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ABSTRACT 

Background:  

Confounding by indication is a serious threat to comparative studies using real world 

data. We assessed the utility of automated data-adaptive analytic approach for 

confounding adjustment when both claims and clinical registry data are available. 

Methods: 

We used a comparative study example of carotid artery stenting (CAS) vs. carotid 

endarterectomy (CEA) in 2005-2008 when CAS was only indicated for patients with 

high surgical risk. We included Medicare beneficiaries linked to the Society for 

Vascular Surgery’s Vascular Registry >65 years old undergoing CAS/CEA. We 

compared hazard ratios (HRs) for death while adjusting for confounding by combining 

various 1) Propensity score (PS) modeling strategies (investigator-specified [IS-PS] vs. 

automated data-adaptive [ada-PS]); 2) data sources (claims-only, registry-only and 

claims-plus-registry); and 3) PS adjustment approaches (matching vs. quintiles-

adjustment with/without trimming). An HR of 1.0 was a benchmark effect estimate 

based on CREST trial. 

Results:  

The cohort included 1,999 CAS and 3,255 CEA patients (mean age 76). CAS patients 

were more likely symptomatic and at high surgical risk, and experienced higher 

mortality (crude HR=1.82 for CAS vs. CEA). HRs from PS-quintile adjustment 

without trimming were 1.48 and 1.52 for claims-only IS-PS and ada-PS, 1.51 and 1.42 

for registry-only IS-PS and ada-PS, and 1.34 and 1.23 for claims-plus-registry IS-PS 

and ada-PS, respectively. Estimates from other PS adjustment approaches showed 
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similar patterns. 

Conclusions:  

In a comparative effectiveness study of CAS vs. CEA with severe confounding by 

indication, ada-PS performed better than IS-PS in general, but both claims and registry 

data were needed to adequately control for bias. 
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INTRODUCTION 

 Real-world data (RWD) including large electronic databases such as claims 

databases, electronic health records databases, and patient/procedure registries are rich 

sources of data for conducting comparative effectiveness and safety studies. While these 

studies  may be used to complement findings from randomized clinical trials for 

cardiovascular disease,1–6 confounding is one of the biggest challenges to study validity. 

Confounding by indication is particularly problematic when comparing the effectiveness 

of two or more alternative treatment modalities because each modality may be indicated 

for clinically distinct patient groups. For example, carotid artery stenting (CAS) was 

originally indicated only for patients with high surgical risk when its use was first 

approved for reimbursement by CMS in 20047. It was not until 2011 when a guideline , 

and observational comparative effectiveness rerecommended CAS for non-high risk 

patients based on later trials such as CREST proving the efficacy in the non-high risk 

population8. Thus, comparative effectiveness studies of CAS vs. carotid endarterectomy 

(CEA) using early phase data would likely be confounded by indication. 

 Most claims databases lack detailed clinical information to fully account for 

confounding by indication, and adding clinical information through data linkage with 

registries has been shown to greatly improve the validity of comparative studies in 

patients with cardiovascular diseases2,3. At the same time, registries may not be available 

or linkage may not be possible. Various methodological developments such as propensity 

score (PS)-based data-adaptive methods with automated variable generation and selection 

algorithms have been proposed to improve the validity of results using RWD (9–13). 

However, in the presence of linked clinical information from a registry, the relative utility 
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of such approaches vs. additional clinical information in CER studies with strong 

confounding by indication has not been fully elucidated. 

The aim of the present study was to evaluate the performance of the automated 

data-adaptive PS approaches for confounding adjustment in a CER study with strong 

confounding by indication when claims data only, registry data only, and linked claims 

plus registry data are available. We used the example of CAS vs. CEA using data from 

2005-2008 when CMS coverage indication for CAS were limited to high surgical risk 

patients with predefined levels of stenosis severity and symptoms14.  

 

 

METHODS 

Data Sources 

 We used the SVS-VR, 2005-2008 as well as the denominator, institutional, non-

institutional, and vital status Medicare files (2000-2009). The design and protocols of 

SVS-VR have been described in detail elsewhere15. The SVS-VR collects detailed 

information on medical history, pre-procedural diagnostics (including degree of carotid 

stenosis, symptomatic status, and high surgical risk status), procedure-related factors, and 

intra-operative and pre-discharge complications for patients undergoing CAS as well as 

CEA, allowing for comparison of the two procedures. The SVS-VR data are audited to 

ensure that all cases of CAS and CEA are reported and to verify the accuracy and 

completeness of the data15. 

