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Abstract 45 

Objective: Magnetic resonance imaging (MRI) has shown that estimated brain age is deviant 46 

from chronological age in various common brain disorders. Brain age estimation could be 47 

useful for investigating patterns of brain maturation and integrity, aiding to elucidate brain 48 

mechanisms underlying these heterogeneous conditions. Here, we examined functional brain 49 

age in two large samples of children and adolescents and its relation to mental health.  50 

Methods: We used resting-state fMRI data from the Philadelphia Neurodevelopmental Cohort 51 

(PNC; n=1126, age range 8-22 years) to estimate functional connectivity between brain 52 

networks, and utilized these as features for brain age prediction. We applied the prediction 53 

model to 1387 individuals (age range 8-22 years) in the Healthy Brain Network sample 54 

(HBN). In addition, we estimated brain age in PNC using a cross-validation framework. Next, 55 

we tested for associations between brain age gap and various aspects of psychopathology and 56 

cognitive performance.  57 

Results: Our model was able to predict age in the independent test samples, with a model 58 

performance of r=0.54 for the HBN test set, supporting consistency in functional connectivity 59 

patterns between samples and scanners. Linear models revealed a significant association 60 

between brain age gap and psychopathology in PNC, where individuals with a lower 61 

estimated brain age, had a higher overall symptom burden. These associations were not 62 

replicated in HBN.  63 

Discussion: Our findings support the use of brain age prediction from fMRI-based 64 

connectivity. While requiring further extensions and validations, the approach may be 65 

instrumental for detecting brain phenotypes related to intrinsic connectivity and could assist 66 

in characterizing risk in non-typically developing populations. 67 

 68 
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Introduction 69 

Psychiatric disorders are complex disorders with substantial heterogeneity in symptoms and 70 

prognosis, and comorbidities are usually the rule rather than the exception (Craddock & 71 

Owen, 2010; Krueger & Bezdjian, 2009; Nemeroff, 2002). This heterogeneity is also apparent 72 

in the brain, and magnetic resonance imaging (MRI) studies suggest greater structural 73 

variability among patients compared to healthy controls (Alnaes et al., 2019). This poses 74 

substantial challenges for elucidating the brain mechanisms underlying these disorders, and 75 

observed effects for neuromarkers are commonly minor in mental health research (Jollans & 76 

Whelan, 2018; Linden, 2012; Paulus & Thompson, 2019). This is further exacerbated by the 77 

lack of strong mapping between the current symptom-based nosology and the underlying 78 

biology (Owen, 2014). Given this multivariate complexity, studies have increasingly turned to 79 

machine-learning approaches that can utilize large amounts of data to provide individual-level 80 

predictions by the use of dimensionality reduction and pattern recognition (Cao & Schwarz, 81 

2020; Mansourvar M., Wiil U.K., & C., 2020). The aim is to provide a better mapping of 82 

brain imaging data to symptoms, cognition and behavior. 83 

One avenue provided by machine learning is its utility to map the substantial anatomical and 84 

functional changes that the brain undergoes throughout life. Training machine learning 85 

models to predict chronological age from brain imaging data allows us to derive the apparent 86 

age of the brain - referred to as ‘brain age’ - and its deviation from chronological age, referred 87 

to as the ‘brain age gap’ (Franke, Ziegler, Kloppel, Gaser, & Alzheimer's Disease 88 

Neuroimaging, 2010). Depending on the modality that is fed into the model, such estimates of 89 

apparent brain age can reflect different neurophysiology such as anatomical brain age (Franke 90 

et al., 2010) and functional brain age (Dosenbach et al., 2010). It is also possible to study this 91 

process for specific parts of the brain to gain insights into region specific alterations 92 

(Kaufmann et al., 2019). Studies that have applied brain age prediction to clinical data have 93 
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shown that adults with psychiatric disorders such as schizophrenia, have a brain that appears 94 

older and age faster compared to people without mental disorders (Schnack et al., 2016). 95 

