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Abstract 106 
 107 
Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies 108 
have identified circulating proteins that are biomarkers of severe COVID-19, but cannot 109 
distinguish correlation from causation. To address this, we performed Mendelian randomisation 110 
(MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci 111 
(pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, 112 
and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed 113 
MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five 114 
proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates 115 
using sensitivity analyses and colocalization testing provided strong evidence to implicate the 116 
apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This 117 
effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we 118 
demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing 119 
causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the 120 
proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as 121 
a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In 122 
summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of 123 
COVID-19, highlighting a pathway that may be a promising therapeutic target. 124 

 125 
Main 126 
 127 
Severe COVID-19 is characterised by exaggerated inflammatory responses and 128 
immunopathology1-4. The two pharmacological treatments that have robustly demonstrated 129 
efficacy in reducing risk for severe COVID-19 in randomised clinical trials to date are 130 
glucocorticoids and interleukin 6 (IL-6) receptor blockade5-7. Treatments directed at the 131 
inflammatory response thus represent the most promising therapeutic strategy. A wide range of 132 
therapies directed at specific elements of the inflammatory response have been developed for 133 
autoimmune and inflammatory diseases8,9, and present potential repurposing opportunities for 134 
treatment of COVID-19. Profiling of plasma proteins in COVID-19 patients has revealed a 135 
signature of innate immune cell activation (including upregulation of IL-6, monocyte chemokines 136 
and neutrophil proteins) and epithelial/endothelial injury in severe disease10,11. A limitation of such 137 
observational studies, however, is that they cannot distinguish causal mediators of 138 
immunopathology from secondary downstream consequences of inflammation and/or tissue 139 
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injury. Bridging this knowledge gap is critical for prioritising therapeutic targets and triaging 140 
medicines for clinical trials.   141 

 142 
Making causal inference from human observational data is challenging due to confounding and 143 
reverse causation. Mendelian randomisation (MR) is an analytical approach that can circumvent 144 
these difficulties. MR enables causal inference by leveraging the random allocation of alleles at 145 
meiosis, which effectively provides a natural randomised trial12,13. MR tests whether there is a 146 
causal relationship between an exposure (e.g. a molecular trait) and an outcome (e.g. a clinical 147 
phenotype) using genetic variants as ‘instruments’. If a genetic variant associated with the 148 
exposure is also associated with the outcome, this provides evidence of a putatively causal 149 
relationship between the two. Using proteins as exposures in MR analyses has several 150 
advantages. First, proteins are gene products and as such are under greater genetic control than 151 
downstream phenotypes. Second, proteins are the targets of most drugs and so MR using 152 
proteins can identify and prioritise promising therapeutic targets. MR using proteins is now 153 
increasingly possible because of large genome-wide association studies (GWAS) that have 154 
identified genetic variants associated with levels of circulating proteins (protein quantitative trait 155 
loci, pQTL)14-16. 156 
 157 
Here, we performed MR analysis to test whether proteins observationally associated with COVID-158 
19 severity play a causal role in critical illness from COVID-19, using pQTL identified through a 159 
meta-analysis of up to 26,494 individuals. Our results implicate the cytokine receptor FAS as 160 
playing a putatively causal role in severe COVID-19. We demonstrated the robustness of this 161 
result using a range of sensitivity analyses and colocalisation analysis, and we replicated it using 162 
an independent pQTL dataset. The pQTL for FAS in the FAS gene region could not be explained 163 
by a corresponding expression quantitative trait locus (eQTL). We therefore examined mRNA 164 
splicing events in whole blood RNA-seq data from 4,778 individuals. This revealed that the pQTL 165 
for FAS in the FAS gene region is mediated by genetically influenced alternative splicing, resulting 166 
in skipping of exon 6 and affecting the ratio of soluble to membrane-bound FAS. We thus 167 
demonstrate a novel genetic mechanism contributing to risk of severe COVID-19 via a splice QTL 168 
(sQTL). We hypothesise that modulating the FAS pathway may therefore be a promising 169 
therapeutic strategy. 170 

 171 
Results 172 
 173 
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We first identified a list of proteins associated with COVID-19 clinical severity grading by 174 
examining two studies that performed broad proteomic profiling of COVID-19 patient plasma 175 
samples using the Olink proteomics platform10,11. We took the lists of severity-associated proteins 176 
from each study (Benjamini-Hochberg adjusted P <0.05) and intersected these to provide a high-177 
confidence list of 157 severity-associated proteins (Fig. 1). To evaluate whether these proteins 178 
play a causal role in severe COVID-19, we performed two-sample Mendelian randomisation 179 
analysis. 180 
 181 

