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Abstract 40 

Background 41 

Greater maternal adiposity before or during pregnancy is associated with greater offspring 42 

adiposity throughout childhood, but the extent to which this is due to causal intrauterine or 43 

periconceptional mechanisms remains unclear. Here we use Mendelian Randomization 44 

(MR) with polygenic risk scores (PRS) to investigate whether associations between maternal 45 

pre-/early pregnancy body mass index (BMI) and offspring adiposity from birth to 46 

adolescence are causal. 47 

Methods 48 

We undertook confounder adjusted multivariable (MV) regression and MR using mother-49 

offspring pairs from two UK cohorts: Avon Longitudinal Study of Parents and Children 50 

(ALSPAC) and Born in Bradford (BiB). In ALSPAC and BiB the outcomes were birthweight 51 

(BW; N = 9339) and BMI at age 1 and 4 years (N = 8659 to 7575). In ALSPAC only we 52 

investigated BMI at 10 and 15 years (N = 4476 to 4112) and dual-energy X-ray 53 

absorptiometry (DXA) determined fat mass index (FMI) from age 10–18 years (N = 2659 to 54 

3855). We compared MR results from several PRS, calculated from maternal non-55 

transmitted alleles at between 29 and 80,939 single nucleotide polymorphisms (SNPs). 56 

Results 57 

MV and MR consistently showed a positive association between maternal BMI and BW, 58 

supporting a moderate causal effect. For adiposity at most older ages, although MV 59 

estimates indicated a strong positive association, MR estimates did not support a causal 60 

effect. For the PRS with few SNPs, MR estimates were statistically consistent with the null, 61 

but had wide confidence intervals so were often also statistically consistent with the MV 62 

estimates. In contrast, the largest PRS yielded MR estimates with narrower confidence 63 

intervals, providing strong evidence that the true causal effect on adolescent adiposity is 64 

smaller than the MV estimates (Pdifference = 0.001 for 15 year BMI). This suggests that the MV 65 
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estimates are affected by residual confounding, therefore do not provide an accurate 66 

indication of the causal effect size. 67 

Conclusions 68 

Our results suggest that higher maternal pre-/early-pregnancy BMI is not a key driver of 69 

higher adiposity in the next generation. Thus, they support interventions that target the whole 70 

population for reducing overweight and obesity, rather than a specific focus on women of 71 

reproductive age. 72 

Keywords 73 

Obesity, BMI, pregnancy, child, maternal, offspring, DOHaD, Mendelian randomization, 74 

ALSPAC, Born in Bradford 75 

Background 76 

It has been hypothesised that prenatal exposure to greater maternal adiposity during or prior 77 

to pregnancy causes greater adiposity in the offspring throughout life, via intrauterine effects 78 

or periconceptional mechanisms (for example effects on the oocyte) (1-4). There are well 79 

replicated observational associations between maternal body mass index (BMI) before or 80 

during pregnancy and offspring adiposity and cardiometabolic outcomes in childhood, 81 

adolescence and adulthood (5-8). Furthermore, evidence from animal experiments suggests 82 

that such associations are plausibly due to causal biological effects in the intrauterine period 83 

(9, 10). If true, this could have important implications for obesity prevention policy, because 84 

interventions to reduce maternal obesity before pregnancy might reduce offspring obesity 85 

risk in later life (1, 2, 6). 86 

Triangulated epidemiological evidence from different study designs (11) suggests that 87 

associations between maternal BMI and offspring childhood/adolescent adiposity may not 88 

reflect a causal effect. For example, negative paternal exposure control studies (12-18) and 89 

studies examining associations within sibling groups (19, 20) suggest that confounding by 90 
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genetic and/or environmental factors shared within families may be an important explanation 91 

for the associations. In addition, two Mendelian randomization (MR) (21, 22) studies, which 92 

used genetic variants as instrumental variables (IVs) for maternal BMI, provided no strong 93 

evidence for a causal effect (14, 23). However, in order to avoid bias due to genetic 94 

inheritance the primary analysis in the most recent MR study (23) was adjusted for an 95 

offspring weighted allele score, and simulations suggest that the use of a weighted allele 96 

score may not be the optimal approach to avoid bias (Personal communication, Wang G, 97 

Warrington N, Evans DM, 2020). In addition, both previous studies (14, 23) were unable to 98 

adjust for paternal genetic variants, which may be necessary to avoid collider bias (24). 99 

Furthermore, the causal estimates from previous MR studies were imprecise (14, 23, 24). 100 

For example, in the largest study (N = 6057) a one standard deviation (SD) higher maternal 101 

BMI was associated with a 0.05 SD increase in mean offspring BMI at age 7, but the 95% 102 

confidence interval was consistent with a 0.11 SD reduction or a 0.21 SD increase (23). If a 103 

positive causal effect is present this could have important public health implications, because 104 

it could lead to an accelerating intergenerational cycle of obesity that is difficult to break (1, 105 

25). It is therefore important to conduct further MR investigations with improved methods, in 106 

order to obtain more precise estimates that are not subject to the aforementioned biases. 107 

We aimed to use maternal non-transmitted allele polygenic risk scores (PRS) as IVs in a 108 

one-sample MR design, to explore the causal effect of maternal BMI on offspring adiposity 109 

from birth to adolescence, and to compare those results with confounder adjusted 110 

multivariable (MV) regression estimates. Because we used only maternal alleles that were 111 

not inherited by the offspring, we did not need to adjust for offspring or paternal genotype 112 

and thereby avoided biases that may have affected previous studies. We included 113 

thousands of genetic variants (hereafter referred to as single nucleotide polymorphisms 114 

[SNPs]) in the PRS, affording increased precision over previous MR studies which used only 115 

genome wide significant (GWS; P <5e-8) SNPs (14, 23). Based on previous MR studies (23, 116 
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26, 27) we hypothesised that greater maternal BMI would cause increased offspring birth 117 

weight (BW), but that the causal effect would attenuate over childhood and adolescence. 118 

