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The stepped wedge design is a type of unidirectional crossover design where cluster units switch from con-
trol to intervention condition at different pre-specified time points. While a convention in study planning
is to assume the cluster-period sizes are identical, stepped wedge cluster randomized trials (SW-CRTs) in-
volving repeated cross-sectional designs frequently have unequal cluster-period sizes, which can impact the
efficiency of the treatment effect estimator. In this article, we provide a comprehensive investigation of
the efficiency impact of unequal cluster sizes for generalized estimating equation analyses of SW-CRTs,
with a focus on binary outcomes as in the Washington State Expedited Partner Therapy trial. Several major
distinctions between our work and existing work include: (i) we consider multilevel correlation structures
in marginal models with binary outcomes; (ii) we study the implications of both the between-cluster and
within-cluster imbalances in sizes; and (iii) we provide a comparison between the independence working
correlation versus the true working correlation and detail the consequences of ignoring correlation esti-
mation in SW-CRTs with unequal cluster sizes. We conclude that the working independence assumption
can lead to substantial efficiency loss and a large sample size regardless of cluster-period size variability
in SW-CRTs, and recommend accounting for correlations in the analysis. To improve study planning, we
additionally provide a computationally efficient search algorithm to estimate the sample size in SW-CRTs
accounting for unequal cluster-period sizes, and conclude by illustrating the proposed approach in the con-
text of the Washington State study.

Key words: Coefficient of variation; Generalized estimating equations; Intraclass correlation co-
efficients; Relative efficiency; Stepped wedge designs; Variable cluster sizes

1 Introduction

The stepped wedge (SW) design is a type of unidirectional crossover design where cluster units switch
from control to intervention condition at different pre-specified time points, or steps (Hussey and Hughes,
2007; Turner et al., 2017). This design has been increasingly adopted in cluster randomized trials (CRTs),
where the unit of randomization is often a group of individuals such as hospitals or clinics (Barker et al.,
2016). In a typical SW-CRT, the intervention is scheduled to be implemented in only a small fraction of
the clusters at each step, which is often logistically more feasible compared to concurrently implementing
the intervention within half of the clusters as in a typical parallel arms CRT design. In addition, SW-CRT
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allows all participating clusters to receive the intervention prior to the end of the study, and may facilitate
study participant recruitment when stakeholders perceive the intervention to be beneficial to the cluster
population (Prost et al., 2015).

Methods for planning SW-CRTs, especially those associated with sample size and power calculations,
have been an active topic for statistical research over the past decades (Hemming et al., 2015; Hooper
et al., 2016; Kasza et al., 2019; Li et al., 2018b; Li, 2020). However, a convention in deriving sample size
formulae is to assume that the number of observations in each cluster-period (referred to as the cluster-
period size) is the same both within and between clusters. This equal cluster-period size assumption, while
operationally convenient for study planning, is often questionable, especially in cross-sectional designs
where different individuals present for health care in each cluster during each period. For example, the
Washington State Expedited Partner Therapy (EPT) trial rolled out an partner therapy intervention in 22
local health jurisdictions (LHJ) over 4 steps, where women attending sentinel clinics in each six-month
time period were tested for chlamydia and Gonorrhea infection (Golden et al., 2015). Figure 1 presents
a cluster-by-period diagram of this study, along with the cluster-period sizes. While the average cluster-
period size is roughly 300, the actual cluster-period sizes range from 17 to 1553 across 22 × 5 = 110
cluster-periods.

While the impact of unequal cluster sizes has been well studied for continuous, binary and count out-
comes in parallel CRTs (Kerry and Bland, 2001; Manatunga et al., 2001; Eldridge et al., 2006; van Breuke-
len et al., 2007; Candel and van Breukelen, 2010; Liu and Colditz, 2018; Li and Tong, 2021a,b), there are
a limited number of studies investigating the impact of unequal cluster sizes in SW-CRTs, all of which
are restricted to continuous outcomes. For example, Kristunas et al. (2017) studied the impact of unequal
cluster sizes in SW-CRTs via simulations and found cluster size imbalances did not lead to notable loss
in power. Martin et al. (2019) designed a series of simulations to study the relative efficiency (RE) of a
linear mixed model treatment effect estimator under equal versus unequal cluster sizes. They concluded
that the median RE is smaller in SW-CRTs compared to parallel CRTs, while the variation of RE can be
substantially larger in SW-CRTs. Assuming a more general linear mixed model, Girling (2018) developed
an analytical formula for RE in SW-CRTs when the randomization is stratified by cluster size. Harrison
et al. (2019) proposed analytical formulae as a function of the mean and variance of the cluster size based
on the Hussey and Hughes (2007) linear mixed model for efficient sample size determination in SW-CRTs.
Matthews (2020) considered optimal SW-CRTs that achieve the smallest variance of the treatment effect
estimator under unequal cluster sizes. Despite these efforts, there is currently limited empirical evidence
for the RE in SW-CRTs with binary outcomes, whereas binary outcomes are of interest in the Washington
State EPT trial, and are also fairly common according to the systematic review by Barker et al. (2016).
Furthermore, the sample size formulae developed for continuous outcomes in SW-CRTs can lead to inac-
curate approximations when the outcomes are binary, even under equal cluster sizes (Zhou et al., 2020).
Therefore, new sample size procedures that explicitly account for the mean-variance relationship of binary
outcomes as well as unequal cluster sizes are needed.

Generalized linear mixed models and marginal models represent two mainstream approaches for an-
alyzing SW-CRTs with binary outcomes. Because SW-CRTs are often used in health care research to
inform policy decisions, marginal models, which carry a population-averaged interpretation, may be pre-
ferred (Drum et al., 1993; Preisser et al., 2003; Li et al., 2018b) Additional advantages of marginal models
for analyzing SW-CRTs were summarized in Li et al. (2021). In this article, we aim to study the impact of
unequal cluster sizes for marginal model analysis of SW-CRTs such as the Washington State EPT study,
with the purpose to inform study planning. Several major distinctions between our work and existing work
on unequal cluster sizes for SW-CRTs (Kristunas et al., 2017; Martin et al., 2019; Girling, 2018; Harrison
et al., 2019) include (i) we consider multilevel correlation structures in the context of binary outcomes aris-
ing from SW-CRTs, including the nested exchangeable and the exponential decay structure (Kasza et al.,
2019; Li et al., 2021); while most previous efforts restrict to continuous outcomes with an overly simplified
exchangeable correlation structure; the limitations of the exchangeable correlation structure for SW-CRT
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Figure 1 The cluster-by-period diagram for the Washington State Expedited Partner Therapy (EPT) trial.
Local health jurisdictions (LHJ) are the clusters in this trial. Each cell represents a cluster-period along
with its cluster-period size. The blue color and green color indicate the control and intervention condition,
respectively.
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applications have been pointed out by Taljaard et al. (2016) and Li et al. (2020); (ii) we study the impli-
cations of both the between-cluster and within-cluster imbalances in sizes, as opposed to previous efforts
that exclusively focus on the between-cluster variability; and (iii) we provide a comparison between the
independence working correlation and the true working correlation and study the consequence of ignoring
correlation estimation in SW-CRTs with unequal cluster sizes. GEEs with independence working correla-
tion structure has been studied, for example, in Wang (2019) for designing SW-CRTs, and in Thompson
et al. (2020) for analyzing SW-CRTs. Although the independence working assumption offers computa-
tional convenience and simplicity, we will show that it can lead to dramatic efficiency loss in SW-CRTs
with unequal cluster sizes. Finally, we also introduce a computationally efficient Monte Carlo approach to
estimate the sample size for SW-CRTs with binary outcomes with unequal cluster sizes.
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The outline of this paper is as follows. Section 2 reviews the individual-level and cluster-period-level
generalized estimating equations (GEE) methods used to estimate treatment effect parameter in SW-CRTs
with binary outcomes. Section 3 defines the RE of unequal versus equal cluster-period sizes for treatment
effect estimation, and introduces a special result on RE under a three-period SW design. Section 4, 5 and
6 present our simulation design and results on RE in SW-CRTs. We provide a Monte Carlo sample size
method and demonstrate its application to our motivating trial in Section 7. Section 8 summarizes the key
observations and discusses connections between this article and the previous works.

