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Abstract

A new guideline for mitigating indoor airborne transmission of COVID-19 prescribes a limit on the time spent in a
shared space with an infected individual (Bazant and Bush, 2021). Here, we rephrase this safety guideline in terms
of occupancy time and mean exhaled carbon dioxide concentration in an indoor space, thereby enabling the use
of CO2 monitors in the risk assessment of airborne transmission of respiratory diseases. While CO2 concentration
is related to airborne pathogen concentration (Rudnick and Milton, 2003), the guideline developed here accounts
for the di�erent physical processes a�ecting their evolution, such as enhanced pathogen production from vocal
activity and pathogen removal via face-mask use, filtration, sedimentation and deactivation. Critically, transmission
risk depends on the total infectious dose, so necessarily depends on both the pathogen concentration and exposure
time. The transmission risk is also modulated by the fractions of susceptible, infected and immune persons within
a population, which evolve as the pandemic runs its course. A mathematical model is developed that enables a
prediction of airborne transmission risk from real-time CO2 measurements. Illustrative examples of implementing
our guideline are presented using data from CO2 monitoring in university classrooms and o�ce spaces.

Impact Statement There is mounting scientific evidence that COVID-19 is primarily transmitted through
indoor airborne transmission, as arises when a susceptible person inhales virus-laden aerosol droplets exhaled
by an infectious person. A safety guideline to limit indoor airborne transmission (Bazant and Bush, 2021) has
recently been derived that complements the public health guidelines on surface cleaning and social distancing.
We here recast this safety guideline in terms of total inhaled carbon dioxide, as can be readily monitored in
most indoor spaces. Our approach paves the way for optimizing air handling systems by balancing health
and financial concerns, informs policy for safely re-opening schools and businesses as the pandemic runs
its course, and may be applied quite generally in the mitigation of airborne respiratory illnesses, including
influenza.

1. Introduction

Coronavirus disease 2019 (COVID-19) has caused a devastating global pandemic since it was first
identified in Wuhan, China in December 2019 (Chen et al., 2020; Li et al., 2020). For over a year,
public health guidance has focused on disinfecting surfaces in order to limit transmission through
fomites (Van Doremalen et al., 2020) and maintaining social distance in order to limit transmission via
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large drops generated by coughs and sneezes (Bourouiba et al., 2014). The e�cacy of these measures
has been increasingly called into question, however, since there is scant evidence for fomite transmis-
sion (Lewis, 2021) and large-drop transmission is e�ectively eliminated by masks (Moghadas et al.,
2020).

There is now overwhelming evidence that the pathogen responsible for COVID-19, severe-acute-
respiratory-syndrome coronavirus 2 (SARS-CoV-2), is transmitted primarily through exhaled aerosol
droplets suspended in indoor air (Prather et al., 2020; Morawska and Milton, 2020; Morawska and
Cao, 2020; Jayaweera et al., 2020; Zhang et al., 2020b; Bazant and Bush, 2021). Notably, airborne
transmission provides the only rational explanation for the so-called "super-spreading events", which
have now been well chronicled and all took place indoors (Miller et al., 2020; Moriarty, 2020; Hamner,
2020; Shen et al., 2020; Nishiura et al., 2020; Kwon et al., 2020; Hwang et al., 2020). The dominance
of indoor airborne transmission is further supported by the fact that face-mask directives have been
more e�ective in limiting the spread of COVID-19 than either social distancing directives or lockdowns
(Zhang et al., 2020b; Stutt et al., 2020). Indeed, a recent analysis of spreading data from Massachusetts
public schools where masking was strictly enforced found no statistically significant e�ect of social
distance restrictions that ranged from 3 feet to 6 feet (van den Berg et al., 2021). Finally, the detection of
infectious SARS-CoV-2 virions suspended in hospital room air as far as 18 feet from an infected patient
provides direct evidence for the viability of airborne transmission of COVID-19 (Lednicky et al., 2020;
Santarpia et al., 2020).

With a view to informing public health policy, we proceed by developing a quantitative approach to
mitigating the indoor airborne transmission of COVID-19, an approach that might be similarly applied
to other airborne respiratory diseases. The canonical theoretical framework of Wells (1955) and Riley
et al. (1978) describes airborne transmission in an indoor space that is well-mixed by ambient air flows,
so that infectious aerosols are uniformly dispersed throughout the space (Gammaitoni and Nucci, 1997;
Beggs et al., 2003; Nicas et al., 2005; Noakes et al., 2006; Stilianakis and Drossinos, 2010). While
exceptions to the well-mixed room are known to arise (Bhagat et al., 2020), supporting evidence for
the well-mixed approximation may be found in both theoretical arguments (Bazant and Bush, 2021)
and computer simulations of natural and forced convection (Foster and Kinzel, 2021). The Wells-Riley
model and its extensions have been applied to a number of super-spreading events and used to assess
the risk of COVID-19 transmission in a variety of indoor settings (Miller et al., 2020; Buonanno et al.,
2020b,a; Prentiss et al., 2020; Evans, 2020).

A safety guideline for mitigating indoor airborne transmission of COVID-19 has recently been derived
that indicates an upper bound on the cumulative exposure time, that is, the product of the number of
occupants and the exposure time (Bazant and Bush, 2021). This bound may be simply expressed in terms
of the relevant variables, including the room dimensions, ventilation, air filtration, mask e�ciency and
respiratory activity. The guideline has been calibrated for COVID-19 using epidemiological data from
the best characterized super-spreading events and incorporates the measured dependence of expiratory
droplet-size distributions on respiratory and vocal activity (Morawska et al., 2009; Asadi et al., 2019,
2020a). An online app has facilitated its widespread use during the pandemic (Khan et al., 2020). The
authors also considered the additional risk of turbulent respiratory plumes and jets (Abkarian et al.,
2020a,b), as need be considered when masks are not worn. The accuracy of the guideline is necessarily
limited by uncertainties in a number of model parameters, which will presumably be reduced as more
data is analyzed from indoor spreading events.

