences between subtypes of IDH-mutated tumors. We 
limited the number of statistical comparisons involved in our study by first reducing the 
dimensionality of the lesion data. As a result, we were able to reveal a specific association 
between IDH-mutated/1p19q-codeleted status (pathognomonic of an oligodendroglioma tumor) 
and lesion location in frontal cortex. This result is consistent with reports from other, more 
qualitative neuroimaging studies investigating oligodendroglioma localization (Ellingson, 2015; 
Zlatescu et al., 2001).  
 
     Our findings also suggest that tumors with different molecular genetic signatures 
preferentially arise from different portions of the ventricular lining. A possible explanation for 
this result is that some gliomas may need a specific metabolic niche in order to thrive and 
develop into a symptomatic brain tumor. Consistent with this idea, some studies have proposed 
that high glutamate flux, and the restricted expression of hominoid-specific glutamate 
dehydrogenase enzymes in the prefrontal cortex, support the survival of IDH-mutant glioma cells 
in this region (Chen et al., 2014; Waitkus et al., 2018). Symbiotic relationships between cancer 
cells and the tumor microenvironment, often framed within the “seed and soil hypothesis”, have 
helped explain the metastatic patterns of other cancers and likely also bear relevance for glioma 
development. 
 
Network spread of glioma tumors 
 
     Migration of glioma tumors along pre-existing brain structures, including blood vessels and 
white matter tracts, has been acknowledged since the 1930s (Scherer, 1938, 1940). Over the last 
decade, it has been demonstrated that migration along these structures is not simply a stochastic 
process by which tumors follow paths of least resistance (Cuddapah et al., 2014). Rather, glioma 
cell migration is coordinated, in part, by signaling molecules secreted during neuronal firing, in a 
process of activity-dependent glial cell proliferation that is also a key mechanism in healthy brain 
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development (Gillespie and Monje, 2018; Venkatesh and Monje, 2017; Venkatesh et al., 2019). 
Our findings contribute to this literature by illustrating, in human patients, that glioma 
localization follows intrinsic functional and structural connectivity networks. This result is 
consistent with prior work from our group demonstrating that gliomas localize to functional 
brain hubs (Mandal et al., 2020). 

     Early studies of glioma development noted differences between tumor subtypes in their 
tendency to grow along pre-existing brain structures (Scherer, 1938). Therefore, some glioma 
subtypes may be expected to follow brain connectivity networks more closely than others. Our 
study found support for this idea in that LCN1 related to eight connectivity networks, while the 
other two LCNs related to just two and four connectivity networks, respectively. Moreover, in 
addition to possessing the strongest correspondence to brain connectivity, LCN1 was also 
enriched with genes involved in neuronal processes such as synaptic signaling and synapse 
formation. A recent study illustrated that glioma cells enriched with these types of genes 
integrate into neural circuits involved in lexical processing, and that this neural integration 
supports tumor proliferation (Krishna et al., 2021). The genomic signature of a glioma may thus 
be an important predictor of the tumor’s eventual migration patterns. 

     We interpret the correspondence between functional connectivity and glioma localization to 
reflect tumor migration along neuronal networks that support glioma cell proliferation. However, 
neuronal networks are known to relate intimately with the brain’s vasculature, which has been 
noted to be a critical spreading substrate for gliomas (Montana and Sontheimer, 2011). Neuronal 
and vascular networks converge on similar anatomy in adults (Bright et al., 2020), potentially 
reflecting the synergistic growth of neuronal and vascular processes during development 
(Quaegebeur et al., 2011; Wälchli et al., 2015). Therefore, one possible interpretation of our 
results is that the functional networks serve as a proxy for regions with common vascular inputs, 
and that gliomas invade these territories along the vasculature. This possibility is not mutually 
exclusive with our primary interpretation, given that neuronal activity could still be driving the 
migration along blood vessels. The exact physical substrate of activity-dependent glioma cell 
migration should be investigated further. 

Conclusion 

     A better understanding of the origins and migration patterns of gliomas could inform surgical 
and radiation treatments intended to comprehensively obliterate tumor cells. We demonstrated 
that gliomas cluster around distinct horns of the lateral ventricles, and that these tumor 
distribution patterns relate to diagnostic genomic signatures and large-scale connectivity 
networks. Our study connects two separate literatures on the subventricular origins of glioma and 
symbiotic glioma-neuron relationships to propose a model wherein periventricular brain 
connectivity guides glioma development. 