 182 
Figure 1: Mendelian randomisation study design and data sources. Severity-associated protein 183 
biomarkers were identified from the studies by Filbin et al10 and Gisby et al11. 184 
 185 
 186 
To identify genetic instruments for MR, we accessed data from large European-heritage meta-187 
analyses of plasma pQTL studies that also used the Olink platform performed by the SCALLOP 188 
consortium (https://www.olink.com/scallop/)15. The sample sizes of the protein GWAS meta-189 
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analyses varied from 3,658 to 26,494 (Methods). MR analysis was possible for 140 proteins, 190 
where at least one non-HLA pQTL was available. For 30 proteins there were only local-acting 191 
(‘cis’) pQTL (i.e., the pQTL lies within +/-0.5 Mb of the gene encoding the protein), for 17 there 192 
were only distant-acting (‘trans’) pQTL, and for 93 there were both. At each pQTL, we performed 193 
linkage disequilibrium pruning (LD r2≤0.01) to remove correlated variants, prior to MR (Methods). 194 
 195 
For the outcome data, we used GWAS summary statistics from the COVID-19 Host Genetics 196 
Initiative release 5 (HGI: https://www.covid19hg.org)17 for very severe respiratory COVID-19 197 
(defined as hospitalised patients requiring respiratory support and/or who died (analysis A2); for 198 
brevity, hereafter referred to as ‘severe COVID-19’).  199 

 200 
We identified five proteins, EPH receptor B4 (EPHB4), C-C motif chemokine ligand 2 (CCL2), 201 
galectin 9 (LGALS9), Tumour Necrosis Factor Receptor Superfamily Member 10A (TNFRSF10A) 202 
and Fas cell surface death receptor (FAS), with significant MR causal estimates for severe 203 
COVID-19 after multiple testing correction (5% false discovery rate (FDR)) (Table 1).  204 
 205 
An important assumption of MR is that genetic instruments (here pQTL) affect the outcome (here 206 
severe COVID-19) only through the exposure (here the protein), and not through observed or 207 
non-observed confounding factors (the ‘no horizontal pleiotropy’ assumption)18,19. We therefore 208 

used a multi-layered strategy to assess whether our results were robust (Methods, Fig. 1). First, 209 
we used heterogeneity tests to test whether there was consistency in the causal effect estimates 210 
across the genetic variants used. Second, we performed sensitivity analyses using alternative MR 211 
methods that are robust to horizontal pleiotropy, including MR Egger, weighted mode and median 212 
methods. Third, we performed MR restricting genetic instruments to cis-pQTL. Finally, we used 213 
colocalization to test whether the pQTL and severe COVID-19 genetic association signals 214 
reflected the same or distinct underlying causal variants. 215 
 216 
For 3 proteins (EPHB4, FAS and TNFRSF10A) there was no heterogeneity in effect estimates 217 
between individual genetic variants, and effect estimates of pleiotropy-robust methods were 218 
similar to those of the inverse-variance method. In contrast, for LGALS9 and CCL2, we observed 219 
significant heterogeneity (Cochran’s Q >50 and heterogeneity p-value <0.05) (Table 1, 220 
Supplementary Fig. 1a), casting doubt on the reliability of the causal inference for these two 221 
proteins. 222 

 223 
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Cis protein quantitative trait loci (cis-pQTL), genetic variants that lie near the gene encoding the 224 
affected protein, are considered to be more reliable MR instruments since their direct relationship 225 
with the protein means they are less likely to violate the ‘no horizontal pleiotropy’ assumption than 226 
trans-pQTL, which may act through indirect pathways20. Therefore, as an additional sensitivity 227 
analysis, we tested whether we observed consistent causal effects when limiting genetic 228 
instruments to cis-pQTL. This cis-only MR analysis revealed significant results for FAS (P 6.7×10-229 
4) and TNFRSF10A (P 1.9x10-3), but not EPHB4, CCL2 or LGALS9 (P>0.1); Table 1, 230 
Supplementary Fig. 1b). 231 
 232 

 233 
Table 1: Mendelian Randomisation of COVID-19 severity-associated circulating proteins and risk 234 
of severe COVID-19. 235 

 236 
 237 
Next, to disentangle causal relationships from confounding by linkage disequilibrium, we 238 
performed colocalisation analysis21 at each locus to test whether the same causal variant 239 
underlies the pQTL and the association with severe COVID-19. For the cis-pQTL for FAS, there 240 
was convincing colocalisation of the pQTL and the severe COVID-19 signal (posterior probability 241 
(PP) of shared causal variant 0.95) (Fig. 2a). In contrast, for the cis-pQTL for TNFRSF10A, it was 242 
clear that the pQTL and the disease association were driven by different causal variants (PP of 243 
distinct causal variants 0.87, Supplementary Fig. 2a). Thus, we have evidence to support a 244 
causal role for FAS, but not TNFRSF10A, in severe COVID-19. 245 
 246 

Protein* # 
IV 

MR P FDR OR  
(95% CI) 

cis OR  
(95% CI) 

cis P Cochran’s Q  
(p-value) 

Egger 
Intercept 
P 

EPHB4 5 1.28×10 -6 1.69×10-4 0.56  
(0.44-0.71) 

0.64  
(0.36-1.15) 

0.13 4.3  
(0.36) 

0.90 

CCL2 7 2.43×10-6 1.69×10-4 1.54  
(1.29-1.84) 

0.71  
(0.26-1.92) 

0.50 97.0  
(1.1×10-18) 

0.98 

LGALS9 26 6.38×10-4 2.96×10-2 0.79  
(0.69-0.91) 

0.90  
(0.78-1.04) 

0.16 54.7  
(5.4×10-4) 

0.05 

TNFRSF10A 28 1.71×10-3 4.76×10-2 0.81  
(0.71-0.92) 

0.81  
(0.71-0.92) 

