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Abstract 1 

Background 2 

We present a deep learning (DL)-based automated whole lung and COVID-19 pneumonia infectious 3 

lesions (COLI-Net) detection and segmentation from chest CT images. 4 

Methods  5 

We prepared 2358 ( 347’259, 2D slices) and 180 (17341, 2D slices) volumetric CT images along with 6 

their corresponding manual segmentation of lungs and lesions, respectively, in the framework of a 7 

multi-center/multi-scanner study. All images were cropped, resized and the intensity values clipped 8 

and normalized. A residual network (ResNet) with non-square Dice loss function built upon 9 

TensorFlow was employed. The accuracy of lung and COVID-19 lesions segmentation was evaluated 10 

on an external RT-PCR positive COVID-19 dataset (7’333, 2D slices) collected at five different 11 

centers. To evaluate the segmentation performance, we calculated different quantitative metrics, 12 

including radiomic features. 13 

Results 14 

The mean Dice coefficients were 0.98±0.011 (95% CI, 0.98-0.99) and 0.91±0.038 (95% CI, 0.90-0.91) 15 

for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 16 

0.03±0.84% (95% CI, -0.12 – 0.18) and -0.18±3.4% (95% CI, -0.8 - 0.44) for the lung and lesions, 17 

respectively. The relative volume difference for lung and lesions were 0.38±1.2% (95% CI, 0.16-0.59) 18 

and 0.81±6.6% (95% CI, -0.39-2), respectively. Most radiomic features had a mean relative error less 19 

than 5% with the highest mean relative error achieved for the lung for the Range first-order feature (-20 

6.95%) and least axis length shape feature (8.68%) for lesions. 21 

Conclusion 22 

We set out to develop an automated deep learning-guided three-dimensional whole lung and infected 23 

regions segmentation in COVID-19 patients in order to develop fast, consistent, robust and human 24 

error immune framework for lung and pneumonia lesion detection and quantification. 25 

Keywords: X-ray CT, COVID-19, pneumonia, deep learning, segmentation. 26 

 27 
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I. Introduction 1 

The recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease 2 

(COVID-19) is posing great health concerns globally (1, 2). The COVID-19 pandemic has resulted in 3 

loss of lives, health and economic issues (3). Although, a large number of trials have been conducted 4 

to produce vaccines and/or treat COVID-19, a specific vaccine or therapy is still lacking (4, 5). For the 5 

diagnosis of COVID-19, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is a high 6 

sensitive molecular test, but bears inherently a number of limitations (6, 7). Furthermore, previous 7 

studies have indicated that thoracic Computed Tomography (CT) is a fast and highly sensitive 8 

approach for COVID-19 detection and management (8, 9). In this regard, dedicated ultra low-dose CT 9 

scanning protocols were recently devised (10). 10 

In connection with the use of CT in COVID-19 management, a wide range of qualitative and 11 

quantitative studies have been carried out for diagnostic, prognostic and longitudinal follow up of 12 

patients (11-14). In these studies, whole lungs or infectious lesions were analyzed and several patterns 13 

and features were found to have high diagnostic and prognostic value (13, 15-19). However, accurate 14 

segmentation of lungs and infectious pneumonia lesions remains challenging (20). Hence, 15 

segmentation is the main issue impacting the outcome of both qualitative and quantitative studies (12, 16 

20, 21). Although several segmentation approaches including manual delineation, semi-automated (22) 17 

and fully automated (21) techniques have been applied to CT images for COVID-19 management, 18 

they are still facing serious challenges to produce robust and dependable outcomes.  19 

In medical image segmentation, particularly whole 3D volumes definition and big data analysis, 20 

manual delineation requires experienced trained radiologists, is time consuming, labor-intensive, and 21 

suffers from inter- and intra-observer variability concerns (23, 24). Whole lung segmentation is a 22 

pivotal step for further analysis, including extraction of the percentage of infection, well aerated 23 

portion of the lung, and enabling radiomics and deep learning analysis of COVID-19 patients (15, 18). 24 

Conventional algorithms, including rule-based and atlas-based, performed relatively well on normal 25 

and mild disease chest CT, but might fail in COVID-19 patients lung segmentation because of 26 

different stage of disease with different levels of severity (20). Furthermore, developing a fully 27 

automatic tool for lung and pneumonia COVID-19 lesions is highly desired owing to rapid changes in 28 

appearance and manifestation at different stages of the disease (13, 20).  29 

Artificial intelligence (AI) algorithms, particularly its two major subcategories, machine learning 30 

(ML) and deep learning (DL), have been widely used for medical image analysis (25-30) and more 31 

recently in the segmentation of lung and pneumonia infectious lesions from chest CT images of 32 

COVID-19 patients (16). These studies reported that AI improved the accuracy of lesion 33 

detection/segmentation and reduced the bias associated with conventional approaches. In a study by 34 

Zheng et al. (31), a weakly-supervised deep learning algorithm was applied to chest CT images for 35 

automatic COVID-19 detection. Fan et al. (32) presented a COVID-19 lung infection segmentation 36 
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deep network (Inf-Net) based on semi-supervised learning. Furthermore, a number of deep learning 1 

algorithms, namely UNet, UNet++, V-Net, Attention-UNet, Gated-UNet and Dense-UNet were used 2 

for COVID-19 lesion detection and segmentation from chest CT images (33, 34). 3 

CT images are commonly acquired on various scanner models using different imaging protocols, 4 

and as such, the resulting datasets are heterogeneous, which might lead to inaccuracy in the developed 5 

models. Training a robust and generalizable deep learning model requires a large clean annotated 6 

dataset (35). Owing to the relatively recent outbreak of COVID-19 pandemic, producing a large 7 

labeled COVID-19 image dataset is impractical. Transfer learning (TL) has received attention to 8 

address the lack of large datasets for the implementation of machine/deep learning-based algorithms 9 

(36, 37). Various TL-based strategies were used for transferring knowledge from different domains, 10 

including natural images to medical images to develop more robust and generalizable models (37). 11 

In the present study, we developed a DL-based automated detection and segmentation of lung and 12 

COVID-19 pneumonia infectious lesions (COLI-Net) from chest CT images. In this work, large lung 13 

and COVID-19 lesions datasets and TL used to train a residual network (ResNet) for lung and 14 

pneumonia infectious lesions segmentation. 15 

 16 
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II. Material and Methods 1 