Methods 119 

Study design 120 

We have followed the MR-STROBE reporting guidelines in this paper (28). We conducted 121 

one-sample MR and compared these results with confounder adjusted multivariable (MV) 122 

regression analyses. We analysed data from two British population based prospective birth 123 

cohorts: the Avon Longitudinal Study of Parents and Children (ALSPAC) and Born in 124 

Bradford (BiB). These cohorts are described in Additional file 1: Supplementary 125 

information S1 (14, 22-24, 29-75) and details of the study methodology have been reported 126 

previously (29-31). 127 

Selection of participants 128 

Full details of sample selection for each cohort are given in Additional file 1: 129 

Supplementary information S2, and selection flow charts are presented in Additional file 130 

1: Supplementary information S3. We included live-born singletons with non-missing data 131 

for the variables required for MR analyses, and excluded one offspring from any sibling 132 

groups present (chosen at random in ALSPAC or to maximise the sample size with data 133 

available in BiB). As the effects we were exploring may differ by ethnicity (32) we limited 134 

analyses to two ethnic groups: White European and South Asian, which comprised 40% and 135 

51% of the sample with offspring genotype data available respectively. There were very few 136 

participants from other ethnic groups in either cohort. ALSPAC (93% White European) 137 

contributed only to the analyses in White Europeans and we meta-analysed these results 138 

with those from models fitted separately for BiB South Asians and BiB White Europeans. 139 

Derivation of ethnicity variables is described in Additional file 1: Supplementary 140 

information S4. The overall sample size for MR analyses ranged from 2659–5085 for 141 

ALSPAC, 1566–2262 for BiB South Asians and 1339–1992 for BiB White Europeans. The 142 
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sample sizes for confounder adjusted MV estimates were somewhat smaller due to missing 143 

confounder data (1884–3265 for ALSPAC, 325–449 for BiB South Asians and 442–604 for 144 

BiB White Europeans). To enable comparison between the confounder adjusted MV 145 

estimates from models that adjusted for different covariates, we fitted all the models for each 146 

outcome using an identical sample with non-missing data for all relevant variables. 147 

Parental anthropometric variables 148 

In ALSPAC, maternal pre-pregnancy weight and height were retrospectively reported by the 149 

women during pregnancy (at a mean gestational age of 24.7 weeks [SD 6.3]) or postnatally 150 

for 11.2% of mothers (at a mean of 22.0 weeks after birth [SD 6.7]). The reported weights 151 

correlated highly with weight recorded at the first antenatal clinic (Pearson correlation 152 

coefficient = 0.96). Paternal height and weight were reported by the fathers during their 153 

partner’s pregnancy (or postnatally for a minority of fathers). In BiB, early pregnancy BMI 154 

was calculated from height reported by the mothers at recruitment (26–28 weeks gestation) 155 

and weight extracted from the first antenatal clinic records (median 12 weeks gestation). 156 

Paternal height and weight were reported by the fathers at recruitment, which for the majority 157 

of fathers was at the time of their partner’s pregnancy. 158 

Offspring anthropometric variables 159 

Offspring outcomes included BW and BMI at age 1 and 4 years (in ALSPAC and BiB), BMI 160 

at age 10 and 15 years (ALSPAC only) and fat mass index (FMI) at age 10, 12, 14, 16 and 161 

18 years (ALSPAC only). The assessment of these outcomes is described in Additional file 162 

1: Supplementary information S5 and Additional file 1: Supplementary information S6, 163 

and included extraction of measurements from routine data sources (birth 164 

records/notifications, child health records, primary care records and school nurse records), 165 

clinical measurement by research staff or UK Government National Child Measurement 166 

Programme (NCMP) staff, and maternal/offspring questionnaire responses. In ALSPAC, we 167 
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calculated FMI as fat mass (kg) / height (m)2 using fat mass measured by whole body dual-168 

energy X-ray absorptiometry (DXA) (Additional file 1: Supplementary information S5). 169 

Anthropometric variable standardisation 170 

In each of the three samples (ALSPAC, BiB White Europeans and BiB South Asians) we 171 

internally standardised exposure and outcome variables to give measures in standard 172 

deviation (SD) units. We standardised maternal BMI by maternal age (at delivery), in one 173 

year age categories. We standardised offspring BW by sex, and offspring BMI and FMI by 174 

sex and age (in one month categories). 175 

Confounder adjusted multivariable regression  176 

We considered the following variables to be potential confounders: maternal age (which was 177 

adjusted for in the standardised exposure by calculating z-scores within maternal age 178 

strata), parity, maternal smoking during pregnancy, parental occupation, maternal 179 

educational attainment, paternal educational attainment and paternal BMI. Standard 180 

protocols for assessing these variables were used in each cohort, and full details are 181 

provided in Additional file 1: Supplementary information S7. We fitted three MV 182 

regression models: in model one we adjusted for maternal age, offspring age and offspring 183 

sex, in model two we additionally adjusted for the potential confounders listed above except 184 

for paternal BMI, and in model three (which was the main multivariable model of interest and 185 

is presented in Results) we additionally adjusted for paternal BMI. We took a complete case 186 

approach and excluded individuals with any missing data, therefore models one to three 187 

were fitted using identical samples. In sensitivity analyses we adjusted all models for 188 

gestational age at delivery, and for 20 genetic principal components (PCs) which we 189 

calculated from genome-wide SNPs separately for each of the three samples (Additional 190 

file 1: Supplementary information S8), in order to adjust for ancestry. In BiB we had to 191 

exclude a large number of individuals from the main MV models due to missing paternal BMI 192 

data. We therefore refitted models one and two without first excluding individuals with 193 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2022. ; https://doi.org/10.1101/2021.04.01.21251414doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21251414
http://creativecommons.org/licenses/by/4.0/


 

9 
 

missing paternal BMI data (i.e. on larger samples), in order to explore potential selection 194 

bias. 195 

Genotyping, quality control and imputation 196 

Mothers, offspring and (in ALSPAC only) fathers were genotyped using genome-wide arrays, 197 

followed by standard quality control (QC) measures (Additional file 1: Supplementary 198 

information S9). Array genotypes were then imputed to the Haplotype Reference 199 

Consortium (HRC), 1000 Genomes or UK10K reference panels (46-48) (Additional file 1: 200 