1.91×10-3 9.4  
(0.36) 

0.03 

FAS 7 1.36×10-3 4.74×10-2 1.40  
(1.14-1.72) 

1.44  
(1.17-1.78) 

6.70×10-4 29.1  
(0.15) 

0.05 

# IV - number of instruments used; MR P – Inverse-variance fixed effect MR p-value; FDR – Benjamini-Hochberg adjusted MR p-value; 
OR – odds ratio; cis OR – odds ratio using cis-only variants; cis P – Inverse-variance fixed effect p-value for cis-only MR analysis; 
Cochran’s Q – inverse-variance weighted heterogeneity Cochran’s Q and p-value; Egger Intercept p – p-value of the Egger intercept. 
*Proteins annotated using the symbols of the encoding gene. EPHB4 - Ephrin type-B receptor 4; CCL2 - C-C motif chemokine 2; LGALS9 
- Galectin-9; TNFRSF10A - Tumor necrosis factor receptor superfamily member 10A; FAS – FAS (also known as Tumor necrosis factor 
receptor superfamily member 6). 
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247 
 248 

 249 
Figure 2: Mendelian Randomisation (MR) of soluble FAS protein levels and COVID-19 250 
outcomes. 251 
a) Regional association plot (hg19 genome build) showing the cis-pQTL for soluble FAS (plasma) 252 
and the associations with COVID-19 outcomes. Posterior probability of a shared causal variant 253 
(PP H4) between FAS protein levels and very severe COVID-19 = 0.95. 254 
b) MR estimates of the causal effect of soluble FAS protein on different COVID-19 outcomes: 255 
susceptibility to infection, hospitalisation and very severe disease. 256 
c) Soluble FAS protein levels in COVID-19 patients, stratified by clinical severity, and non-infected 257 
controls (data from Gisby et al.11). Boxplots showing distribution of plasma protein levels 258 
according to COVID-19 status at the time of blood draw. Boxplots indicate median and 259 
interquartile range. n=256 samples from 55 COVID-19 patients and 51 samples from non-infected 260 
patients. ‘COVID-19 status’ indicates clinical severity score of the patient at the time the sample 261 
was taken. Mild n=135 samples; moderate n=77 samples; severe n=29 samples; critical n= 15 262 
samples.  263 
 264 
To empirically evaluate whether there was evidence of horizontal pleiotropy, we examined 265 
whether the cis genetic instruments for FAS used in the MR analysis, or variants in LD with them 266 
(r2>0.6), were associated with any protein. We utilised the PhenoScanner database that contains 267 
>5,000 genotype-phenotype associations22,23 and found no other associations with other proteins 268 
(at P <1×10-5). 269 
 270 
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To validate our results, we repeated the two-sample MR for soluble FAS in severe COVID-19 271 
using genetic instruments derived from an independent pQTL dataset from a study using an 272 
alternative proteomics platform, the aptamer-based Somascan14. Consistent with our primary 273 
analysis, this revealed that genetic predisposition to higher circulating soluble FAS levels is 274 
associated with increased risk of severe COVID-19 (MR estimate OR = 1.35 [95% CI 1.14-1.60], 275 
p-value = 4.6×10-4) (Supplementary Fig. 3), providing independent support for our findings. 276 
 277 
Having established evidence for a putatively causal role for FAS in severe COVID-19, we asked 278 
whether it may also play a role in susceptibility to COVID-19. We repeated the MR analysis using 279 
different COVID-19 GWAS datasets: all individuals with COVID-19 versus controls (i.e. 280 
susceptibility to COVID-19 – HGI C2 analysis), and all hospitalised COVID-19 patients vs controls 281 
(i.e. selecting for a degree of severity – HGI B2 analysis). Strikingly, we saw a gradient of MR 282 
effects across these outcomes. FAS showed no causal effect on susceptibility to COVID-19, a 283 
weak effect on COVID-19 hospitalisation and strong effect on severe COVID-19 (Fig. 2b). These 284 
data suggest that genetic propensity to higher soluble FAS levels influences COVID-19 severity, 285 
but not susceptibility. Observational data from the analysis of Gisby et al.11 revealed a similar 286 
pattern. Plasma FAS was not significantly differentially abundant in the comparison of all COVID-287 
19 cases versus uninfected controls (Benjamini-Hochberg adjusted P value 0.280), but it was 288 
highly significantly associated with COVID-19 severity grading within-cases (Benjamini-Hochberg 289 
adjusted P 0.019) (Fig. 2c).  290 
 291 
We next investigated the mechanism underlying the cis-pQTL for plasma FAS. The most strongly 292 
associated pQTL variant for FAS was rs982764 (Supplementary Table 1), an intronic single 293 
nucleotide polymorphism (SNP) in FAS, located between exons 4 and 5. This is a common 294 
variant, with minor allele frequency (MAF) ~31% in European ancestry individuals. The major 295 
allele, rs982764:T, was associated with higher circulating soluble FAS levels and higher risk of 296 
severe COVID-19 (Supplementary Fig. 4). The sentinel variant, rs982764, was not in LD (r2 297 
>0.2) with any non-synonymous protein-coding variants. We therefore evaluated whether the 298 
pQTL was mediated through regulation of gene expression by examining eQTL data from the 299 
GTEx Catalogue (multiple tissues), whole-blood data from eQTLGen24, and sorted immune cell 300 
subsets from Peters et al.25. While these data revealed a cis-eQTL for FAS that was common to 301 
multiple tissues (e.g. lung, whole-blood, monocytes, adipose tissue, and artery), the eQTL signal 302 
did not colocalise with the pQTL (PP of distinct causal variants of 1.00 for both eQTLGen and 303 
GTEx) (Supplementary Fig. 5). Since the results of colocalisation methods can be affected by 304 
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the presence of multiple independent variants, we then performed colocalisation using a method 305 
that allows for multiple causal variants (SuSiE26). This confirmed that, even after accounting for 306 
conditionally independent signals, the eQTL signal and pQTL signals for FAS did not colocalise 307 
(PP of distinct causal variants = 1.00).  308 
 309 
Given that the pQTL could not be explained by an eQTL, we hypothesised that it might arise due 310 
to genetically influenced alternative splicing. FAS is a receptor for the cytokine FAS-ligand 311 