Regional differences in brain age gaps between different disorders have also been observed. 96 

For instance, individuals with schizophrenia were found to have most pronounced age gap for 97 

the frontal lobe, while increased cerebellar-subcortical age gaps was found to be predominant 98 

in dementia and multiple sclerosis (Kaufmann et al., 2019). 99 

As the mechanisms of psychiatric disorders are assumed to have a strong neurodevelopmental 100 

component (Insel, 2010) and deviant developmental trajectories have been observed in 101 

imaging data of youths with early signs of psychiatric disorders (Besenek, 2020; Chung et al., 102 

2018; Collin et al., 2020; Kaufmann et al., 2017; Lian et al., 2018; Saito et al., 2020), 103 

estimating brain age gap as a proxy for maturation in young individuals may provide further 104 

insights into the early phases of the disorders. Indeed, an increase in anatomical brain age 105 

gaps has been observed in association with psychopathology in children and adolescents 106 

(Chung et al., 2018; Cropley et al., 2020; Franke, Luders, May, Wilke, & Gaser, 2012). 107 

Anatomical brain age during neurodevelopment has also been found to be dependent on sex 108 

and to be partly heritable (Brouwer et al., 2020). Additionally, functional measures have been 109 

used for brain age prediction in development (Dosenbach et al., 2010; Kassani, Gossmann, & 110 

Wang, 2020; Li, Satterthwaite, & Fan, 2018; Rudolph et al., 2017; Truelove-Hill et al., 2020; 111 

Zhai & Li, 2019), but the implications of functional brain age gaps have yet to be further 112 

explored across neurodevelopmental disorders in large samples of children and adolescents. 113 

Here, we used functional MRI data from 1126 individuals aged 8-22 years to train a machine 114 

learning model to estimate brain age. We applied the resulting model to independent 115 

functional imaging data of 1387 youths aged 8 to 22 to derive functional brain age gaps. Next, 116 

we used linear models to test for associations between brain age gap and psychopathology in 117 
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youths, using behavioral measures constructed from diagnostic criterion for selected DSM-5 118 

disorders. Based on previous findings, we expected to observe an association between delayed 119 

functional brain development and psychopathology on top of differences related to sex and 120 

cognitive test performance.  121 

 122 

Methods 123 

Study samples 124 

The Healthy Brain Network (HBN) study sample is an initiative coordinated by the Child 125 

Mind Institute, where the aim is to provide a unique understanding of the time period when 126 

psychiatric disorders emerge (Alexander et al., 2017). Age range for inclusion of participants 127 

is 5-21 years. Individuals are included in the New York area through announcements 128 

circulated to community members, educators, and local care providers. In addition, 129 

information via email lists was sent out and spread on parent events, where children with 130 

clinical concerns were encouraged to take part in this study (Alexander et al., 2017). The 131 

participants go through an extensive assessment package where MRI, genetics, 132 

electroencephalography (EEG), eye-tracking, biological testing, actigraphy, voice and video 133 

interviews are incorporated. In addition, the assessments include a neuropsychological battery 134 

and rich information on cognitive, lifestyle, behavioral and psychiatric factors (Alexander et 135 

al., 2017). Exclusion criteria comprise serious neurological disorders, neurodegenerative 136 

disorders, acute encephalopathy, hearing or visual impairment, lifetime substance abuse that 137 

required chemical replacement therapy/acute intoxication at time of study, recent diagnosis of 138 

a severe mental disorder or manic/psychotic episode within the last 6 months that did not 139 

receive continuing treatment. The onset of suicidality/homicidality where there is no current 140 

treatment was also an exclusion criterion (Alexander et al., 2017). Participants over the age of 141 

18 years gave signed informed consent, and legal guardians signed informed consent for 142 
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participants under the age of 18, in addition to participants giving a written assent (Alexander 143 

et al., 2017). The Chesapeake Institutional Review Board approved the study (https://www. 144 

chesapeakeirb.com/). 145 

 146 

The Philadelphia Neurodevelopmental Cohort (PNC) is a research initiative funded by the 147 

