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Abstract 

Neural networks have shown strong potential to aid the practice of healthcare.  Mainly due to the need for 

large datasets, these applications have focused on common medical conditions, where much more data is 

typically available.  Leveraging publicly available data, we trained a neural network classifier on images 

of rare genetic conditions with skin findings.  We used approximately100 images per condition to classify 

6 different genetic conditions.  Unlike other work related to these types of images, we analyzed both 

preprocessed images that were cropped to show only the skin lesions, as well as more complex images 

showing features such as the entire body segment, patient, and/or the background.  The classifier 

construction process included attribution methods to visualize which pixels were most important for 

computer-based classification.  Our classifier was significantly more accurate than pediatricians or 

medical geneticists for both types of images.  Next, we trained two generative adversarial networks to 

generate new images.  The first involved all of the genetic conditions and was used for style-mixing to 

demonstrate how the diversity of small datasets can be increased.  The second focused on different 

disease stages for one condition and depicted how morphing can illustrate the disease progression of this 

condition.  Overall, our findings show how computational techniques can be applied in multiple ways to 

small datasets to enhance the study of rare genetic diseases. 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.21255123doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.04.08.21255123


2 

 

Introduction 

Neural network models have demonstrated strong potential to improve the practice of healthcare.  For 

example, “artificial intelligence” may help detect breast cancer via mammogram analysis or COVID-19 

based on CT scans.1,2  In this type of computer vision approach, because medical datasets are typically 

small compared to other types of publicly available datasets, the neural network is first pretrained on a 

large, general dataset (e.g. ImageNet, http://www.image-net.org/) to help identify major features, such as 

edges or basic shapes. Next, the neural network is fine-tuned to address a more specific question, such as 

the ability to recognize certain diseases.  For this approach to work well, the pretrained data must either 

be similar in type to the medical data or the size of the medical dataset must be relatively large.3   

Due to these limitations, neural network applications in healthcare have focused on relatively common 

conditions, where sufficiently large datasets are more readily collected.  Genetic conditions, though 

common in aggregate, are largely individually rare.4  A recent meta-analysis identified 82 studies 

comparing deep learning performance to that of health care professionals in disease detection using 

medical imaging.  None of the conditions in this meta-analysis were genetic, though some (e.g., breast 

cancer) involve clear genetic underpinnings in a minority of patients.5   

Despite this lack of representation, neural network approaches have been used in some areas of genetics.6 

With efforts to collect adequate training data, these methods could be especially useful in clinical 

genetics, where there is a lack of trained individuals to help determine whether a patient may be affected 

by a genetic condition, what that condition may be, and what testing strategy and next management steps 

are indicated.7,8  With the accelerating expansion of genomics into diverse fields of medicine,9 an 

alternative strategy of training non-geneticist clinicians has not kept pace.10  Developing computational 

methods could help geneticists as well as other clinicians manage the large numbers of affected 

individuals.   

To explore the use of these techniques in proof-of-principle exercises using small datasets, we collected 

images of a selected group of rare genetic conditions that manifest with characteristic skin findings.  We 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.21255123doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255123


3 

 

chose clinically impactful conditions that can be nontrivial to diagnose.  We built neural network 

classifiers both for images that were cropped to focus on the lesions of interests, similar to previous 

studies11,12 as well as uncropped images.  These uncropped images can be more difficult for a neural 

network model to analyze, but may more closely mimic real-life, unprocessed images such as those a 

clinician might encounter in training or diagnostic situations.  During the classifier construction process, 

we used an attribution method for image recognition to help our team visualize how the classifier 

weighted certain pixels in the image.  We then compared the classifier performance to pediatricians and 

medical geneticists. 

Beyond neural network-based classification, we trained generative adversarial networks (GAN) to 

demonstrate how style-mixing can generate more ancestrally diverse images and how morphing images 

can demonstrate the progression of NF1 manifestations.  In using GAN, we empirically addressed two 

issues.  First, although a few GAN models have been built for training smaller datasets, the dataset we 

used is approximately an order of magnitude smaller than those previously described.13 Second, the 

images that we used, which represent unique, unrelated patients at different disease stages, are 

heterogeneous, which is challenging for recreating realistic time series.    