Clinical studies 2 

For lung and COVID-19 lesions segmentation, we prepared 2358 (347259, 2D slices) and 180 (17341, 3 

2D slices) multi-centric and multi-vendor volumetric CT images with lung and COVID-19 lesion 4 

segmentations. 5 

 6 

Lung datasets 7 

For lung segmentation training, we used 2298 chest CT images (328205, 2D slices) with different 8 

pathologies from different centers, including 800 normal subjects without any lung abnormalities from 9 

Iran Center#1 ( 81347, 2D slices), 400 images of non-small cell lung carcinoma patients from Cancer 10 

Imaging Archive (TCIA) (38-40) (48568, 2D slices), 200 non-COVID-19 pneumonia (49465, 2D 11 

slices) and 898 (148825, 2D slices) RT-PCR positive COVID-19 patients from Iran Center#2. All 12 

images were manually segmented by experienced radiologists to delineate the lungs. 13 

 14 

COVID-19 lesions datasets 15 

For COVID-19 lesions segmentation training, we used 120 (9557, 2D slices) RT-PCR positive image 16 

datasets, including 90 (8338, 2D slices) datasets from 3 different centers in Iran (Centers#1, #2, #3) 17 

where the infectious lesions were manually segmented by experienced radiologists, in addition to 30 18 

(1250, 2D slices) CT images from Russia (41). 19 

Image preprocessing 20 

Prior to network training, all images were cropped and resized to 296×216 matrix size. Image 21 

intensities were clipped between -1024 and 300 Hounsfield units and then normalized to a range [0 - 22 

1.3]. 23 

Residual neural network 24 

The residual network (ResNet) proposed by Li et al. (42, 43) built upon TensorFlow was used for lung 25 

and COVID-19 lesions segmentation. The ResNet is composed of 20 convolutional layers where 26 

different dilation factors were used for different levels of feature extraction (zero dilatation factor for 27 

low-level, two dilatation factors for medium-level, and four dilatation factors for high-level). Every 28 

two layers were linked together with residual connections (Figure 1). Non-square Dice was used as 29 

loss function. provides descriptive detail of ResNet. 30 

 31 

 32 
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 1 

Figure 1. Architecture of the deep residual neural network (ResNet) along with details of the 2 
associated layers. Conv, convolutional kernel; LReLu, leaky rectified linear unit; SoftMax, Softmax 3 
function; Residual, residual connection. 4 

Training and evaluation 5 

Lung and COVID-19 lesions training was performed on 2D slices owing to the wide variability in 6 

slice thicknesses across the datasets from the different centers. For lung segmentation training, we 7 

used 2178 3D CT images (347259, 2D slices). For COVID-19 lesions segmentation, we used 8 

pretrained lung segmentation network as initial weights followed by fine-tuning for  lesion 9 

segmentation of 120 3D CT images (9557, 2D slices). Body fine-tuning approaches were used for 10 

transfer learning where all pre-trained weights of lung segmentation were used as initial weights for 11 

lesion segmentation. The assessment of the quality of segmentations was performed independently on 12 

RT-PCR positive COVID-19 datasets from different centers, including 20 images (2214, 2D slices) 13 

from Center#1 (Iran1), 10 images (2552, 2D slices) from Center#2 (Iran2), 20 images (1250, 2D 14 

slices) from center#3 (Russia) (41), 10 images (939, 2D slices) from Center#4 (China) (44, 45) and 10 15 

images (829, 2D slices) from center#5 (Italy1) (45). Overall, the evaluation was preformed on 7333 2D 16 

slices from different centers. 17 

 18 

                                                           
1
 http://medicalsegmentation.com/covid19/  

https://www.medseg.ai/  
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Evaluation 1 

To evaluate the performance of image segmentation, we calculated Dice similarity coefficient, Jaccard 2 

index, false negative, false positive, mean Hausdorff distance, and mean surface distance. In addition, 3 

different volume indices were exploited to quantify the portion of infection, including relative volume 4 

difference (%), relative volume difference of lesion/lung relative volume (%), absolute relative volume 5 

difference (%), absolute relative volume difference of lesion/lung relative volume (%). Hounsfield unit 6 

(mean) relative difference (%), and Hounsfield unit (mean) absolute relative difference (%) were 7 

calculated for lungs and COVID-19 lesions from different segmentations of CT images. Further details 8 

about the evaluated parameters are provided in the Supplemental Material. In addition, we evaluated 9 

the impact of the segmentation on 17 first-order and 10 shape radiomic features in both lungs and 10 

COVID-19 lesions. The list of radiomic features are presented in Supplemental Table 1. 11 

 12 
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Results 1 

Figures 2 and 3 compares visualy in 2D and 3D views for different external validation sets of lungs 2 

and lesions delineated manually by experienced radiologists and automatically by the deep learning 3 

model. Additional results  from the external validation sets are provided in Supplemental Figures 1-13 4 

(2D views) and 14-17 (3D views). Overall, there is good agreement between manual and predicted 5 

lung and infectious lesions segmentation in the different datasets. Despite the variability of the 6 

subjects among the different centers, COLI-Net performed consistently well in multi-centric and 7 

multi-scanner setting. What stands out from these results is that COLI-Net can detect and segment 8 

infectious regions (within lesion segmentation) while excluding arteries and tracheae in lung 9 

segmentation.  10 

 11 

Figure 2. Representative manual and predicted segmentation (2D views) of lungs and COVID-19 12 

lesions for 5 different cases from different datasets. 13 

 14 

 15 
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 1 

Figure 3. Representative manual and predicted segmentation (3D views) of lungs and COVID-19 2 

lesions for 3 different cases from different datasets. 3 

Table 1 summarizes segmentation quantification metrics for lungs and COVID-19 lesions. It can be 4 

seen that the mean Dice coefficients were 0.98±0.011 (95% CI, 0.98-0.99) and 0.91±0.038 (95% CI, 5 

0.90-0.91) for lung and lesions segmentation, respectively. The mean Jaccard index was 0.97±0.022 6 