2 Marginal models for stepped wedge designs with binary outcomes

2.1 Marginal model with individual-level observations

We consider a cross-sectional SW-CRT with I clusters and J periods, where different sets of individuals
are included in each period and their outcome measurements are taken at the end of that period. Let yijk be
the binary outcome of individual k = 1, . . . , nij from cluster i = 1, . . . , I during period j = 1, ..., J . We
assume a complete design so that outcomes are taken for all individuals in each period (Hemming et al.,
2015). Let µijk be the marginal mean outcome; the marginal model for an SW-CRT was studied in Li et al.
(2018b); Ford and Westgate (2020) and relates the marginal mean to the period effect and treatment via the
following generalized linear model

g(µijk) = βj +Xijδ (1)

where g is a link function, βj is the j-th time effect describing the secular trend, Xij is the treatment
indicator that equals to 1 if cluster i receives treatment during period j and 0 otherwise, and δ denotes the
treatment effect of interest. For example, if g is chosen as the identity link, model (1) is a linear probability
model and δ measures the time-adjusted risk difference; if g is chosen as the log link, model (1) is a log-
binomial model and exp(δ) is interpreted as the time-adjusted relative risk; and if g is the canonical logit
link, then model (1) is a logistic model and exp(δ) is interpreted as the time-adjusted odds ratio.

Because outcomes in a SW-CRT are correlated within each cluster, appropriate within-cluster corre-
lation structures are required to characterize their covariance. We consider two multilevel correlation
structures developed for cross-sectional SW-CRTs: the nested exchangeable (NEX) correlation structure
(Li et al., 2018b) and the exponential decay (ED) correlation structure (Kasza et al., 2019; Li et al., 2021).
Both correlation structures distinguish between the within-period and between-period intraclass correlation
coefficients (WP-ICC and BP-ICC) compared to the simple exchangeable correlation structure (Hussey and
Hughes, 2007) and has been considered to be more realistic (Taljaard et al., 2016; Li et al., 2020). Under
the NEX correlation structure, we define α0 as the WP-ICC that measures the correlation between two
outcomes from different individuals within the same cluster-period, i.e., corr(yijk, yijk′) = α0 for k 6= k′.
Further, we define the α1 as the BP-ICC that measures the correlation between two outcomes from two dif-
ferent cluster-periods, i.e., corr(yijk, yij′k′) = α1 for j 6= j′, k 6= k′. Under the ED correlation structure,
the WP-ICC is still defined as α0, whereas the BP-ICC is allowed to exponentially decay over time, i.e.,
corr(yijk, yij′k′) = α0ρ

|j−j′| for j 6= j′, k 6= k′ given the decay parameter ρ ∈ [0, 1]. In matrix notation,
if we write Yi = (yi11, yi12, . . . , yiJ,niJ

)T as the collection of outcomes in cluster i ordered by period, the
NEX correlation structure is given by

corr(Yi) = Ri(αNEX) = (1− α0)Ini + (α0 − α1)⊕Jj=1 Jnij
+ α1Jni

,

where αNEX = (α0, α1)T , Is is the s× s identity matrix, Js is the s× s matrix of ones, ni =
∑J
j=1 nij is

the i-th cluster size, and ‘⊕’ is the block diagonal operator. With arbitrary cluster-period sizes, there exists
a closed-form inverse of the NEX correlation matrix. We derive the explicit expression in Web Appendix
A, which generalizes an earlier expression derived by Li et al. (2019) for J = 2. On the other hand, the
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ED structure is given by

corr(Yi) = Ri(αED) = (1− α0)Ini + α0 {Jni ∗ F(ρ)} ,

where αED = (α0, ρ)T , F(ρ) is the J×J first-order auto-regressive (AR-1) correlation matrix, ‘∗’ denotes
the Khatri-Rao product operator (Khatri and Rao, 1968) applied on each nij × nij′ block of Jni and each
scalar element of F(ρ). Unlike the NEX structure, a closed-form inverse of the ED correlation matrix is
not available. Of note, the simple exchangeable correlation structure implied by the Hussey and Hughes
(2007) model is obtained when α1 = α0 under the NEX structure or ρ = 1 under the ED structure.

Generalized estimating equations (Liang and Zeger, 1986) are often used to estimate the treatment
effect parameter δ in marginal model (1). Defining µi = (µi11, µi12, . . . , µiJ,niJ

)T as the collection of
marginal means in cluster i and mean model regression parameter θ = (β1, . . . , βJ , δ)

T , then the GEE
with individual-level observations is written as

U(θ) =
I∑
i=1

DT
i M̃−1

i (Yi − µi(θ)), (2)

where Di = ∂µi/∂θ
T , M̃i = A

1/2
i R̃iA

1/2
i is the working variance, with Ai = diag{νi11, νi12, . . . , νiJ,niJ

},
νijk = µijk(1 − µijk), and R̃i as the working correlation model. When the working independence as-
sumption is adopted and R̃i = Ini

, the working correlation is misspecified when the truth is otherwise,
either NEX or ED in the current study, but δ̂ is still a consistent estimator of the treatment effect (Liang
and Zeger, 1986). In this case, the large-sample variance of δ̂ can be obtained as the (J + 1, J + 1)-
th element of the sandwich variance matrix Σ−11 Σ0Σ

−1
1 , where Σ−11 = (

∑I
i=1 DT

i M̃−1
i Di)

−1 and
Σ0 =

∑I
i=1 DT

i M̃−1
i cov(Yi)M̃

−1
i Di. Alternatively, when R̃i = corr(Yi) ∈ {Ri(αNEX),Ri(αED)}

and the correlation structure is correctly specified, M̃i = cov(Yi) and the large-sample variance of δ̂
can be obtained as the (J + 1, J + 1)-th element of the model-based variance matrix Σ−11 . Details of
the individual-level GEE approaches that simultaneously estimates θ and ICC parameters were developed
elsewhere (Prentice, 1988; Preisser et al., 2008; Li et al., 2018b; Li, 2020). The left column of Table 1
provides example matrix representations of different working correlation models, R̃i, for a hypothetical
cluster with 3 periods.

2.2 Marginal model with cluster-period means

While the marginal model (1) provides a good basis for the design and analysis of SW-CRTs with binary
outcomes, the GEE procedure based on (2) may be computationally intensive as one needs to invert Mi and
Ri, which may have quite sizable dimensions as in Figure 1. To circumvent computationally challenges, Li
et al. (2021) proposed a cluster-period GEE approach. Specifically, we define the vector of cluster-period
means as

Yi = (Y ij , . . . , Y iJ)T =

(
1

ni1

ni1∑
k=1

yi1k, . . . ,
1

niJ

niJ∑
k=1

yiJk

)T
and the marginal mean of Yi as µi = (µi1, ..., µiJ)T . Then the individual-level marginal mean model (1)
can be equivalently represented by

g(µij) = βj +Xijδ, (3)

where βj and δ can preserve their original interpretations. The cluster-period GEE is then represented as

U(θ) =
I∑
i=1

D
T

i Ṽ−1i (Yi − µi) (4)
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Table 1 Examples of the working correlation matrix for the individual-level observations (left column)
and the corresponding cluster-period-level working covariance matrix (right column) under the indepen-
dence (IND), nested exchangeable (NEX) and exponential decay (ED) working assumptions. The illustra-
tion is based on a stepped wedge trial with J = 3 periods and (ni1, ni2, ni3) = (2, 2, 3) observations for
cluster i with Yi = (yi11, yi12, yi21, yi22, yi31, yi32, yi33)T .

