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Abstract 

The heterogeneity of white matter damage and symptoms in concussion has been 
identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI 
(dMRI) studies on concussion have traditionally relied on group-comparison approaches 
that average out heterogeneity. To leverage, rather than average out, concussion 
heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract 
multi-symptom relationships. Using cross-sectional data from 306 previously-concussed 
children aged 9-10 from the Adolescent Brain Cognitive Development Study, we built 
connectomes weighted by classical and emerging diffusion measures. These measures 
were combined into two informative indices, the first representing microstructural 
complexity, the second representing axonal density. We deployed pattern-learning 
algorithms to jointly decompose these connectivity features and 19 symptom measures. 
We found multivariate connectivity-symptom correspondences that were stronger than all 
single-tract single-symptom associations. Expression of multi-tract features was not 
driven by sociodemographic and injury-related variables. In a replication dataset, the 
expression of multi-tract features predicted psychiatric diagnoses after accounting for 
other psychopathology-related variables. These clinically-informative, cross-
demographic multi-tract multi-symptom relationships recapitulated well-known findings 
from the concussion literature and revealed new insights about white matter 
structure/symptom relationships. These results may pave the way for the development of 
improved stratification strategies and the development of predictive biomarkers for 
personalized concussion management approaches. 
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Introduction 
Concussion afflicts approximately 600 per 100,000 individuals every year.1 Its 

incidence rate is rising in children and adolescents,2 and compared to adult populations, 
the impact of concussions on pediatric brains is understudied.3 Despite considerable 
funding devoted to clinical and basic research, no major advances in therapeutics have 
been achieved to date.4 A root cause of this stagnation appears to be a contradiction: 
while all concussions are treated equally in clinical trials and research studies, they are 
characterized by extensive heterogeneity in their pathophysiology, clinical presentation, 
symptom severity and duration.4,5 Concussion heterogeneity across patients has been 
identified as a major hurdle in advancing concussion care.4,5  

Due to shearing forces transmitted during injury, the brain’s white matter is 
especially vulnerable to concussion.6,7 Decades of research have studied white matter 
structure in individuals who sustain concussions. However, most studies continue to 
assume consistent, one-to-one structure/symptom relationships and employ traditional 
group comparisons,8,9 averaging out the diffuse and likely more idiosyncratic patterns of 
brain structure abnormalities in favour of shared ones. Hence, the extant literature 
suggests that a large proportion of the clinical and research studies have not adequately 
accounted for clinical and neuropathological concussion heterogeneity.  

To remedy this shortcoming, a growing number of studies aimed to parse the 
clinical heterogeneity in concussions by algorithmically partitioning patients into discrete 
subgroups based on symptoms.10-12 Other studies aim instead to account for heterogeneity 
in white matter structure alterations.13-15 Ware et al.15 built individualized maps of white 
matter abnormalities which revealed substantial inter-subject variability in traumatic 
axonal injury and minimal consistency of subject-level effects. Taylor et al.14 computed a 
multivariate summary measure of white matter structure across 22 major white matter 
bundles which achieved better classification accuracy of concussed patients from healthy 
controls compared to single tract measures. Hence, studies have attempted to address 
concussion heterogeneity in symptoms and in white matter structure. However, no prior 
studies have considered both sources of heterogeneity simultaneously.  

White matter alterations due to concussion are diffuse and can elicit several 
symptoms that may interact with each other in complex ways.4,5,16 For instance, two 
individuals may suffer a concussion and develop sleep problems. The first may have 
damaged white matter tracts related to sleep/wakefulness control, whereas the second 
may have damaged tracts related to mood, causing depression-like symptoms, which 
include sleep problems. These two individuals will thus display a common symptom but 
will have overall different symptom profiles and different white matter damage profiles. 
Parsing concussion heterogeneity requires accounting for these dynamic, multi-tract 
multi-symptom relationships. 

In the present study, we leveraged advanced diffusion MRI (dMRI) methods as 
well as a double-multivariate approach to parse concussion heterogeneity in white matter 
structure and symptoms simultaneously in a large sample of previously-concussed 
children. Multi-tract multi-symptom relationships captured more information than 
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traditional univariate approaches. Expression of multi-tract connectivity features was not 
driven by sociodemographic strata and injury-related variables. Finally, after accounting 
for univariate variables found to be related to adverse psychiatric outcome in the 
discovery dataset (n=214), we found that expression of one multi-tract connectivity 
feature predicted adverse psychiatric outcome in a replication dataset (n=92). 
 
Results 
Sample 

Out of 434 participants with a history of mTBI, 306 (127F/179M) had usable data 
(Figure 1). Table 1 outlines sociodemographic and injury-related factors, as well as 
handedness and sex. The majority had sustained an injury over 1 year prior to the study. 
Nuisance variables were well-balanced between participants in the discovery and the 
replication set.  

 
Figure 1. Flowchart describing the participant selection procedure. 

 

Combined measures of white matter tract microstructure 

The PCA yielded two biologically-interpretable components that together 
explained 97% of the variance in dMRI measures (Figure S2). The first appeared to 
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reflect an index of microstructural complexity, whereas the second more closely reflected 
axonal density. Because we retained two PCs, we performed two PLSc analyses.  