(FASL), and binding of FASL to FAS on the cell surface triggers an intracellular signalling cascade 312 
that leads to apoptosis of the cell. In humans, the FAS gene has 9 exons and encodes a cell 313 
surface receptor consisting of an extracellular portion, a transmembrane domain and an 314 
intracellular portion. In addition to the full-length FAS mRNA, several shorter transcripts arising 315 
from alternative splicing have been described (Fig.  3a)27,28. Alternative splicing leading to 316 
skipping of exon 6 (transcript isoform FASDEx6) results in a secreted protein lacking the 317 
transmembrane domain28. This soluble form of FAS acts as a decoy receptor for FASL and thus 318 
has biologically opposing actions to membrane-bound FAS by reducing FAS-FASL signalling, 319 
resulting in reduced apoptosis29. 320 
 321 
We therefore tested the hypothesis that the pQTL for plasma FAS resulted from genetically 322 
regulated skipping of exon 6. Using whole-blood RNA-seq data from 4,778 individuals, we 323 
examined alternative splicing and tested for associations between variants in the FAS region and 324 
transcripts lacking exon 6. The sentinel pQTL SNP, rs982764, was strongly associated with exon 325 
6 skipping (P= 2.1 x 10-22). Moreover, the exon 6 splice QTL displayed the same association 326 
pattern as the pQTL and the GWAS signal for very severe COVID-19 (Fig. 3a). Formal 327 
colocalisation analysis confirmed that the splice QTL and the pQTL were highly likely to reflect 328 
the same underlying causal variant (PP of shared causal variant of 0.998). The risk allele for 329 
severe COVID-19 (rs982764:T) was associated with a shift towards transcripts lacking exon 6, 330 
which are known to encode soluble FAS (Fig. 3b). We confirmed this empirically via our pQTL 331 
data, with rs982764:T associated with higher plasma soluble FAS abundance. Together these 332 
data reveal a novel genetic mechanism by which a non-coding variant impacts the risk of severe 333 
COVID-19 through alternative splicing leading to elevated soluble FAS. 334 
 335 
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Figure 3: a) Regional association plot showing (from top to bottom): transcript isoforms, the 337 
soluble FAS cis-pQTL, and the associations with FAS exon 6 splicing. FASDEx6 indicates the 338 
transcript isoform lacking exon 6 (red circle). The posterior probability of a shared causal variant 339 
(PP H4) between FAS protein levels and exon 6 splicing = 0.99. 340 
b) Boxplot showing exon 6 splice quantitative trait locus (sQTL). Number of individuals by 341 
genotype at rs982764: 443 (CC), 1992 (CT), 2329 (TT). In 14 individuals genotype could not be 342 
reliably ascertained. Y-axis represents % of transcripts with exon 6 skipping. P for association 343 
with genotype 4x10-22 (linear model). 344 
c) Proposed model by which genetic variation in FAS increases risk of severe COVID-19.  A non-345 
coding variant acts as a splice QTL. The risk allele for very severe COVID-19 (rs982764:T) is 346 
associated with an increased proportion of transcripts lacking exon 6 resulting in higher levels of 347 
soluble FAS (sFAS). sFAS acts as a decoy receptor for FAS-ligand (FASL), blocking FASL 348 
binding to membrane-bound FAS (mFAS) on the cell surface and thus reducing apoptosis.   349 
 350 
 351 
Discussion 352 
 353 
Here we performed Mendelian Randomisation (MR) to evaluate whether proteins observationally 354 
associated with severe COVID-19 play a causal role in severe disease. We focused on severe 355 
COVID-19 as this is responsible for the loss of life and has threatened to overcome the capacity 356 
of healthcare systems across the world. In addition to vaccination programmes, there is an urgent 357 
need for therapies to ameliorate severe disease. This requires improved understanding of the 358 
aberrant host immune response in this subset of patients. 359 
 360 
We took a broad, but hypothesis-driven approach, by focussing on proteins that have been shown 361 
to robustly associate observationally with disease severity in COVID-19 patients in two 362 
independent clinical cohorts. A strength of our study was the use of a large-scale pQTL meta-363 
analyses to provide robust genetic instruments. Our MR analysis revealed that the genetic 364 
tendency to higher plasma soluble FAS increased the risk of very severe COVID-19, implicating 365 
soluble FAS as a causal factor in severe COVID-19. Using a range of COVID-19 patient severity 366 
phenotypes (any diagnosis of COVID-19 infection, hospitalisation due to COVID-19, and very 367 
severe COVID-19 requiring respiratory support) in our MR analyses revealed a gradient of causal 368 
effect size estimates proportional to COVID-19 severity (Fig. 2b). These data suggest that the 369 
FAS pathway plays a role specifically in the pathogenesis of severe disease, rather than 370 
susceptibility to COVID-19 infection. Examination of soluble FAS levels in the plasma of patients 371 
with COVID-19 revealed a similar pattern (Fig. 2c). 372 
 373 
The FAS gene encodes the FAS death receptor, also known as tumour necrosis factor receptor 374 
superfamily member 6 (TNFRSF6). Alternative splicing leads to multiple transcript isoforms (Fig. 375 
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3a)27,28. The canonical isoform encodes a type 1 transmembrane protein that is the cell surface 376 
receptor for the cytokine FAS-ligand (FASL), and plays important roles in the control of apoptosis, 377 
particularly in lymphocytes30. Binding of FASL to the extracellular portion of membrane-bound 378 
FAS triggers an intracellular cascade resulting in apoptosis of the FAS-expressing cell. Apoptosis 379 
is mediated by a ‘death domain’, an 85 amino acid-long structure in the intracellular portion of 380 
FAS, encoded by exon nine31. In contrast, an isoform arising from skipping of exon 6 encodes a 381 
secreted protein lacking the transmembrane domain. This soluble form of FAS acts as a decoy 382 
receptor for FASL and therefore has biologically opposing actions to membrane-bound FAS, by 383 
reducing FAS-FASL signalling and thus blocking the pro-apoptotic pathway29. 384 