From CMS, we obtained administrative claims data from January 1st, 2000 to 

December 31st, 2009 for patients who underwent CAS (ICD-9-CM codes: 00.61, 00.63, 
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00.64) or CEA (ICD-9-CM codes: 38.12) in an inpatient setting, including information on 

patient demographics, eligibility, inpatient and outpatient facility services use, physician 

services use covered under Part B, and date of death.  

Linkage of SVS-VR to the Medicare data has been previously described16. Briefly, 

we deterministically linked CAS and CEA procedures in the registry to the Medicare 

institutional file using date of birth, sex, facility, and the requirement that the procedure 

date in the registry be between a hospital admission and discharge date for the same 

procedure in the Medicare data.  

 

Patients 

The patient population included in this study has been described17. In short, the 

study sample included Medicare fee-for-service beneficiaries who had undergone CAS or 

CEA at SVS-VR-participating facilities between 2005 and 2008, who were at least 66 

years of age at the time of the procedure, were eligible for Medicare for at least one year 

prior to the procedure, and for whom Medicare was the primary payer. If patients 

underwent multiple procedures, the first procedure was selected. We set the day of the 

procedure as the index date and the preceding 1-year period as the baseline period. We 

followed patients from the index date until the earliest occurrence of one of the following 

events: death from any cause, loss of Medicare eligibility, or the end of the study period 

(December 31st, 2009). 

 

Outcome 
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The outcome of interest was death from any cause following carotid revascularization 

over the study period. 

 

Study Variables  

Medicare claims data 

We extracted data on patient age, sex, and race from Medicare denominator files. 

We also derived measures of healthcare utilization, such as number of past-year 

hospitalizations, physician visits, and nursing home admissions18. Patients were 

categorized as having undergone elective CAS unless the hospital admission type was 

defined as urgent, emergent, or of a traumatic nature in the institutional Medicare file. 

Patients were categorized as having symptomatic carotid stenosis if they had recorded 

diagnoses of stroke, transient ischemic attack, or amaurosis fugax in the year leading up 

the procedure. We also defined comorbidities using the diagnoses and procedure codes 

recorded during the baseline period. 

SVS-VR 

Information on the ipsilateral and contralateral degrees of carotid stenosis was available 

from interpreted pre-procedural carotid ultrasound and angiogram exam results. We 

categorized patients as having mild (<50%), moderate (50-69%), or severe (≥70%) 

ipsilateral carotid stenosis or contralateral stenosis ≥70% using information from 

ultrasound results and, when ultrasound data were missing, from angiograms. We 

considered patients to be at high surgical risk if they met any of the following criteria: 

age >80, New York Heart Association (NYHA) class III or IV heart failure, left 

ventricular ejection fraction <30%, unstable angina, myocardial infarction in the past 30 
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days, recurrent stenosis, prior radical dissection or radiation, contralateral occlusion, 

contralateral laryngeal nerve palsy or injury, high anatomic lesion, or other physiologic or 

anatomic surgical risk factors from investigational device exemption trials of CAS. We 

classified patients as per the National Coverage Determination’s indications for CAS14: 

high surgical risk with symptomatic stenosis 50-69%, high surgical risk with 

symptomatic stenosis ≥70%, high surgical risk with asymptomatic carotid stenosis ≥80%, 

or those not matching the conditions above. We also obtained information on 

comorbidities from the registry.  

 

Propensity Score Modeling 

We employed: 1) investigator-specified approach and 2) automated data-adaptive 

approach. For investigator-specified PS model, the investigators preselected the list of 

variables based on clinical knowledge and prior literature. For automated data-adaptive 

model, we chose high dimensional (hd) PS, one of the most commonly used algorithms.. 

Full lists of variables selected for each model are described in the footnote of Table 2.   

The hdPS algorithm empirically generates and selects covariates that collectively 

act as proxies for the patient’s health status from the database for inclusion in the 

propensity score modeling. The full description of this algorithm is available 

elsewhere9,19. Briefly, the algorithm consists of three parts: (1) empirical variable 

identification; (2) variable ranking (prioritization); and (3) variable selection. First, the 

algorithm goes through each type of data such as inpatient diagnosis, inpatient procedure, 

namely ‘data dimension’ and generates covariates that represent the presence or absence 

of each code meeting a prespecified prevalence threshold (e.g. 1% or more). Second, the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.06.21254887doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.06.21254887


generated variables are ranked based on its potential to cause confounding, measured by 

its association with the outcome and the exposure17. Third, top 500 (or the number the 

investigators select) of these empirically selected variables are included to develop a PS 

model. In our study, ‘data dimensions’ considered for hdPS included inpatient, outpatient, 

non-institutional (carrier), and nursing home diagnosis and procedure codes. We also 

categorized variables in the registry into registry-based ‘data dimensions’ including 

medical history, symptomatic status, diagnostic imaging results, pre-procedural 

medications, and high-surgical risk status.  