Multi-tract multi-symptom relationships 

Each PLSc analysis yielded 19 latent modes of covariance (termed here “multi-
tract multi-symptom relationships”), each consisting of a pair of multi-tract connectivity 
and multi-symptom features. Based on permutation testing, 18 multi-tract multi-symptom 
pairs were retained from the microstructural complexity PLSc, and 14 from the axonal 
density PLSc. For brevity, only a few informative pairs are presented herein, but an 
illustration of all significant pairs for all thresholds can be found in supplementary 
material (Figures S3-S6).  

For microstructural complexity, similarly to axonal density, the first multi-tract 
multi-symptom pair broadly represented all symptoms (Figure 2A), capturing general 
problems. Interestingly, this pair implicated several callosal tracts (Figure 3). The third 
multi-tract multi-symptom pair obtained from the axonal density PLSc represented 
mostly sleep and cognitive problems, whereas the fourth pair represented more strongly 
mood, sleep, and somatic problems (Figure 2B and C).  

Multivariate vs univariate approaches 

Correlations between multi-tract and multi-symptom features were higher than all 
univariate correlations between the microstructural complexity and axonal density scores 
of every retained tract and every symptom (“single-tract single-symptom relationships”). 

 To further explore this comparison between univariate and multivariate 
approaches, we identified 28 individuals with scores above 70 in CBCL Depression, 
Attention Problems, Anxiety Disorder, or Aggression scales, considered to be the clinical 
range.9 Figure 3 (scatter plots) illustrates the expression of three multi-tract multi-
symptom pairs. In clinical trials and research studies, these 28 individuals would be 
grouped together. However, these individuals (displayed in black) were differentiable by 
their expression of multi-tract and multi-symptom features (Figure 2).  

We compared microstructural complexity and axonal density scores across all 200 
connections between individuals with and without clinical-level CBCL scores, and 
calculated the percent overlap between each multi-tract connectivity feature and the set of 
tracts found to be significant in univariate comparisons. The percent overlap scores are 
presented in Figure 3. Notably, the highest overlap occurred with multi-tract connectivity 
feature 1 (22%) from both PLSc analyses. Univariate psychopathology-related features 
(Figure 3 red and blue brain renderings) and multi-tract connectivity feature 1 (Figure 3 
violet brain rendering) implicated several callosal tracks, whereas fewer callosal tracks 
were implicated in multi-tract connectivity features 3 and 4 (Figure 3 turquoise and green 
brain renderings). 
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Table 1. Table of sample characteristics. Note: Participants with “Unknown” Injury Mechanism and Total TBIs 
reported sustaining a TBI but no mechanism of injury was endorsed. 

Demographic and injury data Discovery set 
(n=214) 

Replication set 
(n=92) 

Interview Age   
Mean (SD) 9.57 (0.496) 9.54 (0.501) 
Median [Min, Max] 10.0 [9.00, 10.00] 10.0 [9.00, 10.0] 

Sex   
F 88 (41.1%) 39 (42.4%) 
M 126 (58.9%) 53 (57.6%) 

Pubertal Stage   
Early 41 (19.2%) 18 (19.6%) 
Mid 58 (27.1%) 19 (20.7%) 
Prepubertal 115 (53.7%) 52 (56.5%) 
Late 0 (0%) 3 (3.3%) 

Race/Ethnicity   
Asian 2 (0.9%) 2 (2.2%) 
Hispanic 27 (12.6%) 18 (19.6%) 
Multiple 18 (8.4%) 8 (8.7%) 
Non-Hispanic Black 14 (6.5%) 11 (12.0%) 
Non-Hispanic White 151 (70.6%) 52 (56.5%) 
Other 2 (0.9%) 1 (1.1%) 

Combined Family Income   
<5K 5 (2.3%) 5 (5.4%) 
$5,000 - $11,999 5 (2.3%) 1 (1.1%) 
$12,000-$15,999 3 (1.4%) 2 (2.2%) 
$16,000-$24,999 5 (2.3%) 3 (3.3%) 
$25,000-$34,999 12 (5.6%) 4 (4.3%) 
$35,000-$49,999 12 (5.6%) 5 (5.4%) 
$50,000-$74,999 34 (15.9%) 16 (17.4%) 
$75,000-$99,999 31 (14.5%) 13 (14.1%) 
$100,000-$199,000 76 (35.5%) 27 (29.3%) 
>$200,000 31 (14.5%) 16 (17.4%) 

Handedness   
LH 10 (4.7%) 10 (10.9%) 
RH 175 (81.8%) 69 (75%) 
Mixed 29 (13.6%) 13 (14.1%) 

Injury Mechanism   
Fall/hit by object 135 (63.1%) 48 (52.2%) 
Fight/shaken 2 (0.9%) 3 (3.3%) 
Motor vehicle collision 14 (6.5%) 3 (3.3%) 
Multiple 10 (4.7%) 5 (5.4%) 
Unknown 53 (24.8%) 33 (35.9%) 

Time Since Injury   
Mean (SD) 3.22 (2.79) 3.23 (2.60) 
Median [Min, Max] 2.00 [0.00, 11.0] 2.50 [0.00, 9.00] 

Total TBIs   
Unknown 53 (24.8%) 33 (35.9%) 
1 151 (70.6%) 54 (58.7%) 
2 9 (4.2%) 5 (5.4%) 
3 1 (0.5%) 0 (0%) 