Carbon dioxide measurements have been used for decades to quantify airflow and zonal mixing in
buildings and so guide the design of heating, ventilation, and air-conditioning (HVAC) systems (Fisk and
De Almeida, 1998; Seppänen et al., 1999). Such measurements thus represent a natural source of data for
assessing indoor air quality, especially as they rely only on relatively inexpensive, widely available CO2

sensors. Quite generally, high carbon dioxide levels in indoor settings are known to be associated with
poor health (Salisbury, 1986; Hung and Derossis, 1989; Seppänen et al., 1999). Statistically significant
correlations between CO2 levels and illness-related absenteeism in both the work place (Milton et al.,
2000) and classrooms (Mendell et al., 2013; Shendell et al., 2004) have been widely reported (Li et al.,
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2007). Direct correlations between CO2 levels and concentration of airborne bacteria have been found
in schools (Liu et al., 2000). Correlations between outdoor air exchange rates and respiratory infections
in dorm rooms have also been reported (Sun et al., 2011; Bueno de Mesquita et al., 2020). Despite the
overwhelming evidence of such correlations and the numerous economic analyses that underscore their
negative societal impacts (Milton et al., 2000; Fisk, 2000), using CO2 monitors to make quantitative
assessments of the risk of indoor disease transmission is a relatively recent notion (Li et al., 2007).

Rudnick and Milton (2003) first proposed the use of Wells-Riley models, in conjunction with
measurements of CO2 concentration, to assess airborne transmission risk indoors. Their model treats
CO2 concentration as a proxy for infectious aerosols: the two were assumed to be produced proportionally
by the exhalation of an infected individual and removed at the same rate by ventilation. The current
pandemic has generated considerable interest in using CO2 monitoring as a tool for risk management of
COVID-19 (Bhagat et al., 2020; Hartmann and Kriegel, 2020). The Rudnick-Milton model has recently
been extended by Peng and Jimenez (2021) through consideration of the di�erent removal rates of CO2

and airborne pathogen. They conclude by predicting safe CO2 levels for COVID-19 transmission in
various indoor spaces, which vary by up to two orders of magnitude.

We here develop a safety guideline for limiting indoor airborne transmission of COVID-19 by
expressing the safety guideline of Bazant and Bush (2021) in terms of CO2 concentration. Doing so
makes clear that one must limit not only the CO2 concentration, but also the occupancy time. Our model
accounts for the e�ects of pathogen filtration, sedimentation and deactivation in addition to the variable
aerosol production rates associated with di�erent respiratory and vocal activities, all of which alter the
relative concentrations of airborne pathogen and CO2. Our guideline thus quantifies the extent to which
safety limits may be extended by mitigation strategies such as mask directives, air filtration and the
imposition of ‘quiet spaces’.

In §2, we rephrase the indoor safety guideline of Bazant and Bush (2021) in terms of the room’s carbon
dioxide concentration. In §3, we present theoretical descriptions of the evolution of CO2 concentration
and infectious aerosol concentration in an indoor space, and highlight the di�erent physical processes
influencing the two. We then model the disease transmission dynamics, which allows for the risk of
indoor airborne transmission to be assessed from CO2 measurements taken in real time. In §4, we
apply our model to a pair of data sets tracking the evolution of CO2 concentration in specific o�ce
and classroom settings. These examples illustrate how CO2 monitoring, when coupled with our safety
guideline, provides a means of assessing and mitigating the risk of indoor airborne transmission of
respiratory pathogens.

2. Safety Guideline for the Time-Averaged Carbon Dioxide Concentration

2.1. Occupancy-based safety guideline

We begin by recalling the safety guideline Bazant and Bush (2021) for limiting indoor airborne disease
transmission in a well-mixed space. The guideline would impose an upper bound on the cumulative
exposure time:

#Cg <
n_2+

&2
1⇠@BA ?

2
<

(1)

where #C is the number of possible transmissions (pairs of infected and susceptible persons) and g is
the time in the presence of the infected person(s). The reader is referred to Table 1 for a glossary of
symbols and their characteristic values. &1 is the mean breathing flow rate and+ the room volume. The
risk tolerance n < 1 is the prescribed bound on the probability of at least one transmission, as should be
chosen judiciously according to the vulnerability of the population (Garg, 2020); for example, Bazant
and Bush (2021) suggested n = 10% for children and 1% for the elderly.

The only epidemiological parameter in the guideline,⇠@ , is the infectiousness of exhaled air, measured
in units of infection quanta per volume for a given aerosolized pathogen. The notion of "infection
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quantum" introduced by Wells (1955) is widely used in epidemiology to measure the expected rate of
disease transmission, which may be seen as a transfer of infection quanta between pairs of infected
and susceptible individuals. For airborne transmission, a suitable concentration of infection quanta per
volume, ⇠@ , can thus be associated with exhaled air without reference to the microscopic pathogen
concentration. Notably, ⇠@ is known to depend on the type of respiratory and vocal activity (resting,
exercising, speaking, singing, etc.), being larger for the more vigorous activities (Buonanno et al.,
2020b; Bazant and Bush, 2021) The relative susceptibility BA is introduced as a scaling factor for ⇠@

that accounts for di�erences in the transmissibility of di�erent respiratory pathogens, such as bacteria
or viruses (Rudnick and Milton, 2003; Li et al., 2008) with di�erent strains (Volz et al., 2021; Davies
et al., 2020), and for di�erences in the susceptibility of di�erent populations, such as children and
adults (Riediker and Morawska, 2020; Zhang et al., 2020a; Zhu et al., 2020).