 385 
Investigation of the mechanism underpinning the cis-pQTL for FAS revealed that the risk allele 386 
for severe COVID-19 influences FAS mRNA splicing, resulting in a greater proportion of 387 
transcripts lacking exon 6 (Fig. 3b), which in turn lead to more soluble FAS (Supplementary Fig. 388 
4), the anti-apoptotic decoy receptor for FASL. Our data therefore support a model whereby 389 
genetic predisposition to reduced FASL signalling through membrane-bound FAS leads to 390 
increased risk of severe COVID-19 (Fig. 3c). We hypothesise that this may result in impaired 391 
apoptosis of activated lymphocytes (enhancing immune-mediated pathology) or virus-infected 392 
cells (retarding viral clearance). In vitro, treatment with ibrutinib, a Bruton’s tyrosine kinase (BTK) 393 
inhibitor used in the treatment of haematological malignancy, has been shown to decrease soluble 394 
FAS, thereby enhancing FAS-mediated apoptosis32, suggesting a potential repurposing 395 
opportunity for severe COVID-19. Interestingly, case reports describe clinical improvement in 396 
haematology patients with severe COVID-19 on re-instigation of ibrutinib therapy33,34. 397 
 398 
Fas knock-out mice develop an autoimmune disease similar to human lupus, with anti-nuclear 399 
antibodies, nephritis, lymphadenopathy and splenomegaly35. Mirroring this, deleterious mutations 400 
in the FAS gene in humans result in a rare Mendelian disease (autoimmune lymphoproliferative 401 
syndrome, ALPS, OMIM: 601859), characterised by autoimmunity and lymphoproliferative 402 
disease as a result of defective lymphocyte apoptosis36-38,39. In addition, common variants in the 403 
FAS gene region are associated with the proportion of lymphocytes in the blood white cell count40, 404 
chronic lymphocytic leukaemia (CLL)41,42, and autoimmune diseases including juvenile idiopathic 405 
arthritis (JIA)43. The risk allele for JIA (rs7069750:C) reduces FAS gene expression. 406 
 407 
These observations reveal striking parallels in the spectrum of immune-mediated disease 408 
phenotypes related to genetic variation in FAS. Non-functional FAS protein (resulting from rare 409 
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coding mutations) and quantitatively reduced levels of FAS gene expression (due to common 410 
non-coding polymorphisms) both predispose to autoimmune disease. Similarly, we show that 411 
elevation of soluble FAS, which inhibits signalling via membrane-bound FAS, increases 412 
susceptibility to severe COVID-19. Thus distinct genetic variants in the FAS gene converge on 413 
impaired FASL-FAS signalling, and result in immunopathology. 414 
 415 
Other studies have performed Mendelian randomisation of proteins in COVID-1944,45. The MR 416 
analysis of Zhou et al identified OAS1 as a causal factor common to COVID-19 susceptibility, 417 
hospitalisation and very severe disease44. In contrast, we identified FAS as contributing 418 
specifically to severe COVID-19, but not susceptibility to infection. Gaziano et al.45 identified 419 
IFNAR2 and ACE2 as playing causal roles in COVID-19. 420 
 421 
In summary, we demonstrate that that genetic tendency to higher levels of soluble FAS is a causal 422 
factor in severe COVID. Moreover, we reveal a novel genetic mechanism by which the risk allele 423 
for severe COVID-19 influences susceptibility through alternative splicing of FAS. This non-coding 424 
variant affects alternative splicing, resulting in increased levels of soluble FAS, a decoy receptor 425 
for FASL which blocks signalling of FASL via membrane-bound FAS on the cell surface. Our data 426 
provide insights into the pathogenesis of severe COVID-19 and suggest a potential therapeutic 427 
opportunity from restoration of FASL signalling. 428 
  429 
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 430 
Methods 431 
 432 
Mendelian Randomisation. 433 
Mendelian randomisation uses genetic variants as instrumental variables in order to investigate 434 
the effects of a risk factor (exposure) on a disease (outcome), provided certain assumptions hold.  435 
The method reduces bias created from confounding, by treating the variants used as equivalent 436 
to treatment allocation in randomized control trials13,46-48. We used two-sample Mendelian 437 
Randomization (MR) to test the causal role of plasma proteins in severe COVID-19. 438 
 439 
Defining a list of proteins robustly associated with COVID-19 severity. 440 
We identified plasma proteins that were significantly associated (5% FDR) with COVID-19 441 
severity in the two studies that used Olink proteomics platform (Filbin et al.10 and Gisby et al.11). 442 
To define a set of robust COVID-19 biomarkers, we took the intersect of the lists of significant 443 
associations from these two studies. This resulted in 157 proteins. 444 
 445 
Identification of genetic instruments through pQTL mapping. 446 
To provide a set of genetic instruments for MR, we performed a meta-analysis of pQTL studies 447 
through framework of the SCALLOP consortium. All contributing pQTL studies had been 448 
performed using plasma with proteins measured using Olink immunoassays (Olink Bioscience, 449 
Uppsala, Sweden). 450 
 451 
Cohort-level pQTL analysis. Details of the cohorts and cohort-specific ethical approval are 452 
included in the Supplementary Table 2. Plasma protein levels were measured using up to 5 453 
Olink 92-plex immunoassays (“Inflammation”, “Cardiovascular2”, “Cardiovascular3”, 454 
“Cardiometabolic” and “Immune Response”). Despite the nomenclature, inflammation and 455 
immune related proteins were highly enriched on all panels. The sample size per protein across 456 
all available cohorts varied from 3,658 (for proteins on the Immune Response panel) to to 26,494 457 
(from proteins on the cardiovascular2 and cardiovascular3 panels). All subjects were of European 458 