R̃i = corr(Yi) Ṽi = var(Yi)

IND



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


 νi1

2
0 0

0 νi2
2

0
0 0 νi3

3



NEX



1 α0 α1 α1 α1 α1 α1

α0 1 α1 α1 α1 α1 α1

α1 α1 1 α0 α1 α1 α1

α1 α1 α0 1 α1 α1 α1

α1 α1 α1 α1 1 α0 α0

α1 α1 α1 α1 α0 1 α0

α1 α1 α1 α1 α0 α0 1


 νi1

2
(1 + α0)

√
νi1νi2α1

√
νi1νi3α1√

νi1νi2α1
νi2
2

(1 + α0)
√
νi2νi3α1√

νi1νi3α1
√
νi2νi3α1

νi3
3

(1 + 2α0)



ED



1 α0 α0ρ α0ρ α0ρ2 α0ρ2 α0ρ2

α0 1 α0ρ α0ρ α0ρ2 α0ρ2 α0ρ2

α0ρ α0ρ 1 α0 α0ρ α0ρ α0ρ
α0ρ α0ρ α0 1 α0ρ α0ρ α0ρ
α0ρ2 α0ρ2 α0ρ α0ρ 1 α0 α0

α0ρ2 α0ρ2 α0ρ α0ρ α0 1 α0

α0ρ2 α0ρ2 α0ρ α0ρ α0 α0 1


 νi1

2
(1 + α0)

√
νi1νi2α0ρ

√
νi1νi3α0ρ2√

νi1νi2α0ρ
νi2
2

(1 + α0)
√
νi2νi3α0ρ√

νi1νi3α0ρ2
√
νi2νi3α0ρ

νi3
3

(1 + 2α0)



where Di = ∂µi/∂θ
T and Ṽi is the working covariance matrix for the cluster-period mean Yi, which

is only of dimension J × J . In particular, the working variance Ṽi depends on the variance function,
cluster-period sizes as well as the working correlation structure. In parallel to Section 2.1, if R̃i = Ini and
the independence working assumption is adopted, then Vi = diag{νi1/ni1, . . . , νiJ/niJ}, where νij =
µij(1−µij). Because the independence working correlation model is likely misspecified, the large-sample
variance of δ̂ is obtained as the (J + 1, J + 1)-th element of the sandwich variance matrix Σ

−1
1 Σ0Σ

−1
1 ,

where Σ
−1
1 = (

∑I
i=1 D

T

i Ṽ−1i Di)
−1 and Σ0 =

∑I
i=1 D

T

i Ṽ−1i cov(Yi)Ṽ
−1
i Di. On the other hand, if the

working correlation structure is the NEX or ED structure, the j-th diagonal element of Ṽi is var(Y ij) =

νij{1 + (nij − 1)α0}/nij . Furthermore, the (j, j′)-th off-diagnal element of Ṽi is cov(Y ij , Y ij′) =
√
νijνij′α1 under the NEX correlation structure, and cov(Y ij , Y ij′) =

√
vijvij′α0ρ

|j−j′| under the ED
correlation structure. In these cases, if the working correlation model is also correctly specified, then the
large-sample variance of δ̂ is obtained as the (J + 1, J + 1)-th element of the model-based variance matrix
Σ
−1
1 . In particular, the cluster-period GEE approach for simultaneously estimating θ and ICCs based on

cluster-period means was developed in Li et al. (2021). The right column of Table 1 provides example
matrix representations of different working variance models, Ṽi, for a hypothetical cluster of 3 periods.

For numerically evaluating RE for marginal analyses of SW-CRTs under unequal cluster sizes, we will
make use of the following Theorem 2.1 established in Li et al. (2021).

Theorem 2.1 (Li et al., 2021) With the same choice of working correlation model R̃i (independence,
nested exchangeable or exponential decay) and compatible marginal mean models (1) and (3), the individual-
level GEE and the cluster-period GEE have the same model-based variance and the sandwich variance,
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even under unequal cluster-period sizes. In other words, Σ0 = Σ0, and Σ1 = Σ1, regardless of the
cluster-period size distribution.

Theorem 2.1 shows that there is no loss of asymptotic efficiency by replacing the individual-level GEE
with the cluster-period GEE under unequal cluster-period sizes, and doing so simplifies the computation of
RE for estimating δ. For this reason, we will define RE in Section 3 based on the cluster-period GEE. As
will be seen in due course, the computation associated with the cluster-period GEE is much faster given we
only need to invert a J × J matrix Ṽi rather than the (

∑J
j=1 nij)× (

∑J
j=1 nij) matrix Mi. This insight

also motivates the computationally efficient Monte Carlo sample size approach for SW-CRTs with binary
outcomes in Section 7.

3 Relative efficiency of unequal versus equal cluster sizes

We define RE as the relative variance of the treatment effect estimator based on the cluster-period GEE
under unequal versus equal cluster sizes. For equal cluster sizes, we only consider the scenarios where all
cluster-period sizes are equal. For unequal cluster size scenarios, we consider two types of cluster-period
size variability: (i) the cluster-period sizes are the same within each cluster, but differ across clusters
(between-cluster imbalance) and (ii) the cluster-period sizes are different both within each cluster and
across clusters (between-within-cluster imbalance). Let Ωequal denote a design with equal cluster sizes,
and Ωunequal denote a design with unequal cluster-period sizes. The RE of equal to unequal cluster sizes is
written as

RE(δ̂) =
var(δ̂|Ωequal)

var(δ̂|Ωunequal)
, (5)

where the variance of δ̂ can be the model-based or sandwich variance, depending on the choice of the
working correlation structure. With a continuous outcome and identity link function, the asymptotic vari-
ances of the treatment effect estimator based on GEE and linear mixed model coincide (Li et al., 2018b),
and the analytical results on RE developed in Girling (2018) can be applied. However, binary outcomes
have an explicit mean-variance relationship and therefore generally prohibit an analytical derivation of a
scalar variance expression. Therefore, we will numerically study the trends and magnitude of RE under a
variety of design configurations in Section 4, 5 and 6.

While a simple analytical expression for RE is intractable with binary outcomes, we are able to obtain an
interesting result on RE under the basic three-period design, when the treatment effect is estimated under
working independence assumption. We summarize the result in Theorem 3.1, with the detailed derivations
in Web Appendix B.

Theorem 3.1 In a stepped wedge design with three time periods and hence two treatment sequences,
if the true correlation structure is either nested exchangeable or exponential decay, the sandwich variance
of the cluster-period GEE estimator δ̂ assuming working independence is given in closed-form by

var(δ̂|Ωunequal) =
(b21e− 2b21be1 + b2e1)α0 + b1b

2 − b21b
(b1b− b21)2

(6)

where b =
∑I
i=1 νi2ni2, b1 =

∑I
i=1Xi2νi2ni2, e =

∑I
i=1 vi2ni2(ni2 − 1), e1 =

∑I
i=1Xi2νi2ni2(ni2 − 1),

and νij = µij(1−µij) is the variance function for binary outcomes. Further, variance (6) does not involve
the BP-ICC, nor any information from the first or third periods.

Theorem 3.1 suggests that the variance of the treatment effect estimator obtained from the independence
GEE only depends on the cluster sizes and marginal variance of the outcome in the second period in a
three-period design. This result is intuitive because all clusters receive the same intervention during the
first and third period and there is no effective information for a between-cluster comparison, whereas the
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independence GEE heavily relies on between-cluster comparisons. Furthermore, assuming equal cluster-
period sizes, we can obtain var(δ̂|Ωequal) by setting ni2 = n for all i in (6). Because both var(δ̂|Ωunequal)

and var(δ̂|Ωequal) depend on the correlation structure only through α0, the RE under the independence
working assumption does not vary as a function of α1 (under the NEX structure) or ρ (under the ED
structure). This RE is also unaffected by any changes in cluster-period sizes during the first and third
periods. Collectively, these observations suggest that the RE under the independence working assumption
in a three-period design is invariable to correlation decay.

While Theorem 3.1 is simple and intuitive, it does not easily extend to cases where the working cor-
relation structure is correctly specified as the NEX or ED structure, nor where there are more than three
periods. This is due to the challenge of analytically inverting an unstructured J × J matrix for J ≥ 4. In
what follows, we will numerically evaluate the RE under a wide range of design configurations represent-
ing more general cases.