National Institutes of Mental Health (NIMH) that aims to describe the interaction between the 148 

brain, behavior and genetics (Satterthwaite et al., 2016). The PNC participants were selected 149 

after stratification by sex, age and ethnicity (Satterthwaite et al., 2014) from a larger sample 150 

of children enrolled in a genetic study at the Center of Applied Genomics, at the Children’s 151 

Hospital of Philadelphia. They were included after they had been to a primary care facility 152 

that was CHOP-affiliated in the Delaware Valley. The sample includes individuals with 153 

different medical conditions, varying from a well-child visit and minor problems to 154 

individuals with more complicated illnesses, however, individuals with medical problems that 155 

could affect brain function were excluded (Satterthwaite et al., 2016). The inclusion criteria 156 

comprised 1) ability to provide signed informed consent (parental consent was acquired for 157 

participants under age 18), 2) English language proficiency, and 3) physical and cognitive 158 

ability to participate in computerized clinical assessment and neurocognitive testing 159 

(Satterthwaite et al., 2014). Participants underwent a structured neuropsychiatric interview in 160 

addition to completion of the Computerized Neurocognitive Battery (CNB) (Satterthwaite et 161 

al., 2014). The University of Pennsylvania and CHOP Institutional Review Boards approved 162 

the study (Satterthwaite et al., 2016).  163 

 164 

MRI acquisition  165 

HBN: MRI scans were acquired at 3 sites; Rutgers University Brain Imaging Center 166 

(RUBIC), Citigroup Biomedical Imaging Center (CBIC) and a mobile scanner placed in 167 
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Staten Island. Rutgers used a Siemens 3T Trim Tio scanner, while CBIC deployed a Siemens 168 

3T Prisma. For RUBIC and CBIC, structural MRI data was acquired with a repeated 3D T1-169 

weighted sequence (TR: 2.5 s, TE: 3.15 ms, FA: 8°, FOV: 256 mm, slice thickness: 0.8 mm, 170 

slices: 224). In addition, CBIC acquired a structural scan based on ABCD study protocol with 171 

the following parameters; TR: 2.5 s, TE: 2.88 ms, FA: 8°, FOV: 256 mm, slice thickness: 1 172 

mm, slices: 176. Resting- state blood-oxygen-level-dependent (BOLD) fMRI data was 173 

acquired by means of a T2*-weighted BOLD echo-planar imaging (EPI) sequence with a 174 

repetition time (TR) of 800ms, echo time (TE) of 30ms, multiband acceleration factor = 6, 175 

number of slices: 60, and 375 repetitions and voxel size= 2.4×2.4×2.4 mm. Further, the 176 

mobile scanner located in Staten Island employed a 1.5T Siemens Avanto system operational 177 

with 45 mT/m gradients (Alexander et al., 2017), using these parameters for T1w data; TR: 178 

2730 ms, TE1: 1.64ms, TE2: 3.5ms, TE3: 5.36 ms, TE4: 7.22 ms, multiband acceleration 179 

factor = 3, FA: 7°, FOV: 256 mm, slice thickness: 1 mm, slices: 176. And for fMRI; TR: 180 

1.45s, TE: 40 ms, number of volumes: 420, slices: 54, resolution: 2.5×2.5×2.5 mm 181 

(http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/MRI%20Protocol.html).  182 

 183 

PNC: A 3D T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) 184 

sequence was obtained with a TR of 1.81 s, a TE of 3.5 ms, while FA: 9°, FOV: 240 × 180 185 

mm, slice thickness: 1 mm, and number of slices: 160, and used for structural purposes. MRI 186 

data was collected at the hospital of the University of Pennsylvania (Satterthwaite et al., 187 