We constructed three propensity score models in each of the investigator-

specified and hdPS approach using data dimensions in claims data only, with all SVS-VR 

variables only, and with claims data and SVS-VR variables (Table 2). We also included 

an additional PS model (4th model in hdPS approach) using both registry and claims data 

but excluding the information on patients’ high surgical risk status to assess the 

importance of the high surgical risk status in confounding adjustment (Table 2).  

 

Statistical Analysis 

We evaluated the baseline characteristics of the study cohort undergoing CAS or 

CEA using both registry and claims data. We report crude cumulative risks and 95% 

confidence intervals for 3-year mortality, derived from Kaplan-Meier estimators. We 

used multiple imputation to maximize power and handle missing covariate information 

from the SVS-VR (less than 5% of data were missing for all variables except 

contralateral carotid occlusion [5.4%], modified Rankin Scale score [5.5%], creatinine 

level [9.8%], NYHA class [17.6%], and hyperlipidemia/dyslipidemia [33.2%]). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.06.21254887doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.06.21254887


Hazard for all cause death following CAS compared to CEA were derived using 

Cox proportional hazards regression models. The propensity score was included in the 

Cox model  in three ways: using 1:1 nearest-neighbor matching with a caliper of 0.2 

times the logit of the propensity score, and grouping patients into propensity score 

quintiles with and without implementing 5% asymmetric trimming20. We used the 

sandwich variance estimator to account for clustering of patients at the physician and 

hospital levels. The hazard ratios from these models were compared to the benchmark 

risk ratio of 1.0 based on the findings reported in randomized clinical trials21,22. All 

analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC). The study 

was approved by the Institutional Review Board of Brigham and Women’s Hospital. 

 

 

RESULTS  

We successfully linked 2867 SVS-VR CAS records and 4381 SVS-VR CEA 

records to Medicare claims data3. After applying inclusion and exclusion criteria, 1999 

CAS patients and 3255 CEA patients were included in the study cohort (Figure 1).  

The full characteristics of the population is described in the previous article by 

Jalbert and colleagues17.  Briefly, the distribution of age, sex and race of the patients were 

similar between the two groups (Table 1). CAS patients were more likely to be 

symptomatic (CAS 38.5% vs. CEA 30.7%) and had a higher prevalence of high surgical 

risk factors (96.7% vs. 44.5%). Specifically, patients undergoing CAS had higher 

percentages of patients with class III/IV heart failure (10.7% vs. 3.2%), left ventricular 

ejection fraction < 30% (4.9% vs. 1.0%), unstable angina (3.6% vs. 0.5%), recurrent 
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stenosis (27.4% vs. 1.8%), contralateral occlusion (16.7% vs. 7.1%), prior neck radiation 

(6.3% vs. 0.2%), and high anatomic lesion (6.4% vs. 1.8%) than patients undergoing 

CEA. CAS patients had a higher prevalence of cardiac comorbidities (e.g., coronary 

artery disease, 62.1% vs. 52.1%; myocardial infarction, 21.9% vs. 16.2%), and slightly 

higher prevalence of non-cardiac comorbidities including cancer (17.6% vs. 14.0%), 

COPD (19.3% vs. 17.8%), and renal failure (4.3% vs. 3.5%).  

CAS patients were followed for a median of 909 days, during which time 446 

deaths were identified (incidence of 3-year mortality: 25.5% (95% CI: 23.3-27.6)) 

(Figure 2). Similarly, we identified 424 deaths during 847 days of median follow-up 

(incidence of 3-year mortality: 16.8% (95% CI: 15.2-18.3)). The estimated crude hazard 

ratio was 1.82 (95% CI: 1.60-2.08).   