To summarize, our contributions include:  1) evaluation of a neural network classifier’s performance on a 

small dataset of esoteric genetic conditions; 2) comparison of how focused and panoramic images affect 

human and the neural network model’s accuracy; 3) new image generation to augment datasets and to 

show the progression of a selected condition. 

Materials and Methods 

Ethics review 

The study was reviewed by National Human Genome Research Institute (NHGRI) bioethicists and the 

National Institutes of Health (NIH) Institutional Review Board (IRB).  The main analyses were 
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considered not human subjects research; a waiver of consent was granted by the NIH IRB for the work 

(NIH protocol: 000285) involving the surveys of medical professionals, as described below. 

Data collection 

Using condition and gene names, we searched Google and PubMed to identify publicly available images 

showing the following conditions: Hypomelanosis of Ito (HMI), Incontinentia Pigmenti (IP), McCune-

Albright Syndrome (MA), Neurofibromatosis Type 1 (NF1), Noonan Syndrome with Multiple Lentigines 

(ML; formally known as LEOPARD syndrome), and Tuberous sclerosis Complex (TSC) (see 

Supplemental Table 1 for more details on these conditions).  We also selected images of other medical 

conditions (e.g., erythema migrans, hemangioma, etc.) that are unrelated to the genetic conditions, but 

which could be misclassified as one of the genetic conditions.  Though difficult to quantify due to lack of 

available, comprehensive information for many images, we endeavored to collect images from individuals 

of diverse racial and ethnic backgrounds.  This was done by manually reviewing images as well as 

ascertaining images from sources that focus on ancestrally diverse individuals (such as journals devoted 

to the presentation of medical conditions in diverse geographic locations).   

As defined below (see the “Initial image processing” section), the images we used included focused 

images (N=1033 (total): 97 HMI, 115 IP, 123 MA, 102 ML, 230 NF1, 122 TSC, 244 other) and 

panoramic images (N=802 (total): 90 HMI, 84 IP, 103 MA, 79 ML, 120 NF1, 91 TSC, 235 other).  Two 

board-certified clinicians (one medical geneticist and one genetic counselor) reviewed images and data in 

the source websites to help ensure accuracy of diagnoses based on clinical descriptions and the 

information described.  For example, if a publication showed an image of a patient described as having 

NF1, our team reviewed the image and the description of the patient to ensure that the patient had strong 

evidence for the diagnosis, and that there was not contradictory evidence, such as a statement that the 

patient, on ultimate genetic testing, did not have findings consistent with the suspected diagnosis.  All 

images and URLs used in classification are listed in Supplemental Table 2.   

Initial image processing 
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First, following the conventions of other large-scale neural network studies on images of skin 

cancer,11,12,14 we cropped images to contain just the lesions of interest.  We refer to this dataset as focused 

images.  For conditions with multiple skin or external findings, we focused on one main manifestation per 

condition.  For example, for NF1, we focused on café-au-lait macules (CALMs) rather than cutaneous 

neurofibromas.15  We  also used the photos as they were captured, some of which show an entire person’s 

face or body segment (e.g, an arm or the entire back) with the genetic conditions, and with other features 

such as clothes or a background, though we cropped out words, such as a heading that indicated the image 

number. We refer to this second dataset as panoramic images.  

A single panoramic image can have multiple corresponding focused images.  For example, as shown in 

Figure 1, an image of a person with NF1 may include multiple CALMs.  We did not want the model to 

capture anything related to the test images during training.  Hence, for the test set, from each of the 7 

categories, we selected 20 panoramic images and corresponding focused images. Each panoramic test 

image has exactly one corresponding focused image.  In total, the panoramic test set and their 

corresponding focused test images contained 140 images each.  The remaining images were used to train 

the model.  