2014). Resting-state BOLD fMRI data was collected by means of a T2*-weighted BOLD EPI 188 

sequence with a TR of 3000 ms, TE of 32 ms, 46 number of slices, 124 repetitions and voxel 189 

size= 3×3×3 mm (Satterthwaite et al., 2014).  190 

 191 

Cognitive and psychiatric measures  192 
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HBN: In order to test for associations between brain age and cognition in the test sample, we 193 

included the full-scale intelligence quotient (FSIQ) from the Wechsler Intelligence Scale for 194 

Children (WISC-V) as a measure of cognitive abilities for HBN participants. This score 195 

incorporates visual spatial, verbal comprehension, fluid reasoning, working memory, and 196 

processing speed domains (Wechsler, 2003). Furthermore, to test for associations between 197 

brain age and mental health we carried out a principal component analysis (PCA) on mental 198 

health data, in line with our earlier work (Lund et al., 2020). Specifically, we used the 199 

Extended Strengths and Weaknesses Assessment of Normal Behavior (E‐SWAN), where 200 

domains include depression, social anxiety, disruptive mood dysregulation disorder (DMDD), 201 

and panic disorder (Alexander, Salum, Swanson, & Milham, 2020). This allowed us to assess 202 

mental health symptoms on a continuum from healthy to patients to overcome the 203 

shortcomings of the typical case-control dichotomy. We excluded three of the items which 204 

related to panic disorder, as these questions had a high degree of missing values (90%). We 205 

ended up with 62 items for the PCA. Further, excluding individuals with missing scores, we 206 

had data for 2626 subjects for the PCA. We utilized the “prcomp” function in R to implement 207 

the PCA. The resulting first component, referred to as the p-factor or pF (Caspi et al., 2013) 208 

explained most variance across all the symptom domains of the ESWAN questionnaire 209 

(43.6%) and was particularly associated with items linked to self-control and 210 

depression/anxiety. We also included the second principal component (pF2), which explained 211 

11.3% of the variance and was associated with items describing mood dysregulation. For 212 

both, pF and pF2, a high score reflects lower mental health. 213 

 214 

PNC: We made use of an already existing delineation of mental health data using PCA 215 

(Alnæs et al., 2018) to derive a general psychopathology factor from clinical scores (Calkins 216 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254831doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254831


 

 
 
 

9 

et al., 2015; Calkins et al., 2014), and to derive a general cognition component (Alnæs et al., 217 

2018) from various cognitive performance measures (Gur et al., 2014). 218 

 219 

MRI processing and functional connectivity  220 

MR data was collected by the study team of HBN (Alexander et al., 2017) and PNC 221 

(Satterthwaite et al., 2016) and we processed both samples with the same pipeline. 222 

Preprocessing included FSL MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002) with 223 

spatial smoothing (FWHM:6.0) and a high-pass filter cutoff of 100, non-aggressive ICA-224 

AROMA (Pruim, Mennes, Buitelaar, & Beckmann, 2015; Pruim, Mennes, van Rooij, et al., 225 

2015), followed by ICA FIX with a threshold of 20 (Griffanti et al., 2014; Salimi-Khorshidi et 226 

al., 2014), described in earlier work (Kaufmann et al., 2017; Lund et al., 2021). Preprocessing 227 

was followed by group level ICA using MELODIC group Independent Component Analysis 228 

(Beckmann & Smith, 2004; Hyvärinen, 1999). For each sample and scanning site (1 for PNC; 229 

N=1252, 3 for HBN; N=1685), we performed one group level ICA, followed by a meta-ICA 230 

across all four sites, yielding ICs compliant across samples and sites. Due to the meta-ICA 231 

framework, the number of components had to be pre-specified and we chose a model order of 232 

100, as used in prior studies (de Lange et al., 2020; Miller et al., 2016; Smith et al., 2013). 233 

After manual quality control through visual inspection of each IC, 53 components were 234 

marked as artefactual while the rest of the components (47), were included for FSLNets 235 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) to estimate correlations between each 236 

functional network for each subject. In line with earlier work (Kaufmann et al., 2016), we 237 

used a Ledoit & Wolf shrinkage estimator procedure for L2 Regularization (Ledoit & Wolf, 238 