(95% CI, 0.97-0.97) and 0.83±0.062 (95% CI, 0.82-0.84) for lung and COVID-19 lesions 7 

segmentation, respectively. Supplemental Tables 2-7 summarize lung and lesion segmentation 8 

quantification metrics for different external validation sets. 9 

Table 2 summarizes the impact of lung and lesions segmentations on mean Hounsfield unit and 10 

volume calculation. Mean relative HU differences (%) of 0.03±0.84 (95% CI, -0.12 – 0.18) and -0.18 11 

± 3.4 (95% CI, -0.8 - 0.44) were achieved for lungs and lesions, respectively. The relative volume 12 

difference for the lung was 0.38±1.2 (95% CI, 0.16-0.59) whereas it was 0.81±6.6 (95% CI, -0.39-2) 13 

for lesions. The results obtained from the mean Hounsfield unit and volume calculation for lung and 14 

infectious lesions for the different external validation sets are presented in Supplemental Tables 8-11. 15 
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 Table 1. Descriptive statistics of quantitative metrics for lung and COVID-19 lesions in the different 1 

datasets. 2 

 Metric Min Max Mean ± SD 95% CI 
Lung Dice 0.92 0.99 0.98 ± 0.011 0.98 - 0.99 

Jaccard 0.86 0.99 0.97 ± 0.022 0.97 - 0.97 
False Negative 0.003 0.086 0.013 ± 0.011 0.011 - 0.015 
False Positive 0.002 0.073 0.017 ± 0.014 0.014 - 0.019 

Average Hausdorff Distance 0.005 0.14 0.022 ± 0.026 0.018 - 0.027 
Mean Surface Distance 0.005 0.17 0.026 ± 0.028 0.021 - 0.031 

      
Lesions Dice 0.8 0.98 0.91 ± 0.038 0.9 - 0.91 

Jaccard 0.66 0.96 0.83 ± 0.062 0.82 - 0.84 
False Negative 0.015 0.23 0.086 ± 0.044 0.078 - 0.094 
False Positive 0.024 0.32 0.098 ± 0.055 0.088 - 0.11 

Average Hausdorff Distance 0.043 5.6 0.42 ± 0.73 0.29 - 0.55 
Mean Surface Distance 0.046 6.1 0.45 ± 0.79 0.31 - 0.59 

 3 

 4 
Table 2. Descriptive statistics of volume index for lung and COVID-19 lesions in the different 5 

datasets. 6 

 7 

 Metric Min Max Mean ± SD 95% CI 
Lung Relative Mean HU Diff (%) -4.2 3.9 0.03 ± 0.84 -0.12 – 0.18 

Absolute Relative Mean HU Diff (%) 0.006 4.2 0.52 ± 0.66 0.4 - 0.64 
Relative Volume Diff (%) -3.1 6.4 0.38 ± 1.2 0.16 - 0.59 

Absolute Relative Volume Diff (%) 0.004 6.4 0.89 ± 0.88 0.73 - 1 
      

Lesions Relative Mean HU Diff (%) -9.8 10 -0.18 ± 3.4 -0.8 - 0.44 

Absolute Relative Mean HU Diff (%) 0.026 10 2.4 ± 2.5 1.9 - 2.8 
Relative Volume Diff (%) -14 21 0.81 ± 6.6 -0.39 - 2 

Absolute Relative Volume Diff (%) 0.018 21 4.8 ± 4.6 4 - 5.6 
 8 

 9 

Figures 4 and 5 depict the Dice similarity index, Jaccard, mean Hounsfield unit, and volume 10 

difference box plots for lung and lesions segmentation, respectively. Supplemental Figures 18 and 19 11 

show box plots of Hounsfield unit absolute relative difference (%), absolute relative volume difference 12 

(%), false negative, false positive, average Hausdorff distance, and mean surface distance for lung and 13 

lesions. 14 

 15 
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 1 

Figure 4. Box plots comparing various quantitative imaging metrics for lung segmentation, including 2 
Dice coefficient, Jaccard index, Hounsfield units (mean) relative difference (%) and relative volume 3 
difference (%). 4 

 5 

Figure 5. Box plots comparing various quantitative imaging metrics for COVID-19 lesions 6 
segmentation, including Dice coefficient, Jaccard index, Hounsfield units (mean) relative difference 7 
(%) and relative volume difference (%). 8 
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Descriptive statistics of relative volume (lesion/lung) indices are presented in Table 3. A relative 1 

error of 0.22±6.3 (95% CI, -0.95-1.4) and absolute relative error of 4.7±4.2 (95% CI, 3.9-5.5) were 2 

achieved for relative volume (lesion/lung). Supplemental Tables 12 and 13 summarize the results 3 

obtained for the relative volume (lesion/lung) index for different external validation sets. Figure 6 4 

decpits boxplot of manual and predicted relative volume lesion/lung differences (%) and 5 

absolute/relative error of lesion/lung relative volumeerrors (%) for different external validation sets.  6 

 7 

Table 3. Descriptive statistics of relative volume index. 8 

Metric Min Max Mean ± SD 95% CI 
Manual segmentation relative volume 
(Lesion/Lung) 

0.001 0.82 0.13 ± 0.19 0.095 - 0.16 

Predicted segmentation relative volume 
(Lesion/Lung) 

0.001 0.84 0.13 ± 0.19 0.094 - 0.16 

RE Volume Diff Lesion/Lesion (%) -14 16 0.22 ± 6.3 -0.95 - 1.4 
ARE Volume Diff Lesion/Lesion (%) 0.004 16 4.7 ± 4.2 3.9 - 5.5 

 9 

 10 

Figure 6. Box plots comparing various quantitative imaging metrics for relative volume, including 11 
manual segmentation relative volume lesion/lung, predicted segmentation relative volume lesion/lung, 12 
relative error of lesion/lung relative volume (%) and absolute relative error of lesion/lung relative 13 
volume (%) . 14 
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Figure 7 presents heatmap of the mean relative error of first-order and histogram shape radiomic 1 

features in the lung and lesions for different validation sets. Most radiomic features exhibited a mean 2 

relative error less than 5% with the highest mean relative error for the lung being -6.95% for Range 3 

first-order feature and least axis length shape feature (8.68%) in lesions. The heatmap of the mean 4 

absolute relative error is depicted in Supplemental Figure 20.  5 

 6 

Figure 7. Mean relative error of different first-order and shape radiomic features for different datasets 7 

in lung and infection regions. 8 

 9 

 10 

 11 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.21255163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255163
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 
 