Supplementary information S9). In order to maximize the sample size we did not exclude 201 

cryptically related individuals for the primary analyses. As a sensitivity analysis we removed 202 

cryptic relatedness at a level corresponding to first cousins (dropping 6.7%, 13.5% and 9.1% 203 

of individuals in ALSPAC, BiB South Asians and BiB White Europeans respectively) by 204 

applying a KING (48) kinship coefficient threshold of 0.044 to the offspring using the PLINK 205 

software package version 2.00 (49, 50).  206 

Inference of maternal non-transmitted alleles 207 

Our MR analyses used maternal PRS as IVs for maternal pre-pregnancy BMI. MR assumes 208 

that the IV is only associated with the outcome via its association with the exposure 209 

(Additional file 1: Supplementary information S10). For this to be true, the maternal PRS 210 

must be independent of the offspring’s genotype, but due to genetic inheritance this is not 211 

the case for PRS calculated in the usual way from all maternal alleles. We therefore 212 

calculated maternal PRS from only those maternal alleles that were not inherited by the 213 

offspring (maternal non-transmitted alleles (34)). After conversion of imputed genotypes to 214 

hard calls (integer valued allele dosages) and application of QC filters (Additional file 1: 215 

Supplementary information S9), we phased offspring imputed SNPs (for the sample of 216 

genotyped mother-offspring duos) using the duoHMM method implemented in the SHAPEIT 217 

v2 (r904) software package, with a window size of 5 Mb as per the authors 218 

recommendations for parent-offspring duos (76). This yielded maternal transmitted alleles 219 
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(i.e. maternal alleles that were inherited by the offspring), which we used (along with the 220 

maternal genotypes) to infer the maternal non-transmitted alleles, from which we calculated 221 

maternal PRS, having first estimated SNP weights using maternal genotypes (see below). 222 

Polygenic risk score (PRS) calculation 223 

Previous MR studies followed the widely used practice of using up to 97 GWS (P <5e-8) 224 

SNPs, but for polygenic traits such as BMI it is known that substantially improved phenotypic 225 

prediction can be achieved by including many more SNPs in the genetic risk score (i.e. more 226 

weakly associated SNPs that individually are not GWS) (61, 77-79). In order to maximise 227 

statistical power we used thousands of genome-wide SNPs to calculate a BMI PRS, as a 228 

weighted sum of BMI-increasing maternal non-transmitted alleles at SNPs across the 229 

genome. We tested four PRS methods (clumping and thresholding (80), LDPred (52), 230 

lassosum (53, 81) and the BOLT-LMM linear predictor (54)) (Additional file 1: 231 

Supplementary information S11 provides further information for each of these). Of these 232 

four methods, lassosum explained the highest proportion of variance (R2) for maternal BMI 233 

in both ALSPAC and BiB (which we refer to as the target datasets), therefore we used the 234 

lassosum PRS for subsequent MR analyses. Lassosum requires summary statistics from a 235 

genome wide association study (GWAS), which we refer to as the base dataset. We 236 

conducted a GWAS in the UK Biobank (UKB), a prospective cohort of 502,628 volunteers 237 

(with 5% response rate of those invited), recruited from across the UK at age 40–69 years 238 

between 2006 and 2010 (58, 82) (Additional file 1: Supplementary information S11). In 239 

order to avoid overfitting due to overlap between the base and target samples we excluded 240 

attendees of the Bristol (where ALSPAC participants would have attended) or Leeds (where 241 

Born in Bradford participants would have attended) UKB assessment centres. We meta-242 

analysed the summary statistics from the UKB GWAS with a published BMI GWAS from the 243 

GIANT consortium (60, 83), giving a total base sample size of up to 756,048. We applied the 244 

lassosum algorithm to the meta-analysed base dataset; lassosum uses penalised regression 245 

to carry out shrinkage and selection on the base GWAS SNP effects and accounts for LD 246 
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information from a reference panel. We used the ALSPAC or BiB datasets as the reference 247 

panels as per the authors’ recommendations) (53). PLINK was used to calculate the PRS for 248 

ALSPAC and BiB individuals using the lassosum SNP weights for around 80,000 SNPs (see 249 

Table 2 for the exact number of SNPs for each cohort). We also calculated three PRS from 250 

fewer SNPs, to be used in sensitivity analyses to explore potential pleiotropic effects (we 251 

would expect that the risk of pleiotropic bias might decrease as fewer SNPs are included in 252 

the IV; see below). These PRS used (i) around 30 GWS SNPs identified in a 2010 BMI 253 

GWAS (67), (ii) around 90 GWS SNPs identified in a 2015 BMI GWAS (60), and (iii) around 254 

500 GWS SNPs identified as primary signals in a 2018 BMI GWAS (61). Full details of these 255 

analyses, including the exact number of SNPs used to calculate each PRS (which varied 256 

between samples) are given in Additional file 1: Supplementary information S12. 257 

Mendelian randomization 258 

For the primary MR analyses we used the lassosum non-transmitted allele BMI PRS as an 259 

IV for maternal BMI and fitted models using the two-stage least squares (TSLS) method (22) 260 

(i.e. one sample MR). Additional file 1: Supplementary information S10 shows our MR 261 

analyses diagrammatically. We included 20 genetic PCs as covariates in order to adjust for 262 

population stratification. We tested for a difference between the most extensively confounder 263 

adjusted MV estimates (model three) and MR estimates using a z-test (Additional file 1: 264 

Supplementary information S13), and used a bootstrapping procedure to estimate the 265 

covariance between MV and MR estimates in order to calculate the z-statistic. Evidence for 266 

a difference between the two could reflect residual confounding in the MV analyses or 267 

violation of one or more of the MR assumptions. 268 

Meta-analysis  269 

We examined the point estimates, I2 statistics and Cochran’s Q test P-values for the MV and 270 

MR associations and found little evidence for heterogeneity between ALSPAC, BiB South 271 

Asians and BiB White Europeans (Additional file 1: Supplementary information S14). We 272 
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therefore meta-analysed estimates from the three samples using a fixed effects model. 273 