2003; Schäfer & Strimmer, 2005), which estimates regularization strength (lambda) at the 239 

individual level. Finally, we z-transformed the estimated correlations using Fisher’s 240 

transformation and used the upper triangle of the correlation matrix as a feature set for 241 
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machine learning, giving 1081 unique edges denoting the connection strength between two 242 

IC’s at the subject level.  243 

 244 

The Shrinkage Estimation of Regression Coefficients (slm) function from the care package in 245 

R was utilized for brain age prediction where default parameters were applied (Schäfer & 246 

Strimmer, 2005). Using PNC data, we trained a model to predict age based on the 1081 247 

correlations reflecting connection strengths between the 47 IC’s referred to here as nodes. We 248 

excluded the 10% (N=126) that scored highest on general psychopathology (pF) in order to 249 

obtain a model based on healthy individuals, and used the data from the remaining 1126 250 

subjects (age: 8.17–22.9 years, 47.1% males, mean: 15.2 years, sd: 3.54 years, median: 15.4 251 

years) for model training. To validate model performance within PNC data, we performed a 252 

10‐fold cross validation, estimating age for each individual in each of the left-out folds while 253 

training the model on the rest.  254 

 255 

Afterwards, we tested the PNC model on HBN data (N=1387, age: 8.01–22.4 years, mean: 256 

12.3 years, sd: 3.24 years, median: 11.5 years, 61.8% males, where information about sex was 257 

missing for N= 30, and 298 subjects from the initial meta-ICA were excluded due to age 258 

outside the training set range (age<8) or missing information about age at MRI). For each 259 

individual in HBN, we estimated the brain age gap (BAG) by subtracting chronological age 260 

from the estimated brain age.  261 

 262 

Statistical analysis  263 

We used brain age gap as a response variable in linear models and tested for associations with 264 

psychopathology and cognitive abilities in the HBN sample (N=941, age: 8.01–17.5 years, 265 

63.5% males, where 446 subjects from the test set was excluded due to missing clinical 266 
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(N=325), or cognitive (N=120) values or information on sex (N=1)). In addition to the HBN 267 

test sample, we performed the same analysis for the 10% of individuals initially excluded 268 

from the PNC sample (N=126; age: 9.5–22.9 years, 39.7% males) and combined the brain age 269 

estimates from the N=126 individuals with brain age estimates obtained through cross-270 

validation in the rest of the PNC sample. We performed analyses using BAG scores and 271 

tested for associations between BAG and covariates using linear regression models. HBN 272 

models were adjusted for age, age-orthogonalized age squared (age², using the poly function 273 

in R), sex, tSNR, motion and scanning site, while PNC was adjusted for age, age-274 

orthogonalized age squared (age², using the poly function in R), sex, motion and tSNR.  275 

 276 

Results 277 

The correlation between the estimated brain age and the chronological age, computed through 278 

10-fold cross-validation in the training set (PNC), was r=0.60 [95% CI: 0.56, 0.63] (fig.1), the 279 

mean absolute error (MAE) was 2.43 years and root mean square error (RMSE) was 2.93 280 

years, confirming the utility of the functional connectivity features for predicting age. The slm 281 

model explained 11.2% of the variance. Figure 2 depicts the feature ranking by use of 282 

Correlation-Adjusted (marginal) correlation (CAR) scores from the model giving a measure 283 

of variable importance. The top 10 most important edges were between a sensorimotor 284 

(SM;IC1) and right SM node (IC2), right SM node (IC2) and left SM node (IC3), Visual 285 

Medial node (VM;IC6) and VM (IC8), Default Mode Network (DMN;IC12) and precuneus 286 

with frontal gyrus (IC13), thalamus (IC14)  and putamen/left insular cortex (IC19), thalamus 287 