Methods 
 
Construction of lesion covariance networks 
 
     Neuroimaging data of patients with low- and high-grade glioma were accessed from The 
Cancer Imaging Archive (TCIA; www.cancerimagingarchive.net) (Bakas et al., 2017; Clark et 
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al., 2013). Pre-operative multimodal (i.e. T1w, T1w-Gd, T2w, T2w-FLAIR) scans were obtained 
from 135 patients with high-grade gliomas and 108 patients with low-grade gliomas at thirteen 
institutions with different imaging sequences and protocols. These scans were skull-stripped, co-
registered, and resampled to 1mm3 voxel resolution before being entered into GLISTRboost 
(Bakas et al., 2016), a top-ranked tumor segmentation algorithm, which classified voxels into 
four classes: contrast-enhancing tumor, necrotic non-enhancing core, peritumoral edema, and 
normal brain tissue. Labels were then manually corrected by board-certified neuroradiologists. 
To limit our study to supratentorial lesions, we removed one subject with a posterior fossa tumor. 
All patients were diagnosed with a diffuse glioma of grade II or higher. Demographic 
information of the patient sample is included in Supplementary Table 1. 
      
     T1-weighted images from each patient were nonlinearly warped to the Montreal Neurological 
Institute (MNI) 152 template using Advanced Normalization Tools (ANTS) software, with cost-
function masking of abnormal brain tissue. Registered masks corresponding to contrast-
enhancing tumor and the non-enhancing core were taken to represent, and henceforth will be 
referred to as, the tumor mask. To reduce the dimensionality of the data, each tumor mask in the 
right hemisphere was flipped to the left hemisphere, such that each mask was aligned to the same 
cerebral hemisphere. 
      
     Tumor masks from the 242 subjects were combined into one 4D data structure and then 
entered into Melodic Independent Component Analysis (ICA) in FSL (Jenkinson et al., 2012; 
Smith et al., 2004). ICA is a source separation algorithm that decomposes a dataset into a fixed 
number of statistically independent components (ICs). Given our hypothesis that tumors would 
stem from the anterior, posterior, and inferior horns of the lateral ventricles, we selected a 
dimensionality of three. The output of ICA included three brain maps of Z statistics indicating 
the likelihood of each voxel belonging to the corresponding IC, as well as three vectors 
indicating a score for each patient representing their tumor’s spatial association with each IC. 
Probabilistic maps for each lesion covariance network were generated using a mixture modeling 
approach (Beckmann and Smith, 2004), and were used to threshold each IC map at 0.5, 
excluding voxels with a higher likelihood of belonging to a background noise class than to the 
IC. 
 
Replication in an independent sample 
 
     To determine whether the lesion covariance networks identified in the TCIA dataset could be 
replicated, we performed ICA on images from the Brain Tumor Segmentation (BraTS) 2019 
dataset (Bakas et al., 2017, 2018; Menze et al., 2015). This dataset includes manually segmented 
images from 335 low- and high-grade glioma patients, pre-processed in the same way as the 
TCIA dataset described above. We removed patients who overlapped between the two datasets, 
resulting in 168 subjects. The resulting spatial maps from ICA with three dimensions were cross-
correlated with the LCNs from the TCIA dataset, and are displayed in Supplementary Figure 2.  
 
Relating LCNs to clinical variables 
 
     To determine how the LCNs related to clinically relevant information from the same cohort – 
including tumor grade, molecular genetics, and overall survival – we first assigned each patient 
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to one of three groups based on the LCN for which their tumor had the highest IC score (i.e. the 
LCN with which their tumor was most associated). Then, we used chi-square tests to assess the 
association between these location-based groups and clinical variables such as tumor grade 
(GBM vs LGG) and molecular genetic subtype (IDH-wildtype vs IDH-mutant/1p19q codeletion 
vs IDH-mutant/1p19q non-codeletion). To compare overall survival outcomes between 
individuals in each LCN group, we plotted a Kaplan-Meier curve. Finally, we performed Cox-
Proportional Hazards regressions to quantitatively assess the relationship between LCN group 
and overall survival. Two models were considered: the first model included LCN group (with 
LCN3 as the reference level) and demographic covariates (gender and age, binned by the 
median); the second model included LCN group, demographic covariates, and clinical variables 
(tumor grade and molecular genetic subtype). Clinical and demographic data were accessed from 
The Cancer Genome Atlas (TCGA) (McLendon et al., 2008; Silva et al., 2016; 2015). For each 
analysis, patients with missing data were excluded, resulting in different sample sizes for 
different tests. 
 