The mask penetration probability, ?< (A), is a function of drop size that is bounded below by 0 (for
the ideal limit of perfect mask filtration) and above by 1 (appropriate when no mask is worn). Standard
surgical masks at low flow rates allow only 0.04-1.5% of the most infectious (submicron) aerosols to
penetrate (Chen and Willeke, 1992), values that should be increased by a factor of 2 � 10 to account
for imperfect fit (Oberg and Brosseau, 2008). Cloth masks show much greater variability (Konda et al.,
2020). The mask penetration probability may also depend on respiratory activity (Asadi et al., 2020b)
and direction of airflow (Pan et al., 2020). Here, for the sake of simplicity, we treat it as being constant
over the limited aerosol size range of interest, and evaluate ?̄< = ?< (Ā) at the e�ective aerosol radius A
to be defined below. Bazant and Bush (2021) thus suggested ?̄< = 1 � 5% for surgical masks (Li et al.,
2008; Oberg and Brosseau, 2008), ?̄< = 10 � 40% for hybrid cloth face coverings and ?̄< = 40 � 80%
for single-layer fabrics (Konda et al., 2020). Notably, even low quality masks can significantly reduce
transmission risk since the bound on cumulative exposure time, Eq. (1), scales as ?̄�2

< .
Finally, we define _2 = _2 (A) as an e�ective relaxation rate of the infectious aerosol-borne pathogen

concentration, ⇠ (A, C), evaluated at the e�ective aerosol radius Ā . The size-dependent relaxation rate of
the droplet-borne pathogen has four distinct contributions,

_2 (A) = _0 + _ 5 (A) + _B (A) + _E (A), (2)

where _0 is the ventilation rate (outdoor air exchanges per time). and _ 5 (A) = ? 5 (A)_A is the filtration
rate, where ? 5 (A) is the droplet removal e�ciency for air filtration at a rate _A (recirculated air changes
per time). _B (A) = EB (A)�/+ is the net sedimentation rate for infectious droplets with the Stokes settling
velocity EB (A) sedimenting through a well-mixed ambient to a floor of area � (Corner and Pendlebury,
1951; Martin and Nokes, 1988). Finally, _E (A) is the deactivation rate of the aerosolized pathogen,
which depends weakly on humidity and droplet size (Yang and Marr, 2011; Lin and Marr, 2019; Marr
et al., 2019), and may be enhanced by other factors such as ultraviolet (UV-C) irradiation (Hitchman,
2021; García de Abajo et al., 2020), chemical disinfectants (Schwartz et al., 2020), or cold plasma
release (Filipi∆ et al., 2020; Lai et al., 2016).

Notably, only the first of the four removal rates apparent in Eq. ( 2) is relevant in the evolution of CO2;
thus, the concentrations of CO2 and airborne pathogen are not strictly slaved to one another. Specifically,
the proportionality between the two equilibrium concentrations varies in di�erent indoor settings (Peng
and Jimenez, 2021), for example in response to room filtration (Hartmann and Kriegel, 2020). Moreover,
when transient e�ects arise, for example, following the arrival of an infectious individual or the opening
of a window, the two concentrations adjust at di�erent rates. Finally, we note that there may also
be sources of CO2 other than human respiration, such as emissions from animals, stoves, furnaces,
fireplaces, or carbonated beverages, as well as sinks of CO2, such as plants, construction materials or
pools of water, which we neglect for simplicity. As such, following Rudnick and Milton (2003), we
assume that the primary source of excess CO2 is exhalation by the human occupants of the indoor space.

In order to prevent the growth of an epidemic, the safety guideline should bound the indoor reproduc-
tive number, R8=, which is the expected number of transmissions if an infectious person enters a room
full of susceptible persons. Indeed, the safety guideline, Eq. (1), corresponds to the bound R8= < n with
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the choice #C = # �1, and so would limit the risk of an infected person entering the room of occupancy
# transmitting to any other during the exposure time g. If the epidemic is well underway or subsiding,
the guideline should take into account the prevalence of infection ?8 and immunity ?8< (as achieved
by previous exposure or vaccination) in the local population. Assuming a trinomial distribution of #
persons who are infected, immune or susceptible, with mutually exclusive probabilities ?8 , ?8< and
?B = 1 � ?8 � ?8<, respectively, the expected number of infected-susceptible pairs is # (# � 1)?8 ?B . It
is natural to switch between these two limits (#C = # � 1 and #C = # (# � 1)?8 ?B) when one infected
person is expected to be in the room, #?8 = 1, and thus set

#C = (# � 1) min{1, #?8 (1 � ?8 � ?8<)}. (3)

One may thus account for the changing infection prevalence ?8 and increasing immunity ?8< in the
local population as the pandemic evolves.

2.2. CO2-based safety guideline

The total rate of CO2 production by respiration in the room is given by %2 = #&1⇠2,1 , where⇠2,1 is the
CO2 concentration of exhaled air, approximately ⇠2,1 = 38, 000 ppm, although the net CO2 production
rate, &1⇠2,1 varies considerably with body mass and physical activity (Persily and de Jonge, 2017). If
the production rate %2 and the ventilation flow rate & = _0+ are constant, then the steady-state value of
the excess CO2 concentration, relative to the steady background concentration ⇠0 at zero occupancy, is
given by

⇠2,B =
%2

&
=
&1⇠2,1#

_0+
(4)

which is simply the ratio of the individual CO2 flow rate, &1⇠2,1 , to the ventilation flow rate per person,
&/# . We note that the outdoor CO2 concentration is typically in the range ⇠0 = 250 � 450 ppm, with
higher values in urban environments (Prill et al., 2000). In the absence of other indoor CO2 sources,
human occupancy in poorly ventilated spaces can easily lead to CO2 levels of several thousand ppm.
People have reported headaches, slight nausea, drowsiness, and decreased decision-making performance
for levels above 1000 ppm (Fisk et al., 2013; Krawczyk et al., 2016), while short exposures to much
higher levels may go unnoticed. As an example of CO2 limits in industry, the American Conference of
Governmental Industrial Hygienists recommends a limit of 5000 ppm for an 8-hour period and 30,000
ppm for 10 minutes. A value of 40, 000 ppm is considered to be immediately life-threatening.