(IC15) and cerebellar node (IC46), precuneus and posterior cingulate (IC17) with cerebellar 288 

node (IC46), superior parietal lobe and SM regions (IC5) with Juxtapositional lobule and 289 

cingulate gyrus (IC59), VM (IC6), with Juxtapositional lobule, precentral and middle frontal 290 
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gyrus (IC76), as well as lateral occipital cortex, and pre/postcentral gyrus (IC50) and VO 291 

(IC86). 292 

 293 

 294 
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FIG1: A) Model performance for the training set (PNC) where the Pearson correlation 295 

between estimated and real age is r=0.60. B) Density plot showing the distributions of 296 

chronological age and estimated brain age for the training set.   297 

 298 
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 299 

FIG2: A) The components from the meta-ICA that were included for the analysis. B) 300 

Distribution of CAR scores. As expected, the dependencies are low given that we used a 301 

partial correlation framework with regularization in FSLNets to estimate connectivity. C) 302 
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CAR score matrix showing the dependencies among predictors, where the 10 most important 303 

features calculated from the correlation between the response and the Mahalanobis-304 

decorrelated predictors are marked with a star.  305 

 306 

Next, we applied the PNC model to independent test data from the HBN sample. The 307 

correlation between chronological age and estimated brain age was r= 0.54 [ 95% CI: 0.50, 308 

0.57] (fig.3), MAE was 4.24 years and RMSE = 4.79 years. While these errors were higher 309 

than the errors within the PNC sample, considering the test sample comes from different 310 

scanners these results nonetheless confirmed the validity of the model, illustrating high 311 

consistency between samples and scanners. For further investigation of scanning site effects, 312 

we examined model performance for each site. We found that the correlation between the 313 

estimated brain age and the chronological age for the scanner located in Staten Island 314 

(N=272) was r=0.64 [95% CI: 0.56, 0.71], the MAE was 3.46 years and RMSE= 4.03 years. 315 

For Rutgers (N=584), the correlation was r=0.58 [95% CI: 0.53, 0.64], the MAE was 4.87 316 

years and RMSE= 5.36 years, while for CBIC (N=531) r=0.55 [95% CI: 0.49, 0.61], the MAE 317 

was 3.95 years and RMSE= 4.47 years. This shows that there is some variability between 318 

sites, but that the model overall performs similarly across sites. We therefore dealt with site 319 

effects by incorporating it as a fixed factor in the association analyses. The model 320 

performance across sites also underlines the feasibility of the meta-ICA framework to derive 321 

robust functional networks in data from different scanners, yielding compatible whole-brain 322 

networks across sites.  323 

 324 
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 325 

FIG3: A) Model performance for the test set (HBN) where the Pearson correlation between 326 

estimated and real age is r=0.54. B) Density plot showing the distribution between 327 

chronological age and estimated brain age for the training sample.   328 

 329 
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Linear models revealed no significant associations for BAG and mental health (pF: t=-0.11, 330 

P=.91, pF2: t=-0.55, P=.58) or cognitive abilities (t=0.95, P=.34) in the test set, when 331 

accounting for age, age-orthogonalized age squared, sex, tSNR, motion and scanning site. In 332 

line with earlier research, there were significant associations between BAG and age, motion 333 

and scanning site (see supplementary table 1). We tested for interaction effects of cognitive 334 

abilities and chronological age, but we did not find that cognitive abilities depend on age, or 335 

influences the association with the brain age gap (FSIQ*Chronological Age: t=0.1, P=.92). 336 

 337 

Additionally, using the existing PNC model, we estimated brain age for the 10% of the PNC 338 

participants (N=126) with the highest mental health burden that were excluded from the 339 

training set. The correlation between chronological age and estimated brain age in this small 340 

sample was r= 0.42 [ 95% CI: 0.27, 0.56], MAE was 2.26 years and RMSE = 2.81 years. 341 

