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ABSTRACT

Network diffusion models are a common and powerful way to study the propagation of

information through a complex system and they offer straightforward approaches for studying

multimodal brain network data. We developed an analytic framework to identify brain

subnetworks with perturbed information diffusion capacity using the structural basis that

best maps to resting state functional connectivity and applied it towards a heterogenous

dataset of internalizing psychopathologies (IPs), a set of psychiatric conditions in which

similar brain network deficits are found across the swath of the disorders, but a unifying

neuropathological substrate for transdiagnostic symptom expression is currently unknown.

This research provides preliminary evidence of a transdiagnostic brain subnetwork deficit

characterized by information diffusion impairment of the right area 8BM, a key brain region

involved in organizing a broad spectrum of cognitive tasks, that may underlie previously

reported dysfunction of multiple brain circuits in the IPs. We also demonstrate that models

of neuromodulation involving targeting this brain region normalize IP diffusion dynamics

towards those of healthy controls. These analyses provide a framework for multimodal

methods that identify both brain subnetworks with disrupted information diffusion and

potential targets of these subnetworks for therapeutic neuromodulatory intervention based on

previously well-characterized methodology.
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INTRODUCTION

The dynamics arising from the interaction of individual elements of a complex system are

commonly investigated by representing such a system as a network or graph (Bullmore and

Sporns, 2009). This has been applied extensively towards studying neural connectivity, where

brain regions (represented by nodes) and the links between them (represented by edges) define

a brain network, or connectome (Sporns, 2010, 2018). As in any network, the underlying

structure of connectivity constrains the functions and processes that take place within it

(Wang et al., 2017). Indeed, the mechanisms of propagation of and neural response to brain

pathologies have been closely tied to network topology (Fornito et al., 2015).

A number of studies have found that the basis formed by the anatomic structure of the

brain and the patterns of observed spatiotemporal neural activity are intimately related

(Atasoy et al., 2016; Deslauriers-Gauthier et al., 2020; Abdelnour et al., 2014, 2018). Many of

these investigations use a network diffusion model to study the propagation of neural impulses,

or information (given by functional connectivity), throughout the structure formed by the

white matter tracts of the brain. These so-called network diffusion-based approaches all utilize

the properties of the structural graph Laplacian, which encodes how a diffusive process spreads

throughout a network over time (Chung and Graham, 1997). The basis of diffusion given by the

graph Laplacian, or its eigenmodes, can thus be used to model the flow of neural information

(Xiao et al., 2010), and has been shown to play important roles in healthy brain network

organization (Wang et al., 2017). More specifically, such an approach was used successfully

to demonstrate that resting state functional connectivity is predictable from white matter

structural eigenmodes (Abdelnour et al., 2014, 2018). Furthermore, resting state networks

were found to closely match spatial patterns of structural eigenmodes (Atasoy et al., 2016).

Of note, many other approaches for investigating this interplay have been studied, including

models based on epidemic-spreading (Stam et al., 2016), threshold models (Mišić et al., 2015)

and neural mass models (Honey et al., 2009) (for a review, see (Avena-Koenigsberger et al.,

2018)).
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Network diffusion-based methods have also been applied towards investigating the patho-

physiology of neurological diseases. For example, Raj and colleagues (Raj et al., 2012) show

that white matter structural eigenmodes closely resemble known patterns of dementia and

correlate strongly with regional atrophy. A closely related methodology to that of studying

structural eigenmodes is using the graph Laplacian-derived heat kernel of brain networks, a

matrix which encodes how much information is transferred between every pair of network nodes

after a given time, or diffusion depth. Heat kernel methods have been used to characterize

perturbations in brain network information transfer in autism (Schirmer and Chung, 2019)

and to predict future adverse motor function resulting from premature birth using white

matter structural connectomes (Chung et al., 2016).

In the context of psychiatric conditions, the application of methods that integrate mul-

timodal perspectives in their analytical approaches has great potential to elucidate the

distributed perturbation of neurocircuitry that underlie the complex cognitive and behavioral

disruption found in patients suffering from these disorders. This may hold particularly true

for the internalizing psychopathologies (IPs), including mood (e.g., major depressive disorder

(MDD), dysthymia) and anxiety (e.g., panic disorder (PD), social anxiety disorder (SAD),

generalized anxiety disorder (GAD)) disorders. Many previous neuroimaging studies have been

conducted on IPs, however, most of which use unimodal data analysis. Importantly, findings

about potential neuropathological substrates are more often overlapping between the IPs than

distinct to a specific IP. In addition, IPs, as traditionally categorized, are often comorbid

with one another and present heterogeneously with a spectrum of related symptoms and

disruptions to emotion regulation and negative valence system (NVS) processes (Kessler et al.,

2005; Moser et al., 2015; Cecilione et al., 2018). Furthermore, the available first line treat-

ments for the IPs, either cognitive behavioral therapy (CBT) or selective serotonin reuptake

inhibitors (SSRI), are equally effective across the swath of the disorders (Dunlop et al., 2012).

Many studies have concluded that similar structural and functional brain networks involving

regions commonly implicated in the expression of fear, anxiety, negative affect and other

NVS features are dysfunctional in these disorders (Etkin and Wager, 2007; Hamilton et al.,
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2012; Korgaonkar et al., 2014). In addition, previous findings also implicate the disruption of

similar canonical resting state networks (RSNs), such as the default mode network (DMN), in

both depression and anxiety using both structural and functional neuroimaging (Müller et al.,

2013; Sheline et al., 2009; Liu et al., 2020; Tao et al., 2015; Kim and Yoon, 2018). To address

this pattern of findings, the National Institute of Mental Health’s Research Domain Criteria

(RDoC) initiative was developed (Insel et al., 2010; Cuthbert, 2014) in order to reorient the

study of psychiatric disorders away from traditional diagnostic categories and towards that

of data-driven approaches such as identifying transdiagnostic cognitive domain disruptions,

biomarkers of treatment response and targets for neuromodulatory intervention.

In line with the aims set forth by this initiative, we study a dataset from an RDoC

clinical trial consisting of diffusion weighted (DWI) and resting state-functional (rs-fMRI)

neuroimaging scans of a treatment naive, heterogeneous IP patient (PT) cohort and age and

sex matched healthy controls (HC). PTs were then randomized to either 12 weeks of SSRI or

CBT and completed Inventory of Depression and Anxiety Symptoms (IDAS-II) (Watson et al.,

2012) self-reports pre- (Pre) and post-treatment (Post) to assess transdiagnostic dimensions

of symptom burden. Several previous analyses have been conducted on this dataset but they

are unimodal and have a hypothesis-driven focus on a priori brain region, often studied in

association with specific task-based measures of NVS subsystems (Radoman et al., 2019;

Burkhouse et al., 2018a, 2020; Gorka et al., 2019; Thomas et al., 2020; Klumpp et al., 2020).

Because IPs share similarly dysfunctional brain networks and respond to similar treatments,

we hypothesize that there exist pathophysiological features common to all IPs that result in

impaired emotion regulation and the subsequent heterogeneous expression of IP symptoms.

In this paper we ask (1) can the presence of such unifying perturbations can be identified by

incorporating both structural and functional connectivity data, (2) do these perturbations

predict response to CBT and/or SSRI treatment and (3) can we identify candidate brain region

as targets of neuromodulatory intervention to normalize connectivity dynamics to those found

in healthy controls? To answer these questions, we use a multimodal data-driven analysis

based on network diffusion models. In this approach, the diffusion basis of the structural
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connectome, given by the eigenmodes (eigenvector-eigenvalue pairs) of the normalized graph

Laplacian, is central to the methodology. The eigenmode basis of a network encodes its

information diffusion properties, and the eigenmodes of a graph, scaled exponentially by the

diffusion depth or time scale allowed for diffusion to occur, represent an embedding of nodes

such that their pairwise Euclidean distance in the embedding is inversely proportional to the

ability for information to diffuse between nodes at the given diffusion depth (Chung et al.,

2016; Xiao et al., 2010, 2005). Next, the mapping between each subject’s structural and

functional network that minimizes the error between the empirical and estimated functional

connectivity is computed by optimizing over diffusion depth parameters as described by

Abdelnour and colleagues (Abdelnour et al., 2018). We then define a novel representation

of structural connectivity, the structural diffusion distance (SDD) connectome, where the

edge weights between each brain network node are given by the pairwise Euclidean distance

from the diffusion embedding at the optimal time scale that best maps to empirical rs-fMRI

activity. We chose such a model for multimodal incorporation as it has both been well

characterized in the study of structural to functional mappings in brain networks (Abdelnour

et al., 2018) and allows for the computation of the diffusion-based network embedding given

by the structural eigenbasis that most accurately underlies empirical functional connectivity.