Results were similar when we instead used a random effects model. For the meta-analyses 274 

we used the ratio estimator (calculated as the meta-analysed PRS-outcome regression 275 

coefficient ���� divided by the meta-analysed PRS-exposure regression coefficient ���� ; in the 276 

present study both coefficients were estimated in the same sample) which gives equivalent 277 

results to TSLS (84). We calculated the standard errors for the pooled MR estimates using a 278 

Taylor series approximation (70). 279 

Checking MR assumptions 280 

We checked the assumptions made by MR analyses (Additional file 1: Supplementary 281 

information S10); if these assumptions are met then our MR estimates can be interpreted 282 

as causal effect estimates (22). We first assessed whether the PRS were associated with 283 

maternal BMI using the R2 and F-statistics. Next, we explored whether the PRS-outcome 284 

associations were confounded by ancestry (population stratification) using a linear mixed 285 

model (LMM). LMMs have been widely used in GWAS to adjust for population stratification 286 

and cryptic relatedness (71). We fitted models for the numerator and denominator of the 287 

ratio estimator separately, using the --reml-est-fix command in the GCTA software package 288 

(version 1.91.7beta) (43). Further details of the LMM approach are given in Additional file 289 

1: Supplementary information S15. Finally, we conducted several analyses to explore 290 

whether the maternal PRS influences offspring adiposity via mechanisms other than 291 

intrauterine or periconceptional exposure to increased maternal BMI (horizontal pleiotropy). 292 

We first tested for associations of the PRS with other potential risk factors for the offspring 293 

outcomes (85). We would expect that the risk of pleiotropic bias might decrease as fewer 294 

SNPs are included in the IV. We therefore repeated MR analyses with IVs calculated from a 295 

single BMI-associated SNP (rs9939609 at the FTO locus, the locus at which there is 296 

currently the strongest evidence for association with BMI (61)), as well as the three PRS 297 

calculated from only strongly BMI-associated (GWS) SNPs, as described above. 298 

Furthermore, most of the SNPs included in the lassosum BMI PRS had small effect sizes, 299 
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and the consequences of this for the extent of horizontal pleiotropic effects are unclear (72), 300 

so we explored how MR estimates varied with varying SNP effect size distributions. We also 301 

tested for evidence of between-SNP MR estimate heterogeneity (Cochran’s Q test) and used 302 

MR Egger regression (74) to investigate horizontal pleiotropy, for the analyses based on 303 

GWS SNPs. Finally, to investigate collider bias and bias due to assortative mating we 304 

examined the association between the maternal and paternal lassosum BMI PRS, in the 305 

subset of ALSPAC participants with paternal genotype data available (N = 1325). 306 

Other sensitivity analyses 307 

We explored departure from linearity of the MV and MR associations by examining 308 

augmented partial residual plots with overlaid linear regression lines and nonparametric 309 

loess smoothers (86). The residuals from several models involving adolescent BMI and FMI 310 

variables were somewhat positively skewed so we repeated MV and MR analyses using the 311 

natural log of the relevant variables. We examined whether results differed for BW, BMI and 312 

ponderal index (weight [kg] / length [m]3) at birth (in ALSPAC only as birth length was not 313 

available in BiB). Finally, we tested for interaction by offspring sex for the MV and MR 314 

models. We carried out statistical analyses in R version 3.5.1 (87), and Stata version 13.1 315 

(StataCorp, College Station, TX, USA). 316 

Results 317 

Participant characteristics 318 

Table 1 shows the participant characteristics. The prevalence of maternal obesity (maternal 319 

BMI ≥30) was 5.5% (95% confidence interval [CI]: 4.9%, 6.1%) in ALSPAC and markedly 320 

higher in BiB South Asians (20.5% [95% CI: 18.9%, 22.2%]) and BiB White Europeans 321 

(26.0% [95% CI: 24.1%, 28.0%]). The samples for our analyses were smaller than those for 322 

the full cohorts at birth due to missing data, particularly for the MV associations. Despite this 323 

there were not large differences in the distributions of BW, maternal BMI or offspring sex 324 

between the baseline samples and those from which we calculated the MV estimates 325 
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(Additional file 1: Supplementary information S16). Furthermore, when we fitted MV 326 

models one and two on a larger sample (retaining individuals with missing paternal BMI) 327 

there were not large differences in the primary MV results (Additional file 1: 328 

Supplementary information S17). 329 
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Table 1: Characteristics of the mothers and offspring in ALSPAC and BiB 330 

 ALSPAC BiB (WE) BiB (SA) 
 

Mean SD N 
Female 

offspring 
(%) 

Mean SD N 
Female 

offspring 
(%) 

Mean SD N 
Female 

offspring 
(%) 

Maternal BMI (kg/m2) 23.0 3.8   26.9 6.0   25.8 5.5   
Maternal age (years) 29.3 4.5   27.4 6.0   28.8 5.0   
Birth weight (z score) 0.10 0.95 5085 50.5 -0.05 0.97 1992 47.9 -0.56 0.92 2262 47.9 
Gestational age (weeks) 39.6 1.7   39.4 1.6   39.1 1.5   
1yr weight for length percentile* 0.64 0.27 4838 50.6 0.61 0.28 1798 47.8 0.48 0.30 2023 48.1 
Age at measurement (years) 0.9 0.2   0.8 0.3   0.8 0.3   
4yr BMI (z score) 0.46 1.05 4670 50.2 0.50 0.97 1339 48.6 0.10 1.21 1566 48.5 

Age at measurement (years) 4.1 0.7   4.5 0.7   4.5 0.7   
10yr BMI (z score) 0.26 1.12 4476 51.3         
Age at measurement (years) 9.9 0.5           
15yr BMI (z score) 0.30 1.11 4112 51.7         
Age at measurement (years) 15.0 0.8           

SA: South Asians, WE: White Europeans, SD: standard deviation, z score: sex- and gestational age-331 
adjusted standard deviation score (UK-WHO Growth Reference (88)), *Sex-adjusted percentile 332 
calculated using the WHO Child Growth Standards (89). All z scores and percentiles were calculated 333 
via the zanthro Stata package (90). Data for absolute values (as opposed to z scores) are presented 334 
in Additional file 1: Supplementary information S18 335 