Note: Participants with “Unknown” Injury Mechanism and Total TBIs reported sustaining a TBI but no 
mechanism of injury was endorsed. 
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Figure 2. Illustration of 3 multi-tract multi-symptom pairs obtained from the microstructural complexity PLSc (A), and 
from the axonal density PLSc (B and C). Left: Polar plots displaying the weights of all 19 symptom measures for each 

multi-symptom feature. Each circle is color-coded to match the corresponding scatter plot. Bars pointing away from the 
center illustrate positive weights, bars pointing towards the center represent negative weights. White stars illustrate 

symptoms that significantly contributed to the pair. Bar graphs underneath the polar plots illustrate the % covariance 
explained by each pair, with the currently-shown pair highlighted. Right: Scatter plots showing the expression of multi-
tract features (x-axis) and multi-symptom features (y-axis). In each plot, the same 6 participants are labelled (1 through 
6), with each plot showing the scaled symptom measures (i.e.: not the expression of multi-symptom features) for two 

participants, one expressing low levels of a pair, the other expressing high levels. For each illustrated participant, 
positive bars illustrate symptoms that are higher than the sample average, negative bars represent symptoms that are 
lower. Participants with clinical levels of CBCL Depression, Attention Problems, Anxiety Disorder, or Aggression 
scores are illustrated in black. A. Illustration of multi-tract multi-symptom pair 1 obtained from the microstructural 

complexity PLSc. B. Illustration of multi-tract multi-symptom pair 3 obtained from the axonal density PLSc. C. 
Illustration of multi-tract multi-symptom pair 4 obtained from the axonal density PLSc. 
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Relationship with sociodemographic and injury-related factors 

The expression of multi-tract connectivity features was equivalent across 
sociodemographic strata defined by sex, total combined household income, and 
race/ethnicity (Figure S1). Out of 32 retained multi-tract multi-symptom pairs, time since 
the latest injury was only significantly correlated to the expression of two multi-tract 
connectivity features (Table S1) and no multi-symptom features. Only the expression of 
one multi-tract connectivity feature (feature 2 from the microstructural complexity PLSc) 
was significantly different between groups defined by injury cause (Figure S7). Only the 
expression of two multi-tract connectivity features, feature 17 from the microstructural 
complexity PLSc (Figure S8), and feature 8 from the axonal density PLSc (Figure S9) 
significantly differed between groups defined by the total number of TBIs. 

Prediction of clinical outcome 

118 children (55%) in the discovery set and 51 (55%) in the replication set had an 
adverse psychiatric outcome. Using separate multivariable logistic regressions, we found 
expression of four multi-tract connectivity features from the microstructural complexity 
PLSc, one behavioural measure (CBCL Attention Problems), and no single tract features 
that were significantly related to adverse psychiatric outcome. No other variables, 
including no multi-tract connectivity features obtained from the axonal density PLSc, 
were related to adverse psychiatric outcome. We computed microstructural complexity 
scores for the replication set, selected the same 200 connections that had been retained in 
the discovery dataset, and computed the expression of the multi-tract connectivity 
features that had been found to be significantly related to adverse psychiatric outcome in 
the discovery set. We incorporated these multi-tract connectivity features with the other 
significant variables, using the replication data, in a single multivariable logistic 
regression. In this model, we also added time since the latest injury. We found that a one-
unit increase in the expression of multi-tract connectivity feature 4 significantly increased 
the odds of an adverse psychiatric outcome in the replication set 2.50 times (p=0.01) after 
controlling for univariate, psychopathology-related behavioural features and time since 
the latest injury. This multi-tract connectivity feature was paired with a multi-symptom 
feature that implicated sleep and somatic problems (Figure S10).  

Sensitivity analyses 

Results using different thresholds (t=85%, 95%, 100%) for the connectomes are outlined 
in supplementary material. All results were consistent, including PCs, the weights of the 
multi-symptom features, the strength of multivariate vs univariate relationships, the trends 
for the % overlap scores, and the significance of adverse psychiatric outcome predictions 
using multi-tract connectivity feature expression. Results were less consistent with the 
t=100% threshold, which demonstrated instead little to no significant multi-tract multi-
symptom pairs based on permutation testing. Correlations between expression of multi-
tract connectivity features at different thresholds are illustrated in supplementary material. 
Notably, for t=85%, 90%, and 95%, correlations between the expression of the 
corresponding multi-tract connectivity features (e.g.: multi-tract feature 1 from t=85%, 
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multi-tract feature 1 from t=95%) all have high correlations, indicating how similar these 
features are, whereas these correlations were lower when comparing against t=100% 
(Figure S11). 
 

 
Figure 3. Line plot showing the percent overlap between univariate analyses and each multi-tract connectivity feature. 
Highest overlap occurred for the first multi-tract connectivity feature from both PLSc analyses. Brain renderings shown 

above graph illustrate which connections were found to be significant for univariate comparisons of microstructural 
complexity (red), univariate comparisons of axonal density (blue), multi-tract connectivity feature 1 from the 

microstructural complexity PLSc (violet), multi-tract connectivity feature 3 from the axonal density PLSc (turquoise), 
and multi-tract connectivity feature 4 from the axonal density PLSc (green). These brain renderings illustrate how 

many callosal connections are present for univariate comparisons and for multi-tract connectivity feature 1, but less so 
for multi-tract connectivity features 3 and 4. The percent overlap score for each of the three illustrated multi-tract 
connectivity features are identified in the line plot with a circle of the corresponding color. Brain renderings were 

visualized with the BrainNet Viewer.17 
 
Discussion  
 

In the present study we leveraged novel dMRI methods and a double-multivariate 
approach to parse heterogeneity in white matter structure and symptoms in a large sample 
of previously-concussed children. By applying PLSc on biologically-interpretable 
measures of dMRI obtained from PCA, we found cross-demographic multi-tract multi-
symptom relationships. These multi-tract multi-symptom pairs captured more 
information than traditional approaches and predicted meaningful clinical outcomes in 
unseen data. Additionally, these results recapitulated well-known findings from the 
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concussion literature and revealed new insights about white matter structure/symptom 
relationships. 