Bulk transcriptomic analyses 
 
     To determine if tumors corresponding to different LCNs possessed distinct transcriptomic 
signatures, we performed bulk RNA sequencing analyses to relate LCN groups to differential 
gene expression. Following a previously reported workflow (Silva et al., 2016), we downloaded 
516 LGG and 155 GBM primary solid tumor samples, 106 and 29 of which could be matched to 
MRI scans we had for the TCIA-LGG and TCIA-GBM datasets respectively. To remove 
potential outliers, we performed an Array-Array intensity correlation, which resulted in a square 
matrix denoting the Pearson correlation across genes between each TCGA sample (GBM and 
LGG). No samples were removed after applying a previously established correlation threshold 
(r>0.6).  Next, we normalized our RNA-seq data using the EDAseq package, implementing: (1) 
within-lane normalization to adjust for the effects of GC-content on read counts; (2) loess robust 
local regression, global scaling, and full quantile normalization (Risso et al., 2011); and (3) 
between-lane normalization to adjust for differences between lanes, such as sequencing depth. 
Finally, we filtered out mRNA transcripts with a quantile mean threshold of 0.25 across all 
samples, reducing the number of genes considered from 19866 to 14899. 
 
     Using the edgeR package (Robinson et al., 2009), we ran three differential expression 
analyses comparing between patients included and not included in each LCN group (e.g. LCN1 
vs LCN2 and LCN3, etc.). Negative binomial generalized linear models were fit with tagwise 
dispersion estimated. For each differential expression analysis, genes were ranked by their log2 
fold-changes, then entered into Gene Set Enrichment Analysis (GSEA) to find enriched gene sets 
associated with each LCN (Subramanian et al., 2005). Using Cytoscape and Enrichment Map 
(Merico et al., 2010; Shannon et al., 2003), GSEA results were displayed as an annotation 
module network, where enriched gene sets are plotted as nodes and the similarity between gene 
sets is represented as edges. Because gene sets downregulated for one LCN tended to be 
upregulated in another, we only plotted positively enriched gene ontologies. 
 
Connectivity analyses 
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     We hypothesized that the LCNs would relate to large-scale functional and connectivity 
networks involved in guiding the development of the tumors. We accessed 21 functional 
connectivity and 12 structural connectivity networks derived from UK BioBank neuroimaging 
data of over 4000 neurologically healthy individuals (Miller et al., 2016). Functional 
connectivity networks were identified from a 25-dimensional ICA decomposition of resting-state 
fMRI data. Four non-neuronally driven components were excluded. Structural networks were 
identified using XTract, an automated tractography protocol to identify major white matter 
pathways with standardized seed, exclusion, and termination masks (Warrington et al., 2020). 
We considered four association fibers (inferior fronto-occipital fasciculus, uncinate fasciculus, 
inferior and superior longitudinal fasciculus), five projection fibers (acoustic radiation, 
corticospinal tract, anterior, posterior, and superior thalamic radiations), and two limbic fibers 
(cingulum, main part and hippocampal part). Each of these tracts have left and right counterparts; 
therefore, streamline density maps from the left and right tracts were aligned to the same 
hemisphere and averaged. Functional connectivity networks, which also present bilaterally, were 
similarly mapped to one hemisphere and averaged. 
 
     The correspondence between LCNs and structural connectivity networks was quantified by 
calculating a voxel-wise Spearman’s rank correlation between maps, whereas LCN and 
functional connectivity correspondence was assessed using Pearson’s correlations. The statistical 
significance of brain map correspondence was determined by comparing the empirical 
correlation coefficient with coefficients derived from correlations with 10,000 spatial-
autocorrelation-preserving surrogate LCN maps generated by BrainSMASH (Burt et al., 2020). 
This approach addresses the important confound of spatial autocorrelation to allow for an 
accurate P-value estimation. For the comparisons between LCNs and functional connectivity, we 
correlated values corresponding to the cortical and subcortical gray matter voxels of each brain 
map. Comparisons between LCNs and structural connectivity involved voxels with greater than 
1% of the total number of streamlines identified by the XTract protocol.  
 