Figure 3 shows the distribution of the propensity scores from the six models with 

different combinations of data source and variable selection approach. All PS models that 

included registry data (A, C, D, F) clearly separated the distribution between the CAS 

group and the CEA group. The PS models using claims data only (B, E) resulted in much 

greater overlap between the two groups, indicating less ability to discriminate between 

those receiving CAS and those receiving CEA. The c-statistics of the propensity score 

models ranged from 0.69 to 0.96. The difference in the PS distributions and c-statistics 

for IS-PS and hdPS were identical or nearly identical except for the models using claims 

data only (B, E) where the discrimination between the two groups was higher using hdps 

(c-statistic of 0.77 vs. 0.69).  Among the 4 models using either registry data alone or 

registry plus claims data (A,C,D,F), the c-statistics were similar regardless of whether 

investigator-specified variables or hdPS-selected variables were used. All models with 
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information on surgical risk had c-statistics of 0.94 and above, while none without had 

such high c-statistics (≤0.80) (Table 2). 

In the PS-matched analysis, the largest number of patients were retained when the 

investigator-specified PS model with claims data only was used (1674 patients each in 

the CAS and CEA groups). The adjusted HR estimate in the matched cohort was 1.45 

(95% CI: 1.24-1.69), significantly different from the benchmark value of 1.0. The HR 

estimates were similar for the models using either registry data only or claims only, with 

or without the use of hdPS approach for variable selection. Investigator-specified 

propensity scores yielded a point estimate slightly closer to the benchmark of 1.0 at 1.36 

(1.02-1.81) when both claims and registry data were used, and hdPS from claims plus 

registry data yielded a smaller HR estimate of 1.22 (0.92-1.63), which was the only 

estimate without statistical significance across the different approaches compared. The 

hdPS model with exclusion of high surgical risk status yielded an HR estimate of 1.32 

(1.07-1.64) that was further away from the benchmark. 

The findings from the two PS adjustment approaches were similar to those from 

the matched analysis. PS quintile adjustment without trimming yielded HR estimates 

slightly larger (i.e., away from the benchmark) compared to the matched analyses, 

although the difference was small. On the other hand, PS quintile adjustment with 

asymmetric trimming yielded point estimates that were generally similar or slightly 

smaller than those from the corresponding matched analyses, despite having more 

patients in the cohort than the matched analyses. In both adjustment approaches, hdPS 

from claims plus registry data yielded the smallest estimated HR; hdPS without 

information on high surgical risk status yielded an HR further from the benchmark.  
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 The top 25 variables identified by the hdPS algorithm as having the greatest 

potential to cause confounding from claims data, registry data and the combination of the 

two are listed in Table 2. The variables selected from registry data were clinical factors, 

most of which matched the investigator-specified PS variables. Variables selected from 

claims data included clinical factors such as diagnoses for heart failure and pneumonia, as 

well as CPT codes indicating health services use such as hospital care, electrocardiogram, 

and ambulance transportation. The factors selected via the hdPS algorithm when both 

registry data and claims data were combined were a mix of these two. 
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DISCUSSION 

 In a cardiovascular CER study with severe confounding by indication, we 

compared the performance of various methods for confounding adjustment using 

propensity scores (both investigator-specified and automated data-adaptive method) and 

using both claims and registry data. The c-statistics for the propensity score models were 

high and were similar for models from registry data with or without claims. However, 

propensity scores from claims data were not sufficient to achieve adequate confounding 

adjustment, even with the use of automated data-adaptive PS method. Clinical 

information from the registry was needed to produce estimates similar to what was 

expected based on results from RCTs. At the same time, automated data-adaptive PS 

models performed as well as or better than the investigator-specified models across 

different databases and adjustment methods used. 

It is worth noting that without detailed specification of variables by the researcher, 

automated data-adaptive PS was able to identify and include potential confounders in the 

model for the analysis for both registry-only and claims plus registry databases. This 

finding is consistent with prior studies of hdPS using claims databases9,23–27  and 

underscores the usefulness of the approach, especially in the absence of detailed pre-

specification of confounders due to factors such as the need to conduct a large number of 

comparisons (e.g. monitoring and signal detection28), or when no previous assessment of 

potential confounders is available. At the same time, automated data-adaptive approach 

was not able to overcome the lack of information on patients’ high surgical risk status 

which was the most important confounding by indication in the current study. 

While the registry is designed to collect clinical information for comparative 

effectiveness studies of the two procedures, adjustment using only registry information 
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was not able to achieve estimates that adequately approximated those expected, and 

variables from claims data were needed to achieve maximum confounding adjustment. 