4 Simulation design

For binary outcomes, we investigate RE defined in (5) under standard and complete stepped wedge designs,
where an equal number of clusters transition from control to intervention at each step. We consider two
types of true correlation structures: NEX and ED, defined in Section 2. We study RE assuming a correctly
specified working correlation structure as well as an incorrectly specified independence working correla-
tion structure (IND). In the former case, var(δ̂|Ωunequal) and var(δ̂|Ωequal) are given by the model-based
variance, whereas in the latter case, var(δ̂|Ωunequal) and var(δ̂|Ωequal) are given by the sandwich variance.
Other design factors we consider include number of clusters I , number of periods J and the degree and
type of cluster size variability; other model factors we consider include the true mean model coefficients
determining the baseline prevalence, secular trend and the treatment effect, as well as the true ICC param-
eters αNEX and αED for the respective true correlation structures. For each parameter combination, we will
simulate two designs: one with equal cluster sizes, Ωequal, and one with unequal cluster sizes, Ωunequal, and
numerically compute RE. The distributions of RE are then summarized across 1000 simulation runs. We
follow Martin et al. (2019) and obtain the median and interquartile range (IQR) of REs for each scenario.
We focus on the median and IQR to minimize the undue influence of extreme values. Source code to
reproduce the simulation results is available as Supporting Information on the journal’s web page.

We consider number of clusters, I ∈ {12, 24, 48, 96}, with I = 24 resembling the Washington State
EPT trial. We consider J ∈ {3, 5, 13} periods such that I is divisible by the number of steps J − 1. For
example, when I = 24 ad J = 13, we assume I/(J − 1) = 2 randomly selected clusters switch from
control to intervention during each post-baseline period.

To simulate unequal cluster sizes, we first consider the simplified scenario with only between-cluster
imbalance, but homogeneous cluster-period sizes within each cluster. To do so, we assume ni1 = . . . =
niJ = ni for each cluster i, and generate ni ∼ Gamma(shape = CV−2, rate = n−1CV−2), where
n = E(ni) is the mean cluster-period sizes and CV is the coefficient of variation. We focus on n = 100;
results for n ∈ {50, 300} are discussed in Section 5.5. The between-cluster imbalance is measured by
CV ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5}; these values were also explored in Martin et al. (2019) and Harrison
et al. (2019) for continuous outcomes under simpler correlation structures. For computational stability,
we round each ni to the nearest integer and set 5 as the lower bound. To ensure better comparability
between the two designs, Ωunequal and Ωequal, we scaled the simulated cluster-period sizes proportionally
such that the total number of observations across all cluster-periods is IJn. This procedure minimizes the
difference in total sample size between Ωequal and Ωunequal, which then guarantees the difference between
the variance of estimated treatment effect under various designs is only attributable to the variability in
cluster sizes rather than total sample size.
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We further consider between-within cluster imbalance by allowing the cluster-period size to vary within
each cluster. Conditional on the simulated mean cluster-period sizes ni, we generate the actual cluster-
period sizes (ni1, . . . , niJ) from a truncated multinomial distribution with number of trials ni =

∑J
j=1 nij

and a pre-specified probability vector (p1, ..., pJ), where
∑J
j=1 pj = 1. The truncated multinomial dis-

tribution is used to ensure the smallest cluster-period size is at least 2. The following four different spec-
ifications of (p1, ..., pJ) represent four different recruitment patterns that lead to unequal cluster-period
sizes:

1. Constant: p1 = p2 = . . . = pJ . This pattern assumes the absence of any systematic variation of
cluster-period sizes for each cluster; any variation in cluster-period sizes is only due to chance in
balanced multinomial sampling;

2. Monotonically increasing: p1 < p2 < . . . < pJ . This pattern assumes that there is an increasing
effort in recruitment leading to larger cluster-period sizes at the later time periods. Specifically, we
define a difference parameter d such that pj = p1 + (j − 1) × d with j = 1, . . . , J . With the initial
probability p1 known, d = 2(1− Jp1)/{J(J − 1)};

3. Monotonically decreasing: p1 > p2 > . . . > pJ . This pattern assumes a scenario where recruitment
of patients become more challenging over time and the cluster-period sizes on average decrease at the
later time periods. Operationally, this is done by reversing the corresponding vector obtained under
the monotonically increasing pattern;

4. Randomly permuted: perm{p1 < p2 < . . . < pJ}. A probability vector (p1, ..., pJ) that satisfies the
monotonically increasing pattern is obtained. Then a random permutation of (p1, ..., pJ) is used to
simulate cluster-period sizes for each cluster. This pattern yields a more chaotic and non-monotone
within-cluster imbalance.

When simulating the four patterns of between-within-cluster imbalance, we specify p1 = {0.2, 0.1, 0.05}
for J = {3, 5, 13} respectively. Besides cluster-period sizes nij in the case of unequal cluster sizes, no
other data are simulated considering that Σ0 and Σ1 are computed using analytical calculations.

Finally, we choose several typical model parameters for our evaluation. We assume the logistic marginal
mean model where the baseline prevalence exp(β1)/{1 + exp(β1)} = 0.3, and no true secular trend such
that β1 = . . . = βJ . Results with a smaller baseline prevalence 0.1, increasing or decreasing secular trend
are presented in Section 5.6. We assume the intervention effect exp(δ) = 0.35; results under a smaller
non-null intervention effects are compared with the previous δ = log(0.35) in the same section. For the
true ICC parameters under the NEX or ED correlation structures, we consider the WP-ICC α0 ≤ 0.2,
corresponding to the common range of reported ICCs in CRTs (Murray and Blitstein, 2003; Preisser et al.,
2007; Martin et al., 2016). Under both correlation structures, we consider values of α1 or ρ such that the
BP-ICC is positive and does not exceed the WP-ICC α0. Of note, there are natural restrictions of the range
of plausible correlation parameters based on the marginal mean, and we have ensured that all combinations
of α0, α1 or ρ used in the scenarios do not violate those restrictions. The specific restrictions of correlation
parameters are defined in Qaqish (2003) and re-interpreted under the NEX correlation structure as

max

{
− exp(βj +Xijδ),−

1

exp(βj +Xijδ)

}
≤ α0 ≤ 1, ∀ i, j (7)

max

{
− exp

(
βj + βj′

2
+
Xij +Xij′

2
δ

)
,− exp

(
−βj + βj′

2
− Xij +Xij′

2
δ

)}
≤ α1

≤ min

{
exp

(
βj − βj′

2
+
Xij −Xij′

2
δ

)
, exp

(
−βj − βj

′

2
− Xij −Xij′

2
δ

)}
, ∀ i, j 6= j′.

(8)

Because we specify α0 between 0 and 1, restriction (7) always holds and it is more critical to check (8).
Furthermore, for the ED correlation structure, we modify restriction (8) by replacing α1 with α0ρ

|j−j′|.
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5 Simulation results when the true correlation structure is nested exchange-
able

5.1 Cluster size variability

Figure 2 presents the median and IQR of RE as a function of CV with I = 12 and 96 clusters and J = 5
periods. The WP-ICC, α0, is fixed at 0.05, and three values of BP-ICC, α1 ∈ {0.001, 0.025, 0.05},
are considered. We first focus on the between-cluster imbalance as measured by the CV of the mean
cluster-period sizes ni, and assume no within-cluster imbalance. When the working correlation structure
is correctly specified as NEX, a larger CV leads to a small to moderate efficiency loss for estimating the
treatment effect. For example, when I = 12, the median RE is around 0.85 when α1 = 0.001 and
CV = 1 in Figure 2 (A). The IQR of RE increases as CV becomes larger, suggesting that the RE is more
dispersed over repeated experiments with larger between-cluster imbalance. Similar RE-CV relationships
are observed when the working correlation structure is IND; however, the efficiency loss in estimating the
treatment effect is much more substantial. For example, when I = 12, the median RE drops down to 0.63
when α1 = 0.001 and CV = 1 in Figure 2 (C).