Classifier 

We chose the EfficientNet-B4 classifier which achieved good performance on the ImageNet data with a 

relatively low number of parameters.16  We initialized EfficientNet-B4 with the parameter values 

pretrained on ImageNet and continued training the entire model, not just the last few fully-connected 

layers.3  Combining and then jointly training a small dataset of interest with a larger auxiliary dataset 

often help the prediction accuracy.17,18  For the auxiliary dataset, we downloaded the publicly available 

SIIM-ISIC Melanoma Classification Challenge Dataset from 2018 to 2020.11,19  This dataset contains 

58,459 images of 9 skin cancer diseases: actinic keratosis, basal cell carcinoma, benign keratosis, 

dermatofibroma, melanoma, melanocytic nevus, squamous cell carcinoma, vascular lesion, and other 

unknown skin cancer cases.  
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We trained our dataset with the SIIM-ISIC dataset where we classified an image as one of the 16 diseases 

(7 from our genetic + other disorders dataset and 9 from the SIIM-ISIC dataset).  We conducted two 

experiments, the first one with our focused images and SIIM-ISIC images, and the second with our 

panoramic images and SIIM-ISIC images.  Both experiments used 450 by 450 pixel images and the same 

data augmentation.  Weighted loss was used in both image type trainings: focused images were weighted 

5 times and panoramic images were weighted 10 times more than the SIIM-ISIC images.  Training was 

done on one 11 GB Nvidia graphic card.  Our code is available at: github.com/datduong/ClassifyNF1.  

For our focused images, a 5-fold cross-validation was used to build 5 different classifiers (one for each 

fold).  To create an ensemble predictor, we used each classifier to estimate the predicted probabilities for 

the labels of a test image.  The average of these probabilities was calculated for the 5 classifiers. When 

averaging, we considered only the classifiers that produced a maximum predicted probability (over all the 

labels) of at least 0.5.  The same procedure was used for training the model on our panoramic images.  To 

visualize which parts of an image the classifier considered to be important, we applied Integrated 

Gradient to identify pixels of an image that most affect the classifier’s outcome.20 

Comparison to clinicians 

We compared the classifier to board-certified or board-eligible medical geneticist physicians and 

pediatricians.  We chose these specialties because, in our experience, these types of clinicians more 

frequently encounter these patients (versus, for example, dermatologists, who may more often assess 

other skin conditions).21  That is, a typical path involves an initial encounter by a pediatrician, followed 

by referral to a medical geneticist, if available.   

We generated surveys using Qualtrics (Provo, Utah, United States of America).  Each survey has 4 

panoramic images and their corresponding focused versions for each of the 7 conditions (6 genetic 

conditions + other conditions). As there are 140 panoramic test images, it takes 5 surveys to cover all the 

test images. We created 6 sets of these 5 surveys, so that each test image would be seen 6 times. In each 

survey, we showed the focused images first, and then the panoramic images. We suspected that 
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participants would more accurately classify panoramic images as these can include more diagnostic clues 

than a single focused image, and that presenting images in this order could result in more reliable, 

independent responses.  

When responding to the survey, participants were directed not to use any external resources for help, and 

to select the genetic condition best represented by the image presented.  The surveys also included 3 

demographic questions (medical specialty, number of years in practice, and location of current practice), 

but number of years in practice and location were only used for verification purposes, rather than for 

analyses.  See Supplemental materials for a copy of the survey.   

Following previous methods,11,12 we estimated that 30 participants for each clinician type would provide a 

statistical power of 95% to detect a 10% difference. For each of the 30 surveys, one board-certified or 

board-eligible medical geneticist physician and one board-certified or board-eligible pediatrician was 

recruited via email.  To identify survey respondents, we obtained email addresses through professional 

networks, departmental websites, journal publications, and other web-available lists. A total of 105 

medical geneticists were contacted, 37 agreed to participate, and 32 completed the survey.  A total of 379 

pediatricians were contacted, 37 agreed to participate, and 32 completed the survey.  Surveys were 

considered complete if >95% of the multiple-choice questions were answered.  If multiple medical 

geneticists or pediatricians completed the same survey, only the first complete survey was used for 

analysis. 