This supports the idea that claims databases potentially provide important information on 

confounders not captured in clinical or device registries. This is likely true for a few 

reasons. First, registries for specific diseases or devices tend to have sparse information 

on comorbidities that are not directly related  but may affect receipt of treatment and 

outcomes (e.g., COPD or cancer for cardiovascular registries), whereas claims data 

capture all clinical encounters of patients regardless of the targeted diseases. Second, 

claims data can provide proxies of non-clinical health determinants, including use of 

services and therefore patients’ tendency to seek health care, their socioeconomic status, 

or frailty29. Automated data-adaptive approach may be especially useful in this context, 

as it can identify these proxies without investigators’ pre-specification. Other methods for 

identifying these health determinants from claims data using data mining techniques may 

further improve confounding control in these comparative studies.  

 Limitations of our study should be noted. First, to assess the performance of 

different adjustment approaches, we used the reported relative risk estimates from 

randomized clinical trials as a benchmark. However, results from randomized studies 

may differ from comparative effectiveness estimates obtained using routine care data due 

to differences in patient populations and possible effect measure modification. Second, 

the precision of our estimates was poor, due to the limited number of patients and events 

in the linked cohort, and we were thus unable to conduct meaningful statistical tests to 

compare the estimates. Third, the example study we used is for a particular comparative 

analysis and may have limited generalizability. While we expect combinations of claims 
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database and registries with common characteristics to show similar tendencies in terms 

of the usefulness of agsPS for other comparative effectiveness research questions, 

additional studies with such combinations are needed to confirm our findings.  

In summary, in a cardiovascular CER study with a high likelihood of confounding 

by indication, an automated data-adaptive approach for PS modeling performed well, 

with similar results seen for individual claims, registry, and claims plus registry databases. 

Although the c-statistics of propensity score models were similar across registry-based 

models with and without additional claims data components, neither was sufficient to 

adequately control confounding by indication by itself; both claims and registry variables 

were needed for better control. As expected, among the different data dimensions in the 

registry and claims data, the most important to control for confoudning by indication was 

high surgical risk staus data in the registry. Despite its potential to control for 

unmeasured confounding, the automated data adaptive approach itself was not sufficient 

to control strong confounding by indication when the information is lacking in the data 

source.   
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Figure Legends 
 
Figure 1: Flow Chart for Creation of Medicare-Linked SVS-VR CAS and CEA Study Cohorts.  

Abbreviations: CAS = Carotid stenting; SVS-VR = Society of Vascular Surgeons 
Vascular Registry; CEA = Carotid endarterectomy; HMO = Health maintenance 
organization; 
 

Figure 2.  3-year cumulative incidence of death among the Medicare-linked SVR-VR patients, 
by procedure.  
Abbreviations: CAS=Carotid Stenting; CEA = Carotid endarterectomy 

 
Figure 3.  Distribution of the propensity scores estimated from the models with different 

combinations of data source and variable selection approach 
Abbreviations: PS = propensity score;  
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Table 1: Selected Patient Characteristics at Baseline, By Procedure  
Patient Characteristics CAS 

N (%) 
CEA 
N (%) 

N 1999 3255 
Data from SVS-VR   
Age   
      66-69 362 (18.1) 539 (16.6) 
      70-74 538 (26.9) 890 (27.3) 
      75-79 600 (30.0) 976 (30.0) 

  80- 499 (25.0) 850 (26.1) 
Woman 814 (40.7) 1358 (41.7) 
White Race 1866 (93.3) 3060 (94.0) 
Carotid Symptoms in Past 12 months**   

Symptomatic 770 (38.5) 1000 (30.7) 
Ipsilateral Stroke 250 (12.5) 346 (10.6) 
Ipsilateral Transient Ischemic Attack 479 (24.0) 555 (17.1) 
Ipsilateral Amaurosis Fugax 171 (8.6) 226 (6.9) 

Carotid Stenosis Level*   
   <50% 17 (0.9) 19 (0.6) 
   50-69% 79 (4.0) 206 (6.6) 
    ≥70% 1899 (95.2) 2882 (92.8) 
Contralateral stenosis ≥70%*** 457 (24.5) 542 (17.5) 
High-Surgical Risk Criteria   
High Surgical Risk 1934 (96.7) 1447 (44.5) 

Age >80 520 (26.0) 832 (25.6) 
NYHA Class III/IV Heart Failure 214 (10.7) 105 (3.2) 
Left Ventricular Ejection Fraction <30% 97 (4.9) 33 (1.0) 
Unstable angina 71 (3.6) 16 (0.5) 
Recent MI (30 days) 25 (1.3) 8 (0.2) 
Other Physiologic High-Surgical Risk from Investigational 
Device Exemption (IDE) CAS trials 