heritage. Protein levels were rank-based inverse-normal transformed prior to genetic association 459 
testing. Genome-wide association analyses were performed using an additive regression model 460 
of protein on genotype with adjustment for age, sex and cohort specific covariates. Population 461 
structure was accounted for using by including principal components as covariates or by 462 
accounting for relatedness using linear mixed models as appropriate to the specific cohort. 463 
 464 
pQTL meta-analysis. Prior to meta-analysis cohort-level summary statistics were quality 465 
controlled EasyQC software49, following the protocol as described in Winkler et al.49. Meta-466 
analysis was performed using inverse-variance fixed effect method implemented in METAL50 467 
(‘STDERR’ option), followed by correction for genomic control. Meta-analysis summary statistics 468 
were then further filtered for minor allele frequency (MAF) > 0.01, and heterogeneity in effect size 469 
estimates. Variants with heterogeneity I2≥75% were not considered significant and were removed 470 
prior to further analysis. 471 
 472 
pQTL locus definition. To define the boundaries of each pQTL locus, we first selected all genetic 473 
variants with p-value<1x10-5 and then calculated the distance between each consecutive variant 474 
located on the same chromosome. Two consecutive variants were identified as belonging to 475 
different loci if they were more than 250 kb apart. The sentinel variant was defined as the variant 476 
with the lowest p-value within the locus. A locus was defined as a cis-pQTL if the sentinel variant 477 
was within 0.5 Mb of the start or end of the gene encoding the given protein, otherwise it was 478 
classified as a trans-pQTL. 479 
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 480 
Outcome data for MR testing: COVID-19 GWAS. 481 
We accessed COVID-19 GWAS data from the COVID-19 Host Genetics Initiative website 482 
(https://www.covid19hg.org/). To match the ancestry of the individuals in the pQTL meta-analysis, 483 
we downloaded data from European-ancestry individuals. Specifically, we downloaded the 484 
following datasets: European summary statistics without 23 and me data from the HGI website 485 
release 5 (release date 7th January 2021) for A2 (very severe respiratory confirmed COVID-19 486 
versus population), B2 (hospitalised COVID-19 versus population), C2 (susceptibility - COVID-19 487 
versus population). Prior to downstream analyses, all variants with heterogeneity p-value 0.001 488 
(as per HGI recommendation) were removed. The following links were used to download the data:  489 
https://storage.googleapis.com/covid19-hg-490 
public/20201215/results/20210107/COVID19_HGI_A2_ALL_eur_leave_ukbb_23andme_20210491 
107.b37.txt.gz 492 
https://storage.googleapis.com/covid19-hg-493 
public/20201215/results/20210107/COVID19_HGI_B2_ALL_eur_leave_ukbb_23andme_20210494 
107.b37.txt.gz 495 
https://storage.googleapis.com/covid19-hg-496 
public/20201215/results/20210107/COVID19_HGI_C2_ALL_eur_leave_ukbb_23andme_20210497 
107.b37.txt.gz 498 
 499 
The goal of our MR analysis was to test the causal role of proteins in very severe COVID-19 and 500 
so for our principal analyses we used the A2 COVID-19 GWAS dataset as the outcome. For FAS, 501 
the significant protein identified by our principal MR analysis (FAS), we also performed MR using 502 
COVID-19 dataset B2 and C2. 503 
 504 
Details of MR testing. 505 
Primary MR analysis. For each protein, MR evaluating its causal role in very severe COVID-19 506 
was performed using the TwoSampleMR package51. Where a single variant was used as the 507 
genetic instrument, we performed a Wald Ratio (WR) test. In the case of multiple genetic variants, 508 
we used the fixed effects inverse variance weighted (IVW) method. 509 
 510 
Variant selection. For each protein first we selected genetic variants associated with the protein 511 
level at genome-wide significance (P-value < 5x10-8). From these, we retained variants that were 512 
also present in the outcome (very severe COVID-19) GWAS summary statistics.  Next, to obtain 513 
a set of genetic instruments with low correlation, we performed LD pruning of these variants using 514 
Plink 1.952 and the options clump_r2 = 0.01 and clump_kb = 10,000. The LD reference panel for 515 
the pruning procedure was created by randomly selecting 10,000 unrelated individuals of British 516 
ancestry (evaluated on the basis of genomic data) from UK Biobank, followed by removing 517 
positional and marker name duplicated SNPs from imputed genotypes using --rm-dup exclude-all 518 
function using Plink 2.052. Variants in the MHC region (hg19 genome build chr6:26,000,000-519 
34,000,000) were excluded. 520 
 521 
Sensitivity analyses. Since MR relies on certain assumptions, that often cannot be directly 522 
evaluated, we performed a range of sensitivity analyses. We used statistical methods to test for 523 
horizontal pleiotropy including MR Egger53. We performed MR using the weighted mode and 524 
median methods54, which are more robust to the presence of horizontal pleiotropy, and the 525 
maximum likelihood (ML) method. The ML method allows for uncertainty in the effect size of the 526 
genetic associations with the exposure (unlike the IVW method which uses simple weights), and 527 
it allows for genetic associations with the exposure and with the outcome for each variant to be 528 
correlated55. 529 
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 530 
Cis-only MR. As additional sensitivity analysis we repeated MR restricting the genetic 531 
instruments to cis-pQTLs only, as these are less likely to be affected by horizontal pleiotropy20. 532 
To select cis-only instruments we performed LD pruning (as described earlier) on all variants 533 