Concussion heterogeneity has been identified as a major obstacle4,5 in response to 
decades of failed attempts to translate basic science findings into successful clinical trials 
and novel therapies. Heterogeneity in symptoms, impact of injury on brain structure and 
function, and pre-injury factors pose a particular problem for most concussion 
neuroimaging studies which have traditionally employed univariate comparisons between 
concussed and healthy or orthopedic injury control groups, or between patients with and 
without persistent symptoms.8,9 These sources of variability are believed to be 
problematic because they decrease the statistical power needed for group comparisons 
and multivariable models to detect the often-subtle effects of concussions.18 To overcome 
this challenge, landmark initiatives such as the IMPACT,18 InTBIR,19 CENTER TBI,20 
and TRACK TBI21 aim to standardize and pool multi-center data collected across 
sociodemographic strata, to identify and statistically correct for pre-injury factors known 
to impact brain structure, and develop diagnostic and prognostic tools leveraging 
multimodal data and increasingly sophisticated machine-learning approaches.  

In this study, we posited that concussion heterogeneity is also problematic 
because by pooling across patients, idiosyncratic patterns of connectivity that may be 
more symptom-specific are sacrificed in favour of shared ones. By assuming that 
symptoms map cleanly and consistently onto shared connectivity abnormalities in a one-
to-one fashion, erroneous inferences could be made about relationships between group-
level patterns of connectivity differences and specific symptoms. Our results are 
consistent with this idea: univariate comparisons between a group displaying clinical-
level psychopathology and the rest of the sample identified connectivity features that 
mostly overlapped with the first multi-tract multi-symptom pair obtained from both PLSc 
analyses. These pairs, which accounted for the most covariance, reflected general 
problems and not specifically psychopathology. Both these pairs and the univariate 
“psychopathology-related” connections implicated several callosal tracts. These results 
suggest that univariate comparisons, even when performed in such a way as to identify a 
symptom-specific set of connectivity features, identified only the most consistent group-
level connectivity differences at the expense of more symptom-specific idiosyncratic 
ones. These findings are consistent with most prior concussion literature, which strongly 
implicate the corpus callosum,9 but extend this literature by suggesting that that the 
central importance of the corpus callosum may have resulted from pooling across 
concussed subjects. 

Rather than a clean and consistent set of single-tract single-symptom 
relationships, this study suggests concussions may be best conceptualized as a 
multiplicity of multi-tract multi-symptom combinations. Multi-tract relationships may be 
driven by the metabolic demands imposed by the network structure of the brain, which is 
known to predict the course of several brain diseases,22 by biomechanical constraints 
imposed by the skull and other structures exposing certain areas to more shearing strain,23 
or by both factors simultaneously.24 These possibilities need to be tested further. 
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After accounting for behavioural and single-tract predictors of adverse psychiatric 
outcome, the expression of one multi-tract connectivity feature significantly predicted 
adverse psychiatric outcome in a holdout dataset. This multi-tract feature was paired with 
a multi-symptom feature that implicated mostly sleep and somatic problems. Sleep 
problems are known to be linked to psychiatric disorders, both as symptoms, and risk 
factors.25 Longitudinal studies are needed to elucidate whether these multi-tract features 
reflect abnormalities that increase the risk of later adverse psychiatric outcomes, or 
instead reflect abnormalities associated with existing psychiatric diagnoses. Nonetheless, 
the prediction of a meaningful clinical outcome on unseen data is particularly promising. 

The present findings must be contrasted to the nascent literature addressing 
concussion heterogeneity. A few recent studies have parsed heterogeneity in concussion 
symptoms, all using clustering analyses.10-12 The reported subgroups differed from those 
found in the present study. Differences between symptom profiles arose because our 
multi-symptom features are associated with brain structure and not driven by variability 
in symptoms alone. Further, we did not group patients into discrete subgroups. Although 
whether patients cleanly fit into discrete subtypes has not been explicitly tested in our 
study, the expression of multi-tract and multi-symptom features do not suggest any 
obvious clusters (e.g.: Figure 3 scatter plots). The possibility of concussion subtypes 
needs to be explored further. Other prior studies have attempted to address heterogeneity 
in white matter structure in concussions.13-15 Using different approaches, these studies 
generated point summaries that accounted for the high-dimensional variability of white 
matter structure to better distinguish patients from controls. Our approach offers an 
important advantage. Rather than collapsing the rich and highly variable information 
provided by white matter structure, our approach attempts to find symptom-specific 
patterns of white matter structure, which has potential to lead to new treatment targets.  