Thus, we achieve correspondence to functional connectivity in SDD connectomes by computing

the embedding at the optimal diffusion depth, βt, for each subject (see Methods section for

details). Furthermore, a network diffusion model easily allows for the simulation of information

flowing through the network. Simple mathematical properties of the graph Laplacian-derived

heat kernel corresponding to the network embedding can be exploited to identify network

nodes to supplement with additional ’heat’ supplement in order to normalize deficient heat

transfer throughout a PT subnetwork towards the desired diffusion dynamics of a target

(mean HC) subnetwork. Our study applies this analytic framework to provide evidence for

transdiagnostic IP subnetwork disruption and neuromodulation treatment targets, opening

up application of multimodal network diffusion-based methods towards other brain disorders.
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MATERIALS AND METHODS

Clinical trial and research participants

Subjects were recruited from the greater Chicago area through advertisements and through

University of Illinois at Chicago (UIC) outpatient clinics and counselling centers as part of

a larger Research Domain Criteria (RDoC) (Cuthbert, 2014) investigation on predictors of

IP treatment outcomes (ClinicalTrials.gov identifier: NCT01903447). A heterogeneous study

population was recruited in order to obtain a sample with a broad range of symptom severity

and functioning. Details regarding inclusion/exclusion criteria, participant recruitment, clinical

characteristics and treatment have been previously described (Gorka et al., 2019). In brief,

this study was approved by the UIC Institutional Review Board, and written informed consent

was obtained for each participant. The inclusion criteria for subjects were age between

18 and 65 years, and the need for randomization to 12 weeks of treatment with SSRI or

CBT, as determined by a consensus panel consisting of at least three trained clinicians or

study staff. Subjects were excluded from the study if they have a history of current or

past manic/hypomanic episodes or psychotic symptoms, active suicidal ideation, presence of

contraindications or history of SSRI resistance (no response to >2 SSRIs despite adequate

duration and dose), psychopathology not appropriate for the treatment algorithm, or current

cognitive dysfunction or impairment. The SCID-5 (First et al., 2015) was used to determine

current and lifetime Axis I diagnoses. The study was a parallel group randomized control trial

with 1:1 allocation ratio to either 12 weeks of CBT or SSRI. For the SSRI cohort, PTs were

administered one of 5 drugs (sertraline, fluoxetine, paroxetine, escitalopram or citalopram)

with a flexible dosing schedule with a goal of obtaining target dose by 8 weeks. SSRI PTs

met at 0, 2, 4, 8 and 12 weeks with their study psychiatrist for medication management. For

the CBT cohort, PTs received 12 once-weekly 60 min sessions led by a PhD-level clinical

psychologist. CBT procedures were based on the PT’s principal diagnosis and predominant

symptoms (Burkhouse et al., 2020). Each participant was scanned at enrollment and IP

subject scans were acquired before treatment was administered.
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At the time of enrollment (Pre) and after 12 weeks of treatment (Post), severity of

IP symptoms was assessed in all subjects using the Inventory of Depression and Anxiety

Symptoms (IDAS-II) (Watson et al., 2012). Subjects responded to each of the 99 items in

this inventory using a 5-point Likert-type scale ranging from 1 (not at all) to 5 (extremely),

yielding 17 empirically derived and symptom-specific scales (Suicidality, Lassitude, Insomnia,

Appetite Loss, Appetite Gain, Ill-Temper, Well-Being, Panic, Social Anxiety, Traumatic

Intrusions, Traumatic Avoidance, Mania, Euphoria, Claustrophobia, Checking, Ordering,

Cleaning, General Depression and Dysphoria). As we are interested in transdiagnostic NVS

construct disruptions in IPs, we use the IDAS-II Panic and Depression subscales, as these

scales have been shown to map well to ’fear’ and ’distress’ dimensions, respectively, which

is a previously used approach for broadly dividing and assessing these symptom domains

(Radoman et al., 2019; Watson et al., 2012; Ofrat and Krueger, 2012).

Image acquisition and processing

All imaging was acquired at the UIC Center for Magnetic Resonance Research using a 3 Tesla

GE Discovery MR750 System (Milwaukee, WI) with an 8-channel head coil.

Anatomic MRI

High resolution 1 mm isotropic voxel resolution T1-weighted (T1w) images were obtained

using a 3D axial FSPGR BRAVO imaging sequence with the following parameters: slice

thickness = 1 mm, in-plane resolution = 1 mm, repetition time (TR) = 9.3 ms, echo time

(TE) = 3.8 ms, inversion time (TI) = 450 ms, flip angle = 13°, field of view (FOV) = 220 x

220 mm.

Diffusion weighted MRI

Diffusion weighted images (DWI) were obtained using a 2D Spin Echo imaging sequence with

the following parameters: in-plane resolution = 0.9375 mm, slice thickness = 2.5 mm, TR

= 5800 ms, TE = 96 ms, 52 slices, FOV = 240 x 240 mm, b-value = 1000 s/mm2. Two

sets of scans with 4 b0 images and 32 diffusion sampling directions each were obtained with

opposite phase-encoding directions. DWI data were then preprocessed using tools from the
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the FMRIB Software Library (FSL) (Jenkinson et al., 2012; Smith et al., 2004), detailed below.

From these pairs of images with reversed phase-encoding blips the susceptibility-induced

off-resonance field was estimated using a method similar to that described in (Andersson

et al., 2003) as implemented in FSL’s topup tool. The resulting susceptibility field was used

with FSL’s eddy_correct tool (Andersson and Sotiropoulos, 2016) to simultaneously correct

DWI volumes for subject movements and susceptibility- and eddy current-induced distortions.

DWI data was resampled to 2 mm isotropic resolution and reconstructed with DSI Studio

software (http://dsi-studio.labsolver.org/) using q-space diffeomorphic reconstruction (QSDR)

(Yeh and Tseng, 2011). First, QSDR performs reconstruction in native space where the

quantitative anisotropy (QA) for each voxel is computed. These QA values are used to warp

DWI to a high angular resolution template in Montreal Neurological Institute (MNI) space

using a nonlinear registration algorithm similar to that described in (Friston, 1994). QSDR

was chosen over diffusion tensor-based approached because the reconstructed spin distribution

functions can resolve crossing, branching and merging fiber populations (Yeh and Tseng,

2011). A deterministic fiber tracking algorithm (Yeh et al., 2013) was used with whole brain

seeding with a total of 10000000 seeds, an angular of 70 degrees, step size of 1 mm and

quantitative anisotropy threshold of 0.1. The fiber trajectories were smoothed by averaging

the propagation direction with 10% of the previous direction. Tracks with length shorter than

10 or longer than 300 mm were discarded.

Functional MRI

Whole-brain blood-oxygen-level dependent (BOLD) functional images were acquired using a

T2* weighted gradient-echo echo-planar imaging sequence optimized to reduced susceptibility

artifacts with the following parameters: TR = 2000 ms, TE = 25 ms, flip angle = 82°, FOV

= 220 x 220 mm, acquisition matrix 64 x 64, slice thickness = 3 mm, gap = 0 mm, 44 axial

slices, 180 volumes per run. For anatomical localization, a high-resolution T1w structural scan

was also acquired (described above). During this scan, subjects were asked to view a fixation

cross on a blank background for 8 minutes. Subjects were instructed to keep their eyes open

and focused on the cross, and to try not to think of anything in particular for the duration
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of the scan. Functional MRI (fMRI) data preprocessing and analysis were performed using

the CONN Toolbox (www.nitrc.org/projects/conn) (Whitfield-Gabrieli and Nieto-Castanon,

2012), which employs procedures from the Statistical Parametric Mapping software (SPM12;

Wellcome Trust Center for Neuroimaging, London, UK), using the standard preprocessing

and denoising pipelines as detailed in (Nieto-Castanon, 2020) and described as follows.