The safety guideline, Eq. (1), was derived on the basis of the conservative assumption that the infec-
tious aerosol concentration has reached its maximum, steady-state value. If we assume, for consistency,
that the CO2 concentration has done likewise, and so approached the value expressed in Eq. (4), then
the guideline can be recast as a bound on the safe mean excess CO2 concentration,

h⇠2ig =
π g

0
⇠2 3C <

n ⇠2,1

_@BA ?
2
<

· _2
_0

· #

#C
(5)

where we replace the steady excess CO2 concentration with its time average, h⇠2i ⇡ ⇠2,B , and define
the mean quanta emission rate per infected person, _@ = &1⇠@ . For the early to middle stages of an
epidemic or when ?8 and ?8< are not known, we recommend setting #/#C = 1 < #/(# � 1) ⇡ 1, for a
conservative CO2 bound that limits the indoor reproductive number. In the later stages of an epidemic,
as the population approaches herd immunity (?8 ! 0, ?8< ! 1), the safe CO2 bound diverges,
#/#C ! 1, and so may be supplanted by the limits on carbon dioxide toxicity noted above, that lie in
the range 5, 000 � 30, 000 ppm for 8-hour and 10-minute exposures.

Our simple CO2-based safety guideline, Eq. (5), reveals scaling laws for exposure time, filtration,
mask use, infection prevalence and immunity, factors that are not accounted for by directives that would
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Figure 1. Illustration of the safety guideline, Eq. (5), which bounds the safe excess CO2 (ppm) and
exposure time g (hours). Here, we consider the case of a classroom with # = 25 occupants, assumed
to be children engaging in normal speech and light activity (_@BA = 30 quanta/h) with moderate risk
tolerance (n = 10%). Compared to the most restrictive bound on the indoor reproductive number
without any precautions (red line), the safe CO2 level or occupancy time is increased by at least an
order of magnitude by the use of face masks (blue line), even with relatively inconsistent use of cloth
masks (?< = 30%). The e�ect of air filtration (green line) is relatively small, shown here for a case of
e�cient HEPA filtration (? 5 = 99%) with 17% outdoor air fraction (_ 5 = 5_0). All three bounds are
increased by several orders of magnitude (dashed lines) during late pandemic conditions (?8 ?B = 10
per 100, 000), when it becomes increasingly unlikely to find an infected-susceptible pair in the room.
The other parameters satisfy (_E + _B)/_0 = 0.5, as could correspond to, for example, _E = 0.3/⌘,
_B = 0.2/⌘ and _0 = 1/⌘ (1 ACH).

simply impose a limit on CO2 concentration. The substantial increase in safe occupancy times, as one
proceeds from the peak to the late stages of the pandemic, is evident in the di�erence between the solid
and dashed lines in Figure 1, which were evaluated for the case of a typical classroom in the United
States (Bazant and Bush, 2021). This example shows the critical role of exposure time in determining the
safe CO2 level, a limit that can be increased dramatically by mask use and to a lesser extent by filtration.
When infection prevalence ?8 falls below 10 per 100,000 (an arbitrarily chosen small value), the chance
of transmission is extremely low, allowing for long occupancy times. The risk of transmission at higher
levels of prevalence, as may be deduced by interpolating between the solid and dashed lines in Figure 1,
could also be rationally managed by monitoring the CO2 concentration and adhering to the guideline.

3. Mathematical Model of CO2 Monitoring to Predict Airborne Disease Transmission Risk

3.1. CO2 dynamics

We follow the traditional approach of modeling gas dynamics in a well mixed room (Shair and Heitner,
1974), as a continuous stirred tank reactor (Davis and Davis, 2012). Given the time dependence of
occupancy, # (C), mean breathing flow rate, &1 (C), and ventilation flow rate, &0 (C) = _0 (C)+ , one may
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express the evolution of the excess CO2 concentration ⇠2 (C) in a well-mixed room through

+
3⇠2

3C
= %2 (C) �&0 (C)⇠2, (6)

where

%2 (C) = # (C)&1 (C)⇠2,1 (7)

is the exhaled CO2 production rate. The relaxation rate for excess CO2 in response to changes in %2 (C) is
precisely equal to the ventilation rate, _0 (C) = &0 (C)/+ . For constant _0, the general solution of Eq. (6)
for ⇠2 (0) = 0 is given by

⇠2 (C) =
π C

0
4�_0 (C�C0) %2 (C 0)

+
3C 0 (8)

which can be derived by Laplace transform or using an integrating factor. The time-averaged excess
CO2 concentration can be expressed as

h⇠2i =
1
g

π g

0

⇣
1 � 4�_0 (g�C)

⌘ %2 (C)
&0

3C, (9)

by switching the order of time integration. If %2 (C) is slowly varying over the ventilation time scale _�1
0 ,

the time-averaged CO2 concentration may be approximated as

h⇠2i ⇡
h%2i
&0

�
✓
1 � 4�_0g

_0g

◆
%2 (g)
&0

, (10)

where the excess CO2 concentration approaches the ratio of the mean exhaled CO2 production rate to
the ventilation flow rate at long times, g � _�1

0 , as indicated in Eq. (4).

3.2. Infectious aerosol dynamics

Following Bazant and Bush (2021), we assume that the radius-resolved concentration of infectious
aerosol-borne pathogen, ⇠ (A , C), evolves according to

+
m⇠

mC
= %(A, C) � _2 (A, C)+⇠ (11)

where the mean production rate,

%(A, C) = � (C)&1 (C)=3 (A, C)+3 (A)?< (A)2E (A), (12)

depends on the number of infected persons in the room, � (C), and the size distribution =3 (A, C) of exhaled
droplets of volume +3 (A) containing pathogen (i.e. virions) at microscopic concentration, 2E (A). The
droplet size distribution is known to depend on expiratory and vocal activity (Morawska et al., 2009;
Asadi et al., 2019, 2020c). Quite generally, the aerosols evolve according to a dynamic sorting process
(Bazant and Bush, 2021): the drop-size distribution evolves with time until an equilibrium distribution
is obtained.