Discussion 1 

Chest CT imaging has emerged as a complementary tool for COVID-19 early diagnosis and 2 

longitudinal follow up (8). However, a number of challenges still need to be addressed for the accurate 3 

diagnosis of COVID-19 and its differentiation from other lung diseases, such as viral and bacterial 4 

pneumonia and other respiratory diseases (18). In this regard, several AI-based solutions exhibiting 5 

different levels of accuracy and robustness were proposed and evaluated (15, 18). 6 

Another challenging problem that arises in the domain of quantitative analysis of CT images in 7 

clinical practice is lung and pneumonia infectious lesions segmentation (20). At the outset, different 8 

complex manifestations (appearance, size, location, boundaries and contrast) of infectious lesions, 9 

including consolidation, reticulation, and Ground-Glass Opacity (GGO) at different stages of the 10 

disease (longitudinal changes in the same patients) have been observed (13). Furthermore, providing 11 

ground truth segmentation for infectious lesion segmentation is challenging owing to inter-/intra-12 

observer variability, noisy annotations, and the long processing time (20).  13 

Previously developed atlas (46), rule (47), and hybrid (atlas and rule) (48) based algorithms for 14 

lung segmentation have shown acceptable performance on normal lungs and in the presence of mild 15 

pathogens (low density), such as emphysema (49). However, they presented limited performance in 16 

severe conditions (high density), including pleural effusion, atelectasis, consolidation, fibrosis, and 17 

pneumonia (50). Recent developments in the field of machine learning have led to a renewed interest 18 

in automatic lung segmentation. However, most seminal works in this area used a limited training 19 

dataset, predominantly containing normal cases or focusing on one class of pathogeneses, which could 20 

impact generalizability for unseen/non-diagnoised test datasets (51). In the present study, we applied 21 

deep learning algorithms and transfer learning on CT images obtained from different imaging centers 22 

to detect and segment the whole lung and pneumonia infected regions in COVID-19 patients. 23 

A number of works attempted to develop automatic segmentation algorithms for lung and 24 

infectious lesions in COVID-19 CT images. Hofmanninger et al. (50) developed models for lung 25 

segmentation and reported a dice of 0.98 ± 0.01 for different pathological states (atelectasis, fibrosis, 26 

mass, pneumothorax, and trauma). They concluded that diversity in the training dataset is more 27 

important than deep learning algorithms. Müller et al. (52) implemented a 3D U-Net using data 28 

augmentation for generating image patches during training for lung and lesion segmentation on 20 29 

annotated CT volumes. They achieved Dice coefficients of 0.950 and 0.761 for lung and lesions, 30 

respectively. A modified 3D U-Net (feature variation and progressive atrous spatial pyramid pooling 31 

blocks) proposed by Yan et al. (33) was developed for lung and infectious lesion segmentation on 861 32 

patients, reporting a Dice similarity index of 0.987 for lung and 0.726 for lesions segmentation. 33 

Moreover, comparisons were performed with a fully dense Fully Convolutional Network (FCN) (lung: 34 

0.865, lesions: 0.659 ) (53), U-Net (lung: 0.987, lesions: 0.688 ) (54), V-Net (lung: 0.983, lesions: 35 

0.625 ) (55), and U-Net++ (lung: 0.986, lesions: 0.681) (56). The mean Dice for lung and lesions 36 
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segmentation for different external validation sets used in our work are 0.98±0.011 and 0.91±0.038, 1 

respectively. 2 

Chen et al. (57) used the residual attention U-Net for multi-class segmentation of CT images, 3 

achieving a Dice of 0.94 for infectious lesions segmentation. Zhou et al. (34) used a modified U-net 4 

network through spatial and channel attention mechanisms along with focal Tversky loss in the 5 

training process for improving small lesions segmentation. The results were evaluated on 427 slices 6 

achieving a Dice of 0.83. Elharrouss et al. (58) adopted an encoder-decoder for infectious lesions 7 

segmentation and used 20 clinical studies from the Italian Society of Medical and Interventional 8 

Radiology to report a Dice of 0.786. They compared the results with U-Net (Dice: 0.439 ) (59), 9 

Attention-UNet (Dice: 0.583) (60), Gated-UNet (Dice: 0.623) (61), Dense-UNet (Dice: 0.515) (62), U-10 

Net++ (Dice: 0.422) (56) and Inf-Net (Dice: 0.739) (32). Wang et al. (63) proposed a robust algorithm 11 

for COVID-19 infectious lesions segmentation from CT images (COPLE-Net) designed to learn from 12 

noisy labeled data. The algorithm relies on noise-robust Dice loss and mean absolute error loss for 13 

generalized Dice loss for robust segmentation of noisy datasets and a modified version of U-Net to 14 

better handle infectious lesion segmentation with various manifestations and scales. The best results 15 

achieved by COPLE-Net were 0.807±0.099 and 0.160±0.171% as Dice coefficient and relative 16 

volume error (RVE (in %)) respectively. Wang et al. (63) evaluated different deep learning algorithms, 17 

including modified 3D U-Net (3D New-Net U-Net, Dice: 0.704±0.187, RVE: 25.41±24.73%) (64), 18 

modified 2D U-Net (2D New-Net U-Net, Dice: 0.791±0.129, RVE: 18.37±17.43%) (64), spatial 19 

attention gate U-Net (Attention U-Net, Dice: 0.772±0.123, RVE: 19.77±18.41%) (60), spatial and 20 

channel ‘squeeze and excitation’ blocks with U-net ( ScSE U-Net, dice: 0.780±0.125 , RVE: 21 

18.85±16.69%) (65), and light-weight power efficient and general purpose CNN (ESPNetv2, Dice: 22 

0.698±0.148, RVE: 23.69±20.26%) (66). Our proposed COLI-Net showed good performance 23 

compared to previous studies with a a Dice of 0.91±0.038 (95% CI: 0.90 - 0.91) and RVE of 0.38 ± 24 

1.2% (95% CI: 0.16 - 0.59) for pneumonia infectious lesions. 25 

A large labeled dataset is required to build a robust and generalizable model and avoid overfitting. 26 