1) fMRI images were first coregistered to the first volume of the series as reference using

b-spline interpolation and susceptibility distortion-by-motion interactions were corrected

by resampling the data to match the estimated deformation field of the reference volume

(Andersson et al., 2001). 2) Slice-timing correction was performed by time-shifting and

resampling data using sinc-interpolation to the middle of each acquisition time (Henson et al.,

1999). 3) The effects of outlier scan-related nuisance (‘scrubbing’) covariates were identified

by quantifying frame-wise displacement and global BOLD signal changes (Power et al., 2014).

Images with displacement greater than 0.9 mm and signal change greater than 5 standard

deviations from the mean were labeled as outliers. 4) fMRI images were then co-registered

to the T1w structural imaging data using an affine tranformation as described in (Collignon

et al., 1995; Studholme et al., 1998). T1w images were next registered to MNI space and

segmented into grey matter, white matter and cerebrospinal fluid (CSF) tissue classes using a

non-linear spatial transformation as described in (Ashburner and Friston, 2005). The resulting

transformation was next used to warp the native structural registered functional volumes to

MNI space. T1w and functional images were resampled to 1 mm and 2 mm isotropic voxel

resolution, respectively. 5) Functional data were then smoothed using spatial convolution

with a Gaussian kernel of 8 mm full width half maximum (FWHM) in order to increase

BOLD signal-to-noise ratio and reduce the residual effects of inter-subject anatomic variability

(Nieto-Castanon, 2020). 6) Functional data were then corrected for confounding effects by

regressing out components derived from estimated subject motion parameters, outlier images

(’scrubbing’), white matter and CSF BOLD signal and estimated physiological noise using

the aCompCor and tCompCor methods in the CONN toolbox (Behzadi et al., 2007; Chai

et al., 2012). The mean global BOLD signal was not regressed out at it can result in artificial
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bias and diminution of meaningful neural signal (Murphy et al., 2009; Chai et al., 2012). 7)

A temporal band-pass filter was applied to remove BOLD signal below 0.008 Hz or above

0.09 Hz in order to capture slow-frequency neural fluctuations while minimizing the presence

of physiological and motion related noise in the functional data (Nieto-Castanon, 2020).

Filtering was applied after regressing out confounding effects to avoid frequency mismatch in

the resulting denoised data (Hallquist et al., 2013).

Defining regions of interest

Cortical areas were defined by the HCP-MMP1.0 parcellation comprising of 360 (180 per

hemisphere) regions of interest (ROIs) which localizes brain regions on on inflated brain

surfaces (Glasser et al., 2016). Because the DWI reconstruction and tractography methods

used in this manuscript require a parcellation in 3D coordinate space, a surface to volume

projected version of the HCP-MMP1.0 atlas registered to MNI space and corrected for errors

arising from surface-voxel misalignment (as implemented in DSI Studio) was used for the

present analyses, as done in previous studies (Huang et al., 2021; Jitsuishi et al., 2020; Jitsuishi

and Yamaguchi, 2021; Ghulam-Jelani et al., 2021; Wu et al., 2019). However, it has been shown

that using volume-based HCP-MMP1.0 parcellations have higher cortical areal localization

uncertainty than surface-based approaches (Coalson et al., 2018). As such, we limit the

investigation of individual cortical areas to a much coarser parcellation scheme (n = 44 total

ROIs, 22 per hemisphere) by aggregating the 360 original ROIs by their cortical region label

as defined by the HCP-MMP1.0 atlas (Glasser et al., 2016). The exception to this rule is with

the right area 8BM which was found to be the hub of diffusion impairment of the subnetwork

discovered in this study. To verify the localization of the right area 8BM volumetric parcel,

we determined the percentage of voxels that are labeled by ROIs from derived from individual

subject surface-registered HCP-MMP1.0 parcellations mapped to MNI volumetric space using

tools from Connectome Workbench (Glasser et al., 2013) and DSI Studio software. In doing

this, we found 81.5% of the right area 8BM voxels to be correctly mapped (see Supplementary

Information for details).
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Structural and functional connectivity matrices

Using the 360 ROIs from the HCP-MMP1.0 parcellation as described above, 360 x 360 matrices

encoding the connectivity between each pair of brain regions were created for each subject.

For DWI structural data, each connection was given by the count of reconstructed white

matter tracts, normalized by the median tract length, between ROIs. Functional connectivity

was defined by as the r statistic from pairwise Pearson correlations on the mean BOLD time

series data of voxels within each ROI.

Network notation

A brain network may be represented as a graph with nodes being grey matter regions and

edges being the connection between these regions. For structural connectomes, edge weights

are assigned based on the number of fiber counts between nodes, normalized by the median

fiber length. For functional connectomes, edge weights are the Pearson correlation r of the

time series of BOLD signals between nodes. Formally, a graph is defined as G = (V,E) where

V is the set of nodes of size N and E is the set of edges linking nodes in V . In addition,

w : E → R, is a weight function that assigns weights to the E according to the modality of

imaging from which the brain graph is constructed. G can then be encoded as an adjacency

matrix, A ∈ RNxN , where

Ai,j =


wi,j if (i, j) ∈ E

0 otherwise

each entry Ai,j corresponds to the connection weight between nodes vi and vj . The diagonal

strength matrix is then defined as Di,i =
∑N
j=1Ai,j , which can be used to define the graph

Laplacian matrix, L = D − A, and, the normalized graph Laplacian is defined as L =

D
−1
2 LD

−1
2 . The eigendecomposition of the graph Laplacian is given by L = UΛUT , where U

is a matrix with columns as eigenvectors and Λ is the diagonal matrix of eigenvalues. The

spectral properties of the normalized graph Laplacian have been extensively studied (Chung

and Graham, 1997).
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Diffusion in networks

Diffusion in networks over time can be determined analytically using the heat equation given

by
δH(t)
δt

= −LH(t)

where H(t) is the heat kernel and fundamental solution to the heat equation, and t is time.

The heat kernal can be understood as describing the flow of information between all nodes of

a network over time, taking into account all possible pathways of information flow into and

out of all nodes in the network. Throughout this manuscript, heat or information with be

used interchangeably in this context. The heat kernel is then given by

H(t) = e−Lt

which can then be used to solve for the heat distribution on network nodes, h(t) after time

= t, given an initial condition h(0):

h(t) = H(t)h(0)

The product of an element of the heat kernel and initial condition vector, H(t)i,j ∗ h(0)i, then

represents the amount of heat at the jth node at time = t that has diffused from the ith node.

The heat kernel can be computed as a sum of the outer product of eigenvectors of the graph

Laplacian, scaled by exponentiating the corresponding eigenvalues with time:

H(t) =
N∑
i=1

uiu
T
i e
−λit = Ue−ΛtUT

Structure to function mapping

In this study, we use the methods proposed by Abdelnour and colleagues (Abdelnour et al.,

2014) (Abdelnour et al., 2018) to identify the graph diffusion-based mapping of functional

connectivity from the structural basis. Briefly, the observed functional activity in rs-fMRI,
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i.e., the transfer of information from brain region (node) i to region j as measured by pairwise

correlation of temporal BOLD signals, can modeled by first order diffusion-like dynamics

given by:
δhi(t)
δt

= β

D−1
2
i,i

N∑
j

Ai,jD
−1
2
j,j hj(t)− hi(t)


where β is a diffusion constant. This extends to the entire network then as the heat equation,
δh(t)
δt = −βLh(t). The mapping from the structural diffusion dynamics, yielding the estimated

functional connectome, Cest,is then given by (Abdelnour et al., 2014)

Fest = e−βLt

and has been updated as (Abdelnour et al., 2018)

Fest = ae−βLt + bI = a

(
N∑
i

uiu
T
i e
−βλit

)
+ bI

where a and b are additional model parameters and I is the identity matrix. Note that the

summation allows for the exclusion of eigenvector-eigenvalue pairs. As in (Abdelnour et al.,

2018), we leave out the first eigenvector with corresponding zero valued eigenvalue, as it

largely represents uniform background connectivity (captured by b parameter above) and is

typically regressed out of rs-fMRI data. The model is then fit by minimizing the normalized

predictive error with respect to the model parameters given by:

minimize
a,b,βt

||Fest(a, b, βt)−F||22
||F||22

where F is the empirical rs-fMRI connectivity matrix. This model is fit for each individual to

obtain subject specific βt parameters, used in the diffusion-based embedding discussed below.