Given the time evolution of excess CO2 concentration, ⇠2 (C), one may deduce the radius-resolved
pathogen concentration ⇠ (A, C) by integrating the coupled di�erential equation,

m⇠

mC
+ _2 (A, C)⇠ =

%(A, C)
%2 (C)

✓
3⇠2

3C
+ _0 (C)⇠2

◆
. (13)
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This integration can be done numerically or analytically via Laplace transform or integrating factors if
one assumes that _0, _2 , % and %2 all vary slowly over the ventilation (air change) time scale, _�1

0 . In
that case, the general solution takes the form

⇠ (A, C) ⇡ %

%2

✓
⇠2 (C) + (_0 � _2 (A))

π C

0
4�_2 (A ) (C�C0)⇠2 (C 0)3C 0

◆
, (14)

where we consider the infectious aerosol build-up from ⇠ (A, 0) = 0.

3.3. Disease transmission dynamics

According to Markov’s inequality, the probability of at least one transmission taking place during the
exposure time g is bounded above by the expected number of airborne transmissions, )0 (g), and the
two become equal in the (typical) limit of rare transmissions, )0 (g) ⌧ 1. The expected number of
transmissions to ((C) susceptible persons is obtained by integrating the mask-filtered inhalation rate of
infection quanta over both droplet radius and time,

)0 (g) =
π g

0
((C)&1 (C)BA

✓π 1

0
⇠ (A, C)28 (A)?< (A)3A

◆
3C, (15)

where 28 (A) is the infectivity of the aerosolized pathogen. The infectivity is measured in units of infection
quanta per pathogen and generally depends on droplet size. One might expect pathogens contained in
smaller aerosol droplets with A < 5`m to be more infectious than those in larger drops, as reported
by Santarpia et al. (2020) for SARS-CoV-2, on the grounds that smaller drops more easily traverse the
respiratory tract, absorb and coalesce onto exposed tissues, and allow pathogens to escape more quickly
by di�usion to infect target cells. The mask penetration probability ?< (A) also decreases rapidly with
increasing drop size above the aerosol range for most filtration materials (Chen and Willeke, 1992;
Oberg and Brosseau, 2008; Konda et al., 2020; Li et al., 2008), so the integration over radius in Eq.
(15) gives the most weight to the aerosol size range, roughly A < 5`m, which also coincides with the
maxima in exhaled droplet size distributions (Morawska et al., 2009; Asadi et al., 2019, 2020c).

The inverse of the infectivity, 2�1
8 , is equal to the "infectious dose" of pathogens from inhaled

aerosol droplets that would cause infection with probability 1 � (1/4) = 63%. Bazant and Bush (2021)
estimated the infectious dose for SARS-CoV-2 to be on the order of ten aerosol-borne virions. Notably,
the corresponding infectivity, 28 ⇠ 0.1, is an order of magnitude larger than previous estimates for
SARS-CoV (Watanabe et al., 2010; Buonanno et al., 2020b), which is consistent with only COVID-19
reaching pandemic status. The infectivity is known to vary across di�erent age groups and pathogen
strains, a variability that is captured by the relative susceptibility, BA . For example, Bazant and Bush
(2021) suggest assigning BA = 1 for the elderly (over 65 years old), BA = 0.68 for adults (aged 15-64) and
BA = 0.23 for children (aged 0-14) for the original Wuhan strain of SARS-CoV-2, based on a study of
transmission in quarantined households in China (Zhang et al., 2020a). The authors further suggested
multiplying these values by 1.6 for the more infectious variant of concern of the lineage B.1.1.7 (VOC
202012/01), which recently emerged in the United Kingdom with a reproductive number that was 60%
larger than that of the original strain (Volz et al., 2021; Davies et al., 2020).

3.4. Approximate Formula for the Airborne Transmission Risk from CO2 Measurements

Equations (14) and (15) provide an approximate solution to the full model that depends on the exhaled
droplet size distribution, =3 (A , C), and mean breathing rate, &1 (C), of the population in the room.
Since the droplet distributions =3 (A) have only been characterized in certain idealized experimental
conditions (Morawska et al., 2009; Asadi et al., 2020a,c), it is useful to integrate over A to obtain a
simpler model that can be directly calibrated for di�erent modes of respiration using epidemiological
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data (Bazant and Bush, 2021). Assuming &1 (C), � (C), ((C), # (C) and =3 (A, C) vary slowly over the

relaxation time _
�1
2 , we may substitute Eq. (14) into Eq. (15) and perform the time integral of the second

term to obtain

)0 (g) ⇡
BA_0

⇠2,1

π g

0

π 1

0

=@ (A, C)?< (A)2

_2 (A)
&1 (C)� (C)((C)⇠2 (C)

# (C)


1 +

✓
_2 (A)
_0

� 1
◆
4�_2 (A ) (g�C)

�
3A 3C,

(16)
where =@ (A , C) = =3 (A, C)+3 (A)2E (A)28 (A) is the radius-resolved exhaled quanta concentration.

Following Bazant and Bush (2021), we define an e�ective radius of infectious aerosols A such that

π 1

0

=@ (A, C)?< (A)2

_2 (A)
3A ⌘

⇠@ (C)?< (A)2

_2 (A)
, (17)

where ⇠@ (C) =
Ø 1
0 =@ (A, C)3A is the exhaled quanta concentration, which may vary in time with changes

in expiratory activity, for example, following a transition from nose breathing to speaking. In principle,
the e�ective radius A can be evaluated, given a complete knowledge of the dependence on drop radius
of the mask penetration probability, ?< (A), and of all the factors that determine the exhaled quanta
concentration, =@ (A, C) and pathogen removal rate, _2 (A). While these dependencies are not readily
characterized, typical values of A are at the scale of several microns, based on the size dependencies of
=3 (A , C), 28 (A) and ?< (A) noted above.

Further simplifications allow us to derive a formula relating CO2 measurements to transmission
risk. By assuming that ⇠@ (C) varies slowly over the timescale of concentration relaxation, one may
approximate the memory integral with the same e�ective radius A . Thus, accounting for immunity and
infection prevalence in the population via

� (C)((C)
# (C) ⇡ #C

#
=

✓
1 � 1

#

◆
min{1, #?8 ?B}, (18)

we obtain a formula for the expected number of airborne transmissions,

)0 (g) ⇡
BA ?