The present results should be considered in light of methodological limitations. 
Data on mTBI occurrence was collected retrospectively. Participants did not have 
baseline data, and additionally had highly variable times since injury. Most individuals 
with concussions recover from their injury26 which should have led to a concussed group 
where most participants were similar to healthy controls. Interestingly, our PCA yielded 
combinations of diffusion measures that differed from those of two prior studies that have 
used this approach.27,28 These prior studies used samples of typically-developing children 
without neurological insults. To the extent that the PCs reported in these prior studies 
reflect healthy neurotypical brains, our PCs suggest that our concussed sample was not as 
similar in white matter structure to healthy controls as expected. However, variable time 
since injury made the interpretation of patterns of microstructure difficult. Further, due to 
the cross-sectional nature of this data, the difference between symptoms and pre-existing 
characteristics are difficult to discern, especially since some behavioural measures often 
believed to be symptoms of concussion, such as attention problems, can also be risk 
factors for injury.29 Lastly, heterogeneity has several forms, including in symptoms, 
duration, severity, neuropathology,7 lesion location,15 sociodemographics,18 genetics,30 
behaviour,29 pre-injury comorbidities,31 and environmental differences, including access 
to and quality of care.32 These factors have been theorized to interact in complex ways.4 
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This study only addressed a minority of these complex relationships, further studies 
integrating more variable sets are needed to address these other drivers of heterogeneity.  

Conversely, this study leveraged some of the most recent and important advances 
in dMRI to address the major limitations of conventional approaches. We used high 
quality multi-shell dMRI data,33 as well as modelling approaches, tractography 
techniques, and microstructural measures robust to crossing fibers, partial volume effects, 
and connectivity biases.27,34-38 We used PCA to combine dMRI measures into meaningful 
indices of white matter structure. Lastly, we used gold-standard measures of psychiatric 
illness to predict clinical outcomes. Future iterations of this work will need better control 
of time since injury, longitudinal follow-up, broader assessment of clinical outcomes, and 
further development of predictive models. 

In conclusion, leveraging advanced dMRI and a pattern-learning algorithm to parse 
concussion heterogeneity, we have found clinically-meaningful, cross-demographic 
multi-tract multi-symptom relationships. As the field moves towards large-scale studies 
which aim to statistically control for sociodemographic sources of heterogeneity to detect 
a putative consistent white matter signature of concussion across patients, the insights 
gained from this study should be taken into consideration: informative, clinically-
meaningful, symptom-specific patterns of connectivity differences are lost when pooling 
across concussed patients. This insight is an important step towards improving 
stratification strategies for clinical trials, identifying novel treatment targets, and 
developing predictive biomarkers for personalized concussion management approaches. 
 
 
Materials and Methods 
 
Participants  

Participants in this study were obtained from the world’s largest child 
development study of its kind – the ongoing longitudinal Adolescent Brain Cognitive 
Development Study (ABCD Study; https://abcdstudy.org/), data release 2.0 (https://data-
archive.nimh.nih.gov/abcd). The ABCD Study acquired data from 11,874 children aged 9 
to 10 years (mean age = 9.49 years) from across the United States (48% girls; 57% 
Caucasian, 15% African American, 20% Hispanic, 8% other).39 Additional information 
about the ABCD Study can be found in Garavan et al.40  

History of concussion 

Parents completed a modified version of the Ohio State University TBI 
Identification Method (OSU-TBI-ID) 41. We included participants who reported a head 
injury without loss of consciousness but with memory loss and/or a head injury with loss 
of consciousness for less than 30 minutes (n=434). Due to missing or incomplete data, 
corrupted files, data conversion errors, and images rated by the ABCD Study team as 
being of poor quality, the final sample of participants with usable data was 345. After 
processing, images were visually inspected by two trained independent raters (G.I.G., 
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S.S.). Images that were deemed of low quality after processing by both raters were 
removed (n=39), leading to a final sample of 306 participants. We randomly divided the 
sample into a discovery dataset (70%, n=214) and a replication dataset (20%, n=92). 
Figure 1 summarizes the subject selection procedure. 

Symptom-oriented measures 

To probe various aspects of concussion symptomatology, we used items collected 
from assessments available in the ABCD dataset. These items, as well as the concussion 
symptom they are meant to probe are outlined in Table 2. 

Table 2. Table outlining all behavioural measures used in analyses, along with the corresponding symptom they reflect.  
Questionnaire - Description Symptom Measured Respondent 

CBCL – Headaches Headaches Parent 

CBCL – Nausea, feels sick Nausea Parent 

CBCL – Vomiting, throwing up Vomiting Parent 

CBCL – Feels dizzy or lightheaded Dizziness Parent 

CBCL – Overtired without good reason Fatigue Parent 

SDS – The child experiences daytime sleepiness Drowsiness Parent 

SDS – The child has difficulty getting to sleep at night Trouble falling asleep Parent 

CBCL – Sleep more than most kids during day and/or night Sleep more than usual Parent 

CBCL – Sleeps less than most kids Sleep less than usual Parent 

CBCL – Depression (DSM) T score Sadness Parent 

CBCL – Anxiety Disorder (DSM) T score Nervousness Parent 

CBCL – Attention Problems T score Difficulty concentrating Parent 

NIH Toolbox Picture Sequence Memory Test – Fully-
Corrected T-score 

Sequence Memory (difficulty 
remembering) 

Child 

NIH Toolbox List Sorting Working Memory Test – Fully-
Corrected T-score 

Working memory (difficulty 
remembering) 

Child 

RAVLT Short Delay Trial VI – Total Correct Short recall (difficulty 
remembering) 

Child 

RAVLT Long Delay Trial VII – Total Correct Long recall (difficulty 
remembering) 