     Finally, we systematically performed seed-based functional connectivity (SBFC) analyses 
with each subcortical gray matter voxel and correlated the resulting maps with each LCN to 
identify structures that drive the correspondence between connectivity and lesion covariance. For 
each voxel in the Harvard-Oxford Subcortical Atlas, we calculated functional connectivity 
between the subcortical voxel and each cortical gray matter voxel, using the principal 
components of the UK BioBank Dense Functional Connectome (Smith et al., 2014; 
https://www.fmrib.ox.ac.uk/ukbiobank/). The resulting cortical SBFC maps were then 
normalized using the Fisher Z-transformation, and smoothed at 5 mm full-width half maximum. 
For each LCN, P-values were assigned to each subcortical voxel based on the significance of the 
relationship between its SBFC map and the LCN map using BrainSMASH. The three resulting 
subcortical P-maps were then thresholded to control for multiple comparisons (voxel-wise P 
value < 0.001; cluster-level family-wise error corrected P value < 0.05).  
 
Demographic variables  

Age (years) 52.9 (15.2) 
Gender (M/F/NA) 133/107/2 

Race (white/non-white/NA) 210/23/9 
Clinical variables  
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Grade (GBM/LGG) 135/107 
Molecular subtype (IDH-wt/IDH-mut-

1p19q-codel/IDH-mut-1p19q-noncodel/NA) 
124/27/61/30 

LCN groups  
LCN groups (LCN1/LCN2/LCN3) 69/87/86 

Supplementary Table 1. Demographic, clinical, and imaging variables for 242 patients with 
glioma from The Cancer Imaging Archive. When applicable, the standard deviation is in 
parentheses. Abbreviations: M=male; F=female; NA=not applicable; GBM=glioblastoma; 
LGG=low-grade glioma; IDH=isocitrate dehydrogenase; LCN=lesion covariance network.   
 
 
 
 
Functional networks 
LCN Functional connectivity 

networks 
R values P (uncorrected) P (Bonferroni-

adjusted) 
1 Dorsal attention (IC 7) 0.30 <0.0001 <0.0063 
1 Cingulo-opercular (IC 15) 0.44 <0.0001 <0.0063 
1 Salience (IC 17) 0.32 <0.0001 <0.0063 
1 Fronto-parietal (IC 22) 0.24 0.0003 0.0189 
2 Posterior default mode (IC 21) 0.37 <0.0001 <0.0063 
3 Auditory (IC 18) 0.28 0.0002 <0.0063 
Structural networks 
LCN Structural connectivity 

networks 
ρ values P (uncorrected) P (Bonferroni-

adjusted) 
1 Anterior thalamic radiation 0.57 <0.0001 <0.0033 
1 Cingulum (main part) 0.09 <0.0001 <0.0033 
1 Inferior fronto-occipital 0.31 0.0003 0.0099 
1 Uncinate fasciculus 0.49 <0.0001 <0.0033 
2 Posterior thalamic radiation 0.32 0.0001 0.0033 
3 Acoustic radiation 0.25 0.0001 0.0033 
3 Cingulum (hippocampus) 0.21 <0.0001 <0.0033 
3 Uncinate fasciculus 0.36 <0.0001 <0.0033 

Supplementary Table 2. Functional and structural connectivity networks with significant 
correspondence to lesion covariance networks.  
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Supplementary Figure 1. Replication of lesion covariance networks in an independent 
cohort. (A) LCNs derived from a cohort of 168 high- and low-grade glioma patients displayed 
on the same slices shown in Figure 1. (B) Correlation matrix illustrating the correspondence 
between LCNs in the TCIA and BraTS cohorts. Abbreviations: TCIA = The Cancer Imaging 
Archive; BraTS = Brain Tumor Segmentation Challenge.  
 

Supplementary Figure 2. Gene ontology networks associated with LCN1 after controlling 
for tumor grade and molecular subtype.  
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Supplementary Figure 3. Functional and structural connectivity networks significantly 
associated with lesion covariance networks.  
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