 336 

Associations of genetic IVs with maternal BMI and offspring genotype 337 

As we included more SNPs in the IV the R2 for maternal BMI increased markedly, from <1% 338 

for the FTO IV to ~3–7% for the lassosum IV (Table 2). First-stage F-statistics were >75 for 339 

all lassosum MR models (Additional file 1: Supplementary information S19). The 340 

lassosum maternal non-transmitted allele BMI PRS was not correlated with the offspring’s 341 

PRS (results available from the authors on request). 342 

Associations of maternal BMI with confounders/outcome risk factors 343 

There was strong evidence in all three samples for associations between maternal BMI and 344 

several other potential risk factors for the offspring outcomes, including parental occupation, 345 

educational attainment, maternal parity and paternal BMI (results are summarised in Table 346 

2, and full regression results including the direction of associations are given in Additional 347 

file 1: Supplementary information S20–S23).  348 

Associations of maternal BMI PRS with confounders/outcome risk factors 349 
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Genetic IVs based on fewer SNPs (i.e. <100 SNPs) were generally not associated with the 350 

outcome risk factors. In ALSPAC however there was strong evidence for association of the 351 

lassosum IV (based on 80,939 SNPs) with parental occupation, parental educational 352 

attainment, parental age, maternal smoking and paternal BMI. These associations were 353 

mostly present for BiB White Europeans but absent for BiB South Asians. 354 

Table 2: Associations of maternal BMI with outcome risk factors, and of the genetic IVs (maternal 355 
non-transmitted alleles) with maternal BMI and outcome risk factors 356 

 
N 

SNPs 
R2 maternal 

BMI 

Correlation with outcome risk factorsa  

 
Parental 

occupation 
Maternal 

education 
Paternal 

education 
Maternal 
smoking 

Parity Paternal 
BMI 

Maternal 
age 

Paternal 
age 

           
ALSPAC           

N 
 

5157 4807 4826 4572 4891 5042 3766 5157 3593 
           

Maternal BMIb   0.11*** -0.12*** -0.11*** -0.01 0.06** 0.16*** 0.00c -0.01c 
Genetic IV  

 
      

  
FTO 1 0.36% 0.03* -0.01 -0.01 0.00 0.02 -0.01 -0.01 0.00 

Speliotes 31 0.89% 0.02 0.00 -0.03* -0.01 0.02 0.01 0.00 0.01 
Locke 87 1.02% 0.03 -0.01 -0.04* -0.01 0.03* 0.01 0.00 0.00 
Yengo 497 2.37% 0.04* -0.04* -0.05** 0.02 0.03 0.01 -0.02 -0.01 

Lassosum 80939 6.61% 0.08*** -0.07*** -0.08*** 0.07*** 0.02 0.03* -0.08*** -0.06** 

  
 

      
  

BiB (SA)           
N 

 
2267 1689 2259 2258 2262 2215 475 2267 583 

           

Maternal BMIb  
 -0.10** -0.08** -0.03 0.01 0.15*** 0.12* -0.02c 0.02c 

Genetic IV 
 

         
FTO 1 0.77% -0.01 -0.01 0.00 -0.03 0.00 0.00 0.02 0.06 

Speliotes 29 1.71% -0.01 0.01 0.01 -0.04 0.00 -0.01 0.00 -0.05 
Locke 82 1.33% -0.04 0.02 0.03 -0.05* -0.01 -0.06 0.00 0.02 
Yengo 446 1.64% -0.04 -0.04* 0.01 0.01 0.01 -0.03 -0.02 -0.03 

Lassosum 79101 3.46% -0.01 -0.02 -0.02 0.01 -0.02 -0.04 -0.04 -0.06 

  
 

      
  

BiB (WE)           
N 

 
2000 1587 2000 1999 1999 1951 639 2000 788 

           

Maternal BMIb 
 

 -0.09** -0.07* 0.01 0.01 0.11*** 0.22*** 0.00c 0.04c 
Genetic IV  

         
FTO 1 0.56% 0.03 0.02 -0.01 0.00 0.00 0.03 0.00 -0.02 

Speliotes 31 0.92% 0.05 0.01 0.03 -0.03 0.00 0.02 0.00 -0.01 
Locke 86 1.16% 0.03 0.00 0.04 -0.01 -0.01 0.04 -0.02 -0.02 
Yengo 453 1.78% -0.01 0.00 0.05* 0.01 0.00 0.00 -0.03 0.00 

Lassosum 79101 5.21% -0.08* -0.05* 0.04 0.07* 0.04 0.03 -0.07* 0.01 

  
 

      
  

 357 

a: Pearson correlation coefficients are presented here to give an indication of the direction and 358 
magnitude of associations; full regression results are presented in Additional file 1: Supplementary 359 
information S16–S19, * P <0.05, ** P <0.001, *** P <1e-5, b: age-standardised z-scores for maternal 360 
BMI, as per the primary analyses, c: maternal BMI is not correlated with maternal or paternal age 361 
because it was age-standardised, SA: South Asians, WE: White Europeans, R2: proportion of 362 
maternal BMI variance explained by the IV (maternal non-transmitted allele scores), FTO: rs9939609 363 
at the FTO locus, Speliotes, Locke, Yengo: PRS calculated from SNPs that reached genome wide 364 
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significance in the BMI GWAS with the indicated first author, Lassosum: PRS calculated by the 365 
lassosum method 366 

Confounder adjusted MV regression 367 

In confounder adjusted MV regression models maternal BMI was positively associated with 368 

all offspring outcomes (Figure 1, Additional file 1: Supplementary information S24; meta-369 

analysis heterogeneity statistics are given in Additional file 1: Supplementary information 370 

S14). Estimates for the SD scale increase in offspring outcomes associated with a 1 SD 371 

higher age-adjusted maternal BMI ranged from 0.07 (95% CI: 0.04, 0.10) for 4 year BMI to 372 

0.32 (95% CI: 0.29, 0.36) for 15 year BMI, and MV estimates for 10–18 year FMI were 373 

similar to those for 15 year BMI. Adjustment for potential confounders had a negligible 374 

impact on the estimates, aside from a small attenuation on adjustment for paternal BMI for 375 

outcomes after birth. Results were similar when we refitted MV models one and two on 376 

larger samples without excluding individuals with missing paternal BMI data (Additional file 377 