Child 

CBCL Aggression T score Irritability Child 

CBCL: Child Behavior Checklist. SDS: Sleep Disturbance Scale. NIH: National Institutes of Health. DSM: Diagnostics 
and Statistics Manual. RAVLT: Ray Auditory Verbal Learning Test. 
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MRI Acquisition 

MRI scans were acquired across 21 sites, with data coming from 28 different 
scanners. Details about the acquisition protocols and image specifications are outlined in 
Casey et al 2018.42 Multi-shell dMRI scans had 96 diffusion-weighted directions, with 6 
directions of b=500 s/mm2, 15 directions of b=1000s/mm2, 15 directions of 
b=2000s/mm2, and 60 directions of b=3000s/mm2. The b=2000 shell was excluded from 
the data processing. In addition, scans had 6 or 7 b=0s/mm2 images, depending on 
scanner type. Lastly, a reverse b0 image was included for each participant. 

Processing 

We used Tractoflow43 to process dMRI and T1-weighted scans. Tractoflow is a 
novel diffusion MRI processing pipeline, incorporating state-of-the-art functions from 
FSL, Dipy, and MRtrix into NextFlow. The processing steps are summarized in Theaud 
et al.43 Important deviations from the default parameters utilized by Tractoflow are as 
follows: 1. We used gray-white matter interface seeding, as this method accounts for the 
length bias introduced by white-matter seeding;36 2. We used 24 seeds-per-voxel with the 
objective of obtaining approximately 2 million streamlines across the entire brain. We 
used the b=0, 500, and 1000 shells to perform tensor fitting, and the b=0 and 3000 shells 
to perform Constrained Spherical Deconvolution (CSD).35,38 We obtained group-average 
fiber-response functions from voxels with high (>0.70) fractional anisotropy (FA). 
Lastly, we created tractograms using a probabilistic particle-filtering tractography 
algorithm.36 

Connectivity matrices 

The post-processing workflow is illustrated in Figure 4. To construct connectivity 
matrices, we used Freesurfer on McGill’s CBrain platform44 to fit the Desikan-Killiani 
Tourvile (DKT)45 and aseg atlases onto the processed T1-images that had been 
transformed to DWI space during processing (Figure 4A). We applied these parcellations 
and extracted diffusion measures using connectoflow 
(https://github.com/scilus/connectoflow). We removed redundant and irrelevant labels 
from the fitted atlas (a list of retained labels is supplied in supplementary material), 
yielding a final atlas with 76 labels. We then thresholded matrices such that a connection 
was only retained if it was found to be successfully reconstructed (defined as the presence 
of at least one streamline) across 90% of participants.46 Results using different thresholds 
are presented in supplementary material. We then weighted thresholded connectomes by 
FA, mean, radial, and axial diffusivities (MD, RD, AD respectively), apparent fiber 
density along fixels (AFDf), and number of fiber orientations (NuFO) (Figure 4B). The 
first four measures are derived from the tensor model, whereas the latter two are based on 
fiber orientation distribution functions (fODFs) obtained from CSD.34,37 Simulation 
studies have shown that AFD is more specifically related to axonal density, and by 
computing it along “fixels” (fiber elements), axonal density specific to particular fiber 
populations can be studied independently of crossing fibers.37 Although individual 
diffusion measures are related to different aspects of neuropathology, together they 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.04.01.21254814doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254814
http://creativecommons.org/licenses/by/4.0/


	

	

15	

	

provide more information than when considered separately.46 A recent framework based 
on principal component analysis (PCA) has been proposed to combine diffusion 
measures into biologically-interpretable indices of white matter structure.27 We therefore 
performed PCA on the concatenated set of standardized measures across subjects and 
connections, generating connectivity matrices weighted by principal component (PC) 
scores (Figure 4C).  

Additional data transformations 

 We imputed missing connectivity (prior to the PCA), symptom, and nuisance data 
(sex, pubertal stage, handedness, scanner) by randomly selecting non-missing data from 
other participants in the same dataset. We reverse-coded cognitive scores, such that 
increasing scores in all symptom data reflected more problems. From connectivity and 
symptom data, we regressed out the following nuisance variables: sex, pubertal stage, 
scanner (only for connectivity data), and handedness. 

Pattern-learning pipeline 

Feature selection. To reduce the number of connectivity features included in the 
partial least squares correlation (PLSc) analysis, we selected the 200 connectivity features 
most correlated (based on Pearson correlations) with any symptom score. This solution is 
becoming increasingly adopted for high-dimensional variable sets (Figure 4D).47,48  

PLSc. We performed PLSc analyses using the tepPLS function from the 
texposition package.49 PLSc involves singular value decomposition on the covariance 
matrix between connectivity and symptom features, creating pairs of multi-tract and 
multi-symptom features called multi-tract multi-symptom relationships. Each multi-tract 
multi-symptom relationship encapsulates a linear combination of connectivity features 
(“multi-tract features”), a linear combination of symptom scores (“multi-symptom 
features”), and an eigenvalue (reflective of the amount of explained covariance between 
connectivity and symptom features). Each multi-tract multi-symptom relationship is 
constructed so as to explain a successively smaller portion of the covariance between 
symptoms and connectivity features. We constructed the largest number of possible 
multi-tract multi-symptom relationships, given the dimensionality of the behavioral 
variable set (k=19) (Figure 4D). 
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Figure 4. Illustration of the study’s post-processing pipeline. A. We applied the DKT parcellation onto each 

tractogram, thus building a binary connectivity matrix that displayed for all 306 subjects in the full dataset (rows), 
whether (black) or not (white) a streamline existed between each pair of labels (columns). B. We split the dataset into a 

discovery set (n=214) and a replication set (n=92). On the discovery set, we thresholded connectomes, only keeping 
connections that existed across 90% of participants (a threshold of 100% is illustrated here for simplicity). We then 
constructed connectomes of 6 scalar diffusion measures (Fractional Anisotropy (FA), Axial Diffusivity (AD), Mean 