Figure 2 The median and interquartile range (IQR) of relative efficiency (RE) as a function of the coef-
ficient of variation (CV) measuring between-cluster imbalance, when the true correlation model is nested
exchangeable (NEX). Design factors considered are as follows: number of clusters I = 12 and 96, number
of periods J = 5. The within-period intraclass correlation coefficient (WP-ICC) α0 = 0.05, and between-
period intraclass correlation coefficient (BP-ICC) α1 ∈ {0.001, 0.025, 0.05}. The working correlation
structure is either NEX or independence (IND). No within-cluster imbalance is introduced.
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In the presence of between-cluster imbalance, the RE results are further impacted by the introduction of
within-cluster imbalance. Figure 3 presents the counterparts of Figure 2 under the within-cluster imbalance
pattern 4 (randomly permuted). Under the NEX working correlation structure, the RE further decreases and
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appears to be particularly sensitive to within-cluster imbalance when α0 = α1, i.e., there is no correlation
decay between periods. When α1 < α0, the RE results are more robust to within-cluster imbalance, with
only a slightly lower median RE and slightly wider IQR at each CV compared to Figure 2 (A-B). Under
the IND working assumption, the RE, somewhat counter-intuitively, increases after introducing the within-
cluster imbalance when α0 = α1 given a fixed level of between-cluster imbalance or CV. As α1 deviates
from α0, the RE results become insensitive to within-cluster imbalance. This sharp contrast between the
behaviour of RE under different working correlation models is further observed for other within-cluster
imbalance patterns (see Web Figures 1-3). Among the different within-cluster imbalance patterns, pattern
1 (constant) corresponds to slightly larger RE compared to patterns 2-4, while any difference in RE across
patterns 2-4 is negligible.

Figure 3 The median and interquartile range (IQR) of relative efficiency (RE) as a function of coeffi-
cient of variation (CV) measuring between-cluster imbalance, when the true correlation model is nested
exchangeable (NEX). Design factors considered are as follows: number of clusters I = 12 and 96, number
of periods J = 5. The within-period intraclass correlation coefficient (WP-ICC) α0 = 0.05, and between-
period intraclass correlation coefficient (BP-ICC) α1 ∈ {0.001, 0.025, 0.05}. The working correlation
structure is either NEX or independence (IND). Within-cluster imbalance (pattern 4: randomly permuted)
is introduced.
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5.2 Intraclass correlation coefficients

Figure 2 implies that the magnitude of ICCs can affect the median RE of the GEE analysis of stepped
wedge trials due to unequal cluster sizes. To provide additional characterization of the RE-ICC rela-
tionship under the NEX working correlation structure, Figure 4 presents the median RE as a function of
α0 ∈ {0.01, 0.05, 0.1, 0.2} and α1/α0 ∈ [0, 1], across CV ∈ {0.25, 0.75, 1.25} but without within-cluster
imbalance. When the working correlation is correctly specified as NEX, the median RE increases with
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a larger WP-ICC, when the BP-ICC is much smaller than the WP-ICC. However, when the BP-ICC gets
closer to the WP-ICC, this relationship can be reversed. This is partly because the relationship between
median RE and the BP-ICC can be non-monotone. For example, in Figure 4, the median RE increases
monotonically with larger BP-ICCs when the WP-ICC is 0.01. However, when the WP-ICC is at least
0.05, the median RE first sharply decreases and then gradually increases. Both Figure 2 and 4 suggest
that the RE-CV relationship heavily depends on the difference between the WP-ICC and the BP-ICC, or
the amount of correlation decay, α1/α0. For example, when the WP-ICC equals the BP-ICC, namely the
true correlation model is simple exchangeable as implied by the classic Hussey and Hughes (2007) model,
the efficiency loss due to unequal cluster sizes seems minimal. This agrees with the findings in Kristunas
et al. (2017) and Martin et al. (2019), who restricted their investigations to the simple exchangeable corre-
lation model. In general, however, the efficiency loss due to unequal cluster sizes becomes larger when the
BP-ICC deviates from the WP-ICC.

Web Figures 4-7 present the counterparts to Figure 4, with the introduction of the four within-cluster
imbalance patterns. As expected, the median RE becomes smaller when the cluster-period sizes are differ-
ent within each cluster. Of note, the median RE decreases most dramatically when α0 = α1, suggesting
that the simple exchangeable correlation model is most prone to efficiency loss as a result of within-cluster
imbalance, but is relatively robust to between-cluster imbalance.

Figure 5 presents the counterpart of Figure 4 when the working correlation is IND. Different from the
RE-ICC relationship under the NEX working correlation structure, the median RE monotonically decreases
with a larger WP-ICC under the IND working correlation structure. The median RE is also insensitive to
between-period ICC under the working independence assumption. This is not surprising, as in the special
case of J = 3 periods, Theorem 3.1 points out that the distribution of RE is independent of α1. However,
the BP-ICC, α1, plays a more prominent role in determining the RE in the presence of within-cluster
imbalance. For example, Web Figure 8-11 shows that, with different within-cluster imbalance patterns, the
median RE under the IND working structure becomes a mildly increasing function of the BP-ICC α1, for
fixed values of α0.

5.3 Number of clusters

Web Figure 12 presents the counterparts of Figure 2 but with I = 24 and 48. When the working correlation
structure is NEX, we observe a larger number of clusters I leads to a more concentrated distribution of REs.
When α1 is close to α0, or when the true correlation structure is nearly simple exchangeable, the median RE
increases most notably when I increases, indicating that a larger sample size effectively prevents efficiency
loss due to between-cluster imbalance in the absence of between-period correlation decay. The change in
median RE due to larger I , however, is almost negligible as α1 deviates from α0. The same pattern persists
even after the introduction of within-cluster imbalance. On the other hand, the impact of number of clusters
on RE is completely different when the working correlation structure is IND. When I increases from 12 to
96, even though the IQR of RE becomes smaller, the median RE decreases especially when the BP-ICC is
large. This suggests that a larger stepped wedge trial is more susceptible to efficiency loss due to between-
cluster imbalance if it is analyzed by an independence GEE, and when the BP-ICC is not negligible. The
same pattern persists after introducing the within-cluster imbalance, and we conclude that ignoring ICC
estimation induces the greatest efficiency loss when both I and α1 become large.

5.4 Number of periods

Table 2 summarizes the median and IQR of RE as a function of different number of periods J and CV under
two different working correlation specifications, with and without the within-cluster imbalance, when there
are I = 24 clusters (mimicking the Washington State EPT study). For illustration, we choose α0 = 0.05
and α1 = 0.025. We omitted the within-cluster imbalance pattern 3 (monotonically decreasing), because
the RE results are almost identical to those under pattern 2 (monotonically increasing). As long as the
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Figure 4 The median of relative efficiency (RE) as a function of the within-period intraclass correlation
coefficient (WP-ICC) α0 ∈ {0.01, 0.05, 0.1, 0.2} and the ratio of between-period intraclass correlation
coefficient (BP-ICC) to WP-ICC, α1/α0 ∈ [0, 1], when both the true correlation model and the working
correlation model are nested exchangeable (NEX). Design factors considered are as follows: number of
clusters I = 12 and 96, number of periods J = 5, and the degree of between-cluster imbalance is defined
by CV ∈ {0.25, 0.75, 1.25}. No within-cluster imbalance is introduced.
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working correlation is NEX, the number of periods J has negligible effect on the median and IQR of REs.
The results are also not sensitive to within-cluster imbalance. However, when the IND working correlation
structure is considered, although the number of periods has minimum effect on RE with only between-
cluster imbalance, a trial with a longer duration can partially mitigate the efficiency loss in the presence of
additional within-cluster imbalance. The median and IQR of RE can increase substantially with a larger J
under any of the within-cluster imbalance patterns, when there is already moderate to large between-cluster
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Figure 5 The median of relative efficiency (RE) as a function of the within-period intraclass correlation
coefficient (WP-ICC) α0 ∈ {0.01, 0.05, 0.1, 0.2} and the ratio of between-period intraclass correlation
coefficient (BP-ICC) to WP-ICC, α1/α0 ∈ [0, 1], when the true correlation model is nested exchangeable
(NEX) and the working correlation model is independence (IND). Design factors considered are as follows:
number of clusters I = 12 and 96, number of periods J = 5, and the degree of between-cluster imbalance
is defined by CV ∈ {0.25, 0.75, 1.25}. No within-cluster imbalance is introduced.
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imbalance. Web Tables 1 to 3 present the corresponding results with I = 12, 48 and 96 and the conclusions
are identical.