Generative adversarial network 

After classification, we used a subset of our dataset, and collected new images of later-stage disease to 

generate new images and to show how “morphing” could illustrate disease progression.  We identified 

and used 107 early, 71 intermediate, and 103 late-stage NF1 images (see Supplemental Table 3).  These 

were collected, labeled, and processed in the same way as the images for the classifier.  We trained 

StyleGAN2-ada on our skin images of the NF1 stages.13  Stages were assigned by our study team (and 
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reviewed by a genetic counselor and medical geneticist) based on patient age and clinical features 

according to the natural history of disease.15  We loaded the model weights pretrained on Flickr-Faces-

HQ (FFHQ) dataset, changed the model objective into conditional GAN, where the labels correspond to 

the three NF1 stages, and then fine-tuned on our NF1 localized images with the same hyperparameters 

used for FFHQ dataset.13  During training, we kept the NF1 images in their original forms and did not 

apply any preprocessing, such as cropping and centering the images or background blurring, which are 

often done to FFHQ dataset.  We chose not to preprocess in this way, as we wanted to explore a model 

that could be more readily applied to image sets without this additional step.  Moreover, in many medical 

cases, all parts of an image may be important, and methods must be developed to analyze the skin 

findings in conditions like HMI or IP,  where cropping and centering will not work since the lesions may 

not be small or discrete.  

In this morphing experiment, we considered only focused images.  This was because, with our small NF1 

dataset, our exploratory work at generating realistic panoramic images did not produce realistic images, 

since the GAN not only has to generate the skin lesions but also the body parts where the lesions occur.  

To generate an image, conditional StyleGAN2-ada takes two key inputs: a random vector z and a 1-hot 

label vector.13  The random vector z is responsible for creating a random image from the label specified 

by the 1-hot vector.  For our method, the three 1-hot label vectors are v1 = [1, 0, 0], v2 = [0, 1, 0] and v3 = 

[0, 0, 1] to denote that the NF1 image is of an early, intermediate or late stage. The 1-hot vector is then 

multiplied with the label embedding L � RMxD, where M is the number of labels and D = 512 is the 

default setting.  In our running example, we have M = 3, and Lv1 returns the vector representing the label 

“NF1 early stage.” We set the vector representing NF1 intermediate stage to be the average of the vectors 

representing NF1 early and late stages, that is Lv2 = 0.5(Lv1 + Lv3).  L is a model parameter trained using 

our NF1 images.  To generate later stages of an early stage NF1 image, we computed a linear 

interpolation between v1 and v3, and then passed these interpolated vectors with the same random vector z 

as inputs to StyleGAN2-ada.  For style-mixing, we trained another StyleGAN2-ada to generate realistic 
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images for the different genetic conditions.  We also used style-mixing to transfer attributes of images 

(including skin and lesion colors) from one group of images to another to show how style-mixing can 

create more images for less represented groups in datasets.13  Our code is available at: 

github.com/datduong/stylegan2-ada-MorphNF1. 

Results 

Classifier 

We first assessed the classifiers’ performances when jointly trained on our dataset and SIIM-ISIC dataset. 

None of our focused and panoramic test images were classified as one of the cancer conditions in SIIM-

ISIC dataset. This was expected because (1) SIIM-ISIC diseases are very unrelated to our genetic 

conditions and (2) the pose-style and patient ethnicity (SIIM-ISIC represents individuals of mostly 

European descent) in the SIIM-ISIC images are very different from those in our images. The latter reason 

is especially true when jointly training the classifier on our panoramic images and SIIM-ISIC.  When 

evaluated on the same 30 surveys described above, in “Comparison to clinicians”, the classifier trained 

on focused images and the classifier trained on panoramic images obtain the same accuracy (2-sided 

paired t-test, p = 1).  

To determine how well our classifier performed relative to clinicians’ abilities to identify these 

conditions, we compared the output to that of medical geneticists and pediatricians.  Group results for 

accuracy for classification are shown in Figure 2A.  Overall, the computer classifier performed 24.6% (p= 

1.55x10-12) and 15.6% (p = 9.27x10-9) better than medical geneticists for focused and panoramic images, 

respectively.  The computer classifier performed 40.1% (p = 5.24x10-14) and 31.5% (p=1.85x10-12) better 

than pediatricians for focused and panoramic images, respectively.   