2
<

⇠2,1

_0

_2

#C

#

π g

0
_@ (C)⇠2 (C)

"
1 +

 
_2
_0

� 1

!
4�_2 (g�C)

#
3C, (19)

in terms of the excess CO2 time series, ⇠2 (C), where _@ (C) = ⇠@ (C)&1 (C) is the mean quanta emission
rate. It is also useful to define the expected transmission rate,

3)0
3C

(g) = #C V0 (g) =
BA ?

2
<

⇠2,1

_0

_2

#C

#


_@ (g)⇠2 (g) + (_0 � _2)

π g

0
_@ (C)⇠2 (C)4�_2 (g�C)3C

�
, (20)

which allows for direct assessment of airborne transmission risk based on CO2 levels. A pair of examples
of such assessments will be presented in §4.

Notably, the mean airborne transmission rate per expected infected-susceptible pair, V0 (C), reflects

the environment’s memory of the recent past, which persists over the pathogen relaxation time scale, _
�1
2 .

The CO2 concentration in Eq. (9) has a longer memory of past changes in CO2 sources or ventilation,

which persists over the air change time scale, _�1
0 > _

�1
2 , since CO2 is una�ected by the filtration,

sedimentation and deactivation rates evident in Eq. (2). The time delays between the production of CO2

and infectious aerosols by exhalation and their buildup in the well mixed air of a room shows that CO2

variation and airborne transmission are inherently non-Markovian stochastic processes. As such, any
attempt to predict fluctuations in airborne transmission risk would require stochastic generalizations of
the di�erential equations governing the mean variables, Eqs. (6) and (11), and so represent a stochastic
formulation of the Wells-Riley model (Noakes and Sleigh, 2009).
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3.5. Reduction to the CO2-based Safety Guideline

Finally, we connect the general result, Eq. (19), with the CO2 based safety guideline derived above,
Eq. (5). Since ⇠2 (C) varies on the ventilation time scale, _�1

0 , which is necessarily longer than the

relaxation time scale of the infectious aerosols, _
�1
2 , we may assume that _@ (C)⇠2 (C) is slowly varying

and evaluate the integral in Eq. (19). We thus arrive at the approximation

)0 (g) ⇡
BA ?

2
<

⇠2,1
· _0

_2
· #C

#
·
"
h_@⇠2ig +

_@ (g)⇠2 (g)
_2

 
_2
_0

� 1 + 4�_2 g

!#
. (21)

Since _@ (C)⇠2 (C) is slowly varying, the second term in brackets is negligible relative to the first for

times longer than the ventilation time, g � _�1
0 > _

�1
2 . In this limit, the imposed bound on expected

transmissions, )0 (g) < n , is approximated by

h_@⇠2ig =
π g

0
_@ (C)⇠2 (C)3C <

n ⇠2,1

BA ?
2
<

· _2
_0

· #

#C
(22)

This formula reduces to the safety guideline, Eq. (5), in the limit of constant mean quanta emission rate,
_@ , which confirms the consistency of our assumptions.

4. Examples

We proceed by illustrating the process by which the guideline, Eq. (5), can be coupled to real data
obtained from CO2 monitors. Specifically, we consider time series of CO2 concentration gathered in
classroom and in o�ce settings at the Massachusetts Institute of Technology using an Atlas Scientific
EZO-CO2 Embedded NDIR CO2 Sensor controlled with an Arduino Uno, and an Aranet4, respectively.
Social distancing guidelines were adhered to, and masks were worn by all participants. We assume a
constant exhaled CO2 concentration of 38, 000 ppm, and use the global minimum of the CO2 series
as the background CO2 level ⇠0 from which the excess concentration ⇠2 (C) was deduced. Notably,
the relatively small fluctuations in the CO2 measurements recorded in a variety of settings support the
notion of a well-mixed room.

From Equations (19) and (20), we calculate the expected number of transmissions and transmission
rate, assuming that there is one infected person in the room (#C = #�1). In this case, the expected number
of transmissions is equal to the indoor reproductive number, )0 (g) = R8= (g), and the transmission rate
is 3)0

3C (g) = #C V0 (g). The approximations in the derivation are valid in these examples, so a direct
numerical solution of Eq. (13) would yield indistinguishable results. In particular, the "slowly varying"
assumptions are satisfied, since we keep # and � constant, and any time-dependence of &1 cancels in
the ratio %/%2. The droplet distributions =3 (A , C) may vary in time, but no significant changes in mean
respiratory activity were observed or measured. Moreover, accounting for any variations in _0 and _2
would require additional measurements in the same space, so these parameters may also be taken as
constants during the relatively short exposure times considered.

We choose realistic values of the parameters that fall within the typical ranges estimated by Bazant
and Bush (2021). The mean breathing rate is set to&1 = 0.5 <3/⌘ for light activity, and EB = 0.108 </⌘
for sedimentation with Ā = 0.5`m. The viral deactivation rate for SARS-CoV-2 is set to _E = 0.3/⌘, an
estimate appropriate for 50% relative humidity. We plot #C V0 (g) and R8= (g) for cases where masks are
and are not worn, and choose a mask penetration probability of ?< ⇡ 0.3, as is roughly appropriate for
a cloth mask. The parameters _2 , _0, � and # are chosen according to the specific scenario presented.
Exhaled COVID-19 quanta concentrations ⇠@ for various expiratory activities are estimated from Fig. 2
of Bazant and Bush (2021). In order to be conservative, we assume that BA = 1, suitable for the high-risk
individuals exposed to the Wuhan strain of SARS-CoV-2.
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Figure 2. Measured CO2 concentration and calculated transmission rate in a two-person o�ce. a) Black
dots represent the concentration of CO2. The solid blue, dashed magenta and dash-dot green curves
represents the transmission rate, as calculated from (20) for three di�erent scenarios, two of which were
hypothetical: (blue) the pair are not wearing masks and there is no filtration present; (magenta) the
pair are not wearing masks and there is filtration present; (green) the pair are wearing masks and there
is no filtration present. The orange solid curve denotes the period of exponential relaxation following
the exit of the room’s occupants, from which one may infer the room’s ventilation rate, _0 = 2.3/⌘. b)
Corresponding blue, magenta and green curves, deduced by integrating (20), indicate the total risk of
transmission over the time of shared occupancy. If the pair were not wearing masks, the safety limit
R8= < 0.1 would be violated after approximately an hour.