5.5 Cluster-period size

Web Figures 13 and 14 present the counterparts to Figure 4 but with the mean cluster-period sizes n ∈
{50, 300}. As the mean cluster-period size increases from 50 to 300, the median RE under the NEX
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Table 2 Median and interquartile range (IQR) (in parentheses) of relative efficiency (RE) as a function
of periods J , under different degrees of between- and within-cluster imbalance, when the true correlation
model is nested exchangeable (NEX). Number of clusters is I = 24. The within-period intraclass correla-
tion coefficient (WP-ICC) α0 is 0.05, and the within-period intraclass correlation coefficient (BP-ICC) α1

is 0.025. Between cluster imbalance is measured by the coefficient of variation, CV ∈ {0.25, 0.75, 1.25}.
The working correlation structure is either NEX or independence (IND).

Working
J CV No within-cluster Within-cluster Within-cluster Within-cluster

correlation imbalance imbalance pattern 1 imbalance pattern 2 imbalance pattern 4

NEX

3
0.25 0.988 (0.985, 0.991) 0.986 (0.974, 0.996) 0.964 (0.953, 0.975) 0.963 (0.951, 0.975)
0.75 0.901 (0.880, 0.919) 0.888 (0.833, 0.930) 0.864 (0.816, 0.905) 0.862 (0.815, 0.905)
1.25 0.762 (0.724, 0.796) 0.726 (0.648, 0.796) 0.716 (0.640, 0.786) 0.703 (0.622, 0.779)

5
0.25 0.988 (0.986, 0.991) 0.986 (0.977, 0.995) 0.958 (0.949, 0.966) 0.959 (0.949, 0.967)
0.75 0.903 (0.882, 0.920) 0.888 (0.849, 0.923) 0.865 (0.824, 0.898) 0.864 (0.820, 0.905)
1.25 0.765 (0.730, 0.798) 0.725 (0.659, 0.785) 0.705 (0.639, 0.765) 0.708 (0.647, 0.773)

13
0.25 0.989 (0.986, 0.991) 0.985 (0.981, 0.988) 0.975 (0.971, 0.978) 0.977 (0.972, 0.980)
0.75 0.905 (0.886, 0.922) 0.878 (0.851, 0.902) 0.868 (0.841, 0.889) 0.872 (0.847, 0.895)
1.25 0.770 (0.735, 0.802) 0.703 (0.661, 0.744) 0.697 (0.653, 0.741) 0.696 (0.655, 0.741)

IND

3
0.25 0.955 (0.945, 0.964) 0.958 (0.942, 0.972) 0.878 (0.863, 0.892) 0.880 (0.865, 0.896)
0.75 0.721 (0.673, 0.763) 0.767 (0.696, 0.831) 0.693 (0.629, 0.756) 0.700 (0.643, 0.756)
1.25 0.501 (0.440, 0.560) 0.591 (0.508, 0.659) 0.532 (0.464, 0.611) 0.523 (0.453, 0.604)

5
0.25 0.954 (0.937, 0.972) 0.971 (0.944, 0.994) 0.899 (0.878, 0.919) 0.903 (0.881, 0.928)
0.75 0.722 (0.656, 0.776) 0.818 (0.751, 0.887) 0.760 (0.696, 0.816) 0.760 (0.689, 0.824)
1.25 0.502 (0.430, 0.564) 0.639 (0.554, 0.725) 0.593 (0.513, 0.671) 0.593 (0.505, 0.681)

13
0.25 0.953 (0.927, 0.978) 0.987 (0.973, 1.000) 0.975 (0.961, 0.988) 0.973 (0.957, 0.989)
0.75 0.714 (0.641, 0.783) 0.909 (0.866, 0.945) 0.891 (0.847, 0.928) 0.891 (0.851, 0.928)
1.25 0.492 (0.416, 0.573) 0.778 (0.714, 0.839) 0.770 (0.694, 0.832) 0.770 (0.700, 0.825)

working correlation model increase when the WP-ICC is at least 0.05, and decreases when the WP-ICC
is 0.01. This pattern is mostly apparent when the degree of between-cluster imbalance is large (CV =
1.25), or there are a large number of clusters (I = 96). When the within-cluster imbalance patterns are
introduced, we observed similar trends (see Web Figures 15 and 16). Web Figures 17 and 18 present the
counterparts to Figure 5 with mean cluster-period sizes n ∈ {50, 300}. Under the IND working correlation,
the median RE simply decreases as the mean cluster-period sizes increases, signaling additional efficiency
loss under unequal cluster sizes with a larger total sample size. Findings remain the same when within-
cluster imbalance patterns are introduced, as in Web Figure 19 and 20.

5.6 Sensitivity to baseline prevalence, intervention effect and secular trend

As a sensitivity analysis with limited scope, we also explored the impact of other model factors on the
RE under the NEX and IND working correlation structures. We considered a smaller baseline prevalence
{1 + exp(−β1)}−1 = 0.1, a smaller intervention effect OR, {1 + exp(−δ)}−1 = 0.75, and an increasing
or decreasing secular trend. Specifically, we explore a gently increasing secular trend such that

{1 + exp(−βj)}−1 = {1 + 0.2(j − 1)/(J − 1)} × {1 + exp(−β1)}−1, j = 1, . . . , J,

as well as a gently decreasing secular trend such that

{1 + exp(−βj)}−1 = {1− 0.2(j − 1)/(J − 1)} × {1 + exp(−β1)}−1, j = 1, . . . , J.

We did not consider a more dramatic secular trend as a recent re-analysis of the Washington State EPT
trial suggests minimal secular trend (Li et al., 2021) . Web Tables 4 to 11 each present the median and IQR
of RE under a factorial combination of 2 levels of baseline prevalence × 2 levels of intervention effect ×
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3 different secular trends × 3 degrees of between-cluster imbalance (36 cells in total), while holding the
number of clusters constant. Relative to the factors described in the preceding texts, the impact of a smaller
baseline prevalence, a smaller intervention effect or non-constant secular trend generally have negligible
additional impact on the efficiency loss due to unequal cluster sizes, regardless of the specification of
working correlation structures.

6 Simulation results when the true correlation structure is exponential de-
cay

In Web Appendix D, we present the results on RE when the underlying true correlation structure is ED,
in parallel to results elaborated in Section 5. Under the ED correlation structure, we use ρ to measure
the degree of BP-ICC decay, which plays a similar role to α1/α0 under the NEX correlation structure.
Generally, we find that all the observed relationships between RE and key design and model factors are
similar regardless of whether the true correlation structure is NEX or ED. For example, Web Figure 21 and
26 present highly similar RE-CV relationships to those in Figure 2 and 3. Surprisingly, while the exact
value of the asymptotic variances can be quite different when the true correlation structure is NEX versus
ED as studied in Kasza et al. (2019) under equal cluster sizes and with a continuous outcome, the impact
of unequal cluster sizes measured by the median RE can be highly similar across the two true correlation
models in our evaluations with binary outcomes.

7 A Monte Carlo procedure for sample size calculation

The RE of the treatment effect estimator has important implications for designing SW-CRTs. In particular,
our simulation procedure suggests a Monte Carlo power calculation procedure for SW-CRTs with unequal
cluster sizes and binary outcomes. Here we present this procedure as an extension to the sample size
method developed in Li et al. (2018b), which assumes equal cluster-period sizes.