The results for each of the individual genetic conditions are shown in Figures 2B (focused images) and 

2C (panoramic images).  Clinicians performed better with panoramic than with focused images, though 

were on average still less accurate than the classifier.  For the panoramic images, the condition with the 
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lowest accuracy (80%) for the classifier was NF1, which was still higher than the average for the 

physicians (77.5% for medical geneticists and 61.7% for pediatricians).  The most difficult condition for 

both medical geneticists and pediatricians to classify based on panoramic images was MA, with 49.2% 

and 28.3% accuracy respectively.  The classifier identified 85% of MA panoramic images accurately. 

We validated that our classifier obtains adequate accuracy because it “sees” important parts of an image.  

That is, the attribution method (Figure 3) helped us determine which pixels most affect the classifier’s 

decision making.  This helped ensure that intuitively important pixels were being weighted more 

frequently than potential, common artifacts, such as recurrent background types or articles of clothing in 

the panoramic images.22  

Generative adversarial network, morphing, and style-mixing 

Genetic conditions can have multiple manifestations, and these can change over time.  In NF1, the earliest 

observable features are typically café-au-lait macules (as shown in Figure 1).  Later, other features, such 

as cutaneous neurofibromas emerge.15  Our classifier focused on the former finding, since we were 

interested in identifying the condition in an early stage.  However, we wanted to observe how these 

features could emerge and change over time.  To do this, we trained a GAN to generate new images based 

on the collected dataset.  Examples of images generated by our GAN are shown in Figure 4 and 

Supplemental Figure 1.  Through the GAN, we also generated images to depict disease progression, as 

shown in Figure 5.  New images generated through style-mixing are shown in Supplemental Figure 2.  All 

newly generated images, and images obtained by morphing and style-mixing were shown to practicing 

genetics clinicians, who subjectively endorsed realistic output. 

Discussion 

Our overarching goal was to use neural networks to demonstrate how neural networks and related 

methods can be leveraged in potentially useful and interesting ways when applied to datasets involving 

genetic conditions.  Our aim was not to build the most accurate classifier possible.  We could achieve 
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better accuracy with additional (computationally expensive) modifications, such as by further modifying 

the model’s hyperparameters or by incorporating larger or different datasets for training the model. We 

note that the availability of larger, centralized datasets relevant to genetic diseases such as those we 

analyzed is currently lacking compared to more common conditions.   

Our classifier outperformed both pediatricians and geneticists for both focused and panoramic images. 

This is not meant to imply that the classifier can or should replace human experts.  We examined a 

specific task (classifying images).  This was done without incorporating other information that is often 

important in clinical practice, such as knowledge about family history and other clinical manifestations, 

like presence or absence of developmental delay or a history of certain types of cancer.  These types of 

data could certainly be incorporated into a computer-based classifier, though such a model was not part of 

our objectives (including because we did not have uniform access to these data).  Despite this, our 

experimental set-up did allow us to estimate how well the physicians perform when provided with the 

more holistic panoramic images as opposed to the focused lesion images. This estimation was not done in 

some other large-scale studies involving skin images.19  

The fact that our classifier worked relatively well may demonstrate possible use cases.  For example, this 

type of approach could help primary care doctors determine which patients should be prioritized for 

evaluation by subspecialists like geneticists.  In settings – both in the United States and in other countries 

– with less access to specialists, these tools could also help identify the most efficient genetic testing 

strategy.   

We observed a range of accuracy for the human experts.  Several geneticists did extremely well, even 

though the average geneticist accuracy was lower than that of the classifier.  This is logical: some 

geneticists may be more experienced with these specific conditions or may simply be more gifted at this 

type of task.  The fact that the classifier does relatively well across different conditions – in addition to the 

overall accuracy, is notable.  As an example, the confusion matrices (Figures 2B and 2C) show that the 

clinicians tend to do better with certain conditions than others.  This may relate to the rarity of certain 
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conditions that may be clinically important but may not be frequently encountered in clinical practice or 

medical training.  This is one advantage of computerized methods, where a very rare condition can be 

included if adequate overall data can be gathered. 

We built a potentially useful method using relatively small datasets – we were able to build the 

classifying algorithm using a minimum of about 100 images per condition.  This approach is important 

when considering methods for conditions that are relatively rare.  We also endeavored to include 

individuals of diverse ancestral backgrounds when collecting our training datasets.  As the racial and 

ethnic background of most individuals whose images we used was not described in the primary literature, 

this was difficult to quantify, and requires further testing and attention in this type of work.23,24   

The methods we built can also be readily modified.  For example, other conditions of interest could be 

incorporated by collecting additional images and retraining our classifier, which can be done quickly 

using the code we provide.   