Previous studies attempted to transfer the knowledge from natural to medical imaging domain, leading 27 

to improved accuracy by addressing the issue of limited datasets (36, 37). Transfer learning was 28 

recently applied for the detection and classification of COVID-19 using chest x-ray and CT images 29 

(67, 68). More recently, Wang et al. (69) applied four transfer learning methods on COVID-19 CT 30 

images for the segmentation of infectious lesions using 3D U-Net. The information was transformed 31 

from cancer and pleural effusion data to COVID-19 lesion segmentation, the Dice coefficient 32 

increased from 0.673±0.22 to 0.703±0.20 after transfer learning (69). They concluded that the 33 

transferability of non-COVID-19 data improved the quality of COVID-19 lesion segmentation to build 34 

a robust segmentation model. In our study, we exploited transfer learning from a large multicentric 35 
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lung labeled dataset with various pathologies to overcome the shortcomings of infectious lesion 1 

segmentation. 2 

Li et al. (70) used thick-section chest CT images of 531 COVID-19 patients for automatic 3 

segmentation of lesions using 2.5D U-net to achieve Dice coefficients of 0.74 ± 0.28 and 0.76 ± 0.29 4 

with respect to manual delineation performed by two radiologists. The inter-observer variability 5 

measured by the Dice metric was 0.79 ± 0.25 between two radiologists. They calculated two imaging 6 

biomarkers, including the percentage of infection and average infectious HU for severity and 7 

progression assessment, resulting in AUC of 0.97. Thick-section CT imaging were recommended for 8 

high-pitch scans to decrease the acquisition time and motion artifacts (due to breath-holding) and 9 

reduce radiation doses to patients (10, 71). In our dataset, various slice thicknesses (1-8 mm) have 10 

been included to train a robust network against this parameter, which highly impacts image 11 

manifestation. The relative error of volume difference for percentage of infectious (lesion/lung) and 12 

relative mean HU Diff (%) were 0.22±6.3 % (95% CI: -0.95 - 1.4%) and -0.18 ± 3.4% (95% CI: -0.8 - 13 

0.44%), demonstrating the high accuracy of COLI-Net for biomarker generation. 14 

Potential foreseen applications are not limited to the detection and segmentation but could be useful 15 

in providing diagnostic and prognostic parameters calculated using lung and infections segmentation 16 

to estimate the percentage of infections, and enabling advanced image processing in COVID-19 17 

patients. The existing body of research on pneumonia suggests that the pneumonia severity index (PSI) 18 

can potentially be used as a severity marker (72). A recent study classified COVID-19 patients into 19 

severe and non-severe patients based on PSI calculated using CT images (73). Different deep learning 20 

algorithms and radiomics analysis approaches using CT images have been examined recently for 21 

developing diagnostic (discriminating COVID-19 from bacterial/viral pneumonia) and prognostic 22 

(survival, hospital stay, intensive care unit (ICU) admission, risk of outcome) models, which require 23 

lung and lesion segmentation (18). Moreover, calculating the percentage of infection and well-aerated 24 

regions in the lung are frequently performed through visual assessment or by simply calculating HU 25 

values in the lungs, which is not only time-consuming but also lacks accuracy. 26 

The established model exhibited noticeable performance variation across different COVID-19 27 

patients collected from different countries, centers, with different patient backgrounds, and stages of 28 

the disease. Since the quality of CT images depends directly on the scanner model, imaging protocol 29 

(tube voltage, tube current, pitch factor, etc), and reconstruction algorithm, we employed various 30 

datasets from different centers to cover a large variability (10, 71). Though the proposed slgorithm was 31 

evaluated using a multi-center, multi-scanner, multi-national dataset and patients with a diverse 32 

background, stages of the disease, a full-scale adaptation of this model requires further clinical 33 

investigation and fine-tuning to the specific image acquisition parameters of a center. This framework 34 

provides multiple imaging biomarkers for COVID-19 patients to facilitate the assessment of their 35 

clinical relevance in diagnostic (discriminating COVID-19 from bacterial/viral pneumonia) and 36 
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prognostic (survival, hospital stay, ICU admission, risk of outcome) applications. Further development 1 

should involve implementing lung lobes segmentation to calculate all potential imaging biomarkers at 2 

the lobes level. 3 

 4 

 5 

Conclusion 6 

We set out to develop an automated algorithm capable of segmenting three-dimensional whole lung 7 

and infected regions in COVID-19 patients from chest CT images using deep learning techniques to 8 

enable fast, consistent, robust, and human error immune framework for lung and pneumonia lesion 9 

detection and delineation. Owing to the complex nature of the problem and high variability in lesion 10 

manifestation, transfer learning from whole lungs to pneumonia infection lesions was proposed and 11 

implemented to enrich specific COVID-19 pneumonia features identification from clinical studies. 12 

Moreover, a multi-centric and multi-scanner dataset was collected for the development of the deep 13 

learning model to establish an automated and generalizable platform for efficient COVID-19 patients 14 

management. The developed artificial intelligence model was evaluated using a wide range of 15 

COVID-19 patients of diverse populations with different stages of the disease from multiple centers 16 

around the world to enable big data analysis of COVID-19 for automated progression/regression 17 

assessment of pneumonia lesions in follow-up studies, provide diagnostic and prognostic metrics, and 18 

enable further advanced image processing. 19 

 20 

 21 

 22 

 23 
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Number of true positive (TP), Number of false positive (FP),  Number of false negative (FN), 
FN  Number of true negative (FN) ,  predicted segmentation (P), Manual segmentation (G) 