Suppose we are interesting in testing the null H0 : δ = 0 versus the alternative H1 : δ = ∆ for some
target effect size with odds ratio, exp(∆). Conditional on a specific design Ω, for a prescribed type I error
rate ε1 and type II error rate ε2, the required number of clusters based on a t-test to achieve 100(1− ε2)%
power satisfies the following generic inequality

I ≥
(tε1/2,I−2 + tε2,I−2)2σ2(Ω)

∆2
, (9)

where tε,I−2 is the ε-quantile of the t-distribution with I − 2 degree of freedom, and σ2(Ω) = Ivar(δ̂|Ω)
is the scaled variance of the intervention effect estimator. While other choices of the degrees of freedom
are possible, we focus on the I − 2 degrees of freedom because a number of previous simulation studies
indicated adequate control of test size with a small number of clusters (Li, 2020; Ford and Westgate, 2020;
Li et al., 2021). Given ∆, the required number of clusters I is the smallest number such that (9) holds.
Equivalently, (9) can be represented based on the minumum detectable effect size,

|∆| ≥ |tε1/2,I−2 + tε2,I−2|
√

var(δ̂|Ω),

where var(δ̂|Ω) is implicitly a function of I . Therefore, sample size determination boils down to the
determination of σ2(Ω) or var(δ̂|Ω), which can be a complicated nonlinear function of design and model
parameters. Because the scalar expression of var(δ̂|Ω) is generally difficult to obtain with binary outcomes
and unequal cluster sizes, we propose the following Monte Carlo approach to compute the required sample
size for cross-sectional SW-CRTs:
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1. Given an initial choice of number of cluster I0, number of periods J , specify the treatment-by-period
diagram with the desired number of treatment sequences, and number of clusters per sequence. For
the cases that J − 1 is not a divisor of I0, (i.e, the clusters cannot be evenly distributed across the
treatment sequences), one can decide a priori the steps with more clusters crossing over.

2. Given the model parameters including the baseline prevalence, anticipated secular trend, intervention
effect, obtain the prevalence of outcomes for each cluster (per sequence) during each period according
to the marginal mean model, i.e, µij = g−1(βj +Xijδ).

3. Specify the degree of between-cluster imbalance and/or within-cluster imbalance (for example, fol-
lowing the strategies in Section 4), and simulate the cluster-period sizes nij for all I×J cluster-periods
such that the mean cluster-period size equals to n. Each simulation replicate corresponds to a possible
design with unequal cluster sizes, Ωunequal. Repeat this steps for R times, and record each design as
Ω

(r)
unequal for r = 1, . . . , R.

4. Given the assumptions on the ICC parameters, and each simulated design Ω
(r)
unequal, numerically com-

pute σ2(Ω
(r)
unequal). Based on Theorem 2.1, σ2(Ω

(r)
unequal) is the (J + 1, J + 1)-th element of the sand-

wich variance matrix Σ
−1
1 Σ0Σ

−1
1 when independence working correlation structure is used, and is

the (J + 1, J + 1)-th element of the sandwich variance matrix of Σ
−1
1 when the correct NEX or ED

working correlation structure is used.

5. Obtain the mean variance as σ2 = R−1
∑R
r=1 σ

2(Ω
(r)
unequal) and plug it into the Equation (9). Check

to see if I0 satisfies the inequality. If so, then I0 clusters already provides adequate power, and one
can try to see whether a smaller I1 < I0 satisfies the inequality and further reduce the sample size. If
the inequality fails to hold with I0, set I1 = d(tε1,I−2 + tε2,I−2)2σ2∆−2e and repeat the above steps.
This iterative process is repeated until the smallest I is identified to satisfy the inequality in Equation
(9).

In principle, the above Monte Carlo procedure is iterative as the variance of treatment effect estimator
depends on the current number of clusters, and one needs to search for the smallest number of clusters to
provide adequate power. However, because the variance under a specific design σ2(Ω

(r)
unequal) is computed

based on the cluster-period mean model according to Theorem 2.1, we only need to invert J × J matrices
and the computational burden can be dramatically reduced, as evidenced by the feasibility of our simulation
study. Additionally, the computational efficiency of the sample size procedure also depends on appropriate
choice of an initial value I0. For example, one could first assume equal cluster sizes and use the existing
sample size procedure in Li et al. (2018b) to obtain the required number of clusters Iequal, and then set I0 =
Iequal to reduce the iterations needed for convergence. We provide an illustrative sample size calculation
using this approach below.

7.1 Application to the Washington State EPT trial

As shown in Figure 1, the Washington State EPT trial randomized 22 LHJs over 4 steps and 5 periods. This
is a cross-sectional design and the primary outcome was Chlamydia test positivity among women tested
in sentinel clinics (Golden et al., 2015). Based on the cluster-period sizes, the CV of mean cluster-period
sizes within each cluster can be computed as 0.99, which is considerable even in the range of CV tried in
the simulation analysis. Given the set of design and model parameters, we aim to compute the required
number of clusters I such that the trial has 80% power. We assume the mean cluster-period size is n = 305,
as informed by Figure 1. In the absence of intervention, we assume the marginal prevalence of chlamydia
positivity is approximately 7.6% at baseline and no secular trend. This is concordant with the empirical re-
analysis of the Washington State EPT study in Li et al. (2021), which suggested minimum secular trend for
this outcome. To further illustrate potential differences due to assumptions on ICC, we consider the NEX
and ED true correlation structures discussed in Table 1 as well as a simple exchangeable correlation model
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with equal WP-ICC and BP-ICC. For all three correlation structures, we assume the WP-ICC, α0 = 0.007.
Under the NEX and ED correlation structures, we assume α1 = α0/2 = 0.0035 and ρ = 0.7. These
values are informed by the analysis results in Li et al. (2021). Similar to Golden et al. (2015), assuming a
0.05 type I error rate and target effect size in OR of exp(∆) = 0.7, we estimate the required number of
LHJs to achieve at least 80% power. When the estimated I is not divisible by 4, we try to have balanced
an allocation as possible, but prioritize the first and last steps over the middle steps as suggested in Lawrie
et al. (2015) and Li et al. (2018a) for efficiency considerations. To implement our sample size procedure,
we choose the initial value I0 using the equal cluster size method in Li et al. (2018b). We consider four
levels of between-cluster imbalance measured by CV ∈ {0, 0.25, 0.75, 1.25}, as well as three levels of
within-cluster imbalance as introduced in our simulation design. The estimated sample size assuming a
correctly specified working correlation and its counterpart assuming an independence working correlation
(in parentheses) are presented in Table 3. Of note, the Monte Carlo procedure converged in seconds.

Table 3 Estimated number of clusters for the Washington State Expedited Partner Therapy trial as a func-
tion of between-cluster imbalance measured by coefficient of variation (CV) and three different patterns
of within-cluster imbalance, when the true correlation structure is exchangeable, nested exchangeable or
exponential decay. The first number in each cell is the sample size estimate under correctly specified cor-
relation structure, while the number in the parenthesis corresponds to the sample size estimate assuming
working independence.

True correlation structure CV No within-cluster Within-cluster Within-cluster
imbalance imbalance pattern 2 imbalance pattern 4

Exchangeable

0 11 (31) 11 (32) 11 (33)
0.25 11 (33) 12 (33) 12 (33)
0.75 12 (43) 13 (38) 13 (38)
1.25 13 (64) 17 (48) 17 (48)

Nested exchangeable

0 18 (25) 19 (26) 19 (27)
0.25 18 (26) 19 (27) 19 (27)
0.75 20 (34) 21 (32) 21 (32)
1.25 24 (50) 26 (42) 26 (42)

Exponential decay

0 17 (27) 18 (28) 18 (29)
0.25 18 (28) 18 (29) 18 (29)
0.75 19 (37) 21 (34) 21 (34)
1.25 22 (54) 26 (43) 26 (43)

Under the correctly specified working correlation structure, the sample size estimates are reasonably
insensitive to between-cluster imbalance as long as the CV does not exceed 0.75. The patterns for within-
cluster imbalance also have negligible impact on the sample size. Among different working correlation
structures, the exchangeable working structure corresponds to the smallest sample size, which is expected
because Li et al. (2018b) showed that larger BP-ICC generally increases study power. In contrast, if
the independence working correlation is considered, the sample size estimates can be substantially larger
than their counterparts obtained under the correct working correlation structure. This is especially true
when the BP-ICC equals to the WP-ICC. In fact, even with equal cluster-period sizes, the sample size
obtained under the independence working correlation structure is at least three-fold of that obtained un-
der the correctly-specified exchangeable working correlation structure. The sample size estimates under
working independence also rapidly inflate with larger between-cluster imbalance, and appear less robust
to unequal cluster sizes compared to those obtained under the correct correlation model. In the presence
of within-cluster imbalance or when the BP-ICC deviates from the WP-ICC, the sample size estimates
based on independence GEE become smaller. Overall, assuming a correct working correlation model, a
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maximum of 17 LHJs (corresponding to the most extreme imbalance scenario) are needed to ensure 80%
power under the working exchangeable structure. If the true correlation structure is nested exchangeable
or exponential decay, a maximum of 26 LHJs are needed. To conclude, modeling the correlation structure
in this trial protects against dramatic efficiency loss due to unequal cluster sizes, and leads to much smaller
sample sizes compared to assuming working independence.