1: Supplementary information S17). Additional adjustment for gestational age at birth or 378 

20 genetic PCs had a negligible effect (Additional file 1: Supplementary information S25, 379 

S26), and there was not a large difference when BMI or ponderal index at birth was 380 

substituted for BW in ALSPAC (Additional file 1: Supplementary information S27). 381 

MR results 382 

For BW the MR estimate for the lassosum PRS for all three samples meta-analysed was 383 

0.14 (0.05, 0.23), which was similar to the MV estimate; Pdifference (MV vs. MR) = 0.84)) (Figure 1). 384 

The corresponding lassosum MR estimates for 1 year BMI and 4 year BMI were -0.02 (-0.11, 385 

0.07) and 0.01 (-0.08, 0.10) respectively, and there was moderate to strong evidence for an 386 

MR-MV difference (Pdifference = 0.10 and 1.3e-3 respectively). The MR estimates for 10 and 15 387 

year BMI in ALSPAC (0.10 [-0.01, 0.21] and 0.13 [0.01, 0.24] respectively) were also smaller 388 

than the MV estimates (Pdifference = 1.4e-4 and 1.0e-3 respectively). Results for adolescent 389 

FMI (Figure 2) were similar to those for adolescent BMI: MR estimates ranged between 0.09 390 

and 0.19, and there was strong evidence that the MR estimates were smaller than the MV 391 
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estimates, with Pdifference ranging between 0.05 and 4.7e-4). We did not observe strong 392 

evidence for non-linearity or interaction by sex for either the MV or MR models (results 393 

available from the authors), and results were similar when we (i) substituted BMI or ponderal 394 

index at birth for BW (Additional file 1: Supplementary information S28), (ii) natural log 395 

transformed skewed variables (results available from the authors), (iii) removed cryptic 396 

relatedness from the sample (results available from the authors), and (iv) used linear mixed 397 

models to adjust for population structure (Additional file 1: Supplementary information 398 

S29). In linear regression models (as opposed to two-stage least squares regression) there 399 

was strong to moderate evidence that the lassosum maternal non-transmitted allele BMI 400 

PRS was associated with offspring BW and adolescent adiposity (Additional file 1: 401 

Supplementary information S30, S31). 402 

 403 

  404 
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Figure 1: Mean difference in offspring BW and BMI (SD) per 1SD increase in maternal BMI, from MR 405 
(lassosum) and confounder adjusted multivariable regression (MV) models  406 

Confounder adjusted multivariable regression (MV) estimates are from model three (Methods). N: 407 
Number of participants. The number of SNPs used for the MR analyses is provided separately by 408 
cohort in Table 1. P: P-value for the null hypothesis that the effect equals zero, Pdif: P-value for the 409 
null hypothesis that MR effect equals the MV effect. 410 

  411 
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Figure 2: Mean difference in offspring FMI (SD) per 1SD increase in maternal BMI, from MR 412 
(lassosum) and confounder adjusted multivariable regression (MV) models  413 

Confounder adjusted multivariable regression (MV) estimates are from model three (Methods). N: 414 
Number of participants. The number of SNPs used for the MR analyses is provided separately by 415 
cohort in Table 1. P: P-value for the null hypothesis that the effect equals zero, Pdif: P-value for the 416 
null hypothesis that MR effect equals the MV effect. 417 

MR estimates for IVs with fewer SNPs 418 

When we replaced the lassosum PRS with alternative IVs calculated from fewer SNPs, our 419 

MR estimates varied in a manner that was specific to the offspring outcome (Figure 3, 420 

Figure 4). For BW, including fewer SNPs in the IV did not result in large differences in the 421 

MR estimates, although the precision reduced markedly as we used fewer SNPs. For 1 and 422 

4 year BMI, MR estimates increased as we used fewer SNPs, whereas for 10 year BMI they 423 

largely remained stable and for 15 year BMI they decreased. The patterns for adolescent 424 

FMI were similar to those for adolescent BMI. For outcomes apart from BW and 1yr BMI, 425 

including more SNPs in the IV generally resulted in stronger evidence that MR estimates 426 

differed from MV estimates (i.e. smaller Pdif). 427 

MR estimates for SNPs with differing effect size distributions, between-SNP heterogeneity 428 

and MR Egger results 429 
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For the majority of outcomes (particularly in adolescence) there was moderate to strong 430 

statistical evidence that SNPs with smaller effect sizes gave larger (more positive) MR 431 

estimates (P = 4.0e-3, 2.6e-2, 1.8e-2 and 4.7e-4 for 15yr BMI, 14yr FMI, 16yr FMI and 18yr 432 

FMI respectively), and this was not driven by weak instrument bias (Additional file 1: 433 

Supplementary information S32). When using only large-effect (GWS) SNPs, in general 434 

(and in light of the 40 statistical tests carried out) there was not strong statistical evidence for 435 

between-SNP MR estimate heterogeneity (all Cochran’s Q test P-values ≥0.017), nor was 436 

there strong evidence that the MR-Egger intercept differed from zero (all MR-Egger intercept 437 

P-values ≥0.023) (Additional file 1: Supplementary information S33). 438 

 439 

  440 
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Figure 3: Mean difference in offspring BW and BMI (SD) per 1SD increase in maternal BMI, from MR 441 
models using different SNP sets and confounder adjusted multivariable regression (MV) models 442 

Confounder adjusted multivariable regression (MV) estimates are from model three (Methods). N: 443 
Number of participants. The number of SNPs used for the MR analyses is provided separately by 444 
cohort in Table 1. P: P-value for the null hypothesis that the effect equals zero, Pdif: P-value for the 445 
null hypothesis that MR effect equals the MV effect, FTO: rs9939609 at the FTO locus, Speliotes, 446 
Locke, Yengo: GWS SNPs from the GWAS with the indicated first author, Lassosum: PRS 447 
calculated by the lassosum method. Colours denote outcomes 448 