662 (33.1) 269 (8.3) 

Other Physiologic High-Surgical Risk 240 (12.0) 84 (2.6) 
Recurrent Stenosis 548 (27.4) 57 (1.8) 
Radical Neck Dissection 56 (2.8) 3 (0.1) 
Contralateral Occlusion 334 (16.7) 231 (7.1) 
Prior Neck Radiation 125 (6.3) 5 (0.2) 
Contralateral Laryngeal Nerve Injury or Palsy 14 (0.7) 1 (0.0) 
High Anatomic Lesion (C2 or higher) 128 (6.4) 60 (1.8) 
Other Anatomatic High-Surgical Risk from Investigational 
Device Exemption (IDE) CAS trials 

281 (14.1) 257(7.9) 

Other Anatomic High-Surgical Risk 86 (4.3) 50 (1.5) 
Cardiac Comorbidities    

Cardiac Arrhythmia 328 (16.4) 478 (14.7) 
Coronary Artery Disease 1242 (62.1) 1695 (52.1) 
Heart Failure 302 (15.1) 267 (8.2) 
Myocardial Infarction 438 (21.9) 528 (16.2) 
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Abbreviations: SD= Standard Deviation; IQR = Interquartile Range 
*Missing 2.9%; **Missing <1%; ***Missing 5.4%; † Missing  33.2% 
 

Other Comorbidities   
Cancer 351 (17.6) 457 (14.0) 
Chronic Obstructive Pulmonary Disease 385 (19.3) 579 (17.8) 
Diabetes Mellitus 645 (32.3) 944 (29.0) 
Renal Failure 86 (4.3) 113 (3.5) 

Data from claims   
Non-Elective Hospital Admission 478 (23.9) 432 (13.3) 
Measures of Healthcare Utilization   

Mean Number of Past-Year Physician Visits (SD)  
Median (IQR) 

12.7 (8.8)  
11 (7-17) 

11.4 (8.3)  
10 (6-15) 

Mean Number of Past-Year Hospitalizations (SD) 
Median (IQR) 

1.0 (1.4)  
1 (0-1) 

0.6 (1.0)  
0 (0-1) 

Past-Year Nursing Home Admission 127 (6.4) 116 (3.6) 
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Table 2: Number of Events, Total Cell Sizes and Hazard Ratios for CAS Relative to CEA Based on Different Propensity Score 
Adjustment Techniques Across the Different Propensity Score Models 
 

  Propensity score models from 
investigator-specified variables 

 propensity score models from automated data-adaptive approach 

 

 
Data from 

claims only 
Data from 

registry only 

Data from 
both claims 
and registry 

 
Data from 

claims only 
Data from 

registry only 

Data from both 
claims and registry 

excluding high 
surgical risk status  

Data from both 
claims and 

registry 

Model c-statistic  0.69 0.95 0.96  0.77 0.95 0.80 0.94 
PS quintiles 

Adjustment – no 
trimming 

 
   

 
    

Events / Number 
of CEA Patients 

 
465 / 3255 465 / 3255 465 / 3255 

 
465 / 3255 465 / 3255 465 / 3255 465 / 3255 

Events / Number 
of CAS Patients 

 
528 / 1999 528 / 1999 528 / 1999 

 
528 / 1999 528 / 1999 528 / 1999 528 / 1999 

HR  1.48 
(1.28-1.70) 

1.51 
(1.22-1.86) 

1.34 
(1.07-1.69) 

 1.52 
(1.31-1.76) 

1.42 
(1.14-1.76) 

1.39 
(1.20-1.62) 

1.23 
(1.00-1.50) 

Trimming + PS 
quintiles 

adjustment 

 
   

 
    

Events / Number 
of CEA Patients 

 
417 / 2886 175 / 1053 156 / 869 

 
387 / 2650 196 / 951 371 / 2551 224 / 1181 

Events / Number 
of CAS Patients 

 
396 / 1669 154 / 652 133 / 574 

 
323 / 1494 168 / 670 320 / 1462 187 / 828 

HR  1.47 
(1.25-1.71) 

1.36  
(1.05-1.76) 

1.21 
(0.92-1.59) 

 1.41 
(1.19-1.67) 

1.38 
(1.08-1.76) 

1.32 
(1.12-1.56) 

1.18 
(0.94-1.49) 