Finally in relation to the classifier, one concern about neural network and related methods is that they are 

a “black box” that is opaque to human intuition or explanation.  Our attribution methods show that one 

can – to an extent – correlate which features are important for the computer classifier to make decisions.  

This was useful during the classifier building process to ensure that pixels were weighted in what would 

be considered a logical fashion.  This is not dissimilar to how a human might identify which condition a 

person has.  That is, the human may pay more attention to certain, informative features, such as the shape 

of a skin lesion, or the angle of a bone on an x-ray, or the existence of an affected family member, to 

decide which condition might be most likely to affect a person.  One of the skills physicians pick up 

during their career is knowing which features deserve attention, and which are less important.  Using 

computer-based attribution methods can similarly help understand which features a model uses.   

We also aimed to show how assembling and analyzing datasets via neural networks could be used beyond 

classification.  For example, as mentioned above, creating new images could be useful for educational 

purposes, including to ensure that more images would be available regarding how conditions can appear 
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in individuals of diverse ancestries.  Our images, on expert assessment, appear to be realistic 

representations.  However, this again demands further study, as approaches like style-mixing could 

inadvertently introduce or ignore differences due to factors that impact how a condition may manifest in a 

certain population.  Separately, the morphing techniques may help depict the prognosis of a condition.  

This could be also useful for the education of patients and clinicians or could be a valuable adjunct (when 

coupled with highly accurate computer-based measurements) for clinical trials.   

While our work provides novel insights into the use of advanced computational approaches in the study of 

rare diseases, our study does have limitations.  In collecting a large enough dataset, we were reliant on 

publicly available images and information.  While our clinical team vetted each image, it is possible that 

some of our data was inaccurate.  For example, it is possible that some depicted images were from a 

patients with more than one genetic condition,25 which could complicate the phenotype.  The genetic 

conditions analyzed can have genetic heterogeneity (can occur due to different genetic causes) or can 

involve distinct genotype-phenotype correlations.  As we treated each condition collectively (as a single 

entity), we were not able to parse out unique attributes to a given genetic variant or subset of a given 

condition.  Additionally, our approach did not account for possible overlaps between the conditions, such 

as might occur in the two RASopathies: NF1 and ML.  As our major focus of our approach is to build 

methods that can be useful with smaller datasets, our accuracy was not as high as it would be with a larger 

dataset.  We anticipate that as publicly available data sets are established for rare diseases, coupled with 

our methods, work in this area will approach the accuracy of that described for more common conditions. 

Our work with morphing and style-mixing is highly exploratory.  We plan to study how these and other 

techniques can aid healthcare practitioners in their practices.  Lastly, we compared our classifier to two 

types of physicians, clinicians who most frequently encounter these types of conditions collectively.  

However, other clinicians may have different (better or worse) abilities to classify some conditions. For 

example, dermatologists, family practitioners, neonatologists, neurologists, and other specialists may 

yield different results.  The point of our classification comparison was not to devise a head-to-head 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.21255123doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255123


14 

 

competition, but rather to use our approaches to illustrate and explore the utility of advanced analytics in 

rare genetic diseases. 
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Figure Legends 

Figure 1. Example panoramic and focused images for each pair of conditions.  Top row, from left to 

right: Hypomelanosis of Ito (HMI), Incontinentia Pigmenti (IP), McCune-Albright Syndrome (MA).  