8 Discussion

In this article, we investigate the RE of the GEE treatment effect estimator under unequal versus equal
cluster sizes in SW-CRTs with binary outcomes. Because all prior studies assumed a linear mixed model
with continuous outcomes, our results complement existing knowledge by exploring the properties and
caveats for marginal analysis of SW-CRTs with binary outcomes. We assume a cross-sectional design as in
the Washington State EPT study, and consider two popular multilevel correlation structures: the nested ex-
changeable and exponential decay structures. Both correlation structures include the simple exchangeable
structure (e.g. as implied by the Hussey and Hughes (2007) model) as a special case, but are considered
more realistic (Taljaard et al., 2016).

The main message of our simulation findings can be summarized as follows. First, the GEE analy-
sis with the correct working correlation structure is much less prone to efficiency loss under between-
cluster imbalance compared to the independence GEE, whose RE sharply decreases with a larger degree
of between-cluster imbalance. Second, the RE of GEE analysis with the true working correlation structure
critically depends on the magnitude of the WP-ICC as well as the amount of BP-ICC decay from WP-ICC.
In particular, when BP-ICC equals WP-ICC, the efficiency loss due to between-cluster imbalance is min-
imal but can be larger when within-cluster imbalance is introduced. However, the efficiency loss due to
between-cluster imbalance becomes more notable once BP-ICC deviates from WP-ICC. The statement in
Kristunas et al. (2017) that “(between-cluster) imbalance in cluster size was not found to have a notable
effect on the power of SW-CRTs” belies the dependence of RE on ICC as they assumed the random inter-
cept linear mixed model Hussey and Hughes (2007), where BP-ICC equals WP-ICC. Third, the RE of the
independence GEE estimator is particularly sensitive to values of WP-ICC. Values of the BP-ICC does not
substantially affect the RE of the independence GEE, except with the introduction of within-cluster imbal-
ance. This finding is expected given our analytical result in Theorem 3.1 for three-period designs. More
intuitively, the independence GEE analysis heavily depends on between-cluster comparisons (or “vertical
analysis” as defined in Matthews and Forbes (2017)) instead of within-cluster comparisons (or “horizon-
tal analysis”), and therefore its variability is more dependent on the WP-ICC than the BP-ICC. Fourth,
whereas a larger SW-CRT with more clusters and larger mean cluster-period sizes generally has a small
effect on the RE of GEE analysis when the working correlation structure is correctly specified, a larger
SW-CRT is associated with greater efficiency loss due to between-cluster imbalance for independence
GEE. Finally, while the number of periods has minimum effect on the RE of the GEE analysis when the
working correlation structure is correctly specified, the RE of the independence GEE estimator increases
with a larger number of periods as long as there is within-cluster imbalance. We checked to confirm that
introducing within-cluster imbalance in our simulation configuration can somewhat reduce the between-
cluster imbalance within each period (even though maintaining the overall between-cluster imbalance on
mean cluster-period sizes), and therefore improves the stability of vertical analysis which is the dominating
component of the independence GEE.

While we have mainly focused on the RE of GEE analysis under unequal versus equal cluster sizes,
there remains interest in understanding the RE of GEE analysis under the true versus independence working
correlation model in SW-CRTs with binary outcomes. This is defined by

REw =
var(δ̂|R̃i = corr(Yi))

var(δ̂|R̃i = Ini)
,
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which is strictly below one unless all ICC parameters are zero. In the context of the Washington State EPT
study, Table 3 implies that REw can substantially deviate from one even with a small WP-ICC. To provide
a more complete perspective, in Web Appendix E, we present REw as a function of ICC parameters under
equal cluster-period sizes. Evidently, REw is a monotonically decreasing function of both WP-ICC and BP-
ICC, and the efficiency loss due to the incorrect working independence assumption becomes maximum
when WP-ICC equals BP-ICC. These findings on REw re-interpret those of Mancl and Leroux (1996);
Wang and Carey (2003) in the context of SW-CRTs, and confirm the notable efficiency loss under the
independence GEE for estimating the regression coefficient of a covariate that varies within clusters. This
is in contrast to parallel CRTs, where there can be no efficiency loss for independence GEE with equal
cluster sizes (Pan, 2001; Li and Tong, 2021a,b). From the efficiency perspective, our results favor the
GEE analysis coupled with an appropriate working multilevel correlation structure in SW-CRTs, possibly
through the matrix-adjusted estimating equations (MAEE) approach developed in Preisser et al. (2008),
and Li et al. (2018b, 2019, 2021). The MAEE approach has been validated in previous simulations with
SW-CRTs, and is recently implemented in the geeCRT R package. Relatedly, reporting ICC estimates
is also recommended practice in SW-CRTs per the CONSORT extension to SW-CRTs (Hemming et al.,
2018), as those values provide evidence for designing future trials with a similar endpoints.

To assist with sample size determination in SW-CRTs with unequal cluster sizes, we further developed
a Monte Carlo search algorithm in Section 7. This approach is computationally efficient since it only
requires numerical inversion of J × J matrices regardless of the actual cluster-period sizes (Theorem 2.1).
Alternatively, for sample size calculation, Girling (2018) suggested (1 + CV2) as a conservative variance
inflation factor due to between-cluster imbalance in SW-CRTs. In our simulations with binary outcomes,
we find in Web Appendix F that (1 + CV2)−1 can be substantially smaller than the median RE under a
correct working correlation model, and therefore the variance inflation factor remains highly conservative.
However, when the independence working assumption is adopted, (1 + CV2)−1 is still lower than but
much closer to the median RE curve, regardless of the ICC parameters. This comparison confirms that
(1 + CV2) may be a crude upper bound for variance inflation due to unequal cluster sizes for GEE analysis
of SW-CRTs with binary outcomes, and underscores the utility of our sample size search algorithm for
more accurate sample size determination.

There are a few limitations of our study. First, while our evaluations assumed that the independence
working correlation structure is misspecified in SW-CRTs, we have not investigated the efficiency implica-
tions when the exchangeable, nested exchangeable or exponential decay correlation structure deviates from
the underlying true correlation structure. Asymptotic efficiency evaluation under misspecified non-identity
correlation structure is generally challenging because the probability limits of the misspecified ICC esti-
mators are not easy to identify analytically. Therefore, additional simulation studies are required to address
this more complex question, possibly by summarizing the empirical variance of the GEE estimator under
alternative data generating processes. Second, we have restricted consideration to cross-sectional designs,
as motivated by the Washington State EPT trial. On the other hand, unequal cluster sizes can also arise in
closed-cohort or open-cohort SW-CRTs (Copas et al., 2015). These alternative designs require slightly dif-
ferent formulations of the within-cluster correlation structures due to repeated outcome measurements for
the same subject (Li et al., 2018b; Kasza et al., 2020; Li et al., 2020). It remains to be explored whether the
current findings are generalizable to cohort SW-CRTs. Finally, our simulation design parameters are not
exhaustive. However, our comprehensive evaluation identified important factors that affect the efficiency
patterns of the GEE estimators in cross-sectional SW-CRTs. We have also articulated the critical need
to account for correlations in SW-CRTs from an efficiency perspective, providing a rigorous justification
for estimating and reporting ICCs, as recommended by the CONSORT extension to SW-CRTs (Hemming
et al., 2018).
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