4.1. Small o�ce with two workers

Figure 2(a) shows CO2 measurements taken in an o�ce of length ! = 4.2 m, width , = 3 m, and
height � = 3 m. Initially, a single worker is present, but at 19:00, a second worker arrives at the o�ce.
The workers exit the o�ce at 21:09, return at 21:39, and exit again at 22:30. As the participants were
speaking, we use ⇠@ = 72 quanta/<3. We compute the room’s ventilation rate, _0 ⇡ 2.3/⌘, from the
exponential relaxation that follows the occupants’ exit from the o�ce (as indicated by the orange curve
in Figure 2). The o�ce was equipped with moderate ventilation, which we characterize with ? 5 = 0.99
and _A = 6/⌘.

As shown in Figure 2(b), if the o�ce mates were not wearing masks, the safety guideline of expected
transmissions )0 < 10% would be violated after approximately an hour together. However, o�ce mates
wearing cloth masks remain well under the safety guideline during the 2.5 hours spent together. Filtration
without masks also extends the occupancy time limits, however R8= approaches the safety limit after
approximately 2 hours. While this example should not be taken as a definitive statement of danger or
safety in this setting, it does serves to illustrate how our CO2 guideline can be implemented in a real-life
situation.
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Figure 3. Measured CO2 concentration and calculated transmission rate for 12 masked students in a
university lecture hall. a) Black dots represent the concentration of CO2. The solid blue and dash-dot
green curves represent the transmission rate, as calculated from (20), when the occupants are wearing
masks, and in the hypothetical case where they are not, respectively. b) The solid blue and dash-dot
green curves indicate the total risk of transmission with and without masks, respectively, as deduced
by integrating (20) over time. Even had masks not been worn, the safety guideline would not have been
violated during the lecture.

4.2. University classroom adhering to social distancing guidelines

We next monitor CO2 levels during a university lecture. There were # = 12 participants in a lecture
hall of length ! = 13 m, width , = 12 m and height � = 3 m. The lecture started at 13:05 and finished
at 13:50. Four people remained in the room for 30 minutes after class. The classroom has mechanical
ventilation, which we characterize in terms of _0 = 2/⌘ (30 minute outdoor air change). During the
lecture, the professor spoke while the students were quiet and sedentary; thus, we assume ⇠@ = 30
quanta/<3. The maximum CO2 concentration reached in the classroom was ⇡ 550 ppm, the excess
level no more than 100 ppm. Thus, the safety limit was never exceeded, and would not have been even
if masks had not been worn. We note that this lecture hall was particularly large, well-ventilated and
sparsely populated, and so should not be taken as being representative of a classroom setting.

A more complete assessment of safety in schools would require integrating CO2 concentrations over
a considerably longer time interval. For example, if students are tested weekly for COVID-19, then
one should assess the mean CO2 concentration in class during the course of an entire school week.
Nevertheless, this second example further illustrates the manner in which our model may be applied
to real-world settings and suggests that precautions such as ventilation, filtration and mask use, can
substantially increase safe occupancy times.
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5. Conclusion

Mounting evidence suggests that COVID-19 is spread primarily via indoor airborne transmission. Such
an inference is no surprise, as such is also the case for many other respiratory illnesses, including
influenza, tuberculosis, measles and severe-acute respiratory syndrome (as is caused by a precursor to
SARS-CoV-2, the coronavirus SARS-CoV). More than a year into the pandemic, public health guidance
continues to emphasize the importance of social distancing and surface cleaning, despite evidence that
mask directives are much more e�ective than either in limiting airborne transmission. We have here
illustrated the manner in which CO2 monitoring may be used in conjunction with the safety guideline
of Bazant and Bush (2021) in assessing the risk of indoor airborne respiratory disease transmission,
including that of COVID-19. We thus hope to inform personal and policy decisions about closing and
re-opening indoor spaces, such as schools and businesses.

We have here reformulated the COVID-19 indoor safety guideline of Bazant and Bush (2021),
expressing it in terms of cumulative exposure to carbon dioxide, which can be readily monitored in
real time for most indoor spaces. In so doing, we have built upon the important early work of Rudnick
and Milton (2003), as was recently extended and applied to COVID-19 by Peng and Jimenez (2021).
The guideline of Bazant and Bush (2021) makes clear that, since the risk of indoor airborne infection
is determined by the total volume of pathogen inhaled, safety limits intended to protect against it must
be expressed in terms of occupancy time. Likewise, in the context of CO2 measurements, safety limits
cannot be expressed solely in terms of a limit on carbon dioxide levels, but must also depend on
occupancy time. As we have demonstrated with our two case studies, the safety guideline (5), when
coupled with CO2 monitors, allows for real-time assessment of risk of airborne disease transmission
R8= in indoor spaces. Moreover, this approach has the distinct advantage that one can assess certain
key model parameters, including the background concentration of CO2 and the room’s ventilation rate,
directly from the CO2 measurements.

Within a well-mixed space, carbon dioxide is e�ectively a passive scalar that tracks the ambient flow,
and is removed only through exchange with outdoor air. Aerosol-borne pathogen is subject to addi-
tional removal mechanisms, including filtration (by face masks and internal circulation), sedimentation
and deactivation. Thus, the concentration of CO2 cannot be taken as a proxy for that of aerosol-borne
pathogen without resolving the proportionality constant between the two that results from these addi-
tional removal mechanisms. We stress that the e�ects of face mask use are dramatic in reducing the
ratio of aerosol-borne pathogen to CO2 concentration, and so in reducing the risk of indoor transmis-
sion. Finally, we note that the additional removal mechanisms acting on the droplet-borne pathogen alter
not only its equilibrium concentrations relative to that of CO2, but their relaxation times in transient
situations, as may be treated using the mathematical formalism of Bazant and Bush (2021).