Diffusion-based network embedding

The embedding of nodes based on the diffusion properties of a graph has been studied

extensively for dimensionality reduction and clustering of multi-dimensional data (Belkin
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and Niyogi, 2003; Ng et al., 2002; Luo et al., 2003). These approaches center around the

embedding of network vertices via the eigenvectors of the graph Laplacian. Each element

of an eigenvector corresponds to the coordinate of the corresponding node such that nodes

that are closer together by geodesic distance on the underlying graph or manifold have more

similar coordinate values, i.e., are closer together in Euclidean distance, in the embedding.

A subset of these eigenvectors of size k = 1, 2, ..., N can then be used to embed nodes in Rk.

In the context of this manuscript, then, brain nodes that are able to more efficiently pass

information between one another are embedded closer together via the Laplacian eigenmodes

of a brain network (Wang et al., 2017).

To compute the temporally dependent diffusion-based embedding for a network, we follow

the methods discussed by Xiao and colleagues, where node coordinates are obtained from the

Young-Householder decomposition of the heat kernel (Xiao et al., 2010, 2005). The embedding

matrix, Y = (y1|y2|...|YN ), with columns as embedding coordinate vectors for network nodes

can determined with the heat kernel by H(t) = Y TY . The Euclidean distance between nodes

i and j is then

dE [i, j] =

√√√√ N∑
k

e−λit(uk[i]− uk[j]) =
√

(yi − yj)T (yi − yj)

where the distance in each dimension is scaled by exponentiating the product of the cor-

responding eigenvalue and diffusion time, t. A pairwise Euclidean distance matrix, D, of

embedded nodes is computed for each subject with the time parameter βt obtained via the

structure to function mapping as described above. This provides a newly defined structural

connectome where edges are distances in the embedding space spanned by the eigenvectors of

the graph Laplacian, and the scale of distance in each embedding dimension is dependent on

the time parameter, βt, for each subject:

SDD[i, j] =

√√√√ N∑
k

e−λiβt(uk[i]− uk[j])
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Subnetwork identification

The structural diffusion distance (SDD) connectome edges then represent the distance between

brain regions in diffusion embedding at the diffusion depth that best represents empirical

resting-state functional connectivity. Many previous findings from studies of IPs implicate

perturbations in resting state functional connectivity, especially within the DMN, which is

defined by activity at rest. As such, SDD connectomes then used for further analysis to

identify structural subnetworks with aberrant diffusion characteristics pertinent to rs-fMRI

dynamics using the Network-based Statistic (NBS) algorithm (Zalesky et al., 2010). Briefly,

NBS is carried out by computing a t-statistic at each network edge, applying a pre-determined

threshold to the resulting t-statistics and determining the connected components formed by

supra-threshold edges. To determine the significance of each identified subnetwork, the size of

each component is compared to a null distribution of maximum sized connected components

obtained by shuffling group labels for t-statistic calculation. NBS was carried out using SDD

connectomes in HC versus PT at baseline, using a left sided t-test with t-statistic thresholds of

t = {3.0, 3.5, 4.0, 4.5}. In doing this, a subnetwork, S ⊂ G, where G is the full brain network

graph, with significantly greater embedding distances, or significantly decreased diffusion

capacity, in PT relative to HC was.

NBS subnetwork hubs

Hub node identification for brain regions within the significant NBS subnetwork was performed

using edges from both the SDD and standard fiber count structural connectomes, and hub or

centrality metric values were then averaged by group. For SDD connectomes, strength, or

weighted degree, strSDD(n), for the ith node, ni, in S is defined as the sum of all edge weights

(distances) that are within the identified subnetwork, S, i.e.,

strSDD(ni) =
∑
j∈S

SDD[i, j]

A high strength value would then indicate that a node has relatively less diffusion between

other nodes in the subnetwork, thus identifying nodes that may have the greatest diffusion
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impairment. For structural connectomes, standard measures of nodal strength, betweenness

centrality, local efficiency and clustering coefficient (Bullmore and Sporns, 2009; Sporns, 2018)

were computed on the whole brain network graph and subgraph, S ⊂ G, for each node

in S. For each of the above scenarios, metrics were also determined by cortical region by

averaging region of interest (ROI) level metrics by their cortex assignment as defined by the

HCP-MMP1.0 360-node parcellation (Glasser et al., 2016).

Heat kernel edge-based analyses

In order to study more granular characteristics of subnetwork diffusion, heat kernel values

between nodes within the significant NBS subnetwork were investigated using t-tests in HC

vs PT at baseline. Correlates of baseline symptom severity (using PT only) of and treatment

response (defined as scalepre−scalepost

scalepre
were found by computing non-parametric Spearmen rho

statistics between symptom scales and heat kernel values. As above, where cortex-averaged

metrics were computed, heat kernel edge-based analyses were conducted cortex-averaged

heat kernels in order to simplify interpretation and reduce the number of mass univariate

tests performed. To further focus this analysis, statistics other than baseline t-statistics were

only computed on heat kernel values corresponding to pairwise links between SSD hubs (as

determined above) and all other subnetwork nodes. P-values for all statistics were corrected for

multiple comparisons using False discovery rate correction (FDR) (Benjamini and Hochberg,

1995).

Subnetwork targets for supplemental heat

To identify potential brain regions for neuromodulatory treatment, we model a brain subnet-

work receiving supplemental heat by simply adding a heat kernel modifying matrix, whose

rows are made by repeating rows of the original heat kernel, to the original heat kernel. As

discussed previously, the product of an entry of the heat kernel matrix, H(t)[i, j], and the

heat at node i at time t = 0, h(0)i, indicates the amount of heat transferred from node i to

node j at time t. The product of the ith row of the heat kernel matrix, H(t)[i, :], and h(0)i

then yields the distribution of heat values for each jth node in the network. If the ith node of
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a network is supplied with supplemental heat independent of the initial distribution of heat

on the network, h(0), the network heat distribution at time t is given by

h(t) = H(t)h(0) +H(t)h̄

where h̄ is a vector of all zeros except for the ith whose value is the amount of supplemental

heat at node i. Using this model, we can then identify both a node and supplemental heat

value that may best ’normalize’ a heat kernel representing impaired diffusion processes to a

reference heat kernel. In this study, we use the mean HC heat kernel matrix as the reference

and identify patient-specific nodes and supplemental heat values for optimal correction of the

diffusion dynamics encoded in the heat kernel, described as follows.

Given the mean HC heat kernel, HHC , and the kth patient’s heat kernel, HkPT , we compute

the residual heat kernel matrix as H̄k = HHC −HkPT . For the ith node in the subnetwork, we

construct the heat kernel modifier matrix asMk
i = 1(HkPT [i, :])T as the outer product of the

all ones vector and the ith row of the kth patient’s heat kernel matrix. In order to find the

optimal supplementary heat value, cki for a given node and subject, we minimize the following

objective function.

minimize
ck

i

||H̄ki − ckiMk
i ||2

Which can be easily solved analytically by

cki = tr((Mk
i )T H̄ki )

tr((Mk
i )TMk

i )

where tr(·) denotes the matrix trace.

It is important to note, that the above model is also constrained such that only positive

values in the residual matrix are used for optimization, as this simple network diffusion model

only allows for the addition of heat.

This process is repeated for each unique node-patient pair, and the mean or patient-

specific optimal node and corresponding supplemental heat value can be determined. We have
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experimentally observed that the minimum error between residual and heat kernel modifier

matrices has very little variation between brain regions, and we define optimal region as the

node with the lowest value supplemental heat value, such that neuromodulatory efficacy could

be achieved with lower amounts of stimulation and thus potentially yield fewer undesired

effects.