  449 
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Figure 4: Mean difference in offspring FMI (SD) per 1SD increase in maternal BMI, from MR models 450 
using different SNP sets and confounder adjusted multivariable regression (MV) models 451 

Confounder adjusted multivariable regression (MV) estimates are from model three (Methods). N: 452 
Number of participants. The number of SNPs used for the MR analyses is provided separately by 453 
cohort in Table 1. P: P-value for the null hypothesis that the effect equals zero, Pdif: P-value for the 454 
null hypothesis that MR effect equals the MV effect, FTO: rs9939609 at the FTO locus, Speliotes, 455 
Locke, Yengo: GWS SNPs from the GWAS with the indicated first author, Lassosum: PRS 456 
calculated by the lassosum method. Colours denote outcomes 457 

  458 
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Parental phenotypic and PRS correlations  459 

In ALSPAC there was strong evidence for correlation between maternal and paternal BMI 460 

(Pearson’s r: 0.22, 95% CI: 0.16, 0.28, P = 7.9e-14), but no evidence for correlation between 461 

maternal non-transmitted allele and paternal lassosum BMI PRS (r: 0.02, 95% CI: -0.04, 462 

0.07, P = 0.55). For comparison, a maternal lassosum BMI PRS that was calculated from 463 

both transmitted and non-transmitted alleles was slightly more strongly correlated with the 464 

paternal PRS (r: 0.04, 95% CI: -0.01, 0.10, P = 0.14). 465 

Discussion 466 

We applied a Mendelian randomization (MR) approach using PRS calculated from maternal 467 

non-transmitted alleles, to explore the causality of associations between maternal pre-/early-468 

pregnancy BMI and offspring birth weight (BW) and child/adolescent adiposity. For the 469 

association between maternal BMI and offspring BW, our MR and confounder adjusted 470 

multivariable regression (MV) estimates were similar. In contrast, for offspring adiposity 471 

outcomes beyond 1 year of age (including BMI and DXA-determined FMI) the MR estimates 472 

were weaker than the MV estimates. These results markedly strengthen the evidence that 473 

confounder adjusted observational associations between maternal BMI and offspring 474 

adolescent adiposity are subject to residual confounding. We found no strong evidence for a 475 

causal effect of maternal BMI on offspring adiposity beyond birth, although based on the 476 

present results we cannot rule out a small to moderate causal effect. 477 

Our data build on two previous MR studies which investigated associations between 478 

maternal BMI and offspring child/adolescent adiposity (14, 23), and a methodological paper 479 

which presented a limited investigation of adiposity outcomes as an empirical example (24). 480 

Although the previous studies provided no strong evidence for a causal effect, they were 481 

limited by wide confidence intervals and/or potential biases (see Strengths and Limitations 482 

below). The present study overcame these limitations by using more powerful PRS and a 483 

maternal non-transmitted allele score approach. For the association between maternal BMI 484 
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and offspring BW, our MR and MV estimates were highly concordant, in agreement with 485 

previous MR studies that supported a causal effect of greater maternal BMI on greater 486 

offspring BW (26, 27). We have previously shown that genetic confounding (i.e. confounding 487 

due to direct effects of maternal alleles inherited by the offspring) is unlikely to explain the 488 

association of maternal BMI with BW, but may potentially be important for the association 489 

with adolescent BMI (40). The present results are consistent with this, as well as with the 490 

balance of evidence from negative paternal exposure control studies (12-18) and within 491 

sibship analyses (19, 20), which suggests that familial confounding is an important 492 

explanation of the maternal BMI-offspring child/adolescent adiposity association. Studies 493 

that examined the effect of extreme maternal obesity using a pre- and post-bariatric surgery 494 

design (91-94) have small sample sizes and have not been entirely consistent, therefore do 495 

not provide strong evidence against this conclusion. 496 

Although we found no strong evidence for a causal effect in late childhood/adolescence, we 497 

cannot rule out a small to moderate causal effect, due to the imprecision of our MR 498 

estimates. Indeed, the primary lassosum MR estimates were greater than zero for 15 year 499 

BMI and 14–18 year FMI. We do not interpret these as unbiased estimates for the causal 500 

effect of maternal BMI, because of the possibility of pleiotropic bias (see below). These 501 

results do suggest however that some maternal exposure(s) that are correlated with the 502 

maternal BMI PRS have a causal effect on offspring child/adolescent adiposity, although our 503 

analyses are unable to distinguish whether this is a pre or postnatal effect. Plausible 504 

mechanisms include intrauterine effects such as fetal overnutrition (1) and postnatal effects 505 

such as maternal influence on offspring eating behaviour (95), but other mechanisms have 506 

been hypothesised, including periconceptional effects (such as altered oocyte structure or 507 

function (3)). In linear regression analyses we found moderate to strong evidence for 508 

associations between the maternal non-transmitted allele BMI PRS and offspring adolescent 509 

adiposity (including BMI and DXA-determined FMI). These observed maternal genetic 510 
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effects merit further investigation in other datasets, particularly as previous studies have not 511 

found evidence for parental genetic effects on BMI in childhood (96) or adulthood (97). 512 

In ALSPAC and BiB White Europeans we observed associations between the maternal BMI 513 

PRS and potential confounders, including parental occupation, education, age and maternal 514 

smoking. These results invite careful consideration of which of the ever-increasing number of 515 

GWS associated BMI SNPs are likely (in combinations) to be the most valid instruments for 516 

MR studies, having taken account of all IV assumptions. 517 

Strengths and limitations 518 

Our study has several key strengths. We studied two prospective birth cohorts with maternal 519 

and offspring genome-wide genotype data, maternal BMI measurements and offspring 520 

adiposity outcomes available, allowing us to conduct mother-offspring MR analyses. We 521 

used state-of-the-art methods to calculate a powerful PRS from around 80,000 SNPs. This 522 

yielded a substantial increase in statistical power over previous MR studies, which analysed 523 

similar ALSPAC datasets to ours, but employed either a single SNP in the FTO gene (14) or 524 

allele scores calculated from up to 97 SNPs (23, 24) (similar to the “Speliotes” and “Locke” 525 