Matching on PS          
Events / Number 
of CEA Patients 

 
279 / 1,674 108 / 588 95 / 548 

 
230 / 1446 103 / 575 224 / 1,332 112 / 668 

Events / Number 
of CAS Patients 

 
381 / 1,674 144 / 588 127 / 548 

 
320 / 1446 103 / 575 283 / 1,332 154 / 668 

HR  1.45 
(1.24-1.69) 

1.41 
(1.09-1.83) 

1.36 
(1.02-1.81) 

 1.47 
(1.21-1.78) 

1.40 
(1.05-1.86) 

1.32 
(1.07-1.64) 

1.22 
(0.92-1.63) 
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Age, sex, race, and year of procedure were pre-specified variables included in the high-dimensional propensity score by the 
investigator. 
Abbreviations: HR = hazard ratio; CAS = Carotid stenting; CEA = Carotid endarterectomy 
 
Note: Investigator-specified propensity score using claims data includes: age, sex, race, year of procedure, recent myocardial 
infarction, heart failure, atrial fibrillation, angina, pulmonary disease, cervical osteoarthritis, hypertension, ischemic heart disease, 
other atherosclerotic arterial disease, ventricular arrhythmia, peripheral vascular disease, valvular heart disease, chronic kidney disease, 
anemia, hyperlipidemia, diabetes, chronic obstructive pulmonary disease, coagulopathies, cancer, gastrointestinal bleed, glaucoma, 
osteoporosis, dementia, delirium, depression, bipolar disorder, anxiety, other psychiatric disorders, smoking history, alcohol abuse, 
drug abuse, pressure ulcers, cardiomyopathy, flu vaccination, pneumococcal vaccination, mammography, occult fecal blood test, bone 
mass density test, prostate-specific antigen test, prior carotid endarterectomy, prior CAS, prior radical neck dissection, prior open heart 
surgery, prior tracheostomy, prior percutaneous coronary intervention, prior coronary artery bypass graft procedure, non-elective 
hospital admission, Elixhauser comorbidity score, past-year hospitalizations, past-year physician visits, and past-year nursing home 
stay. 
Investigator-specified propensity score using registry data includes: age, sex, race, year of procedure, CAS indication, medical history 
(coronary artery disease, cardiac arrhythmia, myocardial infarction, valvular heart disease, heart failure, hypertension, diabetes 
mellitus, stroke, transient ischemic attack, amaurosis fugax, peripheral vascular disease, renal failure, gastrointestinal ulcer or bleed, 
chronic obstructive pulmonary disease, current or past smoking, cancer, coagulopathy, hyperlipidemia/dyslipidemia, kidney function 
as per estimated glomerular filtration rate), American Society of Anesthesiology grade, New York Heart Association heart failure 
class, procedure side, carotid symptoms (carotid stenosis symptomatic in past year, past-year ipsilateral stroke, past-year ipsilateral 
transient ischemic attack, past-year amaurosis fugax, ipsilateral stroke more than one year prior to the procedure, ipsilateral transient 
ischemic attack more than one year prior to the procedure, amaurosis fugax more than one year prior to the procedure, modified 
Rankin Scale score), physiologic high surgical risk factors (age >80, NYHA class III or IV heart failure, left ventricular ejection 
fraction <30%, unstable angina, myocardial infraction 30 days prior to the procedure, other physiologic high surgical risk criteria from 
investigational device exemption CAS trials), anatomic high surgical risk factors (restenosis, radical neck dissection, contralateral 
occlusion, prior neck radiation, contralateral laryngeal nerve palsy or injury, high anatomic lesion, other anatomic high surgical risk 
criteria from investigational device exemption CAS trials), ipsilateral carotid stenosis (mild, moderate, severe), contralateral carotid 
stenosis ≥70%, and pre-procedural medication use (none, aspirin, clopidogrel, ticlopidine, other antiplatelet medication). 
Investigator-specified propensity score using claims and registry data includes all the variables listed in the investigator-specified 
propensity score using claims only and registry data only. 
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Table 3: Top 25 Variables Identified by the High-Dimensional Propensity Score Algorithm as Having the Greatest Potential to Cause 
Confounding 
 

All claims dimensions All registry dimensions All Claims and registry dimensions 
4280 (ICD-9-CM; heart failure) High surgical risk – physiologic (registry) High surgical risk – physiologic (registry) 

4280 (ICD-9-CM; heart failure) 
High surgical risk – other physiologic from 

CAS Investigational Device Exemption trials 
(registry) 

4280 (ICD-9-CM; heart failure) 