Visualizing effects of heat supplementation

To assess whether the significant group differences at baseline between HC and PT heat

kernel values are corrected with heat supplementation, we add the product of the optimal

supplemental heat value, cki , at the ith node, and the heat kernel modifier matrix, Mk
i to

each kth patient’s heat kernel. We then compute a t-statistic for each heat kernel entry, as

discussed above.

RESULTS

Data analyzed in this study are taken from a previously conducted Research Domain Criteria

(RDoC) clinical trial on predictors of IP treatment outcomes (ClinicalTrials.gov identifier:

NCT01903447) in which PT were randomized to either 12 weeks cognitive behavioral therapy

(CBT) or selective serotonin reuptake inhibitor (SSRI) treatment. In addition, the patient

population has heterogeneous clinical presentations and IP comorbidity in order to study

common pathological features without regard to traditional diagnostic categories. Baseline

rs-fMRI and DWI scans as well as IDAS-II Panic and Depression scores were assessed from

both HC (n = 22) and PT (n = 65) subjects. The subset of PT (n = 50 total; n = 28 CBT

cohort; n = 22 SSRI cohort) completed the IDAS-II self-reports following treatment are used

for identifying correlates of treatment response. Of note, there were no group differences in

age or sex between HC and PT. As expected, baseline IDAS-II Panic and Depression scores

were significantly different between groups at baseline (table 1).
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HC PT Statistic

Age (years) 25.0 ± 10.7 28.1 ± 8.5 t = −1.36, p = 0.18

Sex (% female) 63.6 68.7 χ2 = 0.01, p = 0.93

IDAS-II Depression 26.3 ± 3.8 58.0 ± 9.8 t = −14.6, p = 7.5e− 25

IDAS-II Panic 8.14 ± 0.34 13.3 ± 4.6 t = −5.18, p = 1.5e− 6

S2F mapping r 0.26 ± 0.03 0.25 ± 0.03 t = 1.96, p = 0.06

Table 1: Baseline mean demographics, IDAS-II scales and structure to function mapping (S2F)
Pearson r values by split healthy controls (HC) and patients (PT).

Figure 1 provides a brief visual overview of the analytic framework for computing the

diffusion-based embeddings and subsequent structural diffusion distance (SDD) connectomes

used in this study, discussed in detail in the Methods section. We first compute the structure

to function mapping as described in (Abdelnour et al., 2018) for each subject. The fit of the

empirical rs-fMRI connectome to the rs-fMRI connectome estimated from the DWI structural

connectome Laplacian eigenmodes is then determined by computing the Pearson r statistic

between these adjacency matrices. The mean fit values for HC were slightly higher than

PT (r = 0.26 ± 0.03 and r = 0.25 ± 0.03, respectively, table 1) but the difference between

their mean values was not statistically significance via t-test (p = 0.06), indicating that the

relation between resting state functional connectivity and the structural diffusion basis is likely

preserved at the global scale. Finally, the distance matrix connectomes used for subnetwork

discovery are computed from the structural diffusion basis at the diffusion depth, βt, that

optimally maps structural to functional connectivity.

Identification of Diffusion Impaired Subnetwork

After SDD connectomes were computed, the Network-Based Statistic (NBS) algorithm (Zalesky

et al., 2010) was used to discover subnetworks with altered diffusion properties in PT relative

to HC. NBS was applied with one-sided t-tests used for edge comparison, over a range

thresholds t = {3.0, 3.5, 4.0, 4.5}. For a t-test contrast (left-sided t-test) of HC < PT, the

range of subnetwork sizes varied greatly as a function of t-statistic threshold, resulting in
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Figure 1: Visual overview of methodological pipeline for creating structural diffusion distance (SDD)
connectomes using subject-specific optimal diffusion depths (βt) from the structure-to-function mapping
as in (Abdelnour et al., 2018) using subject DWI and rs-fMRI connectomes, respectively. NBS is then
applied to SDD connectomes for identification of subnetworks with aberrant diffusion properties for
subsequent analyses. See Methods section for details.
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subnetworks from 314 to 2 nodes with thresholds t = 3 and t = 4.5, respectively. With the

threshold of t = 4 a single significant subnetwork (SN1) consisting of 48 nodes and 73 edges

was identified (Figure 2A) and was chosen for subsequent analyses because of the biological

interpretability of its size, and for adequate estimated statistical power, 1− β = 0.81, with a

t-statistic threshold of t = 4. Note that because NBS was conducted on SDD connectomes,

edges are pairwise distance between nodes in the diffusion-based network embedding. This

indicates that SN1 represents a subnetwork whose nodes are significantly further apart in this

diffusion space, i.e., diffusion of information occurs more slowly between the nodes of SN1

along the edges of SN1 in PT relative to HC. For NBS with a t-test contrast defined as HC >

PT, no significant subnetworks were found.

To determine the brain regions that are most central to the diffusion impairment in SN1,

we calculated the mean strength, strSDD, of each node using the SDD values of edges in SN1

(see Methods section for details). The nodes with the greatest strSDD values are from brain

regions found in the bilateral anterior cingulate (ACC) and medial prefrontal (mPFC), right

inferior parietal and left insular and frontal opercular cortices (Figure 2A). Specifically, the

brain region with the greatest average strSDD value in both HC and PT is the right area

8BM, which has recently been reported to be a core region of a ’multiple demand’ subnetwork

that is active during a broad spectrum of tasks and may play an important role in general

cognitive control (Assem et al., 2020). Additionally, we found that the hubness of area 8BM

was not present in structural connectomes, determined by computing graph theoretical metrics,

indicating that the centrality of this brain region is unique to the SDD representations of

brain networks (Figure S1).
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Figure 2: Visualizations of the significant subnetwork (SN1) found via NBS with a t-statistic threshold
of t = 4 and contrast of HC < PT, where information diffusion is impaired in PT relative to HC. A
Wire and ball plots of SN1 subgraphs of mean SDD connectomes in HC (top row) and PT (bottom
row). Nodes indicate brain regions of SN1, and edges are colored by mean distance in from SDD
connectomes (lighter/more yellow indicates greater distance). B & C Bar plots of mean strength
(strSDD) of SN1 nodes B and nodes averaged by cortical region C, as determined by cortex assignment
in the HCP-MMP1.0 parcellation (Glasser et al., 2016), calculated using edges within SN1 and the
corresponding edge values of mean SDD connectomes HC (orange bars) and PT (blue bars). A greater
strength indicates a greater diffusion distance from other nodes in SN1.
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Baseline Heat Kernel Correlates of Symptom Severity and Treatment Response

To investigate the association of information diffusion between brain regions of SN1 and clinical

scales, we compute heat kernel matrices which encode the amount of possible heat transferred

between each node after a specified time scale, given by each subject’s diffusion depth, βt.

Each value, i, j, of a heat kernel matrix then describes pairwise diffusion of information

from the ith to the jth brain network node at the time scale best associated with functional

connectivity. Note that heat kernels are symmetric matrices (i.e., diffusion from node i to

node j is equivalent to diffusion from node j to node i). Therefore, when discussing diffusion

between brain regions, the order in which they are listen is arbitrary, as network diffusion

approaches model undirected diffusion within a brain network. We took a hypothesis-driven

approach by focusing our correlation analyses on the heat transfer between the bilateral ACC

and all other SN1 cortical regions, as the nodes in these cortical regions are central to the

diffusion impairment of SN1. The heat kernel values (HKVs) are averaged by cortical region

and are then used for computing Spearman correlations with IDAS-II Depression and Panic

subscales, which map to distress and fear domains, respectively, based on a previously used

approach to broadly divide and assess symptom domains of IPs (Figure 3) (Radoman et al.,