Bottom row, from left to right: Neurofibromatosis Type 1 (NF1), Noonan Syndrome with Multiple 

Lentigines (ML; formally known as LEOPARD syndrome), Tuberous sclerosis Complex (TSC).  See 

Supplemental Table 1 for more details on these conditions.  Image sources (all used with appropriate 

permissions; see Supplemental data for permissions):  

HMI: https://casereports.bmj.com/content/12/4/e227693;   

IP: https://www.researchgate.net/figure/X-linked-Incontinentia-pigmenti-Pattern-type-1a-Blaschko-lines-

narrow-bands_fig3_257074473;  

MA: https://www.researchgate.net/figure/Representative-Cafe-au-lait-Spots-Seen-in-McCune-Albright-

Syndrome-A-spectrum-of-spots_fig4_225077911;  

ML: https://pmj.bmj.com/content/94/1116/605; 

NF1: https://www.sciencedirect.com/science/article/pii/S1578219016300853; 

TSC: https://www.sciencedirect.com/science/article/pii/B9780444627025000068?via%3Dihub  
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Figure 2A.  Performance of physicians compared to deep learning classifier.  We trained two 

classifiers, one on focused images and the other on panoramic images.  We compared the performance of 

the classifiers to that of pediatricians and medical geneticists.  In the box plots, each point represents the 

accuracy difference between the classifier and the human performance for a single survey. The red line 

indicates the baseline accuracy for the classifier. 

Figure 2B. Confusion matrix comparing our classifier (right) versus the two different clinician types 

(middle and left) for classification of focused images.  Rows represent the correct label, while columns 

represent the label chosen by the classifier or the clinicians.  The diagonal numbers represent the percent 

accuracy for each category (the percentage of time the correct label was identified), while the off-diagonal 

numbers represent misclassifications, with the number corresponding to the percentage of time the label 

for a given image type was ascribed to another, incorrect category. 

Figure 2C. Confusion matrix comparing output of classifier versus the two different types of clinicians 

for classification of panoramic images.  See Figure 2B legend for an explanation of the classifier. 

Figure 3. Attribution images, showing which pixels the classifier weights when “deciding” how to 

categorize.  As shown, the classifier uses pixels involved in the skin finding, but may also use other pixels 

as well.  Our research team examined these attribution methods during stages of classifier training and 

testing in order to determine how to improve performance, such as by incorporating other datasets for 

training, or when adjusting the neural network hyperparameters.  Clockwise, from top left: 

Neurofibromatosis type 1 (NF1); Tuberous Sclerosis Complex (TSC); Noonan syndrome with Multiple 

Lentigines (ML); McCune-Albright syndrome (MA).  Image sources (all used with appropriate 

permissions; see Supplemental data for permissions): 

NF1: https://pubmed.ncbi.nlm.nih.gov/24432075/#&gid=article-figures&pid=fig-2-uid-1 

TSC:  https://pubmed.ncbi.nlm.nih.gov/24143074/#&gid=article-figures&pid=figure-3-uid-2 

ML: https://ars.els-cdn.com/content/image/1-s2.0-S000293431930347X-gr1_lrg.jpg 
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MA: https://www.sciencedirect.com/science/article/pii/S235251261930044X?via%3Dihub#fig1 

Figure 4. Examples of generated images of café-au-lait macules (CALMs) in Neurofibromatosis type 1 

(NF1).  Images, which were generated via a generative adversarial network (GAN),13 and which were felt 

to appear subjectively (by trained genetics clinicians) accurate, can be used for additional purposes, such 

as style-mixing or morphing. 

Figure 5. Examples of disease progression in Neurofibromatosis type 1 (NF1) generated via a generative 

adversarial network (GAN).13 These images show the accumulation of other features beyond café-au-lait 

macules (CALMs) such as cutaneous neurofibromas.  Other features, such as the scapulae in some 

images, are also generated, since training images included features such as these. 

Supplemental Figure 1.  Top row: examples of generated images of café-au-lait macules (CALMs) in 

Neurofibromatosis type 1 (NF1).  Bottom row: examples of generated images of CALMs in McCune-

Albright syndrome (MA).   

Supplemental Figure 2.  Generation of new images to illustrate a potential method to address issues 

related to diversity, especially in smaller datasets.  Rows indicate source images (the styles to be 

transferred over), and columns indicate the target images.  Skin and lesion colors are transferred to the 

source, but the shape of the lesions in the source remained unchanged. If both sources and targets are 

realistic, we can create larger sets of diverse images, which can be useful, but output must be carefully 

checked to ensure that the results are realistic and do not introduce new sources of bias, such as by 

ignoring features that may be more or less frequent in certain populations. 
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