1. Dice Similarity Coefficient 
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5. Mean Surface Distance 

���,��= distance between a point p belonging to the surface of a 3D surface predicted image 
(P) and its closest distance (MSD) between the two surfaces P and G can be defined as 
follows: 
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Where |P| denotes the surface area of P. 
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Supplemental Figures  
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Supplemental figure 1: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Iran1 center, case 1. 
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Supplemental figure 2: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Iran1 center, case 2. 
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Supplemental figure 3: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Iran1 center, case 3. 
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Supplemental figure 4: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Russia center,  case 1. 
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Supplemental figure 5: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Russia center, case 2. 
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Supplemental figure 6: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Russia center, case 3. 
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Supplemental figure 7: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Iran2 center, case 1. 
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Supplemental figure 8: 2D view of different slices of lung and lesion manual/predicted segmentation 

in Iran2 center, case 2. 
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Supplemental figure 9: 2D view of different slices of lung and lesion manual/predicted segmentation 

in China center,  case 1. 
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Supplemental figure 10: 2D view of different slices of lung and lesion manual/predicted 

segmentation in China center,  case 2. 
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Supplemental figure 11: 2D view of different slices of lung and lesion manual/predicted 

segmentation in Italy center,  case 1. 
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Supplemental figure 12: 2D view of different slices of lung and lesion manual/predicted 

segmentation in Italy center,  case 2. 
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Supplemental figure 13: 2D view of different slices of lung and lesion manual/predicted 

segmentation in Italy center, case 3. 
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Supplemental figure 14: Manual and predicted segmentation 3D view for lung and lesion. 
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Supplemental figure 15: Manual and predicted segmentation 3D view for lung and lesion. 
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Supplemental figure 16: Manual and predicted segmentation 3D view for lung and lesion. 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.21255163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255163
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 
 

 

Supplemental figure 17: Manual and predicted segmentation 3D view for lung and lesion. 
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Supplemental figure 18: Box plots comparing various quantitative imaging metrics for lung 
segmentation, including Hounsfield unit(mean) absolute relative difference (%), absolute relative 
volume difference (%), false negative, false positive, average hausdorff distance and mean surface 
distance 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.21255163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255163
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 
 

 

Supplemental figure 19: Box plots comparing various quantitative imaging metrics for infectious 
lesion segmentation, including Hounsfield unit(mean) absolute relative difference (%), absolute 
relative volume difference (%), false negative, false positive, average hausdorff distance and mean 
surface distance 
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Supplemental figure 20: Figure 7: Mean absolute relative error of different first order (FO) and shape 
radiomics features for different datasets in lung and infection regions. 
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Supplemental Tables  
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First Order Statistics (FO) Formula 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.21255163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255163
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

 
 

1. Energy 

2

1

( ( ) )
pN

i

energy i c
=

= +∑ X  

2. Total Energy 

2

1

 ( ( ) )
pN

voxel
i

total energy V i c
=

= +∑ X  

3. Entropy 

2
1

( ) log ( ( ) )
gN

i

entropy p i p i
=

= − +∑ ò  

4. Minimum min( )minimum = X  

5. 10th percentile The 10th percentile of X 

6. 90th percentile The 90th percentile of X 

7. Mean 

1

1
( )

pN

ip

mean i
N =

= ∑X  

8. Median The median gray level intensity within the ROI. 

9. Interquartile Range 

75 25 interquartile range = −P P  

10. Range max( ) min( )range = −X X  

11. Mean Absolute Deviation (MAD) 

1

1
| ( ) |

pN

ip

MAD i X
N =

= −∑ X  

12. Robust Mean Absolute Deviation (RMAD) 
10 90

10 90 10 90
110 90

1
| ( ) |

N

i

rMAD i X
N

−

− −
=−

= −∑ X  

13. Root Mean Squared (RMS) 

2

1

1
( ( ) )

pN

ip

RMS i c
N =

= +∑ X  

14. Skewness 
3

1
3

33

2

1

1
( ( ) )

1
( ( ) )

p

p

N

i
p

N

i
p

i X
N

skewness

i X
N

μ
σ

=

=

−
= =

⎛ ⎞
−⎜ ⎟

⎜ ⎟
⎝ ⎠

∑

∑

X

X

 

15. Kurtosis 
4

1
4

24

2

1

1
( ( ) )

1
( ( ) )

p

p

N

i
p

N

i
p

i X
N

kurtosis

i X
N

μ
σ

=

=

−
= =

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑

X

X

 

16. Variance 

2

1

1
( ( ) )

pN

ip

variance i X
N =

= −∑ X  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.21255163doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255163
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

 

 

 

Table 1: First order and shape radiomics features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Descriptive statistics of Dice Coefficient for lung and lesion in different datasets 
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Dice Coefficient Datasets  Min Max Mean ± SD 95% CI 
Lung All EVS  0.92 0.99 0.98 ± 0.011 0.98 - 0.99 

China  0.96 0.99 0.98 ± 0.0086 0.98 - 0.99 
Italy   0.97 0.99 0.98 ± 0.0051 0.98 - 0.99 
Iran2   0.97 0.99 0.98 ± 0.0046 0.98 - 0.99 

Russia  0.99 0.99 0.99 ± 0.0016 0.99 - 0.99 
Iran1  0.92 0.99 0.98 ± 0.013 0.97 - 0.98 

       
Lesion All EVS  0.8 0.98 0.91 ± 0.038 0.9 - 0.91 

Italy  0.92 0.98 0.94 ± 0.024 0.92 - 0.96 
China  0.85 0.97 0.91 ± 0.04 0.89 - 0.94 
Iran2  0.83 0.93 0.90± 0.031 0.88 - 0.92 

Russia  0.8 0.96 0.90 ± 0.044 0.89 - 0.91 
Iran1  0.84 0.97 0.91 ± 0.03 0.9 - 0.92 

 

 

 

 

Table 3: Descriptive statistics of Jaccard Index for lung and lesion in different datasets 

Jaccard Index Datasets  Min Max Mean ± SD 95% CI 
Lung All EVS  0.86 0.99 0.97 ± 0.022 0.97 - 0.97 

China  0.93 0.98 0.96 ± 0.016 0.95 - 0.97 
Italy  0.95 0.98 0.97 ± 0.0098 0.96 - 0.98 
Iran2  0.95 0.98 0.97 ± 0.0089 0.96 - 0.97 

Russia  0.98 0.99 0.99 ± 0.0032 0.99 - 0.99 
Iran1  0.86 0.98 0.95 ± 0.025 0.95 - 0.96 

       
Lesion All EVS  0.66 0.96 0.83 ± 0.062 0.82 - 0.84 

Italy  0.85 0.96 0.89 ± 0.043 0.86 - 0.92 
China  0.74 0.94 0.84 ± 0.068 0.8 - 0.89 
Iran2  0.71 0.88 0.82 ± 0.05 0.79 - 0.85 

Russia  0.66 0.93 0.82 ± 0.071 0.8 - 0.84 
Iran1  0.73 0.94 0.84 ± 0.05 0.82 - 0.85 

 

 