Diffusivity (MD), Radial Diffusivity (RD), Apparent Fiber Density along fixels (AFDf), and Number of Fiber 
Orientations (NuFO)), by computing the average measure across each connection. C. We stacked all columns from 
each connectivity matrix, creating vectors of every pair of subject and connection, and then joined together these 

vectors. We then performed principal component analysis (PCA) on these matrices. Principal component (PC) scores 
were calculated for each subject/connection combination, thus reconstructing connectomes weighted by PC scores. D. 
From each these new connectomes, we selected 200 connections based on Pearson correlations with symptom-oriented 

measures. We then performed partial least squares correlation on each of these PC-weighted features and symptom 
measures, which allowed us to obtain pairs of multi-tract connectivity features (“MCF”) and multi-symptom features 

(“MSF”). Each multivariate feature is composed of linear combinations (weighted sums, illustrated by the black arrows 
called “weights”) of variables from its corresponding feature set. 
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Selection and interpretation of multi-tract multi-symptom pairs 

To select the multi-tract multi-symptom pairs to retain for interpretation, we 
performed permutation testing (2000 iterations). This procedure randomly shuffles row 
labels for the connectivity features, without replacement, repeats the PLSc and computes 
eigenvalues at every permutation. We calculated p-values as the proportion of 
permutations that yielded eigenvalues that exceeded the original amount.  

To interpret symptom and connectivity weights of significant (p<0.05) multi-tract 
multi-symptom pairs, we performed bootstrap analyses (2000 iterations), using the 
BOOT4PLSC command from the texposition package. At each iteration, labels for data 
were drawn with replacement, the entire PLSc was repeated and the weights for all pairs 
were obtained. This process yields a sampling distribution of weights for each 
connectivity and symptom feature.50 The ratio of the original weights to the standard 
error of each feature’s bootstrap distribution can be interpreted as a z-score, which 
yielded so-called ‘bootstrap ratios’. We used a value of 1.96 to determine which variables 
significantly contributed to each particular significant pair. 

Comparison of multivariate against univariate approaches 

To compare information captured by the PLSc and univariate approaches, we first 
divided participants based on whether they had T-scores above 70, a well-recognized 
clinical threshold,51 in the Child Behavior Checklist (CBCL) Depression, Attention 
Problems, Anxiety Disorder, or Aggression scales.51 Using a threshold of p<0.05, we 
computed univariate comparisons of connectivity (PC scores) between individuals with 
and those without clinical-level psychopathology, thus identifying psychopathology-
related univariate connectivity features.  

We were interested in comparing how many of these features were also found to 
significantly contribute to each multi-tract connectivity feature. To do so, we computed a 
measure of percent overlap as follows: 

%𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 	 +,-.
/01/23+,-.

	×	100, 

 

where Csig refers to the number of connections flagged as significant in both approaches, 
Su to the number of connections flagged as significant in the univariate approach, and Sm 
to the number of connections flagged as significant in the multivariate approach. This 
measure can account for the apparent high overlap that can arise when Su and Sm are not 
equivalent in size.  

Relation to TBI-related and sociodemographic factors 

We addressed whether expression of multi-tract connectivity features was related 
to injury-specific and sociodemographic factors. Injury-related variables included: the 
time between the last-documented injury and testing, the cause of injury, and the total 
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number of documented mTBIs. Sociodemographic variables included: sex, total 
combined family income in the last 12 months, and race/ethnicity. We used the following 
categories for race/ethnicity: “Asian” (Asian Indian, Chinese, Filipino, Japanese, Korean, 
Vietnamese, Other Asian), AIAN (“American Indian”/Native American, Alaska Native), 
NHPI (Native Hawaiian, Guamanian, Samoan, Other Pacific Islander), Non-Hispanic 
White, Non-Hispanic Black, Hispanic, Other, and Multiple.52 To illustrate the influence 
of these sociodemographic factors we created scatter plots illustrating expression of 
connectivity latent factors color-coded by sociodemographic factors (Figure S1).  

Prediction of clinical outcome 

 We used the Kiddie-Schedule for Affective and Psychiatric Disorders in School 
Age Children (KSADS), a gold-standard tool, to assess the presence of pediatric 
psychiatric disorders.53 We used the presence of any current psychiatric diagnosis as 
indicating an adverse psychiatric outcome (55% of discovery set, 55% of replication set). 
We created separate multivariable logistic regressions to predict adverse psychiatric 
outcomes using 1) expression of multi-tract connectivity features, 2) psychopathology 
measures from the CBCL, or 3) psychopathology-related univariate connectivity features. 
From each set of models, we retained the variables that were significantly related to 
adverse psychiatric outcome. We then tested whether expression of multi-tract 
connectivity features could predict adverse psychiatric outcome in the replication dataset.  