2019; Ofrat and Krueger, 2012). In addition, we use only PT (n = 65) for these analyses, as

mean IDAS-II subscale values expectedly differ highly significantly between HC and PT, and

correlations would likely be due to group differences. Finally, we report at most the top three

most significant correlations that survive FDR correction (n = 44 comparisons) in this section

of the manuscript, but all significant correlations are available in Table S1.
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Figure 3: Correlation of baseline heat transfer at subject diffusion depths βt with pre-treatment and
percentage improvement post-treatment IDAS-II subscales. The brain network figure at the end of
each row shows the corresponding pair of brain for each respective correlation in the row, indicated by
the color of the edge connecting the regions and the correlation plot of the same color. Cortical regions
shown in the visualization are plotted according to the average position of the individual ROIs that they
consist of, as per the HCP-MMP1.0 parcellation (Glasser et al., 2016). Correlations of heat transfer
with: A pre-treatment IDAS-II Depression in PT; B post-treatment IDAS-II Depression percent
improvement in all PT; C post-treatment IDAS-II Panic percent improvement in SSRI cohort only;
D post-treatment IDAS-II Depression percent improvement in CBT cohort only; E post-treatment
IDAS-II Depression percent improvement in CBT cohort only.
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First, we determine the HKV correlates of baseline IDAS-II subscales (Figure 3A). Heat

transfer between the left ACC/mPFC and insula/frontal opercula (ρ = −0.37, p = 0.003, q =

0.04) and the right ACC/mPFC and left inferior frontal cortex (ρ = −0.36, p = 0.004, q = 0.04)

was negatively correlated with IDAS-II Depression scales, indicating that less information

diffusion between these brain regions is associated with higher IDAS-II Depression values. A

positive correlation was found with heat transfer between the left ACC/mPFC and posterior

cingulate cortex (ρ = 0.39, p = 0.001, q = 0.04). No significant correlations were found using

IDAS-II Panic.

To determine whether baseline HKVs could predict response to treatment, we determined

correlations between heat transfer and percent improvement in IDAS-II subscales in the

subset of PT (n = 50) that completes post-treatment IDAS-II self-reports (calculated as
pre−post

pre , where pre and post are the IDAS-II subscales before and after 12 weeks of treatment,

respectively). We first grouped both SSRI and CBT therapy cohorts of PT together to study

common correlates of treatment response. Significant negative correlations with IDAS-II

Depression and heat transfer between the left ACC/mPFC and inferior frontal cortex (ρ =

−0.45, p = 0.001, q = 0.04), left auditory association cortex (ρ = −0.42, p = 0.002, q = 0.04)

and insula/frontal opercula (ρ = −0.41, p = 0.003, q = 0.04) were found (Figure 3B). Similar

to baseline symptom correlations, no significant associations were found using IDAS-II Panic.

Next, we segregated PT by cohort to investigate treatment specific HKV predictors

of therapeutic response. Interestingly, in the SSRI cohort (n = 22), significant negative

correlations were found only with IDAS-II Panic improvement and heat transfer between the

left ACC/mPFC and inferior frontal cortex (ρ = −0.60, p = 0.003, q = 0.15), insula/frontal

opercula (ρ = −0.54, p = 0.009, q = 0.17) and right insula/frontal opercula (ρ = −0.53, p =

0.012, q = 0.17) (Figure 3C). In the CBT cohort (n = 28), we observed significant negative

associations with IDAS-II Depression percent improvement and heat transfer between the

right ACC/mPFC and superior parietal (ρ = −0.51, p = 0.006, q = 0.09), inferior parietal

(ρ = −0.51, p = 0.006, q = 0.09) and left auditory association (ρ = −0.50, p = 0.008, q = 0.09)

cortices (Figure 3D). We also found significant negative correlations with IDAS-II Panic
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percent improvement and heat transfer between the right ACC/mPFC and superior parietal

cortex (ρ = −0.55, p = 0.003, q = 0.12) and the left ACC/mPFC and right lateral temporal

cortex (ρ = −0.50, p = 0.007, q = 0.14) (Figure 3E). Interestingly, the brain regions involved

significant correlations of treatment response in all PT and the SSRI cohort are all Frontal

cortical regions that have been tied to emotion regulation in MDD (Roberts et al., 2017;

Rolls et al., 2020; Helm et al., 2018), while the regions found with the CBT cohort are

members of canonical RSNs. For example, the inferior parietal and lateral temporal cortices

are members of the default mode network (DMN), while the superior parietal cortex is part of

the dorsal affective network (Dutta et al., 2014; Fedota and Stein, 2015). Please note that we

increased the threshold for significance after FDR correction from q < 0.05 as for baseline and

percentage improvement of IDAS-II subscales in all PT to q < 0.2 given the decreased sample

size and decreased power of these correlations. As such, these results should be understood as

exploratory and preliminary.

Identification of Subnetwork Targets for Modulation

Once we had characterized the disrupted information diffusion of SN1 in IP PTs, we next

sought to determine brain subnetwork regions that may serve as neuromodulatory targets to

normalize aberrant subnetwork information diffusion properties towards those found in HC.

To this end, we start by computing the difference between the mean HC heat kernel matrix

and each kth PT’s heat kernel matrix to obtain a residual heat kernel matrix. A favorable

modulation strategy would then add supplemental diffusion activity to a PT’s heat kernel with

a pattern that closely resembles the deficits encoded in a PT’s residual matrix. To identify

such a strategy, the error of the difference between this residual matrix and the product of a

heat value, cki , and a heat kernel modifier matrix, which encodes the effect of supplemental

heat at a the ithnode on the network, is minimized over cki and repeated for all possible target

nodes in order to identify an optimal brain region and heat value for stimulation. Once a

modulation strategy is determined, the product of the modifier matrix and the heat value are

then added to a PT’s heat kernel to model the effects of the intervention (see Methods section

for details). For each potential target brain region, we then obtain a heat and error value

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.04.01.21254790doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254790
http://creativecommons.org/licenses/by-nc-nd/4.0/


corresponding to the optimal effectiveness of a brain region as a modulation target. As the

error values for all target node tested were empirically observed to be uniform in distribution

with small regional variance (Figure 4C), we defined optimality as the brain region requiring

the smallest amount of supplemental heat. Furthermore, this allows us to identify brain region

neuromodulatory targets that potentially more efficiently disseminate stimulation with fewer

off-target effects from a greater modulatory energy.

We first conducted this analysis on the mean cortical regions of SN1 as target nodes and

found the right ACC/mPFC, which was identified as a hub of SN1 by mean strSDD, to be the

optimal region to target for heat supplementation, with the lowest mean heat across all PT

(Figure 4A and C). In addition, we determined subject-specific optimal brain regions and the

right ACC/mPFC was also found to be the modal optimal target (34 out of 65 PT) (Figure

4E). Next, we applied the same target node identification procedure to the individual brain

regions of the right ACC/mPFC in SN1. We found that the right 8BM was the optimal nodal

modulatory target (Figure 4B and D). Note that the right 8BM was an SN1 hub with the

greatest strSDD of all individual subnetwork nodes.
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Figure 4: Overview of the identification of SN1 brain region targets for heat-based modulation and
subsequent correction of information diffusion deficits. A & B Connectome plot visualizations of
baseline (first row) and post-heat supplementation (second row) significant differences in heat kernel
values with A right ACC/mPFC or B right area 8BM as modulation targets. Nodes are brain regions
of SN1 and edges connecting them are present if a significant difference (defined as t-test p-values that
survive FDR correction with q < 0.05) exists between HC and PT corresponding heat kernel values.
Larger/darker node is the target for modulation. Edge colors indicate the type of significance (dark
blue: present at baseline (first row) or remains after modulation (second row) (HC > PT); light blue:
present at baseline but corrected following modulation; orange: newly significant following modulation
(PT > HC)). C & D barplots for mean PT heat (left) and norm of error (right) values for C all
mean cortical regions or D subregions of the right ACC/mPFC in SN1. E Scatter plot indicating
subject-specific optimal modulation target heat values grouped by brain mean cortical regions in SN1.

Correction of Subnetwork Diffusion Impairment

As a final step in our analysis, we sought to confirm whether the heat modulation approach

identified as above successfully normalizes subnetwork information diffusion in PT to that of

HC statistically. To carry this out, we performed left sided t-tests (contrast: HC > PT) at
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each heat kernel value (HKV) between the brain regions of SN1 at baseline in HC versus PT.

Only this direction of t-test was assessed at baseline as this modulation model can only add

heat, and is not presently able to correct hyperconnected HKVs in PT. We then modified PT

heat kernels at the optimal target nodes and heat values as described above and repeated the

edgewise t-test analysis with left and right sided t-tests in order identify significantly increased

HKVs in PT relative to HC as a result of heat supplementation. An HKV was defined as

significant if it survived FDR correction (q < 0.05) with n =
(N

2
)
comparisons, where N is the

number of brain regions in the subnetwork.