IVs in the present analysis). Our primary lassosum PRS explained 3–7% of maternal BMI 526 

variance, compared to ~1.5% for the strongest IVs used previously (power calculations are 527 

given in Additional file 1: Supplementary information S34). 528 

Another strength over previous work is our use of maternal non-transmitted allele PRS, 529 

thereby avoiding the need to control for genetic inheritance by adjusting for offspring 530 

genotype. A previous methodological paper made use of this approach (24), but conducted a 531 

much more limited analysis of a far smaller subset of adiposity outcomes than that which we 532 

have explored here. Controlling for offspring genotype may be suboptimal for two distinct 533 

reasons: (i) it may introduce collider bias if paternal genotype influences the offspring 534 

outcome independently of offspring genotype (i.e. if paternal genetic effects exist) (24, 35), 535 

and (ii) if the investigator adjusts for a weighted allele score, this may introduce bias by 536 
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inadequately blocking the genetic inheritance path (Personal communication, Wang G, 537 

Warrington N, Evans DM, 2020). Because these two biases may be in opposite directions, 538 

the net direction of any bias affecting the largest previous study (23) is uncertain. We 539 

acknowledge that our primary MR estimates may be affected by pleiotropic bias due to the 540 

large number of SNPs, many of which had small effect sizes, that we used to calculate the 541 

PRS. This possibility is also suggested by the associations that we observed between the 542 

lassosum BMI PRS and several potential confounders of the maternal BMI-offspring 543 

adiposity association. However, sensitivity analyses suggested that for most outcomes 544 

pleiotropic bias is likely to be away from zero, which would weaken the apparent evidence 545 

for an MR-MV difference (Additional file 1: Supplementary information S32, S33). Thus, 546 

our primary MR results are conservative, in that they may overstate the size of the causal 547 

effect (which we hypothesised to be zero). The fact that for 10 and 15 year BMI, using more 548 

SNPs yielded increased precision and stronger evidence for an MR-MV difference (Figure 549 

2), despite the potential pleiotropic bias away from zero, illustrates the benefit of our 550 

approach. 551 

We also conducted extensive sensitivity analyses to explore other potential biases in our 552 

results. When we used a linear mixed model (LMM) to adjust for population structure the 553 

results were similar to our primary estimates. We did not remove cryptic relatedness for our 554 

primary analyses, in order to maximise the sample size and because the LMM controls for 555 

bias due to cryptic relatedness (71). However, results were similar when we removed cryptic 556 

relatedness at a level corresponding to first cousins. Finally, we found no strong evidence 557 

that maternal and paternal lassosum BMI PRS were correlated, suggesting that our results 558 

are not importantly biased due to assortative mating. 559 

We acknowledge several limitations of our study. First, although the results in BiB and 560 

ALSPAC were similar, replication in other cohorts with suitable data, and in particular with 561 

adolescent adiposity measures (which we could only examine in ALSPAC) would be 562 

valuable. A previous study meta-analysed data from ALSPAC and the Generation R cohort 563 
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using 32 maternal SNPs (23), but we were unable to extend our approach to Generation R 564 

due to the unavailability of maternal genome-wide SNP data. Additional file 1: 565 

Supplementary information S35 compares the present analysis to previous analyses of 566 

ALSPAC data. We have only studied UK participants. However, the similarity of findings 567 

between White European and South Asian BiB participants, and between BiB (a cohort with 568 

high levels of deprivation born during the obesity epidemic) and ALSPAC (more affluent than 569 

the UK average) suggest that our findings may be generalisable to other populations. 570 

Second, BMI (especially self-reported BMI) is an imperfect proxy measure for adiposity. 571 

However, it has been shown previously in ALSPAC that self-reported pre-pregnancy BMI is 572 

strongly correlated with BMI measured in early pregnancy (23), and that any misreporting 573 

does not markedly differ by mean weight (98). There is also evidence that the correlation 574 

with directly measured adiposity is strong for child and adult BMI (99, 100) and moderate for 575 

neonatal weight (101); furthermore, our results were similar for DXA derived FMI. Third, we 576 

assumed that causal relationships between exposures and outcomes were linear. Although 577 

our data provided no evidence for non-linearity, a slight plateauing of the observational 578 

association between maternal BMI and offspring child/adolescent BMI at higher maternal 579 

BMI levels was previously observed in a large meta-analysis (6). MR estimates such as 580 

ours, which assume linearity, nevertheless approximate the population-averaged causal 581 

effect (which is the average effect resulting from a unit increase in the exposure for all 582 

individuals in the population, regardless of their initial exposure level) (102). However, given 583 

the shape of the observational association (6) it is plausible that our MR estimates overstate 584 

the true causal effect for mothers with overweight/obesity. Finally, the samples used for 585 

some of our analyses (particularly for MV models) were smaller than the full samples at 586 

baseline due to missing data and loss to follow up, raising the possibility that our results are 587 

affected by selection bias. However, the distributions of maternal BMI, BW and offspring sex 588 

were similar for the samples used for our analyses and the samples at baseline, and MV 589 

results were similar when we refitted models on larger samples without excluding individuals 590 
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with missing paternal BMI data. It therefore seems unlikely that selection bias would be of 591 

sufficient magnitude to alter our conclusions. 592 

Conclusion 593 

We explored the causality of associations between maternal pre-/early-pregnancy BMI and 594 

offspring BW and child/adolescent adiposity (measured by BMI and DXA-determined FMI), 595 

using an MR approach with PRS calculated from maternal non-transmitted alleles. This 596 

approach yielded narrower confidence intervals compared with previous studies, and 597 

avoided sources of bias that may have affected previous work. We found no strong evidence 598 

for a causal effect of maternal BMI on offspring adiposity beyond birth, but strong evidence 599 

that confounder adjusted observational associations between maternal BMI and adolescent 600 

adiposity are affected by residual confounding. Although we cannot rule out a small or 601 

moderate causal effect on child/adolescent adiposity, the present study suggests that higher 602 

maternal pre-/early-pregnancy BMI is not a key driver of greater adiposity in the next 603 

generation. Thus, our results support interventions that target the whole population for 604 

reducing overweight and obesity, rather than a specific focus on women of reproductive age. 605 
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