To do so, we first projected connectivity data from the replication dataset onto the 
principal components retained in the discovery dataset. Next, we selected the same 200 
connections that had been retained based on univariate feature selection, and projected 
these connections onto the multi-tract connectivity spaces obtained from the discovery 
dataset. Finally, we performed a logistic regression model incorporating all the predictors 
found to be significant in the discovery dataset as well as the time since injury, applied on 
data from the replication dataset.  

The objective of these models was to assess whether expression of multi-tract 
connectivity features could predict adverse psychiatric outcomes in the replication dataset 
after accounting for other psychopathology-related variables (CBCL behavioural 
measures, univariate connectivity measures) as well as time since injury. 

Data availability 

Data from the ABCD Study is publicly available, and all scripts used in this study 
are openly-available as well (see references). 
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Supplementary Material 

 

Figure S1. Scatter plots illustrating the expression of three multi-tract multi-symptom pairs (first column: pair 1 from 
the microstructural complexity PLSc, second column: pair 3 from the axonal density PLSc, third column: pair 4 from 
the axonal density PLSc), color-coded by total family income (first row), race/ethnicity (second row), and sex (third 
row). 
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Figure S2. Plots illustrating the weights of each diffusion measure for each principal component for different 
connectome thresholds (85%, 90%, 95%, 100%). The interpretation of the first two principal components are consistent 
across thresholds. 
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Figure S3. Polar plots illustrating the weights of each symptom measure for every retained multi-symptom feature 
obtained from the microstructural complexity PLSc performed using all 19 symptom measures as well as connectivity 
features selected from connectomes thresholded at T=85%. Black stars indicate symptoms that significantly contributed 
to the multi-tract multi-symptom pair based on bootstrapping analyses. 
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Figure S4. Polar plots illustrating the weights of each symptom measure for every retained multi-symptom feature 
obtained from the microstructural complexity PLSc performed using all 19 symptom measures as well as connectivity 
features selected from connectomes thresholded at T=90%. Black stars indicate symptoms that significantly contributed 
to the multi-tract multi-symptom pair based on bootstrapping analyses. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.04.01.21254814doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254814
http://creativecommons.org/licenses/by/4.0/


	

	

27	

	

 

Figure S5. Polar plots illustrating the weights of each symptom measure for every retained multi-symptom feature 
obtained from the microstructural complexity PLSc performed using all 19 symptom measures as well as connectivity 
features selected from connectomes thresholded at T=95%. Black stars indicate symptoms that significantly contributed 
to the multi-tract multi-symptom pair based on bootstrapping analyses. 
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Figure S6. Polar plots illustrating the weights of each symptom measure for every retained multi-symptom feature 
obtained from the microstructural complexity PLSc performed using all 19 symptom measures as well as connectivity 
features selected from connectomes thresholded at T=100%. Black stars indicate symptoms that significantly 
contributed to the multi-tract multi-symptom pair based on bootstrapping analyses. 
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Figure S7. Bar graph illustrating the expression of multi-tract connectivity feature 7 from the microstructural 
complexity PLSc, averaged according to subgroups of participants defined by Injury Mechanism. 1: Fall/hit by object; 
2: Fight/shaken; 3: Motor vehicle collision; 4: Multiple; 5: Unknown. 

 

 

Figure S8. Bar graph illustrating the expression of multi-tract connectivity feature 17 from the microstructural 
complexity PLSc, averaged according to subgroups of participants defined by Total TBIs. 0: Unknown. Other numbers 
represent the total number of TBIs. 
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Figure S9. Bar graph illustrating the expression of multi-tract connectivity feature 8 from the axonal density PLSc, 
averaged according to subgroups of participants defined by Total TBIs. 0: Unknown. Other numbers represent the total 
number of TBIs. 

 

Figure S10. A. Bar graph illustrating the expression of multi-tract connectivity feature 4 from the microstructural 
complexity PLSc, averaged according to subgroups of participants defined by adverse psychiatric outcome (defined as 
a current psychiatric diagnosis). B. Polar plot displaying the weights of all 19 symptom-oriented measures for multi-
symptom feature 4. Bars pointing away from the circle center illustrate positive weights, bars pointing towards the 
circle center represent negative weights. White stars illustrate symptoms that were found to significantly contribute to 
this multi-tract multi-symptom pair based on bootstrapping analyses. 
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Figure S11. Matrices illustrating correlation coefficients between the expression of every pair of multi-tract 
connectivity features obtained from the microstructural complexity PLSc. Each matrix illustrates the correlation 
between features obtained from two PLSc analyses. Each analysis was performed on connectivity features obtained 
from different connectome thresholds. From left to right, top row: thresholds 85% and 90%, thresholds 85% and 95%, 
thresholds 85% and 100%. From left to right, bottom row: thresholds 90% and 95%, thresholds 90% and 100%, 
thresholds 95% and 100%. Given that these matrices are symmetrical, only the bottom triangular is shown. The main 
diagonals illustrate autocorrelations. These matrices illustrate how corresponding multi-tract connectivity features 
between thresholds (e.g.: multi-tract connectivity feature 1 from T=85%, multi-tract connectivity feature 1 from 
T=90%) are highly correlated across most thresholds, except with T=100%, which appears to be most dissimilar from 
the other thresholds.  
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Table S1. Table listing p-values of correlations between the expression of all retained multi-tract connectivity features 
and the time since the latest injury. 

 

PLSc1: Microstructure complexity PLSc; PLSc2: Axonal Density PLSc. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.04.01.21254814doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254814
http://creativecommons.org/licenses/by/4.0/