We conducted this analysis first on mean cortical regions using the right ACC/mPFC

(N = 23) as a target for modulation and identified 24 significant baseline HKV differences

(Table S2). Following heat supplementation, 19 of the original 24 HKV differences were

no longer significant (Figure 4A, Table S2). Three HKVs remained significant in the same

direction as baseline: connections between the right dorsal visual stream and the right auditory

association area, insula/frontal opercula and lateral temporal cortex. On the other hand, 2

HKVs gained new significance (PT > HC) following modulation; connections between the

right ACC/mPFC (target) and the left ventral visual stream and the right inferior parietal

cortex.

We next conducted the same analysis on individual brain regions in SN1 (N = 48),

using the right area 8BM as the modulatory target (Figure 4B, Table S3). Of the 31 HKVs

differences at baseline, 26 were corrected following heat modulation. Five HKVs remained

significant following modulation, which predominantly follow the regional pattern as described

above. All 6 of the newly significant (PT > HC) HKVs involved connections with the right

area 8BM (target node).

DISCUSSION

This research provides preliminary evidence of a transdiagnostic subnetwork deficit, that

resembles the cingulo-opercular network, characterized by information diffusion impairment

of the bilateral ACC and mPFC. Central to this impairment is more specifically the right
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area 8BM, a key brain region involved in organizing a broad spectrum of cognitive tasks,

which may underlie previously reported dysfunction of multiple brain circuits in the IPs. In

addition, this is also the first report of using network diffusion models to study psychiatric

disorders. We also demonstrate that models of neuromodulation involving targeting this brain

region normalize PT diffusion dynamics towards those of healthy controls. These analyses

provide a framework for multimodal methods that identify diffusion disrupted subnetworks

and potential targets for neuromodulatory intervention based on previously well-characterized

methodology.

From our analyses we discovered a subnetwork (SN1) with increased diffusion embedding

distance, i.e., decreased information diffusion capacity at the time scale required for optimally

capturing functional connectivity patterns, in HC relative to IP PT at baseline. Hub regions

(as defined by HC or PT mean strSDD, indicating regions with the greatest total diffusion

impairment) of SN1 include the bilateral ACC/mPFC and insula/frontal opercula, which

bears resemblance to the cortical aspect of the cingulo-opercular network (CON) (Figure 2).

The CON, which includes the dorsal ACC, anterior insula, PFC, hypothalamus, thalamus and

amygdala has been shown to contribute to many brain functions, including the processing

of pain and negative affect, as well as the maintaining general cognitive control during

goal-oriented behaviors (Dosenbach et al., 2007). Dysfunction of the CON has also been

demonstrated in IPs, including MDD (Hamilton et al., 2013) and anxiety disorders (Sylvester

et al., 2012). The dorsal ACC, a core hub of the CON, has been shown to be critical in

both MDD (Wu et al., 2016) and anxiety disorders (Sylvester et al., 2012). In particular,

investigations of emotion regulation in anxiety disorders have demonstrated that increased

ACC activity (Burkhouse et al., 2018b) and coupling to anterior insula activity (Klumpp

et al., 2012, 2013b) is present in HC relative to PT, indicating a potential regulatory role for

the ACC during cognitive control of emotion processing within the CON.

SN1 also includes brain regions that are part of other functional brain networks, such

as the lateral temporal and inferior parietal cortices (a hub of SN1), part of the DMN, and

the superior parietal cortex, part of the dorsal affective network, in addition to the inferior
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frontal cortex, which is important for the coordination of executive function and emotion

processing (Seeley et al., 2007; Roberts et al., 2017). Of note, the inferior parietal cortex is also

a member of the frontal parietal network, an executive function network that antagonistically

deactivates the DMN (Barkhof et al., 2014). Increased activity of the DMN, a network defined

by functional connectivity at rest associated with both rumination and worry, relative to other

RSNs has been implicated in MDD (Dutta et al., 2014) and anxiety disorders (Kim and Yoon,

2018). Studies of MDD have also indicated the widespread disruption in the salience and

central executive networks (Kaiser et al., 2015; Gong and He, 2015). Indeed, accumulating

evidence suggests that dysfunctional coordination between multiple brain networks may better

explain the pathophysiology of IPs.

Our findings from interrogating interregional information transfer within SN1 indicate that

connections between the bilateral ACC/mPFC and brain regions involved with canonical brain

networks are associated with baseline symptom severity. IDAS-II Depression scores correlated

positively with heat transfer between the left ACC/mPFC and the posterior cingulate. Reduced

connectivity between the posterior cingulate, a DMN hub, and DLPFC (Leech and Sharp,

2014) and other frontal regions (Yang et al., 2016) has been previously reported in MDD.

In the macaque, retrograde tracing studies have revealed afferent connections to the 8BM

subregions of the ACC/mPFC from the posterior cingulate (Eradath et al., 2015). Taken

together, our results may indicate that depressive symptoms in the IPs at least partly result

from the hyperconnectivity of the DMN to the MDN and CON, which may skew cognitive

resources away from executive control of emotion processing. On the other hand, negative

correlations were found with IDAS-II Depression and heat transfer between ACC/mPFC and

the inferior frontal cortex and insula/frontal opercula. These results are similar to those from

previous studies, where the ACC activity was found to negatively correlate with depression

symptom scales (Wu et al., 2016) and with anxiety symptom scales in the context of its

potentially antagonistic role with the insula in the CON (Klumpp et al., 2012, 2013b). Overall,

these baseline associations provide evidence for ACC/mPFC activity and connectivity to

regions important for emotion regulation as critical to transdiagnostic depression symptoms
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in the IPs.

Our results also indicate that internodal information transfer of the bilateral ACC/mPFC

in SN1 is associated with therapeutic response in both treatment modality agnostic and

specific manners. Interestingly, predictors of general and SSRI specific treatment response

involved similar brain regions to those associated with baseline symptom severity. In all PT,

negative correlations were found with IDAS-II Depression symptom improvement and the

heat transfer between the left ACC/mPFC and the inferior frontal cortex, insula/frontal

opercula and auditory association cortex. As with all PT at baseline, no associations were

found with IDAS-II Panic. In the SSRI cohort, however, significant correlations were only

found using IDAS-II Panic improvement, yielding negative associations with connections

between similar regions as with all PT: heat transfer between the left ACC/mPFC and the

inferior frontal cortex and bilateral insula/frontal opercula. These findings indicate that

lower baseline information transfer between the ACC/mPFC and CON or inferior frontal

cortex are predictive of general and SSRI specific responsiveness to treatment, and these

connections may be the substrate of treatment action. Interestingly, associations of baseline

internodal information transfer and treatment response in the CBT cohort were found with

unique brain regions compared to all PT and the SSRI cohort. Significant associations were

also found using both IDAS-II Depression and Panic scales. Depression improvement was

negatively associated with information transfer between the right ACC/mPFC and superior

and inferior parietal cortices, regions of the dorsal affective network and DMN. Using IDAS-II

Panic improvement, we found significant negative correlations with information transfer

between the right ACC/mPFC and superior parietal cortex and the left ACC/mPFC and

right lateral temporal cortex, another DMN subnetwork region. These results indicate the

presence of CBT specific neural substrates of treatment prediction, and again, that lower

baseline information transfer between these regions is indicative of greater treatment efficacy.

In addition, these findings are in line with a previous study of CBT for social anxiety disorder,

where increased baseline activation of the ACC and lateral temporal cortex (Klumpp et al.,

2013a) was predictive of treatment response.
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Central to the diffusion impairment of SN1 is a subregion of the right ACC/mPFC cortical

region, area 8BM, the caudal aspect of the dorsomedial PFC (dmPFC), which borders the

dorsal aspect of the ACC. Retrograde tracing studied in the macaque monkey have revealed

both afferent and efferent neuronal connections between 8BM and the ACC, indicating likely

functional synergy of these areas (Morecraft et al., 2012; Eradath et al., 2015). Importantly,

8BM is brain region that has recently been found to be a key region of the multiple-demand

subnetwork (MDN), a fronto-parietal system that is co-activated during a broad range of

cognitively demanding tasks (Assem et al., 2020). As such, the MDN is likely critical for

the organization and recruitment of multiple task-specific subsystems in the brain towards

current cognitive needs. Additionally, our network-diffusion model identified the most effective

brain regions as putative targets for neuromodulatory stimulation on a subject-specific level.