with p<5×10-8 within a cis locus. 534 
 535 
Replication of FAS MR. 536 
The genetic instruments used in the primary analysis were pQTL identified in a meta-analysis of 537 
studies that used Olink immunoassays. To validate this, we repeated the MR analysis for FAS 538 
using an alternative pQTL dataset based on proteomic profiling using the aptamer-based 539 
SomaLogic platform14. The COVID-19 GWAS data was the same as for the primary analysis (HGI 540 
A2 GWAS summary statistics). 541 
 542 
Colocalisation. 543 
To distinguish causal relationships from confounding by LD we used colocalisation analysis. 544 
Colocalisation analysis tests whether regional genetic association signals for different traits arise 545 
from distinct or the same shared causal variant. The Bayesian colocalisation method implemented 546 
in the coloc.abf() function from the “coloc”21 R package provides posterior probabilities (PP) for 5 547 
different hypotheses: the null hypothesis of no association with either of the traits (H0) and four 548 
alternative hypotheses of either association with only one of the traits (H1, H2), or association of 549 
both traits but under the effect of distinct underlying causal variants (H3), or association of both 550 
traits under the effect of a shared causal variant (H4) i.e. colocalisation. For candidate proteins 551 
identified by the MR analysis, we compared the HGI A2 COVID-19 regional association signal(s) 552 
with that of the relevant pQTL. We considered a PP>0.8 as a strong evidence in favour of that 553 
hypothesis. 554 
 555 
We also used coloc to test whether the FAS cis-pQTL colocalised with eQTLs from multiple cell 556 
types across multiple studies. These included multiple tissue types from GTEx v7 (obtained from 557 
the GTEx Portal on 03/23/21), whole blood data from eQTLGen24, and 5 sorted leukocyte subsets 558 
from Peters et al.25. An assumption of coloc is that there is at most one causal variant at the locus 559 
per trait. To allow for the possibility of multiple independent eQTLs or pQTLs, we used the Sum 560 
of Single Effects method26, which allows for simultaneous colocalisation testing of multiple causal 561 
variants.  562 
 563 
FAS levels in COVID-19 patients. 564 
We used data on COVID-19 patients and sex, age and ethnicity matched non-infected controls 565 
from the study by Gisby et al11. The study design involved serial plasma sampling from the 566 
COVID-19 patients. For full details of association testing see Gisby et al11. Briefly, differential 567 
abundance analysis of FAS levels between COVID-19 patients and controls was performed using 568 
linear mixed models with age, sex and ethnicity as covariates. Associations of FAS and clinical 569 
severity scores were performed within COVID-19 cases, using a 4-level ordinal scale for clinical 570 
severity (mild, moderate, severe and critical) at the time of blood sampling. Again, linear mixed 571 
models were used to account for repeated measurements from the same individual. 572 
 573 
RNA-sequencing and splice QTL analysis. 574 
In 5,000 individuals of the INTERVAL cohort, 3 ml of whole blood were collected in Tempus Blood 575 
RNA Tubes (ThermoFisher Scientific), following the manufacturer’s instructions. RNA extraction 576 
was performed by QIAGEN Genomic Services using an in-house developed protocol based on 577 
QIAGEN’s proprietary silica technology. We assessed the quality of the extracted RNA using 578 
spectrophotometric analysis. RNA Integrity Number (RIN) values were determined using a 579 
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TapeStation 4200 system (Agilent), following the manufacturer’s protocol. Messenger RNA 580 
(mRNA) was isolated using a NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). Globin 581 
depletion was performed using a KAPA RiboErase Globin Kit (Roche). RNA library preparation 582 
was done using a NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB) on a Bravo WS 583 
automation system (Agilent). Libraries were pooled to 96-plex in equimolar amounts, quantified 584 
using a High Sensitivity DNA Kit on a 2100 Bioanalyzer (Agilent), and then normalised to 2.8 nM 585 
prior to sequencing. Samples were sequenced using 75 bp paired-end sequencing reads (reverse 586 
stranded) on a NovaSeq 6000 system (S4 flow cell, Xp workflow; Illumina). We assessed the 587 
sequence data quality using FastQC v0.11.8. Reads were aligned to the GRCh38 human 588 
reference genome (Ensembl GTF annotation v99) using STAR v2.7.3.a56. Data from 4,778 589 
individuals were subjected to downstream analyses. We extracted transcript splice junctions with 590 
the regtools “junction extract” tool, and introns were clustered and excision ratios calculated and 591 
normalised for downstream sQTL analysis according to the leafcutter57 pipeline (build #aa12b1e) 592 
with default parameters. Cis-sQTLs were calculated on the resulting leafcutter ratios for the 593 
excision event of FAS exon 6 (ENSE00003500194) and flanking introns, and genotypes with a 594 
minor allele frequency >0.01 in the region +/- 200kb of the FAS gene using tensorQTL58 1.0.5. 595 
Blood cell type proportions, sex, and 10 genomic and 10 splicing principal components were 596 
added as covariates to the linear model. 597 
 598 
Supplementary Material 599 
 600 
Supplementary Tables and Figures 601 
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 603 
Supplementary Figure 1: MR estimates using different MR methods for 5 proteins significant in 604 
the primary analysis (fixed effect inverse variance weighted method). a) MR effects estimated 605 
from all variants (both cis and trans).  b) MR effects estimated using only cis variants. Vertical 606 
line represents odds ratio of 1.  607 
  608 
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 609 