Next, we merged the brain age estimates from the N=126 individuals with the brain age 342 

estimates computed in a cross-validation framework run within the training set, yielding 343 

estimates for all individuals in the PNC sample (N=1252). Using the full sample, we tested 344 

for associations with pF and a g factor (gF for PNC was estimated based on the instruments 345 

given here; Alnæs et al. (2018)), accounting for age, age-orthogonalized age squared, sex, 346 

motion and tSNR, using a linear model. We observed a significant association between 347 

mental health and BAG (t=-2.8, P<.01). Specifically, higher symptom burden was associated 348 

with lower BAG, indicating that individuals with a younger (estimated) brain age compared 349 

to chronological age had a higher level of psychiatric symptoms (fig.4). We found no 350 

significant associations for BAG and cognitive abilities (t=1.59, P>.1).  351 

 352 

 353 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254831doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254831


 

 
 
 

18

 354 

FIG4: Plot showing the significant negative association of psychopathology (pF) and Brain 355 

Age Gap (BAG) for the full PNC sample (N=1252).  356 

 357 

Discussion 358 

Here, we performed age prediction using machine learning on functional connectivity derived 359 

from resting state data (rsfMRI), allowing us to reduce a sizeable amount of data to a single 360 

measure of estimated functional brain age per individual. As rsfMRI does not include a 361 

cognitively demanding task or require a long scan duration, this is an appealing method for 362 

collecting data across individuals with different disorders. The absence of a specific task 363 

protocol also makes it ideally suited to combine data from different samples, thereby meeting 364 

the requirements for large samples to obtain robust machine learning models. Indeed, we here 365 

show that brain age models trained on functional connectivity of one sample can be 366 

successfully applied to other samples, even though predictions regress towards the mean of 367 

the training set (Fig. 3b), including those with data obtained from different scanners and 368 

protocols. A correlation of around 0.6 between chronological age and estimated brain age for 369 
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different sites was consistent with other studies estimating brain age using functional 370 

connectivity as feature input (Li et al., 2018; Truelove-Hill et al., 2020). The moderate 371 

correlation is expected as the functional connectome is highly dynamic over the lifespan and 372 

across contexts. However, a developmental pattern encompassing a core functional 373 

connectome backbone in rsfMRI data has shown high test-retest reliability (Thomason et al., 374 

2011; Zuo & Xing, 2014), and reproducible inter- and intra-subject rsfMRI measures 375 

(Damoiseaux et al., 2006; Shehzad et al., 2009). As such, despite moderate correlations the 376 

models are likely to capture biologically relevant information, and may be used to indicate 377 

trajectories for typical and non-typical brain development and neural restructuring important 378 

for susceptibility to brain disorders. 379 

 380 

The brain age approach allowed us to assess the relationship between an estimated brain age 381 

gap and cognition and mental health in independent data, while our dimensional approach to 382 

mental health data enabled us to characterize both healthy subjects and individuals with a 383 

psychiatric disorder along a symptom dimension, rather than applying a binary distinction as 384 

cases and controls. Such dimensional approaches may more aptly identify phenotypes which 385 

map to brain biology and the neuronal mechanisms underlying the symptoms than diagnostic 386 

categories (Hengartner & Lehmann, 2017; Krueger & Bezdjian, 2009).  387 

 388 

Our hypothesis of a link between functional brain age gap, a proxy for brain maturation, and 389 

psychopathology was supported in PNC but not in the HBN sample. The significant 390 

association between general psychopathology and BAG in the PNC sample, where a higher 391 

symptom burden was associated with a lower BAG, is in accordance with studies showing a 392 

delay in brain maturation being linked to poorer mental health in the same sample (Kaufmann 393 

et al., 2017) and also in young patients with schizophrenia (Douaud et al., 2009). Whether 394 
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mental health is associated with a higher or lower BAG may largely depend on its timing. 395 

While work in youths’ points to a lower BAG with increased symptoms (interpreted as a 396 

delayed development), work in adults has shown a higher BAG with disorders (interpreted as 397 

apparent aging). For example, studies estimating structural brain age in 16-22 years old 398 

individuals has shown higher brain age for schizophrenia patients compared to controls 399 