Examining the results of this investigation provide evidence that the right ACC/mPFC is

an optimal target for neuromodulation to correct SN1 information diffusion dynamics of PT

towards those observed in HC, and, further, that area 8BM is the most efficient subregion of

the ACC/mPFC for such an intervention.

These preliminary findings have important clinical implications for the therapeutic ap-

plication of neuromodulatory interventions for IPs, such as repetitive transcranial magnetic

stimulation (rTMS), a focal, non-invasive brain stimulation method. rTMS, which is typically

delivered to the dorsolateral PFC (dlPFC), is a first line treatment for SSRI-refractory MDD

(George et al., 2013) but has also been shown to significantly reduce anxiety (Chen et al., 2019;

Du et al., 2018) and nicotine dependence symptoms (Abdelrahman et al., 2021). Although

rTMS is generally effective, MDD remission following treatment is 30-40% (George et al., 2013),

indicating a need for developing better therapeutic paradigms, such as personalized treatment

protocols. In line with these goals, a study that used MRI guidance to enhance targeting of

specific regions of the dlPFC, all rTMS-resistant MDD PTs responded to this new approach

(Moreno-Ortega et al., 2020). Another study used fMRI guidance to individually targeted

cortical emotion regulation systems to improve rTMS efficacy (Luber et al., 2017). Our

results offer an additional strategy for identifying brain network targets of rTMS treatment
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for correcting subject-specific structural deficits that may underlie functional expression of IP

symptoms.

Limitations and Future Directions

A significant question about the implications of our findings is whether the addition and

propagation of heat on a subnetwork sufficiently models the effects of rTMS stimulation. It

has been shown that the propagation of direct cortical electrode (Stiso et al., 2019) and rTMS

stimulation and subsequent functional activity are best predicted by structural connectome

topology (Momi et al., 2021; Beynel et al., 2020), providing encouraging evidence that network

diffusion-based analyses such as those proposed in this study are an appropriate model for

the effects of rTMS neuromodulation. Nevertheless, further studies are necessary to verify the

utility of the proposed model.

While this is the first report of using a multimodal information diffusion model towards a

transdiagnostic sample of IPs, the findings presented in this paper pertaining to the pattern

of diffusion impairment of SN1 should be replicated in a larger sample of IP PT and HC to

determine the generalizability of our results. This is especially true for the analyses obtained

by segregating PT into SSRI and CBT cohorts, as the sample sizes of these groups are very

small, and, accordingly, these findings must be interpreted as preliminary and exploratory.

Further, availability of post-treatment brain imaging would be required to make reliable

conclusions about network diffusion-based substrates of treatment response, and, as such,

should be included in future studies. Additionally, as the data used in this manuscript are

from a clinical trial conducted in 2013, and, as such, the MRI acquisition parameters result

in data that is not matched in quality to that found in current high temporal and spatial

resolution imaging studies, such as those following Human Connectome Project-style data

collection guidelines (Glasser et al., 2013; Uğurbil et al., 2013; Sotiropoulos et al., 2013; Smith

et al., 2013).

Of note, the analyses in present study are performed using a volumetric version of the

HCP-MMP1.0 parcellation which has been shown to be less accurate than surface-based
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approaches (Coalson et al., 2018), introducing uncertainty regarding the anatomic localization

of brain regions across subjects. We determined the voxel accuracy of the right area 8BM in the

volumetric atlas to be 81.5% consistent with individual subject surface-derived parcellations

and have otherwise limited out investigation of individual brain regions to a much coarser

parcellation by aggregating HCP-MMP1.0 ROIs by their cortical label. Nonetheless, the

reliability of ROI localization would be improved by using the methodology as described in

(Glasser et al., 2013) and future work in which cortical-surface derived parcellations are used

should adhere to these procedures.

Although our structural to functional mapping quality, as measured by Pearson correlation

between the predicted and empirical functional connectomes, is in the range of values obtained

in a replication study of related mappings, other network-diffusion related models have been

developed that result in better predictive mappings (Deslauriers-Gauthier et al., 2020). Future

studies of these proposed methods should investigate how the mapping parameters from

these related methods can be incorporated into the currently proposed model for better

structural-functional fusion. Another area for further development in our proposed network

diffusion methods is that neuromodulation target identification and simulation can only model

the effects of the addition of heat to subnetwork’s diffusion dynamics. Therefore, if a brain

circuit is found to be pathologically hyperconnected, other strategies will have to be developed

in order model either direct or indirect inhibition of brain activity. Furthermore, while the

network-diffusion approaches used in this study have been used to successfully demonstrate the

intimate relationship between structural and functional brain connectivity, they do not model

directed communication between brain regions. Future analyses could potentially incorporate

findings from anatomical tracing studies such that reconstructed fibers corresponding to

such well-characterized white matter tracts between ROIs may be assigned a direction of

signal propagation. Regardless, advances in network analyses that consider the inherently

directed nature of neural communication are needed to in order to more accurately model the

underlying neurobiology of brain structure and function.

Future implications of this research are broad. We present here an analytical framework
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assembled from well-characterized neuroimaging and graph theoretical methods that can be

used as is to study multimodal brain networks for other brain disorders. Aside from the

application to other datasets and to larger similar datasets for replication, this model offers

the ability to determine the diffusion embedding from functional connectivity other than

that observed during resting-state. For example, functional connectomes can be generated

from tasks that are known to be implicated in a certain disorder, and as a result the

diffusion embedding will be formed from the structural basis that best maps to the functional

connectivity observed during this task. This allows for the researcher to investigate the

structural connectivity potentially most pertinent to forming the functional brain activity

observed during specific tasks, and therefore permits a more granular interrogation of complex

features of brain disorders and states. Perhaps the most promising and immediate application

of our proposed methodology is that of identifying brain regions best suited for therapeutic

for neuromodulatory intervention, such as with rTMS. As the proposed methods provide both

subject-specific regional targets and magnitudes of stimulation that best modify subnetwork

dynamics towards those of a desired (HC) network, future work is in line with improving the

outcomes of rTMS intervention by personalizing treatment features.

Conclusion

There are two major outcomes of this study. First, we report impaired information diffusion

between area 8BM and other SN1 regions, many of which have been previously implicated in

both the pathology of multiple IPs and the function of the default mode, cingulo-opercular

and dorsal affective networks. Second, we found that hubs of SN1, found to be critical for

organizing brain function for a variety of cognitive and emotional processes, are optimal

targets for modelled neuromodulatory intervention. Taken together, our results may indicate

the presence of a concerted disruption of multiple brain networks pertinent to cognitive control

of emotion regulation in IPs. This dysregulation of connectivity could result in a loss of "top-

down" executive control of emotion processing via connections between the multiple demand

network and other task-specific (and task-negative) brain networks. Such a perturbation

in brain network dynamics involving the integration of multiple complex subsystems via a

37

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.04.01.21254790doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254790
http://creativecommons.org/licenses/by-nc-nd/4.0/


hub of the multiple demand network may represent the underlying pathophysiological brain

network features that are common to all IPs and give rise to the heterogeneous expression of

transdiagnostic symptoms.

38

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.04.01.21254790doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254790
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACKNOWLEDGEMENTS

This work was supported by funding from the National Institute of Mental Health of the Na-

tional Institutes of Health (NIMH-NIH) grants R01MH101497 (to KLP) and 5T32MH067631-14

(support for PJT).

Conflict of Interest

Dr. Leow reports serving on the advisory board for Buoy Health and being a cofounder of

KeyWise. Dr. Ajilore reports serving on the advisory board of Embodied Labs and Blueprint

Health, being a cofounder of KeyWise. The authors declare no other competing interests.

Notes

Data and code used in this manuscript can be found at the lead author’s github: https:
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