 

 

 

 

 

 

 

Table 4: Descriptive statistics of False Negative for lung and lesion in different datasets 
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False Negative Datasets Min Max Mean ± SD 95% CI 
Lung All EVS 0.0035 0.086 0.013 ± 0.011 0.011 - 0.015 

China 0.0041 0.031 0.015 ± 0.0074 0.0099 - 0.019 
Italy 0.0035 0.022 0.011 ± 0.0048 0.0083 - 0.015 
Iran2 0.006 0.027 0.011 ± 0.0059 0.0077 - 0.015 

Russia 0.004 0.02 0.0082 ± 0.0027 0.0074 - 0.009 
Iran1 0.0057 0.086 0.019 ± 0.017 0.014 - 0.024 

      
Lesion All EVS 0.015 0.23 0.086 ± 0.044 0.078 - 0.094 

Italy 0.015 0.072 0.05 ± 0.022 0.034 - 0.065 
China 0.03 0.19 0.1 ± 0.054 0.068 - 0.14 
Iran2 0.061 0.23 0.11 ± 0.047 0.076 - 0.13 

Russia 0.015 0.21 0.087 ± 0.05 0.073 - 0.1 
Iran1 0.031 0.17 0.084 ± 0.034 0.075 - 0.094 

 

 

 

 

Table 5: Descriptive statistics of False Positive for lung and lesion in different datasets 

False Positive  Min Max Mean ± SD 95% CI 
Lung All EVS 0.0025 0.073 0.017 ± 0.014 0.014 - 0.019 

China 0.0077 0.047 0.023 ± 0.012 0.016 - 0.031 
Italy 0.01 0.039 0.019 ± 0.0099 0.013 - 0.026 
Iran2 0.014 0.032 0.021 ± 0.0048 0.018 - 0.024 

Russia 0.0025 0.016 0.0049 ± 0.0025 0.0043 - 0.0056 
Iran1 0.015 0.073 0.027 ± 0.014 0.023 - 0.032 

      
Lesion All EVS 0.024 0.32 0.098 ± 0.055 0.088 - 0.11 

China 0.024 0.11 0.069 ± 0.029 0.049 - 0.09 
Italy 0.027 0.11 0.07 ± 0.029 0.051 - 0.089 
Iran2 0.069 0.13 0.093 ± 0.022 0.08 - 0.11 

Russia 0.039 0.32 0.11 ± 0.068 0.094 - 0.13 
Iran1 0.026 0.24 0.094 ± 0.048 0.08 - 0.11 

 

 

 

 

 

 

 

 

 

Table 6: Descriptive statistics of Average Hausdorff Distance for lung and lesion in different datasets 
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Average Hausdorff 
Distance 

Datasets Min Max Mean ± SD 95% CI 

Lung All EVS 0.005 0.14 0.022 ± 0.026 0.018 - 0.027 
China 0.011 0.058 0.022 ± 0.014 0.014 - 0.031 
Italy 0.011 0.031 0.018 ± 0.0062 0.014 - 0.022 
Iran2 0.015 0.034 0.022 ± 0.0063 0.019 - 0.026 

Russia 0.005 0.02 0.0077 ± 0.0028 0.0069 - 0.0085 
Iran1 0.011 0.14 0.04 ± 0.035 0.03 - 0.051 

      
Lesion All EVS 0.043 5.6 0.42 ± 0.73 0.29 - 0.55 

Italy 0.043 0.22 0.11 ± 0.055 0.068 - 0.14 
China 0.057 1 0.3 ± 0.31 0.099 - 0.5 
Iran2 0.12 0.38 0.23 ± 0.092 0.17 - 0.29 

Russia 0.068 5.6 0.65 ± 0.95 0.38 - 0.92 
Iran1 0.054 3.6 0.3 ± 0.6 0.13 - 0.48 

 

 

 

Table 7: Descriptive statistics of Mean Surface Distance for lung and lesion in different datasets 

Mean Surface Distance Datasets Min Max Mean ± SD 95% CI 
Lung All EVS 0.0056 0.17 0.026 ± 0.028 0.021 - 0.031 

China 0.012 0.093 0.032 ± 0.023 0.018 - 0.047 
Italy 0.014 0.038 0.026 ± 0.0085 0.021 - 0.032 
Iran2 0.017 0.072 0.028 ± 0.017 0.017 - 0.038 

Russia 0.0056 0.02 0.009 ± 0.0032 0.0081 - 0.0099 
Iran1 0.012 0.17 0.045 ± 0.038 0.034 - 0.056 

      
Lesion All EVS 0.046 6.1 0.45 ± 0.79 0.31 - 0.59 

Italy 0.046 0.21 0.12 ± 0.05 0.082 - 0.15 
China 0.066 1 0.31 ± 0.3 0.11 - 0.51 
Iran2 0.13 0.38 0.24 ± 0.091 0.18 - 0.29 

Russia 0.075 6.1 0.69 ± 1 0.4 - 0.99 
Iran1 0.057 3.9 0.32 ± 0.64 0.14 - 0.51 
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Table 8: Descriptive statistics of relative mean Hounsfield Unit difference (%) for lung and lesion in 
different datasets 

Relative Mean 
HU Diff (%) 

Datasets Min Max Mean ± SD 95% CI 

Lung All EVS -4.2 3.9 0.03 ± 0.84 -0.12 – 0.18 
Iran1 -4.2 3.9 -0.15 ± 1.3 -0.52 – 0.23 

Russia -0.7 1.3 0.27 ± 0.31 0.19 - 0.36 
Iran2 -0.46 1.3 -0.02 ± 0.49 -0.32 – 0.28 
China -0.93 0.77 -0.11 ± 0.63 -0.5 – 0.28 
Italy -1.3 0.94 -0.25 ± 0.67 -0.69 – 0.19 

      
Lesion All EVS -9.8 10 -0.8 - 0.44 -0.18 ± 3.4 

Iran1 -9.8 10 -1.5 - 1.1 -0.18 ± 4.4 
Russia -6.9 4.6 -1.2 - 0.42 -0.38 ± 2.7 
Iran2 -3.2 0.74 -1.2 - 0.27 -0.45 ± 1.2 
China -2.5 7.4 -1.5 - 2.4 0.46 ± 3 
Italy -1 8.9 -1.8 - 2.9 0.55 ± 3.4 