(Truelove-Hill et al., 2020), consistent with studies in adults (Kaufmann et al., 2019; 400 

Koutsouleris et al., 2013), illustrating that both structural and functional brain age models 401 

capture important patterns. As such, the lack of significant associations in HBN could be 402 

related to a number of factors, including that the pF captures different aspects of mental health 403 

in the two samples, that HBN samples from the point of transition between decreased BAG 404 

(childhood) and increased BAG (adulthood), or that there is no difference due to mental 405 

health. Alternatively, it is possible that the linear machine learning model did not have 406 

enough flexibility to detect non-linear effects in development. It will be interesting in future 407 

research to see if models that do better at capturing non-linear maturation trajectories may 408 

reveal associations with psychopathology.  409 

 410 

Contrary to our expectations, our analysis revealed no significant associations between BAG 411 

and cognitive test performance. In contrast, previous work utilizing the PNC sample have 412 

observed that individual differences in working memory performance is linked with the 413 

centrality of the cingulo-opercular network (Kolskar et al., 2018). Moreover, for 414 

developmental trajectories in youths, it has been illustrated that networks associated with 415 

cognition and emotion have locally increased functional connectivity compared to adults, 416 

indicating fine-tuning and specialization occurring during the first years of adolescence, 417 

principally in networks characterized for higher-order cognitive functioning (Hoff, Van den 418 

Heuvel, Benders, Kersbergen, & De Vries, 2013). Also, for adults, permutation tests showed 419 
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above chance-level prediction accuracy for trait-level educational attainment and fluid 420 

intelligence in rsfMRI data from UK Biobank. Both variables were negatively linked with 421 

functional connectivity in frontal and default mode networks (Maglanoc et al., 2020). In 422 

relation to disorders, differences have been found in functional connectivity for the putamen, 423 

dorsal and default-mode regions in Alzheimer’s disease in comparison with mild cognitive 424 

and subjective cognitive impairment (Cordova-Palomera et al., 2017). Likewise, anatomical 425 

BAG has been associated with sex, with females developing earlier than males (Brouwer et 426 

al., 2020), yet there was no significant association with sex for the functional BAGs in our 427 

current study. This could be due to not training the model separately for females and males, 428 

owing to limitations in number of features versus participants. Still, the model performance 429 

showed that shared variability for both sexes was captured.  430 

 431 

Apart from the investigations into BAG, we identified a set of specific connections important 432 

for modeling brain age. Central features for the brain age prediction included sensorimotor, 433 

visual, insular, DMN, cerebellar and language processing regions, which is coherent with 434 

changes in sensory, motor and cognitive abilities observed across this age span (Casey, 435 

Tottenham, Liston, & Durston, 2005; de Bie et al., 2012). Our findings are in line with 436 

reviews (Power, Fair, Schlaggar, & Petersen, 2010; Uddin, Supekar, & Menon, 2010) 437 

showing alterations in these functional connectivity patterns in development. Specifically, 438 

studies have shown that brain maturation in children and adolescence may involve a decrease 439 

in connectivity of short-range connections and an increase of long-range connections in 440 

functional networks. This has been observed for instance in a reduction in short-length 441 

connections for the SM and anterior cingulate cortex in young children (Kelly et al., 2008; 442 

Supekar, Musen, & Menon, 2009), and for segregation of frontal regions and the DMN in late 443 

childhood (Fair et al., 2009).  444 
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 445 

Conclusions 446 

In the present study, we estimated functional brain connectivity from rsfMRI data from 447 

children and adolescents, and used connectivity strengths as features for brain age prediction. 448 

Our model showed reasonable performance, and consistency across samples and scanning 449 

sites. The most important connections for age prediction were related to sensorimotor, visual, 450 

insular, DMN, cerebellar and language areas, indicating that these neural circuits are central 451 

in adolescent development. While we found mixed results for behavioral and clinical 452 

associations of the brain age gap, the applicability of models to data from different sites 453 

supports the utility of the brain age prediction framework for multisite investigations. 454 
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