 610 
Supplementary Figure 2: Genetic associations for TNFSRSF10A and CCL2 plasma protein 611 
levels and very severe COVID-19 do not colocalise. a) The sentinel pQTL (rs13278062) for 612 
TNFRSF10A is in linkage equilibrium with the sentinel COVID-19 variant (rs1398232). The 613 
posterior probability of distinct causal variants from colocalisation testing (PP H3) = 0.87. 614 
b) A trans-pQTL located on chromosome 3 (sentinel variant rs35728689) for CCL2 (which is 615 
encoded on chromosome 17) lies approximately 5kb upstream of the CCR2 gene, which encodes 616 
the receptor for CCL2, suggesting an obvious biological mechanism for the trans-pQTL. Single-617 
variant MR performed using this trans-pQTL was significant (rs35728689 P=2.8 ×10-2, 618 
Supplementary Table 1). However, LD r2 between sentinel CCL2 pQTL (rs35728689) and sentinel 619 
COVID-19 variant (rs35081325) is 0.006 in 1000 genomes EUR population and the posterior 620 
probability of distinct causal variants from colocalisation testing (PP H3) = 1.0. 621 
 622 
 623 
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 624 
Supplementary Figure 3: Validation of MR estimates of the causal effect of soluble FAS 625 
protein on COVID-19 outcomes. Genetic instruments were obtained from another pQTL study of 626 
FAS levels measured with a different proteomic platform (SOMAscan14). Details of individual 627 
instruments can be found in Supplementary Table 1. ‘Olink’ indicates the MR estimate obtained 628 
in our analysis. 629 
 630 
 631 
 632 
 633 

 634 
Supplementary Figure 4. Boxplot showing genotype at rs982764 versus plasma soluble FAS 635 
levels (after correction for age, sex, batch effects, season of blood sampling and genetic 636 
principal components) in the ORCADES cohort. 637 
 638 
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 639 
 640 
 641 
Supplementary Figure 5. Regional association plots for FAS pQTL and eQTL. Tracks from top 642 
to bottom: FAS plasma pQTL (SCALLOP meta-analysis), FAS eQTL in whole blood (eQTLGen) 643 
and lung (GTex v7). 644 
 645 
 646 
 647 
  648 
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 649 
Supplementary Tables (xlsx) 650 
 651 
Supplementary Table 1: SNP-wise estimates of the MR effect. All - overall MR estimate, 652 
using all listed SNPs, exposure - protein levels, outcome - very severe COVID-19 (A2). genomic 653 
positions based on human genome build GRCh37 654 
 655 
Supplementary Table 2: Details of contributing cohorts 656 
 657 
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