 

 

 

 

Table 9: Descriptive statistics of absolute relative mean Hounsfield Unit difference (%) for lung and 
lesion in different datasets 

Absolute Relative 
Mean HU Diff (%) 

Datasets  Min Max Mean ± SD 95% CI 

Lung All EVS  0.006 4.2 0.52 ± 0.66 0.4 - 0.64 
Iran1  0.012 4.2 0.79 ± 0.98 0.5 - 1.1 

Russia  0.006 1.3 0.33 ± 0.24 0.26 - 0.4 
Iran2  0.082 1.3 0.31 ± 0.37 0.081 - 0.54 
China  0.062 0.93 0.54 ± 0.3 0.36 - 0.73 
Italy  0.012 1.3 0.52 ± 0.47 0.21 - 0.83 

       
Lesion All EVS  0.026 10 2.4 ± 2.5 1.9 - 2.8 

Iran1  0.026 10 3.2 ± 3 2.3 - 4.1 
Russia  0.036 6.9 2 ± 1.8 1.5 - 2.6 
Iran2  0.18 3.2 0.83 ± 0.91 0.26 - 1.4 
China  0.46 7.4 2.1 ± 2.2 0.66 - 3.5 
Italy  0.27 8.9 1.7 ± 2.9 -0.27 – 3.7 
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Table 10: Descriptive statistics of relative volume difference (%) for lung and lesion in different 
datasets 

Relative Volume 
Diff (%) 

Datasets 
Min Max Mean ± SD 95% CI 

Lung 
 
 

All EVS -3.1 6.4 0.38 ± 1.2 0.16 - 0.59 
Iran1 -3.1 6.4 0.83 ± 1.5 0.38 - 1.3 

Russia -1.6 0.86 -0.33 ± 0.41 -0.44 - -0.21 
Iran2 -0.3 1.9 0.99 ± 0.59 0.63 - 1.4 
China -0.79 2.4 0.92 ± 1.1 0.25 - 1.6 
Italy -1.1 2.8 0.8 ± 1.2 0.0045 - 1.6 

      
Lesion All EVS -14 21 0.81 ± 6.6 -0.39 - 2 

Iran1 -14 15 1 ± 6.1 -0.82 - 2.8 
Russia -14 21 1.7 ± 8 -0.58 - 4.1 
Iran2 -14 4.1 -1.3 ± 4.7 -4.2 - 1.6 
China -9.2 1.9 -3.6 ± 3.8 6.1 - -1.1 
Italy -0.63 6.5 2.2 ± 2.2 0.62 - 3.7 

 

 

 

 

Table 11: Descriptive statistics of absolute relative volume difference (%) for lung and lesion in 
different datasets 

Absolute Relative 
Volume Diff (%) 

Datasets Min Max Mean ± SD 95% CI 

Lung All EVS 0.0047 6.4 0.89 ± 0.88 0.73 - 1 
Iran1 0.031 6.4 1.3 ± 1.1 0.97 - 1.6 

Russia 0.0047 1.6 0.41 ± 0.32 0.32 - 0.5 
Iran2 0.3 1.9 1.1 ± 0.46 0.77 - 1.3 
China 0.19 2.4 1.1 ± 0.81 0.65 - 1.6 
Italy 0.016 2.8 1.1 ± 0.95 0.46 - 1.7 

      
Lesion All EVS 0.018 21 4.8 ± 4.6 4 - 5.6 

Iran1 0.049 15 4.7 ± 3.9 3.6 - 5.9 
Russia 0.087 21 6 ± 5.5 4.4 - 7.6 
Iran2 0.018 14 2.6 ± 4.1 0.036 - 5.1 
China 0.33 9.2 4 ± 3.3 1.9 - 6.1 
Italy 0.23 6.5 2.3 ± 2 0.9 - 3.7 
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Table 12: Descriptive statistics of relative and absolute relative volume difference lesion/lung (%) 

Volume Diff 
lesion/Lesion (%) 

Datasets Min Max Mean ± SD 95% CI 

RE All -14 16 0.22 ± 6.3 -0.95 - 1.4 
Iran1 -14 14 0.46 ± 6.2 -1.4 - 2.3 

Russia -14 16 1.3 ± 7.3 -0.89 - 3.5 
Iran2 -14 2.7 -2.3 ± 4.6 -5.1 - 0.55 
China -9.6 -0.0047 -4.4 ± 3.3 -6.5 - -2.2 
Italy -0.65 6.3 1.5 ± 2.3 -0.15 - 3.1 

      
ARE All 0.0047 16 4.7 ± 4.2 3.9 - 5.5 

Iran1 0.23 14 5 ± 3.7 3.9 - 6.1 
Russia 0.23 16 5.5 ± 4.8 4.1 - 6.9 
Iran2 0.034 14 2.8 ± 4.2 0.22 - 5.4 
China 0.0047 9.6 4.4 ± 3.3 2.2 - 6.5 
Italy 0.2 6.3 1.8 ± 2 0.39 - 3.2 

 

 

 

Table 13: Descriptive statistics of relative volume (Lesion/Lung) for ground truth and predict images 

RV GT Datasets Min Max Mean ± SD Mean (95% CI) 
GT All 0.00097 0.82 0.13 ± 0.19 0.095 - 0.16 

Iran1 0.018 0.82 0.25 ± 0.23 0.18 - 0.32 
Russia 0.00097 0.088 0.018 ± 0.016 0.013 - 0.023 
Iran2 0.014 0.3 0.085 ± 0.091 0.029 - 0.14 
China 0.0088 0.59 0.16 ± 0.19 0.04 - 0.28 
Italy 0.0064 0.56 0.12 ± 0.19 -0.004 - 0.25 

      
Predicted All 0.0011 0.84 0.13 ± 0.19 0.094 - 0.16 

Iran1 0.018 0.84 0.25 ± 0.23 0.18 - 0.32 
Russia 0.0011 0.081 0.018 ± 0.015 0.013 - 0.022 
Iran2 0.014 0.29 0.082 ± 0.088 0.028 - 0.14 
China 0.0087 0.57 0.15 ± 0.18 0.037 - 0.27 
Italy 0.0064 0.56 0.13 ± 0.19 -0.003 - 0.25 
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