We emphasize that the caveats enumerated by Bazant and Bush (2021) concerning the limitations of
their safety guideline apply similarly here. First, there is considerable uncertainty in a number of model
parameters, including the critical viral load and relative susceptibility. While our inferences are consistent
with available data, we hope that these uncertainties will be reduced as more COVID-19 spreading
events are characterized and analyzed. Second, when masks are not worn, there is substantial additional
risk of short-range airborne transmission from respiratory jets and plumes, as accompany breathing,
speaking (Abkarian et al., 2020a; Abkarian and Stone, 2020), coughing and sneezing (Bourouiba et al.,
2014). Third, while the assumption of the well-mixed room is widely applied and represents a reasonable
first approximation, it is known to have limitations (Bhagat et al., 2020; Linden et al., 1990; Linden,
1999). Notably, measured fluctuations in CO2 levels provide a direct means of assessing the validity of
the well-mixed-room hypothesis, especially when several sensors are used simultaneously at di�erent
locations in the same space. Indeed, CO2 monitoring has been used for decades to assess the quality of
air handling and zonal mixing in buildings (Seppänen et al., 1999; Fisk and De Almeida, 1998; Hung
and Derossis, 1989; Salisbury, 1986; Cheng et al., 2011), and can now be re-purposed to assess the risk
of indoor airborne disease transmission.
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Our transmission theory and safety guideline provide a quantitative basis for the use of CO2 monitors
in assessing the risk of indoor airborne disease transmission. Specifically, the simple guideline, Eq. (5),
and mathematical formulae connecting CO2 data to the evolving transmission risk, Eqs. (19)-(20), pave
the way for real-time assessment of personal risk in indoor spaces. Moreover, our results should allow
for building-scale optimization of public health using CO2 sensors, wherein risk assessment might be
weighed against the energy requirements of enhanced ventilation. Finally, our model provides a general
framework for using CO2 monitors to mitigate the indoor airborne transmission of other respiratory
illnesses, including the seasonal flu.

Extensions of our study would include implementing our guideline in spaces where not only CO2 is
monitored, but also the room occupancy along with other relevant parameters appearing in our model.
For example, monitoring decibel levels and type of vocalization could serve to inform the infectious
aerosol production rate (Asadi et al., 2019, 2020c; Morawska et al., 2009). Changes in occupancy could
also be monitored at entrances and exits (while maintaining anonymity). One could further envision
feeding all such data into air regulation controls in order to ensure that our CO2-based indoor safety
limit is never violated. We note that such a prospect would be most easily achieved in quasi-steady
circumstances in which a fixed population is behaving in a predictable fashion over the course of an
event of known duration, for example, for students in a lecture hall or passengers on a charter bus. In
more complicated situations, our model provides a framework for optimizing sensor-based demand-
controlled ventilation (Fisk and De Almeida, 1998) with a view to limiting transmission risk while
reducing energy consumption and system costs.

In order to facilitate the application of our safety guideline, in the Supplementary Material we provide
a link to an online app that computes the safety guideline in terms of both room occupancy and CO2

levels (Khan et al., 2020). The CO2-based guideline, available in the app’s Advanced Mode, may be
used in conjunction with CO2 monitors to formulate safe re-opening policies for indoor spaces in the
later stages of the pandemic.
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Symbol Meaning Typical Values
Engineering
Parameters

# Number of persons, room occupancy 1 – 1000
g Time since an infected person entered the room 0-1000 h
+ Room volume 10–104 m3

� Floor surface area 5–5,000 m2

� Mean ceiling height, +/� 2–6 m
&0 Ventilation outflow rate 1–105 m3/h
_0 Ventilation (outdoor air exchange) rate, &0/+ 0.1–30 h�1

_A Recirculation air exchange rate, &A /+ 0.1–30 h�1

? 5 Probability of droplet filtration via recirculation 0–1.0
_ 5 Filtration removal rate, ? 5 _A 0–30 h�1

?< mask penetration probability, ?< = ?< (A) 0.01–0.1
Physical

Parameters
A Respiratory drop radius 0.1–100 `m
+3 Drop volume, ⇡ 4

3cA
3 10�5–106`m3

=3 Drop number density per radius 0.01–1.0 (cm3`m)�1

EB Drop settling speed 10�5–102 mm/s
_B Drop settling rate, EB (A)/� 10�5–102 h�1

&1 Mean breathing flow rate 0.5–3.0 m3/h
⇠0 Background CO2 concentration 250–450 ppm
⇠2 Exhaled CO2 concentration 0–40,000 ppm
%2 Production rate of exhaled CO2 0.02–10 m3/h

Epidemiological
Parameters

(, � Number of susceptible and infected persons
V0 Airborne transmission rate per infected-susceptible pair 10�6–10 quanta/h�1

_E Pathogen (virion) deactivation rate 0.01–10 h�1

_2 Pathogen concentration relaxation rate, _2 = _2 (A) 0.1-100 h�1

Ā E�ective infectious drop radius 0.3–5`m
% Pathogen production rate / air volume / drop radius 10�6–109 (h`m)�1

⇠ Infectious pathogen concentration / air volume / radius 10�8–104 (m3`m)�1

2E Pathogen (virion) concentration per drop volume 104–1011 RNA copies/mL
28 Pathogen infectivity, 1/(infectious dose) 0.001–1.0
⇠@ Infectiousness of breath, exhaled quanta concentration 1–1000 quanta/m3

_@ Quanta emission rate, &1⇠@ 1–1000 quanta/h
?8 Probability a person is infected (prevalence) 0–1
?8< Probability a person is immune (by vaccination or exposure) 0–1
?B Probability a person is susceptible, ?B = 1 � ?8 � ?8< 0–1
BA Relative susceptibility (or transmissibility) 0.1–10
#C Expected number of infected-susceptible pairs 0–1000
)0 Expected number of airborne transmissions, #C hV0ig 0–100
R8= Indoor reproductive number, (# � 1)hV0ig 0.001–100
n Risk tolerance, bound on )0 0.005–0.5

Table 1. Glossary of symbols arising in our theory, their units and characteristics values.