4280 (ICD-9-CM; heart failure) Heart failure (registry) 
High surgical risk – other physiologic from CAS 
Investigational Device Exemption trials (registry) 

4280 (ICD-9-CM; heart failure) 
Left ventricular ejection fraction <30% 

(registry) 
4280 (ICD-9-CM; heart failure) 

99232 (CPT-4; subsequent hospital care) NYHA class IV (registry) 4280 (ICD-9-CM; heart failure) 
99232 (CPT-4; subsequent hospital care) NYHA class III/IV (registry) 4280 (ICD-9-CM; heart failure) 

4280 (ICD-9-CM; heart failure) History of stroke (registry) 99232 (CPT-4; subsequent hospital care) 
99231 (CPT-4; subsequent hospital care) High surgical risk – anatomic (registry) 99232 (CPT-4; subsequent hospital care) 
99232 (CPT-4; subsequent hospital care) Contralateral carotid occlusion (registry) 4280 (ICD-9-CM; heart failure) 
99231 (CPT-4; subsequent hospital care) Carotid restenosis (registry) 99231 (CPT-4; subsequent hospital care) 

4280 (ICD-9-CM; heart failure) High surgical risk – other physiologic (registry) Heart failure (registry) 
93010 (CPT-4; electrocardiogram) Previous neck radiation (registry) 99232 (CPT-4; subsequent hospital care) 

99233 (CPT-4; subsequent hospital care) Symptomatic carotid stenosis (registry) 99231 (CPT-4; subsequent hospital care) 
71010 (ICD-9-CM; systemic sclerosis) Radical neck dissection (registry) 4280 (ICD-9-CM; heart failure) 

4280 (ICD-9-CM; heart failure) History of myocardial infarction (registry) 93010 (CPT-4; electrocardiogram) 
93010 (CPT-4; electrocardiogram) Contralateral carotid stenosis ≥70% (registry) Left ventricular ejection fraction <30% (registry) 

A0425 (CPT-4; ambulance transportation) End-stage renal disease (registry) 99233 (CPT-4; subsequent hospital care) 
99238 (CPT-4; hospital discharge) Modified Rankin scare score of 0 (registry) 71010 (ICD-9-CM; systemic sclerosis) 
99223 (CPT-4; initial hospital care) History of stroke (registry) NYHA class IV (registry) 

71010 (ICD-9-CM; systemic sclerosis) History of cancer (registry) 4280 (ICD-9-CM; heart failure) 
A0425 (CPT-4; ambulance transportation) Transient ischemic attack in past year (registry) 93010 (CPT-4; electrocardiogram) 
99231 (CPT-4; subsequent hospital care) Diabetes mellitus (registry) A0425 (CPT-4; ambulance transportation) 

486 (ICD-9-CM; pneumonia) Modified Rankin scale score of 4 (registry) 99238 (CPT-4; hospital discharge) 
99254 (CPT-4; initial inpatient 

consultation visit) 
Stroke in the past year (registry) NYHA class III/IV (registry) 

486 (ICD-9-CM; pneumonia) Chronic renal failure (registry) 99223 (CPT-4; initial hospital care) 
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Note: Codes may appear more than once because codes are assessed for recurrence (once, sporadically, or frequently) in each 
dimension. For more information, see Schneeweiss et al9.  
Abbreviations: ICD-9-CM = International Classification of Diseases, Clinical Modification; CPT-4 = Current Procedural 
Terminology; NYHA=New York Heart Association  
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Patients aged ≥65 undergoing CAS
in SVS-VR
N=4016

Patients aged ≥65 undergoing CEA
in SVS-VR
N=6371

Patients linked to Medicare
N=2867 (linkage=72%)

Patients linked to Medicare
N=4381 (linkage=69%)

Exclude if 
aged < 66
Medicare eligibility < 1 year
Enrolled in an HMO
Medicare not primary payer
Procedure year not 2005-2008

CAS cohort
N=1999

CEA cohort
N=3255

Linked to Medicare using date of birth, sex, 
facility and procedure date
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Years since procedure

Number at risk CAS   1999                                   1793                                   1253                                    776
CEA   3255                                   3068                                   1938                                   1017
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Prespecified model PS High dimensional PS

Registry only

Claims only

Registry and 
claims

Distribution of PS Distribution of PS

(A) (D)

(B)

(C)

(E)

(F)

C-statistics = 0.95 C-statistics = 0.95

C-statistics = 0.69 C-statistics = 0.77

C-statistics = 0.96 C-statistics = 0.94
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